| /* |
| ************************************************************** |
| * C++ Mathematical Expression Toolkit Library * |
| * * |
| * Simple Example 21 * |
| * Author: Arash Partow (1999-2024) * |
| * URL: https://www.partow.net/programming/exprtk/index.html * |
| * * |
| * Copyright notice: * |
| * Free use of the Mathematical Expression Toolkit Library is * |
| * permitted under the guidelines and in accordance with the * |
| * most current version of the MIT License. * |
| * https://www.opensource.org/licenses/MIT * |
| * SPDX-License-Identifier: MIT * |
| * * |
| ************************************************************** |
| */ |
| |
| |
| #include <cstdio> |
| #include <string> |
| |
| #include "exprtk.hpp" |
| |
| |
| template <typename T> |
| void binomial_option_pricing_model() |
| { |
| typedef exprtk::symbol_table<T> symbol_table_t; |
| typedef exprtk::expression<T> expression_t; |
| typedef exprtk::parser<T> parser_t; |
| |
| const std::string european_option_binomial_model_program = |
| " var dt := t / n; " |
| " var z := exp(r * dt); " |
| " var z_inv := 1 / z; " |
| " var u := exp(v * sqrt(dt)); " |
| " var p_up := (z * u - 1) / (u^2 - 1); " |
| " var p_down := 1 - p_up; " |
| " " |
| " var option_price[n + 1] := [0]; " |
| " " |
| " for (var i := 0; i <= n; i += 1) " |
| " { " |
| " var base_price := s * u^(n - 2i); " |
| " " |
| " option_price[i] := " |
| " switch " |
| " { " |
| " case callput_flag == 'call' : max(base_price - k, 0); " |
| " case callput_flag == 'put' : max(k - base_price, 0); " |
| " }; " |
| " }; " |
| " " |
| " for (var j := n - 1; j >= 0; j -= 1) " |
| " { " |
| " for (var i := 0; i <= j; i += 1) " |
| " { " |
| " option_price[i] := z_inv * " |
| " (p_up * option_price[i] + p_down * option_price[i + 1]); " |
| " } " |
| " }; " |
| " " |
| " option_price[0]; "; |
| |
| T s = T( 100.00); // Spot / Stock / Underlying / Base price |
| T k = T( 110.00); // Strike price |
| T v = T( 0.30); // Volatility |
| T t = T( 2.22); // Years to maturity |
| T r = T( 0.05); // Risk free rate |
| T n = T(1000.00); // Number of time steps |
| |
| std::string callput_flag; |
| |
| symbol_table_t symbol_table; |
| symbol_table.add_variable("s",s); |
| symbol_table.add_variable("k",k); |
| symbol_table.add_variable("t",t); |
| symbol_table.add_variable("r",r); |
| symbol_table.add_variable("v",v); |
| symbol_table.add_constant("n",n); |
| symbol_table.add_stringvar("callput_flag",callput_flag); |
| |
| expression_t expression; |
| expression.register_symbol_table(symbol_table); |
| |
| parser_t parser; |
| parser.compile(european_option_binomial_model_program,expression); |
| |
| callput_flag = "call"; |
| |
| const T binomial_call_option_price = expression.value(); |
| |
| callput_flag = "put"; |
| |
| const T binomial_put_option_price = expression.value(); |
| |
| printf("BinomialPrice(call, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %22.18f\n", |
| s, k, t, r, v, |
| binomial_call_option_price); |
| |
| printf("BinomialPrice(put , %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %22.18f\n", |
| s, k, t, r, v, |
| binomial_put_option_price); |
| |
| const T put_call_parity_diff = |
| (binomial_call_option_price - binomial_put_option_price) - |
| (s - k * std::exp(-r * t)); |
| |
| printf("Put-Call parity difference: %20.17f\n", put_call_parity_diff); |
| } |
| |
| int main() |
| { |
| binomial_option_pricing_model<double>(); |
| return 0; |
| } |