| // SPDX-License-Identifier: GPL-2.0-only |
| // Copyright 2024 Cisco Systems, Inc. All rights reserved. |
| |
| #include <linux/skbuff.h> |
| #include <linux/if_vlan.h> |
| #include <net/busy_poll.h> |
| #include "enic.h" |
| #include "enic_res.h" |
| #include "enic_rq.h" |
| #include "vnic_rq.h" |
| #include "cq_enet_desc.h" |
| |
| #define ENIC_LARGE_PKT_THRESHOLD 1000 |
| |
| static void enic_intr_update_pkt_size(struct vnic_rx_bytes_counter *pkt_size, |
| u32 pkt_len) |
| { |
| if (pkt_len > ENIC_LARGE_PKT_THRESHOLD) |
| pkt_size->large_pkt_bytes_cnt += pkt_len; |
| else |
| pkt_size->small_pkt_bytes_cnt += pkt_len; |
| } |
| |
| static void enic_rq_cq_desc_dec(void *cq_desc, u8 cq_desc_size, u8 *type, |
| u8 *color, u16 *q_number, u16 *completed_index) |
| { |
| /* type_color is the last field for all cq structs */ |
| u8 type_color; |
| |
| switch (cq_desc_size) { |
| case VNIC_RQ_CQ_ENTRY_SIZE_16: { |
| struct cq_enet_rq_desc *desc = |
| (struct cq_enet_rq_desc *)cq_desc; |
| type_color = desc->type_color; |
| |
| /* Make sure color bit is read from desc *before* other fields |
| * are read from desc. Hardware guarantees color bit is last |
| * bit (byte) written. Adding the rmb() prevents the compiler |
| * and/or CPU from reordering the reads which would potentially |
| * result in reading stale values. |
| */ |
| rmb(); |
| |
| *q_number = le16_to_cpu(desc->q_number_rss_type_flags) & |
| CQ_DESC_Q_NUM_MASK; |
| *completed_index = le16_to_cpu(desc->completed_index_flags) & |
| CQ_DESC_COMP_NDX_MASK; |
| break; |
| } |
| case VNIC_RQ_CQ_ENTRY_SIZE_32: { |
| struct cq_enet_rq_desc_32 *desc = |
| (struct cq_enet_rq_desc_32 *)cq_desc; |
| type_color = desc->type_color; |
| |
| /* Make sure color bit is read from desc *before* other fields |
| * are read from desc. Hardware guarantees color bit is last |
| * bit (byte) written. Adding the rmb() prevents the compiler |
| * and/or CPU from reordering the reads which would potentially |
| * result in reading stale values. |
| */ |
| rmb(); |
| |
| *q_number = le16_to_cpu(desc->q_number_rss_type_flags) & |
| CQ_DESC_Q_NUM_MASK; |
| *completed_index = le16_to_cpu(desc->completed_index_flags) & |
| CQ_DESC_COMP_NDX_MASK; |
| *completed_index |= (desc->fetch_index_flags & CQ_DESC_32_FI_MASK) << |
| CQ_DESC_COMP_NDX_BITS; |
| break; |
| } |
| case VNIC_RQ_CQ_ENTRY_SIZE_64: { |
| struct cq_enet_rq_desc_64 *desc = |
| (struct cq_enet_rq_desc_64 *)cq_desc; |
| type_color = desc->type_color; |
| |
| /* Make sure color bit is read from desc *before* other fields |
| * are read from desc. Hardware guarantees color bit is last |
| * bit (byte) written. Adding the rmb() prevents the compiler |
| * and/or CPU from reordering the reads which would potentially |
| * result in reading stale values. |
| */ |
| rmb(); |
| |
| *q_number = le16_to_cpu(desc->q_number_rss_type_flags) & |
| CQ_DESC_Q_NUM_MASK; |
| *completed_index = le16_to_cpu(desc->completed_index_flags) & |
| CQ_DESC_COMP_NDX_MASK; |
| *completed_index |= (desc->fetch_index_flags & CQ_DESC_64_FI_MASK) << |
| CQ_DESC_COMP_NDX_BITS; |
| break; |
| } |
| } |
| |
| *color = (type_color >> CQ_DESC_COLOR_SHIFT) & CQ_DESC_COLOR_MASK; |
| *type = type_color & CQ_DESC_TYPE_MASK; |
| } |
| |
| static void enic_rq_set_skb_flags(struct vnic_rq *vrq, u8 type, u32 rss_hash, |
| u8 rss_type, u8 fcoe, u8 fcoe_fc_crc_ok, |
| u8 vlan_stripped, u8 csum_not_calc, |
| u8 tcp_udp_csum_ok, u8 ipv6, u8 ipv4_csum_ok, |
| u16 vlan_tci, struct sk_buff *skb) |
| { |
| struct enic *enic = vnic_dev_priv(vrq->vdev); |
| struct net_device *netdev = enic->netdev; |
| struct enic_rq_stats *rqstats = &enic->rq[vrq->index].stats; |
| bool outer_csum_ok = true, encap = false; |
| |
| if ((netdev->features & NETIF_F_RXHASH) && rss_hash && type == 3) { |
| switch (rss_type) { |
| case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv4: |
| case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6: |
| case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6_EX: |
| skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L4); |
| rqstats->l4_rss_hash++; |
| break; |
| case CQ_ENET_RQ_DESC_RSS_TYPE_IPv4: |
| case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6: |
| case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6_EX: |
| skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L3); |
| rqstats->l3_rss_hash++; |
| break; |
| } |
| } |
| if (enic->vxlan.vxlan_udp_port_number) { |
| switch (enic->vxlan.patch_level) { |
| case 0: |
| if (fcoe) { |
| encap = true; |
| outer_csum_ok = fcoe_fc_crc_ok; |
| } |
| break; |
| case 2: |
| if (type == 7 && (rss_hash & BIT(0))) { |
| encap = true; |
| outer_csum_ok = (rss_hash & BIT(1)) && |
| (rss_hash & BIT(2)); |
| } |
| break; |
| } |
| } |
| |
| /* Hardware does not provide whole packet checksum. It only |
| * provides pseudo checksum. Since hw validates the packet |
| * checksum but not provide us the checksum value. use |
| * CHECSUM_UNNECESSARY. |
| * |
| * In case of encap pkt tcp_udp_csum_ok/tcp_udp_csum_ok is |
| * inner csum_ok. outer_csum_ok is set by hw when outer udp |
| * csum is correct or is zero. |
| */ |
| if ((netdev->features & NETIF_F_RXCSUM) && !csum_not_calc && |
| tcp_udp_csum_ok && outer_csum_ok && (ipv4_csum_ok || ipv6)) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| skb->csum_level = encap; |
| if (encap) |
| rqstats->csum_unnecessary_encap++; |
| else |
| rqstats->csum_unnecessary++; |
| } |
| |
| if (vlan_stripped) { |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); |
| rqstats->vlan_stripped++; |
| } |
| } |
| |
| /* |
| * cq_enet_rq_desc accesses section uses only the 1st 15 bytes of the cq which |
| * is identical for all type (16,32 and 64 byte) of cqs. |
| */ |
| static void cq_enet_rq_desc_dec(struct cq_enet_rq_desc *desc, u8 *ingress_port, |
| u8 *fcoe, u8 *eop, u8 *sop, u8 *rss_type, |
| u8 *csum_not_calc, u32 *rss_hash, |
| u16 *bytes_written, u8 *packet_error, |
| u8 *vlan_stripped, u16 *vlan_tci, |
| u16 *checksum, u8 *fcoe_sof, |
| u8 *fcoe_fc_crc_ok, u8 *fcoe_enc_error, |
| u8 *fcoe_eof, u8 *tcp_udp_csum_ok, u8 *udp, |
| u8 *tcp, u8 *ipv4_csum_ok, u8 *ipv6, u8 *ipv4, |
| u8 *ipv4_fragment, u8 *fcs_ok) |
| { |
| u16 completed_index_flags; |
| u16 q_number_rss_type_flags; |
| u16 bytes_written_flags; |
| |
| completed_index_flags = le16_to_cpu(desc->completed_index_flags); |
| q_number_rss_type_flags = |
| le16_to_cpu(desc->q_number_rss_type_flags); |
| bytes_written_flags = le16_to_cpu(desc->bytes_written_flags); |
| |
| *ingress_port = (completed_index_flags & |
| CQ_ENET_RQ_DESC_FLAGS_INGRESS_PORT) ? 1 : 0; |
| *fcoe = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_FCOE) ? |
| 1 : 0; |
| *eop = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_EOP) ? |
| 1 : 0; |
| *sop = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_SOP) ? |
| 1 : 0; |
| |
| *rss_type = (u8)((q_number_rss_type_flags >> CQ_DESC_Q_NUM_BITS) & |
| CQ_ENET_RQ_DESC_RSS_TYPE_MASK); |
| *csum_not_calc = (q_number_rss_type_flags & |
| CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC) ? 1 : 0; |
| |
| *rss_hash = le32_to_cpu(desc->rss_hash); |
| |
| *bytes_written = bytes_written_flags & |
| CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK; |
| *packet_error = (bytes_written_flags & |
| CQ_ENET_RQ_DESC_FLAGS_TRUNCATED) ? 1 : 0; |
| *vlan_stripped = (bytes_written_flags & |
| CQ_ENET_RQ_DESC_FLAGS_VLAN_STRIPPED) ? 1 : 0; |
| |
| /* |
| * Tag Control Information(16) = user_priority(3) + cfi(1) + vlan(12) |
| */ |
| *vlan_tci = le16_to_cpu(desc->vlan); |
| |
| if (*fcoe) { |
| *fcoe_sof = (u8)(le16_to_cpu(desc->checksum_fcoe) & |
| CQ_ENET_RQ_DESC_FCOE_SOF_MASK); |
| *fcoe_fc_crc_ok = (desc->flags & |
| CQ_ENET_RQ_DESC_FCOE_FC_CRC_OK) ? 1 : 0; |
| *fcoe_enc_error = (desc->flags & |
| CQ_ENET_RQ_DESC_FCOE_ENC_ERROR) ? 1 : 0; |
| *fcoe_eof = (u8)((le16_to_cpu(desc->checksum_fcoe) >> |
| CQ_ENET_RQ_DESC_FCOE_EOF_SHIFT) & |
| CQ_ENET_RQ_DESC_FCOE_EOF_MASK); |
| *checksum = 0; |
| } else { |
| *fcoe_sof = 0; |
| *fcoe_fc_crc_ok = 0; |
| *fcoe_enc_error = 0; |
| *fcoe_eof = 0; |
| *checksum = le16_to_cpu(desc->checksum_fcoe); |
| } |
| |
| *tcp_udp_csum_ok = |
| (desc->flags & CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK) ? 1 : 0; |
| *udp = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_UDP) ? 1 : 0; |
| *tcp = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_TCP) ? 1 : 0; |
| *ipv4_csum_ok = |
| (desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK) ? 1 : 0; |
| *ipv6 = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV6) ? 1 : 0; |
| *ipv4 = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4) ? 1 : 0; |
| *ipv4_fragment = |
| (desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT) ? 1 : 0; |
| *fcs_ok = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_FCS_OK) ? 1 : 0; |
| } |
| |
| static bool enic_rq_pkt_error(struct vnic_rq *vrq, u8 packet_error, u8 fcs_ok, |
| u16 bytes_written) |
| { |
| struct enic *enic = vnic_dev_priv(vrq->vdev); |
| struct enic_rq_stats *rqstats = &enic->rq[vrq->index].stats; |
| |
| if (packet_error) { |
| if (!fcs_ok) { |
| if (bytes_written > 0) |
| rqstats->bad_fcs++; |
| else if (bytes_written == 0) |
| rqstats->pkt_truncated++; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| int enic_rq_alloc_buf(struct vnic_rq *rq) |
| { |
| struct enic *enic = vnic_dev_priv(rq->vdev); |
| struct net_device *netdev = enic->netdev; |
| struct enic_rq *erq = &enic->rq[rq->index]; |
| struct enic_rq_stats *rqstats = &erq->stats; |
| unsigned int offset = 0; |
| unsigned int len = netdev->mtu + VLAN_ETH_HLEN; |
| unsigned int os_buf_index = 0; |
| dma_addr_t dma_addr; |
| struct vnic_rq_buf *buf = rq->to_use; |
| struct page *page; |
| unsigned int truesize = len; |
| |
| if (buf->os_buf) { |
| enic_queue_rq_desc(rq, buf->os_buf, os_buf_index, buf->dma_addr, |
| buf->len); |
| |
| return 0; |
| } |
| |
| page = page_pool_dev_alloc(erq->pool, &offset, &truesize); |
| if (unlikely(!page)) { |
| rqstats->pp_alloc_fail++; |
| return -ENOMEM; |
| } |
| buf->offset = offset; |
| buf->truesize = truesize; |
| dma_addr = page_pool_get_dma_addr(page) + offset; |
| enic_queue_rq_desc(rq, (void *)page, os_buf_index, dma_addr, len); |
| |
| return 0; |
| } |
| |
| void enic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf) |
| { |
| struct enic *enic = vnic_dev_priv(rq->vdev); |
| struct enic_rq *erq = &enic->rq[rq->index]; |
| |
| if (!buf->os_buf) |
| return; |
| |
| page_pool_put_full_page(erq->pool, (struct page *)buf->os_buf, true); |
| buf->os_buf = NULL; |
| } |
| |
| static void enic_rq_indicate_buf(struct enic *enic, struct vnic_rq *rq, |
| struct vnic_rq_buf *buf, void *cq_desc, |
| u8 type, u16 q_number, u16 completed_index) |
| { |
| struct sk_buff *skb; |
| struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)]; |
| struct enic_rq_stats *rqstats = &enic->rq[rq->index].stats; |
| struct napi_struct *napi; |
| |
| u8 eop, sop, ingress_port, vlan_stripped; |
| u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof; |
| u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok; |
| u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc; |
| u8 packet_error; |
| u16 bytes_written, vlan_tci, checksum; |
| u32 rss_hash; |
| |
| rqstats->packets++; |
| |
| cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc, &ingress_port, |
| &fcoe, &eop, &sop, &rss_type, &csum_not_calc, |
| &rss_hash, &bytes_written, &packet_error, |
| &vlan_stripped, &vlan_tci, &checksum, &fcoe_sof, |
| &fcoe_fc_crc_ok, &fcoe_enc_error, &fcoe_eof, |
| &tcp_udp_csum_ok, &udp, &tcp, &ipv4_csum_ok, &ipv6, |
| &ipv4, &ipv4_fragment, &fcs_ok); |
| |
| if (enic_rq_pkt_error(rq, packet_error, fcs_ok, bytes_written)) |
| return; |
| |
| if (eop && bytes_written > 0) { |
| /* Good receive |
| */ |
| rqstats->bytes += bytes_written; |
| napi = &enic->napi[rq->index]; |
| skb = napi_get_frags(napi); |
| if (unlikely(!skb)) { |
| net_warn_ratelimited("%s: skb alloc error rq[%d], desc[%d]\n", |
| enic->netdev->name, rq->index, |
| completed_index); |
| rqstats->no_skb++; |
| return; |
| } |
| |
| prefetch(skb->data - NET_IP_ALIGN); |
| |
| dma_sync_single_for_cpu(&enic->pdev->dev, buf->dma_addr, |
| bytes_written, DMA_FROM_DEVICE); |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, |
| (struct page *)buf->os_buf, buf->offset, |
| bytes_written, buf->truesize); |
| skb_record_rx_queue(skb, q_number); |
| enic_rq_set_skb_flags(rq, type, rss_hash, rss_type, fcoe, |
| fcoe_fc_crc_ok, vlan_stripped, |
| csum_not_calc, tcp_udp_csum_ok, ipv6, |
| ipv4_csum_ok, vlan_tci, skb); |
| skb_mark_for_recycle(skb); |
| napi_gro_frags(napi); |
| if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce) |
| enic_intr_update_pkt_size(&cq->pkt_size_counter, |
| bytes_written); |
| buf->os_buf = NULL; |
| buf->dma_addr = 0; |
| buf = buf->next; |
| } else { |
| /* Buffer overflow |
| */ |
| rqstats->pkt_truncated++; |
| } |
| } |
| |
| static void enic_rq_service(struct enic *enic, void *cq_desc, u8 type, |
| u16 q_number, u16 completed_index) |
| { |
| struct enic_rq_stats *rqstats = &enic->rq[q_number].stats; |
| struct vnic_rq *vrq = &enic->rq[q_number].vrq; |
| struct vnic_rq_buf *vrq_buf = vrq->to_clean; |
| int skipped; |
| |
| while (1) { |
| skipped = (vrq_buf->index != completed_index); |
| if (!skipped) |
| enic_rq_indicate_buf(enic, vrq, vrq_buf, cq_desc, type, |
| q_number, completed_index); |
| else |
| rqstats->desc_skip++; |
| |
| vrq->ring.desc_avail++; |
| vrq->to_clean = vrq_buf->next; |
| vrq_buf = vrq_buf->next; |
| if (!skipped) |
| break; |
| } |
| } |
| |
| unsigned int enic_rq_cq_service(struct enic *enic, unsigned int cq_index, |
| unsigned int work_to_do) |
| { |
| struct vnic_cq *cq = &enic->cq[cq_index]; |
| void *cq_desc = vnic_cq_to_clean(cq); |
| u16 q_number, completed_index; |
| unsigned int work_done = 0; |
| u8 type, color; |
| |
| enic_rq_cq_desc_dec(cq_desc, enic->ext_cq, &type, &color, &q_number, |
| &completed_index); |
| |
| while (color != cq->last_color) { |
| enic_rq_service(enic, cq_desc, type, q_number, completed_index); |
| vnic_cq_inc_to_clean(cq); |
| |
| if (++work_done >= work_to_do) |
| break; |
| |
| cq_desc = vnic_cq_to_clean(cq); |
| enic_rq_cq_desc_dec(cq_desc, enic->ext_cq, &type, &color, |
| &q_number, &completed_index); |
| } |
| |
| return work_done; |
| } |