|  | // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) | 
|  | /* QLogic qed NIC Driver | 
|  | * Copyright (c) 2015-2017  QLogic Corporation | 
|  | * Copyright (c) 2019-2020 Marvell International Ltd. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include "qed.h" | 
|  | #include "qed_hsi.h" | 
|  | #include "qed_hw.h" | 
|  | #include "qed_init_ops.h" | 
|  | #include "qed_int.h" | 
|  | #include "qed_mcp.h" | 
|  | #include "qed_reg_addr.h" | 
|  | #include "qed_sp.h" | 
|  | #include "qed_sriov.h" | 
|  | #include "qed_vf.h" | 
|  |  | 
|  | struct qed_pi_info { | 
|  | qed_int_comp_cb_t	comp_cb; | 
|  | void			*cookie; | 
|  | }; | 
|  |  | 
|  | struct qed_sb_sp_info { | 
|  | struct qed_sb_info sb_info; | 
|  |  | 
|  | /* per protocol index data */ | 
|  | struct qed_pi_info pi_info_arr[PIS_PER_SB]; | 
|  | }; | 
|  |  | 
|  | enum qed_attention_type { | 
|  | QED_ATTN_TYPE_ATTN, | 
|  | QED_ATTN_TYPE_PARITY, | 
|  | }; | 
|  |  | 
|  | #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \ | 
|  | ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn) | 
|  |  | 
|  | struct aeu_invert_reg_bit { | 
|  | char bit_name[30]; | 
|  |  | 
|  | #define ATTENTION_PARITY                (1 << 0) | 
|  |  | 
|  | #define ATTENTION_LENGTH_MASK           (0x00000ff0) | 
|  | #define ATTENTION_LENGTH_SHIFT          (4) | 
|  | #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \ | 
|  | ATTENTION_LENGTH_SHIFT) | 
|  | #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT) | 
|  | #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY) | 
|  | #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \ | 
|  | ATTENTION_PARITY) | 
|  |  | 
|  | /* Multiple bits start with this offset */ | 
|  | #define ATTENTION_OFFSET_MASK           (0x000ff000) | 
|  | #define ATTENTION_OFFSET_SHIFT          (12) | 
|  |  | 
|  | #define ATTENTION_BB_MASK               (0x00700000) | 
|  | #define ATTENTION_BB_SHIFT              (20) | 
|  | #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT) | 
|  | #define ATTENTION_BB_DIFFERENT          BIT(23) | 
|  |  | 
|  | #define ATTENTION_CLEAR_ENABLE          BIT(28) | 
|  | unsigned int flags; | 
|  |  | 
|  | /* Callback to call if attention will be triggered */ | 
|  | int (*cb)(struct qed_hwfn *p_hwfn); | 
|  |  | 
|  | enum block_id block_index; | 
|  | }; | 
|  |  | 
|  | struct aeu_invert_reg { | 
|  | struct aeu_invert_reg_bit bits[32]; | 
|  | }; | 
|  |  | 
|  | #define MAX_ATTN_GRPS           (8) | 
|  | #define NUM_ATTN_REGS           (9) | 
|  |  | 
|  | /* Specific HW attention callbacks */ | 
|  | static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE); | 
|  |  | 
|  | /* This might occur on certain instances; Log it once then mask it */ | 
|  | DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n", | 
|  | tmp); | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, | 
|  | 0xffffffff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1) | 
|  | #define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1) | 
|  | #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0) | 
|  | #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf) | 
|  | #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1) | 
|  | #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1) | 
|  | #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5) | 
|  | #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff) | 
|  | #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6) | 
|  | #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf) | 
|  | #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14) | 
|  | #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff) | 
|  | #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18) | 
|  | static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | PSWHST_REG_INCORRECT_ACCESS_VALID); | 
|  |  | 
|  | if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) { | 
|  | u32 addr, data, length; | 
|  |  | 
|  | addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | PSWHST_REG_INCORRECT_ACCESS_ADDRESS); | 
|  | data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | PSWHST_REG_INCORRECT_ACCESS_DATA); | 
|  | length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | PSWHST_REG_INCORRECT_ACCESS_LENGTH); | 
|  |  | 
|  | DP_INFO(p_hwfn->cdev, | 
|  | "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n", | 
|  | addr, length, | 
|  | (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID), | 
|  | (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID), | 
|  | (u8) GET_FIELD(data, | 
|  | ATTENTION_INCORRECT_ACCESS_VF_VALID), | 
|  | (u8) GET_FIELD(data, | 
|  | ATTENTION_INCORRECT_ACCESS_CLIENT), | 
|  | (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR), | 
|  | (u8) GET_FIELD(data, | 
|  | ATTENTION_INCORRECT_ACCESS_BYTE_EN), | 
|  | data); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define QED_GRC_ATTENTION_VALID_BIT	(1 << 0) | 
|  | #define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff) | 
|  | #define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0) | 
|  | #define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23) | 
|  | #define QED_GRC_ATTENTION_MASTER_MASK	(0xf) | 
|  | #define QED_GRC_ATTENTION_MASTER_SHIFT	(24) | 
|  | #define QED_GRC_ATTENTION_PF_MASK	(0xf) | 
|  | #define QED_GRC_ATTENTION_PF_SHIFT	(0) | 
|  | #define QED_GRC_ATTENTION_VF_MASK	(0xff) | 
|  | #define QED_GRC_ATTENTION_VF_SHIFT	(4) | 
|  | #define QED_GRC_ATTENTION_PRIV_MASK	(0x3) | 
|  | #define QED_GRC_ATTENTION_PRIV_SHIFT	(14) | 
|  | #define QED_GRC_ATTENTION_PRIV_VF	(0) | 
|  | static const char *attn_master_to_str(u8 master) | 
|  | { | 
|  | switch (master) { | 
|  | case 1: return "PXP"; | 
|  | case 2: return "MCP"; | 
|  | case 3: return "MSDM"; | 
|  | case 4: return "PSDM"; | 
|  | case 5: return "YSDM"; | 
|  | case 6: return "USDM"; | 
|  | case 7: return "TSDM"; | 
|  | case 8: return "XSDM"; | 
|  | case 9: return "DBU"; | 
|  | case 10: return "DMAE"; | 
|  | default: | 
|  | return "Unknown"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 tmp, tmp2; | 
|  |  | 
|  | /* We've already cleared the timeout interrupt register, so we learn | 
|  | * of interrupts via the validity register | 
|  | */ | 
|  | tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | GRC_REG_TIMEOUT_ATTN_ACCESS_VALID); | 
|  | if (!(tmp & QED_GRC_ATTENTION_VALID_BIT)) | 
|  | goto out; | 
|  |  | 
|  | /* Read the GRC timeout information */ | 
|  | tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0); | 
|  | tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1); | 
|  |  | 
|  | DP_INFO(p_hwfn->cdev, | 
|  | "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n", | 
|  | tmp2, tmp, | 
|  | (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from", | 
|  | GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2, | 
|  | attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)), | 
|  | GET_FIELD(tmp2, QED_GRC_ATTENTION_PF), | 
|  | (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) == | 
|  | QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)", | 
|  | GET_FIELD(tmp2, QED_GRC_ATTENTION_VF)); | 
|  |  | 
|  | out: | 
|  | /* Regardles of anything else, clean the validity bit */ | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define PGLUE_ATTENTION_VALID			(1 << 29) | 
|  | #define PGLUE_ATTENTION_RD_VALID		(1 << 26) | 
|  | #define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf) | 
|  | #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20) | 
|  | #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1) | 
|  | #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19) | 
|  | #define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff) | 
|  | #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24) | 
|  | #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1) | 
|  | #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21) | 
|  | #define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1) | 
|  | #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22) | 
|  | #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1) | 
|  | #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23) | 
|  | #define PGLUE_ATTENTION_ICPL_VALID		(1 << 23) | 
|  | #define PGLUE_ATTENTION_ZLR_VALID		(1 << 25) | 
|  | #define PGLUE_ATTENTION_ILT_VALID		(1 << 23) | 
|  |  | 
|  | int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, | 
|  | bool hw_init) | 
|  | { | 
|  | char msg[256]; | 
|  | u32 tmp; | 
|  |  | 
|  | tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2); | 
|  | if (tmp & PGLUE_ATTENTION_VALID) { | 
|  | u32 addr_lo, addr_hi, details; | 
|  |  | 
|  | addr_lo = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_TX_ERR_WR_ADD_31_0); | 
|  | addr_hi = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_TX_ERR_WR_ADD_63_32); | 
|  | details = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_TX_ERR_WR_DETAILS); | 
|  |  | 
|  | snprintf(msg, sizeof(msg), | 
|  | "Illegal write by chip to [%08x:%08x] blocked.\n" | 
|  | "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" | 
|  | "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]", | 
|  | addr_hi, addr_lo, details, | 
|  | (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), | 
|  | (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), | 
|  | !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID), | 
|  | tmp, | 
|  | !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR), | 
|  | !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME), | 
|  | !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN)); | 
|  |  | 
|  | if (hw_init) | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); | 
|  | else | 
|  | DP_NOTICE(p_hwfn, "%s\n", msg); | 
|  | } | 
|  |  | 
|  | tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2); | 
|  | if (tmp & PGLUE_ATTENTION_RD_VALID) { | 
|  | u32 addr_lo, addr_hi, details; | 
|  |  | 
|  | addr_lo = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_TX_ERR_RD_ADD_31_0); | 
|  | addr_hi = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_TX_ERR_RD_ADD_63_32); | 
|  | details = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_TX_ERR_RD_DETAILS); | 
|  |  | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Illegal read by chip from [%08x:%08x] blocked.\n" | 
|  | "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" | 
|  | "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n", | 
|  | addr_hi, addr_lo, details, | 
|  | (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), | 
|  | (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), | 
|  | GET_FIELD(details, | 
|  | PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0, | 
|  | tmp, | 
|  | GET_FIELD(tmp, | 
|  | PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0, | 
|  | GET_FIELD(tmp, | 
|  | PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0, | 
|  | GET_FIELD(tmp, | 
|  | PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0); | 
|  | } | 
|  |  | 
|  | tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL); | 
|  | if (tmp & PGLUE_ATTENTION_ICPL_VALID) { | 
|  | snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp); | 
|  |  | 
|  | if (hw_init) | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); | 
|  | else | 
|  | DP_NOTICE(p_hwfn, "%s\n", msg); | 
|  | } | 
|  |  | 
|  | tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS); | 
|  | if (tmp & PGLUE_ATTENTION_ZLR_VALID) { | 
|  | u32 addr_hi, addr_lo; | 
|  |  | 
|  | addr_lo = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0); | 
|  | addr_hi = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32); | 
|  |  | 
|  | DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n", | 
|  | tmp, addr_hi, addr_lo); | 
|  | } | 
|  |  | 
|  | tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2); | 
|  | if (tmp & PGLUE_ATTENTION_ILT_VALID) { | 
|  | u32 addr_hi, addr_lo, details; | 
|  |  | 
|  | addr_lo = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_VF_ILT_ERR_ADD_31_0); | 
|  | addr_hi = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_VF_ILT_ERR_ADD_63_32); | 
|  | details = qed_rd(p_hwfn, p_ptt, | 
|  | PGLUE_B_REG_VF_ILT_ERR_DETAILS); | 
|  |  | 
|  | DP_NOTICE(p_hwfn, | 
|  | "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n", | 
|  | details, tmp, addr_hi, addr_lo); | 
|  | } | 
|  |  | 
|  | /* Clear the indications */ | 
|  | qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false); | 
|  | } | 
|  |  | 
|  | static int qed_fw_assertion(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT, | 
|  | "FW assertion!\n"); | 
|  |  | 
|  | /* Clear assert indications */ | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int qed_general_attention_35(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | DP_INFO(p_hwfn, "General attention 35!\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff) | 
|  | #define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff) | 
|  | #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0) | 
|  | #define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f) | 
|  | #define QED_DORQ_ATTENTION_SIZE_SHIFT           (16) | 
|  |  | 
|  | #define QED_DB_REC_COUNT                        1000 | 
|  | #define QED_DB_REC_INTERVAL                     100 | 
|  |  | 
|  | static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt) | 
|  | { | 
|  | u32 count = QED_DB_REC_COUNT; | 
|  | u32 usage = 1; | 
|  |  | 
|  | /* Flush any pending (e)dpms as they may never arrive */ | 
|  | qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1); | 
|  |  | 
|  | /* wait for usage to zero or count to run out. This is necessary since | 
|  | * EDPM doorbell transactions can take multiple 64b cycles, and as such | 
|  | * can "split" over the pci. Possibly, the doorbell drop can happen with | 
|  | * half an EDPM in the queue and other half dropped. Another EDPM | 
|  | * doorbell to the same address (from doorbell recovery mechanism or | 
|  | * from the doorbelling entity) could have first half dropped and second | 
|  | * half interpreted as continuation of the first. To prevent such | 
|  | * malformed doorbells from reaching the device, flush the queue before | 
|  | * releasing the overflow sticky indication. | 
|  | */ | 
|  | while (count-- && usage) { | 
|  | usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT); | 
|  | udelay(QED_DB_REC_INTERVAL); | 
|  | } | 
|  |  | 
|  | /* should have been depleted by now */ | 
|  | if (usage) { | 
|  | DP_NOTICE(p_hwfn->cdev, | 
|  | "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n", | 
|  | QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | u32 attn_ovfl, cur_ovfl; | 
|  | int rc; | 
|  |  | 
|  | attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT, | 
|  | &p_hwfn->db_recovery_info.overflow); | 
|  | cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); | 
|  | if (!cur_ovfl && !attn_ovfl) | 
|  | return 0; | 
|  |  | 
|  | DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n", | 
|  | attn_ovfl, cur_ovfl); | 
|  |  | 
|  | if (cur_ovfl && !p_hwfn->db_bar_no_edpm) { | 
|  | rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Release overflow sticky indication (stop silently dropping everything) */ | 
|  | qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); | 
|  |  | 
|  | /* Repeat all last doorbells (doorbell drop recovery) */ | 
|  | qed_db_recovery_execute(p_hwfn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; | 
|  | u32 overflow; | 
|  | int rc; | 
|  |  | 
|  | overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); | 
|  | if (!overflow) | 
|  | goto out; | 
|  |  | 
|  | /* Run PF doorbell recovery in next periodic handler */ | 
|  | set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow); | 
|  |  | 
|  | if (!p_hwfn->db_bar_no_edpm) { | 
|  | rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); | 
|  | if (rc) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); | 
|  | out: | 
|  | /* Schedule the handler even if overflow was not detected */ | 
|  | qed_periodic_db_rec_start(p_hwfn); | 
|  | } | 
|  |  | 
|  | static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 int_sts, first_drop_reason, details, address, all_drops_reason; | 
|  | struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; | 
|  |  | 
|  | int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS); | 
|  | if (int_sts == 0xdeadbeaf) { | 
|  | DP_NOTICE(p_hwfn->cdev, | 
|  | "DORQ is being reset, skipping int_sts handler\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* int_sts may be zero since all PFs were interrupted for doorbell | 
|  | * overflow but another one already handled it. Can abort here. If | 
|  | * This PF also requires overflow recovery we will be interrupted again. | 
|  | * The masked almost full indication may also be set. Ignoring. | 
|  | */ | 
|  | if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) | 
|  | return 0; | 
|  |  | 
|  | DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts); | 
|  |  | 
|  | /* check if db_drop or overflow happened */ | 
|  | if (int_sts & (DORQ_REG_INT_STS_DB_DROP | | 
|  | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) { | 
|  | /* Obtain data about db drop/overflow */ | 
|  | first_drop_reason = qed_rd(p_hwfn, p_ptt, | 
|  | DORQ_REG_DB_DROP_REASON) & | 
|  | QED_DORQ_ATTENTION_REASON_MASK; | 
|  | details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS); | 
|  | address = qed_rd(p_hwfn, p_ptt, | 
|  | DORQ_REG_DB_DROP_DETAILS_ADDRESS); | 
|  | all_drops_reason = qed_rd(p_hwfn, p_ptt, | 
|  | DORQ_REG_DB_DROP_DETAILS_REASON); | 
|  |  | 
|  | /* Log info */ | 
|  | DP_NOTICE(p_hwfn->cdev, | 
|  | "Doorbell drop occurred\n" | 
|  | "Address\t\t0x%08x\t(second BAR address)\n" | 
|  | "FID\t\t0x%04x\t\t(Opaque FID)\n" | 
|  | "Size\t\t0x%04x\t\t(in bytes)\n" | 
|  | "1st drop reason\t0x%08x\t(details on first drop since last handling)\n" | 
|  | "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n", | 
|  | address, | 
|  | GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE), | 
|  | GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4, | 
|  | first_drop_reason, all_drops_reason); | 
|  |  | 
|  | /* Clear the doorbell drop details and prepare for next drop */ | 
|  | qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0); | 
|  |  | 
|  | /* Mark interrupt as handled (note: even if drop was due to a different | 
|  | * reason than overflow we mark as handled) | 
|  | */ | 
|  | qed_wr(p_hwfn, | 
|  | p_ptt, | 
|  | DORQ_REG_INT_STS_WR, | 
|  | DORQ_REG_INT_STS_DB_DROP | | 
|  | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR); | 
|  |  | 
|  | /* If there are no indications other than drop indications, success */ | 
|  | if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP | | 
|  | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR | | 
|  | DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Some other indication was present - non recoverable */ | 
|  | DP_INFO(p_hwfn, "DORQ fatal attention\n"); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | if (p_hwfn->cdev->recov_in_prog) | 
|  | return 0; | 
|  |  | 
|  | p_hwfn->db_recovery_info.dorq_attn = true; | 
|  | qed_dorq_attn_overflow(p_hwfn); | 
|  |  | 
|  | return qed_dorq_attn_int_sts(p_hwfn); | 
|  | } | 
|  |  | 
|  | static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | if (p_hwfn->db_recovery_info.dorq_attn) | 
|  | goto out; | 
|  |  | 
|  | /* Call DORQ callback if the attention was missed */ | 
|  | qed_dorq_attn_cb(p_hwfn); | 
|  | out: | 
|  | p_hwfn->db_recovery_info.dorq_attn = false; | 
|  | } | 
|  |  | 
|  | /* Instead of major changes to the data-structure, we have a some 'special' | 
|  | * identifiers for sources that changed meaning between adapters. | 
|  | */ | 
|  | enum aeu_invert_reg_special_type { | 
|  | AEU_INVERT_REG_SPECIAL_CNIG_0, | 
|  | AEU_INVERT_REG_SPECIAL_CNIG_1, | 
|  | AEU_INVERT_REG_SPECIAL_CNIG_2, | 
|  | AEU_INVERT_REG_SPECIAL_CNIG_3, | 
|  | AEU_INVERT_REG_SPECIAL_MAX, | 
|  | }; | 
|  |  | 
|  | static struct aeu_invert_reg_bit | 
|  | aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = { | 
|  | {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, | 
|  | {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, | 
|  | {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, | 
|  | {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, | 
|  | }; | 
|  |  | 
|  | /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */ | 
|  | static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = { | 
|  | { | 
|  | {       /* After Invert 1 */ | 
|  | {"GPIO0 function%d", | 
|  | (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, | 
|  | } | 
|  | }, | 
|  |  | 
|  | { | 
|  | {       /* After Invert 2 */ | 
|  | {"PGLUE config_space", ATTENTION_SINGLE, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"PGLUE misc_flr", ATTENTION_SINGLE, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"PGLUE B RBC", ATTENTION_PAR_INT, | 
|  | qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B}, | 
|  | {"PGLUE misc_mctp", ATTENTION_SINGLE, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, | 
|  | {"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID}, | 
|  | {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, | 
|  | {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | | 
|  | (1 << ATTENTION_OFFSET_SHIFT), | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"PCIE glue/PXP VPD %d", | 
|  | (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS}, | 
|  | } | 
|  | }, | 
|  |  | 
|  | { | 
|  | {       /* After Invert 3 */ | 
|  | {"General Attention %d", | 
|  | (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, | 
|  | } | 
|  | }, | 
|  |  | 
|  | { | 
|  | {       /* After Invert 4 */ | 
|  | {"General Attention 32", ATTENTION_SINGLE | | 
|  | ATTENTION_CLEAR_ENABLE, qed_fw_assertion, | 
|  | MAX_BLOCK_ID}, | 
|  | {"General Attention %d", | 
|  | (2 << ATTENTION_LENGTH_SHIFT) | | 
|  | (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID}, | 
|  | {"General Attention 35", ATTENTION_SINGLE | | 
|  | ATTENTION_CLEAR_ENABLE, qed_general_attention_35, | 
|  | MAX_BLOCK_ID}, | 
|  | {"NWS Parity", | 
|  | ATTENTION_PAR | ATTENTION_BB_DIFFERENT | | 
|  | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0), | 
|  | NULL, BLOCK_NWS}, | 
|  | {"NWS Interrupt", | 
|  | ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | | 
|  | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), | 
|  | NULL, BLOCK_NWS}, | 
|  | {"NWM Parity", | 
|  | ATTENTION_PAR | ATTENTION_BB_DIFFERENT | | 
|  | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), | 
|  | NULL, BLOCK_NWM}, | 
|  | {"NWM Interrupt", | 
|  | ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | | 
|  | ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), | 
|  | NULL, BLOCK_NWM}, | 
|  | {"MCP CPU", ATTENTION_SINGLE, | 
|  | qed_mcp_attn_cb, MAX_BLOCK_ID}, | 
|  | {"MCP Watchdog timer", ATTENTION_SINGLE, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, | 
|  | {"AVS stop status ready", ATTENTION_SINGLE, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, | 
|  | {"MSTAT per-path", ATTENTION_PAR_INT, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG}, | 
|  | {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB}, | 
|  | {"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB}, | 
|  | {"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB}, | 
|  | {"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS}, | 
|  | } | 
|  | }, | 
|  |  | 
|  | { | 
|  | {       /* After Invert 5 */ | 
|  | {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC}, | 
|  | {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1}, | 
|  | {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2}, | 
|  | {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB}, | 
|  | {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF}, | 
|  | {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM}, | 
|  | {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM}, | 
|  | {"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM}, | 
|  | {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM}, | 
|  | {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM}, | 
|  | {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM}, | 
|  | {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM}, | 
|  | {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM}, | 
|  | {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM}, | 
|  | {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM}, | 
|  | {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM}, | 
|  | } | 
|  | }, | 
|  |  | 
|  | { | 
|  | {       /* After Invert 6 */ | 
|  | {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM}, | 
|  | {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM}, | 
|  | {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM}, | 
|  | {"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM}, | 
|  | {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM}, | 
|  | {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM}, | 
|  | {"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM}, | 
|  | {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM}, | 
|  | {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM}, | 
|  | {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD}, | 
|  | {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD}, | 
|  | {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD}, | 
|  | {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD}, | 
|  | {"DORQ", ATTENTION_PAR_INT, | 
|  | qed_dorq_attn_cb, BLOCK_DORQ}, | 
|  | {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG}, | 
|  | {"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC}, | 
|  | } | 
|  | }, | 
|  |  | 
|  | { | 
|  | {       /* After Invert 7 */ | 
|  | {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC}, | 
|  | {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU}, | 
|  | {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE}, | 
|  | {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU}, | 
|  | {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, | 
|  | {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU}, | 
|  | {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU}, | 
|  | {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM}, | 
|  | {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC}, | 
|  | {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF}, | 
|  | {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF}, | 
|  | {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS}, | 
|  | {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC}, | 
|  | {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS}, | 
|  | {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE}, | 
|  | {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS}, | 
|  | {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ}, | 
|  | } | 
|  | }, | 
|  |  | 
|  | { | 
|  | {       /* After Invert 8 */ | 
|  | {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, | 
|  | NULL, BLOCK_PSWRQ2}, | 
|  | {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR}, | 
|  | {"PSWWR (pci_clk)", ATTENTION_PAR_INT, | 
|  | NULL, BLOCK_PSWWR2}, | 
|  | {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD}, | 
|  | {"PSWRD (pci_clk)", ATTENTION_PAR_INT, | 
|  | NULL, BLOCK_PSWRD2}, | 
|  | {"PSWHST", ATTENTION_PAR_INT, | 
|  | qed_pswhst_attn_cb, BLOCK_PSWHST}, | 
|  | {"PSWHST (pci_clk)", ATTENTION_PAR_INT, | 
|  | NULL, BLOCK_PSWHST2}, | 
|  | {"GRC",	ATTENTION_PAR_INT, | 
|  | qed_grc_attn_cb, BLOCK_GRC}, | 
|  | {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU}, | 
|  | {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI}, | 
|  | {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, | 
|  | {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, | 
|  | {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, | 
|  | {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, | 
|  | {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, | 
|  | {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, | 
|  | {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS}, | 
|  | {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, | 
|  | NULL, BLOCK_PGLCS}, | 
|  | {"PERST_B assertion", ATTENTION_SINGLE, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"PERST_B deassertion", ATTENTION_SINGLE, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | } | 
|  | }, | 
|  |  | 
|  | { | 
|  | {       /* After Invert 9 */ | 
|  | {"MCP Latched memory", ATTENTION_PAR, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"MCP Latched scratchpad cache", ATTENTION_SINGLE, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"MCP Latched ump_tx", ATTENTION_PAR, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"MCP Latched scratchpad", ATTENTION_PAR, | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), | 
|  | NULL, MAX_BLOCK_ID}, | 
|  | } | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct aeu_invert_reg_bit * | 
|  | qed_int_aeu_translate(struct qed_hwfn *p_hwfn, | 
|  | struct aeu_invert_reg_bit *p_bit) | 
|  | { | 
|  | if (!QED_IS_BB(p_hwfn->cdev)) | 
|  | return p_bit; | 
|  |  | 
|  | if (!(p_bit->flags & ATTENTION_BB_DIFFERENT)) | 
|  | return p_bit; | 
|  |  | 
|  | return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >> | 
|  | ATTENTION_BB_SHIFT]; | 
|  | } | 
|  |  | 
|  | static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn, | 
|  | struct aeu_invert_reg_bit *p_bit) | 
|  | { | 
|  | return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags & | 
|  | ATTENTION_PARITY); | 
|  | } | 
|  |  | 
|  | #define ATTN_STATE_BITS         (0xfff) | 
|  | #define ATTN_BITS_MASKABLE      (0x3ff) | 
|  | struct qed_sb_attn_info { | 
|  | /* Virtual & Physical address of the SB */ | 
|  | struct atten_status_block       *sb_attn; | 
|  | dma_addr_t			sb_phys; | 
|  |  | 
|  | /* Last seen running index */ | 
|  | u16				index; | 
|  |  | 
|  | /* A mask of the AEU bits resulting in a parity error */ | 
|  | u32				parity_mask[NUM_ATTN_REGS]; | 
|  |  | 
|  | /* A pointer to the attention description structure */ | 
|  | struct aeu_invert_reg		*p_aeu_desc; | 
|  |  | 
|  | /* Previously asserted attentions, which are still unasserted */ | 
|  | u16				known_attn; | 
|  |  | 
|  | /* Cleanup address for the link's general hw attention */ | 
|  | u32				mfw_attn_addr; | 
|  | }; | 
|  |  | 
|  | static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn, | 
|  | struct qed_sb_attn_info *p_sb_desc) | 
|  | { | 
|  | u16 rc = 0, index; | 
|  |  | 
|  | index = le16_to_cpu(p_sb_desc->sb_attn->sb_index); | 
|  | if (p_sb_desc->index != index) { | 
|  | p_sb_desc->index	= index; | 
|  | rc		      = QED_SB_ATT_IDX; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qed_int_assertion() - Handle asserted attention bits. | 
|  | * | 
|  | * @p_hwfn: HW device data. | 
|  | * @asserted_bits: Newly asserted bits. | 
|  | * | 
|  | * Return: Zero value. | 
|  | */ | 
|  | static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits) | 
|  | { | 
|  | struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; | 
|  | u32 igu_mask; | 
|  |  | 
|  | /* Mask the source of the attention in the IGU */ | 
|  | igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n", | 
|  | igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE)); | 
|  | igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE); | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask); | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "inner known ATTN state: 0x%04x --> 0x%04x\n", | 
|  | sb_attn_sw->known_attn, | 
|  | sb_attn_sw->known_attn | asserted_bits); | 
|  | sb_attn_sw->known_attn |= asserted_bits; | 
|  |  | 
|  | /* Handle MCP events */ | 
|  | if (asserted_bits & 0x100) { | 
|  | qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt); | 
|  | /* Clean the MCP attention */ | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | sb_attn_sw->mfw_attn_addr, 0); | 
|  | } | 
|  |  | 
|  | DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + | 
|  | GTT_BAR0_MAP_REG_IGU_CMD + | 
|  | ((IGU_CMD_ATTN_BIT_SET_UPPER - | 
|  | IGU_CMD_INT_ACK_BASE) << 3), | 
|  | (u32)asserted_bits); | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n", | 
|  | asserted_bits); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qed_int_attn_print(struct qed_hwfn *p_hwfn, | 
|  | enum block_id id, | 
|  | enum dbg_attn_type type, bool b_clear) | 
|  | { | 
|  | struct dbg_attn_block_result attn_results; | 
|  | enum dbg_status status; | 
|  |  | 
|  | memset(&attn_results, 0, sizeof(attn_results)); | 
|  |  | 
|  | status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type, | 
|  | b_clear, &attn_results); | 
|  | if (status != DBG_STATUS_OK) | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed to parse attention information [status: %s]\n", | 
|  | qed_dbg_get_status_str(status)); | 
|  | else | 
|  | qed_dbg_parse_attn(p_hwfn, &attn_results); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qed_int_deassertion_aeu_bit() - Handles the effects of a single | 
|  | * cause of the attention. | 
|  | * | 
|  | * @p_hwfn: HW device data. | 
|  | * @p_aeu: Descriptor of an AEU bit which caused the attention. | 
|  | * @aeu_en_reg: Register offset of the AEU enable reg. which configured | 
|  | *              this bit to this group. | 
|  | * @p_bit_name: AEU bit description for logging purposes. | 
|  | * @bitmask: Index of this bit in the aeu_en_reg. | 
|  | * | 
|  | * Return: Zero on success, negative errno otherwise. | 
|  | */ | 
|  | static int | 
|  | qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn, | 
|  | struct aeu_invert_reg_bit *p_aeu, | 
|  | u32 aeu_en_reg, | 
|  | const char *p_bit_name, u32 bitmask) | 
|  | { | 
|  | bool b_fatal = false; | 
|  | int rc = -EINVAL; | 
|  | u32 val; | 
|  |  | 
|  | DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n", | 
|  | p_bit_name, bitmask); | 
|  |  | 
|  | /* Call callback before clearing the interrupt status */ | 
|  | if (p_aeu->cb) { | 
|  | DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n", | 
|  | p_bit_name); | 
|  | rc = p_aeu->cb(p_hwfn); | 
|  | } | 
|  |  | 
|  | if (rc) | 
|  | b_fatal = true; | 
|  |  | 
|  | /* Print HW block interrupt registers */ | 
|  | if (p_aeu->block_index != MAX_BLOCK_ID) | 
|  | qed_int_attn_print(p_hwfn, p_aeu->block_index, | 
|  | ATTN_TYPE_INTERRUPT, !b_fatal); | 
|  |  | 
|  | /* Reach assertion if attention is fatal */ | 
|  | if (b_fatal) | 
|  | qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN, | 
|  | "`%s': Fatal attention\n", | 
|  | p_bit_name); | 
|  | else /* If the attention is benign, no need to prevent it */ | 
|  | goto out; | 
|  |  | 
|  | /* Prevent this Attention from being asserted in the future */ | 
|  | val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask)); | 
|  | DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n", | 
|  | p_bit_name); | 
|  |  | 
|  | /* Re-enable FW aassertion (Gen 32) interrupts */ | 
|  | val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | MISC_REG_AEU_ENABLE4_IGU_OUT_0); | 
|  | val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32; | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | MISC_REG_AEU_ENABLE4_IGU_OUT_0, val); | 
|  |  | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qed_int_deassertion_parity() - Handle a single parity AEU source. | 
|  | * | 
|  | * @p_hwfn: HW device data. | 
|  | * @p_aeu: Descriptor of an AEU bit which caused the parity. | 
|  | * @aeu_en_reg: Address of the AEU enable register. | 
|  | * @bit_index: Index (0-31) of an AEU bit. | 
|  | */ | 
|  | static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn, | 
|  | struct aeu_invert_reg_bit *p_aeu, | 
|  | u32 aeu_en_reg, u8 bit_index) | 
|  | { | 
|  | u32 block_id = p_aeu->block_index, mask, val; | 
|  |  | 
|  | DP_NOTICE(p_hwfn->cdev, | 
|  | "%s parity attention is set [address 0x%08x, bit %d]\n", | 
|  | p_aeu->bit_name, aeu_en_reg, bit_index); | 
|  |  | 
|  | if (block_id != MAX_BLOCK_ID) { | 
|  | qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false); | 
|  |  | 
|  | /* In BB, there's a single parity bit for several blocks */ | 
|  | if (block_id == BLOCK_BTB) { | 
|  | qed_int_attn_print(p_hwfn, BLOCK_OPTE, | 
|  | ATTN_TYPE_PARITY, false); | 
|  | qed_int_attn_print(p_hwfn, BLOCK_MCP, | 
|  | ATTN_TYPE_PARITY, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Prevent this parity error from being re-asserted */ | 
|  | mask = ~BIT(bit_index); | 
|  | val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask); | 
|  | DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n", | 
|  | p_aeu->bit_name); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qed_int_deassertion() - Handle deassertion of previously asserted | 
|  | * attentions. | 
|  | * | 
|  | * @p_hwfn: HW device data. | 
|  | * @deasserted_bits: newly deasserted bits. | 
|  | * | 
|  | * Return: Zero value. | 
|  | */ | 
|  | static int qed_int_deassertion(struct qed_hwfn  *p_hwfn, | 
|  | u16 deasserted_bits) | 
|  | { | 
|  | struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; | 
|  | u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en; | 
|  | u8 i, j, k, bit_idx; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Read the attention registers in the AEU */ | 
|  | for (i = 0; i < NUM_ATTN_REGS; i++) { | 
|  | aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, | 
|  | MISC_REG_AEU_AFTER_INVERT_1_IGU + | 
|  | i * 0x4); | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "Deasserted bits [%d]: %08x\n", | 
|  | i, aeu_inv_arr[i]); | 
|  | } | 
|  |  | 
|  | /* Find parity attentions first */ | 
|  | for (i = 0; i < NUM_ATTN_REGS; i++) { | 
|  | struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i]; | 
|  | u32 parities; | 
|  |  | 
|  | aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32); | 
|  | en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); | 
|  |  | 
|  | /* Skip register in which no parity bit is currently set */ | 
|  | parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en; | 
|  | if (!parities) | 
|  | continue; | 
|  |  | 
|  | for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) { | 
|  | struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j]; | 
|  |  | 
|  | if (qed_int_is_parity_flag(p_hwfn, p_bit) && | 
|  | !!(parities & BIT(bit_idx))) | 
|  | qed_int_deassertion_parity(p_hwfn, p_bit, | 
|  | aeu_en, bit_idx); | 
|  |  | 
|  | bit_idx += ATTENTION_LENGTH(p_bit->flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find non-parity cause for attention and act */ | 
|  | for (k = 0; k < MAX_ATTN_GRPS; k++) { | 
|  | struct aeu_invert_reg_bit *p_aeu; | 
|  |  | 
|  | /* Handle only groups whose attention is currently deasserted */ | 
|  | if (!(deasserted_bits & (1 << k))) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < NUM_ATTN_REGS; i++) { | 
|  | u32 bits; | 
|  |  | 
|  | aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + | 
|  | i * sizeof(u32) + | 
|  | k * sizeof(u32) * NUM_ATTN_REGS; | 
|  |  | 
|  | en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); | 
|  | bits = aeu_inv_arr[i] & en; | 
|  |  | 
|  | /* Skip if no bit from this group is currently set */ | 
|  | if (!bits) | 
|  | continue; | 
|  |  | 
|  | /* Find all set bits from current register which belong | 
|  | * to current group, making them responsible for the | 
|  | * previous assertion. | 
|  | */ | 
|  | for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) { | 
|  | long unsigned int bitmask; | 
|  | u8 bit, bit_len; | 
|  |  | 
|  | p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j]; | 
|  | p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu); | 
|  |  | 
|  | bit = bit_idx; | 
|  | bit_len = ATTENTION_LENGTH(p_aeu->flags); | 
|  | if (qed_int_is_parity_flag(p_hwfn, p_aeu)) { | 
|  | /* Skip Parity */ | 
|  | bit++; | 
|  | bit_len--; | 
|  | } | 
|  |  | 
|  | bitmask = bits & (((1 << bit_len) - 1) << bit); | 
|  | bitmask >>= bit; | 
|  |  | 
|  | if (bitmask) { | 
|  | u32 flags = p_aeu->flags; | 
|  | char bit_name[30]; | 
|  | u8 num; | 
|  |  | 
|  | num = (u8)find_first_bit(&bitmask, | 
|  | bit_len); | 
|  |  | 
|  | /* Some bits represent more than a | 
|  | * single interrupt. Correctly print | 
|  | * their name. | 
|  | */ | 
|  | if (ATTENTION_LENGTH(flags) > 2 || | 
|  | ((flags & ATTENTION_PAR_INT) && | 
|  | ATTENTION_LENGTH(flags) > 1)) | 
|  | snprintf(bit_name, 30, | 
|  | p_aeu->bit_name, num); | 
|  | else | 
|  | strscpy(bit_name, | 
|  | p_aeu->bit_name, 30); | 
|  |  | 
|  | /* We now need to pass bitmask in its | 
|  | * correct position. | 
|  | */ | 
|  | bitmask <<= bit; | 
|  |  | 
|  | /* Handle source of the attention */ | 
|  | qed_int_deassertion_aeu_bit(p_hwfn, | 
|  | p_aeu, | 
|  | aeu_en, | 
|  | bit_name, | 
|  | bitmask); | 
|  | } | 
|  |  | 
|  | bit_idx += ATTENTION_LENGTH(p_aeu->flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle missed DORQ attention */ | 
|  | qed_dorq_attn_handler(p_hwfn); | 
|  |  | 
|  | /* Clear IGU indication for the deasserted bits */ | 
|  | DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + | 
|  | GTT_BAR0_MAP_REG_IGU_CMD + | 
|  | ((IGU_CMD_ATTN_BIT_CLR_UPPER - | 
|  | IGU_CMD_INT_ACK_BASE) << 3), | 
|  | ~((u32)deasserted_bits)); | 
|  |  | 
|  | /* Unmask deasserted attentions in IGU */ | 
|  | aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); | 
|  | aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE); | 
|  | qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask); | 
|  |  | 
|  | /* Clear deassertion from inner state */ | 
|  | sb_attn_sw->known_attn &= ~deasserted_bits; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int qed_int_attentions(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn; | 
|  | struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn; | 
|  | u32 attn_bits = 0, attn_acks = 0; | 
|  | u16 asserted_bits, deasserted_bits; | 
|  | __le16 index; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Read current attention bits/acks - safeguard against attentions | 
|  | * by guaranting work on a synchronized timeframe | 
|  | */ | 
|  | do { | 
|  | index = p_sb_attn->sb_index; | 
|  | /* finish reading index before the loop condition */ | 
|  | dma_rmb(); | 
|  | attn_bits = le32_to_cpu(p_sb_attn->atten_bits); | 
|  | attn_acks = le32_to_cpu(p_sb_attn->atten_ack); | 
|  | } while (index != p_sb_attn->sb_index); | 
|  | p_sb_attn->sb_index = index; | 
|  |  | 
|  | /* Attention / Deassertion are meaningful (and in correct state) | 
|  | * only when they differ and consistent with known state - deassertion | 
|  | * when previous attention & current ack, and assertion when current | 
|  | * attention with no previous attention | 
|  | */ | 
|  | asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) & | 
|  | ~p_sb_attn_sw->known_attn; | 
|  | deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) & | 
|  | p_sb_attn_sw->known_attn; | 
|  |  | 
|  | if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) { | 
|  | DP_INFO(p_hwfn, | 
|  | "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n", | 
|  | index, attn_bits, attn_acks, asserted_bits, | 
|  | deasserted_bits, p_sb_attn_sw->known_attn); | 
|  | } else if (asserted_bits == 0x100) { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "MFW indication via attention\n"); | 
|  | } else { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "MFW indication [deassertion]\n"); | 
|  | } | 
|  |  | 
|  | if (asserted_bits) { | 
|  | rc = qed_int_assertion(p_hwfn, asserted_bits); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | if (deasserted_bits) | 
|  | rc = qed_int_deassertion(p_hwfn, deasserted_bits); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn, | 
|  | void __iomem *igu_addr, u32 ack_cons) | 
|  | { | 
|  | u32 igu_ack; | 
|  |  | 
|  | igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) | | 
|  | (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) | | 
|  | (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) | | 
|  | (IGU_SEG_ACCESS_ATTN << | 
|  | IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT)); | 
|  |  | 
|  | DIRECT_REG_WR(igu_addr, igu_ack); | 
|  |  | 
|  | /* Both segments (interrupts & acks) are written to same place address; | 
|  | * Need to guarantee all commands will be received (in-order) by HW. | 
|  | */ | 
|  | barrier(); | 
|  | } | 
|  |  | 
|  | void qed_int_sp_dpc(struct tasklet_struct *t) | 
|  | { | 
|  | struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc); | 
|  | struct qed_pi_info *pi_info = NULL; | 
|  | struct qed_sb_attn_info *sb_attn; | 
|  | struct qed_sb_info *sb_info; | 
|  | int arr_size; | 
|  | u16 rc = 0; | 
|  |  | 
|  | if (!p_hwfn->p_sp_sb) { | 
|  | DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sb_info = &p_hwfn->p_sp_sb->sb_info; | 
|  | arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr); | 
|  | if (!sb_info) { | 
|  | DP_ERR(p_hwfn->cdev, | 
|  | "Status block is NULL - cannot ack interrupts\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!p_hwfn->p_sb_attn) { | 
|  | DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn"); | 
|  | return; | 
|  | } | 
|  | sb_attn = p_hwfn->p_sb_attn; | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n", | 
|  | p_hwfn, p_hwfn->my_id); | 
|  |  | 
|  | /* Disable ack for def status block. Required both for msix + | 
|  | * inta in non-mask mode, in inta does no harm. | 
|  | */ | 
|  | qed_sb_ack(sb_info, IGU_INT_DISABLE, 0); | 
|  |  | 
|  | /* Gather Interrupts/Attentions information */ | 
|  | if (!sb_info->sb_virt) { | 
|  | DP_ERR(p_hwfn->cdev, | 
|  | "Interrupt Status block is NULL - cannot check for new interrupts!\n"); | 
|  | } else { | 
|  | u32 tmp_index = sb_info->sb_ack; | 
|  |  | 
|  | rc = qed_sb_update_sb_idx(sb_info); | 
|  | DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, | 
|  | "Interrupt indices: 0x%08x --> 0x%08x\n", | 
|  | tmp_index, sb_info->sb_ack); | 
|  | } | 
|  |  | 
|  | if (!sb_attn || !sb_attn->sb_attn) { | 
|  | DP_ERR(p_hwfn->cdev, | 
|  | "Attentions Status block is NULL - cannot check for new attentions!\n"); | 
|  | } else { | 
|  | u16 tmp_index = sb_attn->index; | 
|  |  | 
|  | rc |= qed_attn_update_idx(p_hwfn, sb_attn); | 
|  | DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, | 
|  | "Attention indices: 0x%08x --> 0x%08x\n", | 
|  | tmp_index, sb_attn->index); | 
|  | } | 
|  |  | 
|  | /* Check if we expect interrupts at this time. if not just ack them */ | 
|  | if (!(rc & QED_SB_EVENT_MASK)) { | 
|  | qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check the validity of the DPC ptt. If not ack interrupts and fail */ | 
|  | if (!p_hwfn->p_dpc_ptt) { | 
|  | DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n"); | 
|  | qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (rc & QED_SB_ATT_IDX) | 
|  | qed_int_attentions(p_hwfn); | 
|  |  | 
|  | if (rc & QED_SB_IDX) { | 
|  | int pi; | 
|  |  | 
|  | /* Look for a free index */ | 
|  | for (pi = 0; pi < arr_size; pi++) { | 
|  | pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi]; | 
|  | if (pi_info->comp_cb) | 
|  | pi_info->comp_cb(p_hwfn, pi_info->cookie); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sb_attn && (rc & QED_SB_ATT_IDX)) | 
|  | /* This should be done before the interrupts are enabled, | 
|  | * since otherwise a new attention will be generated. | 
|  | */ | 
|  | qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index); | 
|  |  | 
|  | qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); | 
|  | } | 
|  |  | 
|  | static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn; | 
|  |  | 
|  | if (!p_sb) | 
|  | return; | 
|  |  | 
|  | if (p_sb->sb_attn) | 
|  | dma_free_coherent(&p_hwfn->cdev->pdev->dev, | 
|  | SB_ATTN_ALIGNED_SIZE(p_hwfn), | 
|  | p_sb->sb_attn, p_sb->sb_phys); | 
|  | kfree(p_sb); | 
|  | p_hwfn->p_sb_attn = NULL; | 
|  | } | 
|  |  | 
|  | static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; | 
|  |  | 
|  | memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn)); | 
|  |  | 
|  | sb_info->index = 0; | 
|  | sb_info->known_attn = 0; | 
|  |  | 
|  | /* Configure Attention Status Block in IGU */ | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L, | 
|  | lower_32_bits(p_hwfn->p_sb_attn->sb_phys)); | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H, | 
|  | upper_32_bits(p_hwfn->p_sb_attn->sb_phys)); | 
|  | } | 
|  |  | 
|  | static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | void *sb_virt_addr, dma_addr_t sb_phy_addr) | 
|  | { | 
|  | struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; | 
|  | int i, j, k; | 
|  |  | 
|  | sb_info->sb_attn = sb_virt_addr; | 
|  | sb_info->sb_phys = sb_phy_addr; | 
|  |  | 
|  | /* Set the pointer to the AEU descriptors */ | 
|  | sb_info->p_aeu_desc = aeu_descs; | 
|  |  | 
|  | /* Calculate Parity Masks */ | 
|  | memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS); | 
|  | for (i = 0; i < NUM_ATTN_REGS; i++) { | 
|  | /* j is array index, k is bit index */ | 
|  | for (j = 0, k = 0; k < 32 && j < 32; j++) { | 
|  | struct aeu_invert_reg_bit *p_aeu; | 
|  |  | 
|  | p_aeu = &aeu_descs[i].bits[j]; | 
|  | if (qed_int_is_parity_flag(p_hwfn, p_aeu)) | 
|  | sb_info->parity_mask[i] |= 1 << k; | 
|  |  | 
|  | k += ATTENTION_LENGTH(p_aeu->flags); | 
|  | } | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "Attn Mask [Reg %d]: 0x%08x\n", | 
|  | i, sb_info->parity_mask[i]); | 
|  | } | 
|  |  | 
|  | /* Set the address of cleanup for the mcp attention */ | 
|  | sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) + | 
|  | MISC_REG_AEU_GENERAL_ATTN_0; | 
|  |  | 
|  | qed_int_sb_attn_setup(p_hwfn, p_ptt); | 
|  | } | 
|  |  | 
|  | static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_dev *cdev = p_hwfn->cdev; | 
|  | struct qed_sb_attn_info *p_sb; | 
|  | dma_addr_t p_phys = 0; | 
|  | void *p_virt; | 
|  |  | 
|  | /* SB struct */ | 
|  | p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); | 
|  | if (!p_sb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* SB ring  */ | 
|  | p_virt = dma_alloc_coherent(&cdev->pdev->dev, | 
|  | SB_ATTN_ALIGNED_SIZE(p_hwfn), | 
|  | &p_phys, GFP_KERNEL); | 
|  |  | 
|  | if (!p_virt) { | 
|  | kfree(p_sb); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Attention setup */ | 
|  | p_hwfn->p_sb_attn = p_sb; | 
|  | qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* coalescing timeout = timeset << (timer_res + 1) */ | 
|  | #define QED_CAU_DEF_RX_USECS 24 | 
|  | #define QED_CAU_DEF_TX_USECS 48 | 
|  |  | 
|  | void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn, | 
|  | struct cau_sb_entry *p_sb_entry, | 
|  | u8 pf_id, u16 vf_number, u8 vf_valid) | 
|  | { | 
|  | struct qed_dev *cdev = p_hwfn->cdev; | 
|  | u32 cau_state, params = 0, data = 0; | 
|  | u8 timer_res; | 
|  |  | 
|  | memset(p_sb_entry, 0, sizeof(*p_sb_entry)); | 
|  |  | 
|  | SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id); | 
|  | SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number); | 
|  | SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid); | 
|  | SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F); | 
|  | SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F); | 
|  |  | 
|  | cau_state = CAU_HC_DISABLE_STATE; | 
|  |  | 
|  | if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { | 
|  | cau_state = CAU_HC_ENABLE_STATE; | 
|  | if (!cdev->rx_coalesce_usecs) | 
|  | cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS; | 
|  | if (!cdev->tx_coalesce_usecs) | 
|  | cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS; | 
|  | } | 
|  |  | 
|  | /* Coalesce = (timeset << timer-res), timeset is 7bit wide */ | 
|  | if (cdev->rx_coalesce_usecs <= 0x7F) | 
|  | timer_res = 0; | 
|  | else if (cdev->rx_coalesce_usecs <= 0xFF) | 
|  | timer_res = 1; | 
|  | else | 
|  | timer_res = 2; | 
|  |  | 
|  | SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); | 
|  |  | 
|  | if (cdev->tx_coalesce_usecs <= 0x7F) | 
|  | timer_res = 0; | 
|  | else if (cdev->tx_coalesce_usecs <= 0xFF) | 
|  | timer_res = 1; | 
|  | else | 
|  | timer_res = 2; | 
|  |  | 
|  | SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); | 
|  | p_sb_entry->params = cpu_to_le32(params); | 
|  |  | 
|  | SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state); | 
|  | SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state); | 
|  | p_sb_entry->data = cpu_to_le32(data); | 
|  | } | 
|  |  | 
|  | static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u16 igu_sb_id, | 
|  | u32 pi_index, | 
|  | enum qed_coalescing_fsm coalescing_fsm, | 
|  | u8 timeset) | 
|  | { | 
|  | u32 sb_offset, pi_offset; | 
|  | u32 prod = 0; | 
|  |  | 
|  | if (IS_VF(p_hwfn->cdev)) | 
|  | return; | 
|  |  | 
|  | SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset); | 
|  | if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE) | 
|  | SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0); | 
|  | else | 
|  | SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1); | 
|  |  | 
|  | sb_offset = igu_sb_id * PIS_PER_SB; | 
|  | pi_offset = sb_offset + pi_index; | 
|  |  | 
|  | if (p_hwfn->hw_init_done) | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod); | 
|  | else | 
|  | STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset, | 
|  | prod); | 
|  | } | 
|  |  | 
|  | void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | dma_addr_t sb_phys, | 
|  | u16 igu_sb_id, u16 vf_number, u8 vf_valid) | 
|  | { | 
|  | struct cau_sb_entry sb_entry; | 
|  |  | 
|  | qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id, | 
|  | vf_number, vf_valid); | 
|  |  | 
|  | if (p_hwfn->hw_init_done) { | 
|  | /* Wide-bus, initialize via DMAE */ | 
|  | u64 phys_addr = (u64)sb_phys; | 
|  |  | 
|  | qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr, | 
|  | CAU_REG_SB_ADDR_MEMORY + | 
|  | igu_sb_id * sizeof(u64), 2, NULL); | 
|  | qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, | 
|  | CAU_REG_SB_VAR_MEMORY + | 
|  | igu_sb_id * sizeof(u64), 2, NULL); | 
|  | } else { | 
|  | /* Initialize Status Block Address */ | 
|  | STORE_RT_REG_AGG(p_hwfn, | 
|  | CAU_REG_SB_ADDR_MEMORY_RT_OFFSET + | 
|  | igu_sb_id * 2, | 
|  | sb_phys); | 
|  |  | 
|  | STORE_RT_REG_AGG(p_hwfn, | 
|  | CAU_REG_SB_VAR_MEMORY_RT_OFFSET + | 
|  | igu_sb_id * 2, | 
|  | sb_entry); | 
|  | } | 
|  |  | 
|  | /* Configure pi coalescing if set */ | 
|  | if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { | 
|  | u8 num_tc = p_hwfn->hw_info.num_hw_tc; | 
|  | u8 timeset, timer_res; | 
|  | u8 i; | 
|  |  | 
|  | /* timeset = (coalesce >> timer-res), timeset is 7bit wide */ | 
|  | if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F) | 
|  | timer_res = 0; | 
|  | else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF) | 
|  | timer_res = 1; | 
|  | else | 
|  | timer_res = 2; | 
|  | timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res); | 
|  | qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI, | 
|  | QED_COAL_RX_STATE_MACHINE, timeset); | 
|  |  | 
|  | if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F) | 
|  | timer_res = 0; | 
|  | else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF) | 
|  | timer_res = 1; | 
|  | else | 
|  | timer_res = 2; | 
|  | timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res); | 
|  | for (i = 0; i < num_tc; i++) { | 
|  | qed_int_cau_conf_pi(p_hwfn, p_ptt, | 
|  | igu_sb_id, TX_PI(i), | 
|  | QED_COAL_TX_STATE_MACHINE, | 
|  | timeset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void qed_int_sb_setup(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, struct qed_sb_info *sb_info) | 
|  | { | 
|  | /* zero status block and ack counter */ | 
|  | sb_info->sb_ack = 0; | 
|  | memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); | 
|  |  | 
|  | if (IS_PF(p_hwfn->cdev)) | 
|  | qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys, | 
|  | sb_info->igu_sb_id, 0, 0); | 
|  | } | 
|  |  | 
|  | struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf) | 
|  | { | 
|  | struct qed_igu_block *p_block; | 
|  | u16 igu_id; | 
|  |  | 
|  | for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); | 
|  | igu_id++) { | 
|  | p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; | 
|  |  | 
|  | if (!(p_block->status & QED_IGU_STATUS_VALID) || | 
|  | !(p_block->status & QED_IGU_STATUS_FREE)) | 
|  | continue; | 
|  |  | 
|  | if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf) | 
|  | return p_block; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id) | 
|  | { | 
|  | struct qed_igu_block *p_block; | 
|  | u16 igu_id; | 
|  |  | 
|  | for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); | 
|  | igu_id++) { | 
|  | p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; | 
|  |  | 
|  | if (!(p_block->status & QED_IGU_STATUS_VALID) || | 
|  | !p_block->is_pf || | 
|  | p_block->vector_number != vector_id) | 
|  | continue; | 
|  |  | 
|  | return igu_id; | 
|  | } | 
|  |  | 
|  | return QED_SB_INVALID_IDX; | 
|  | } | 
|  |  | 
|  | u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id) | 
|  | { | 
|  | u16 igu_sb_id; | 
|  |  | 
|  | /* Assuming continuous set of IGU SBs dedicated for given PF */ | 
|  | if (sb_id == QED_SP_SB_ID) | 
|  | igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id; | 
|  | else if (IS_PF(p_hwfn->cdev)) | 
|  | igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1); | 
|  | else | 
|  | igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id); | 
|  |  | 
|  | if (sb_id == QED_SP_SB_ID) | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id); | 
|  | else | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id); | 
|  |  | 
|  | return igu_sb_id; | 
|  | } | 
|  |  | 
|  | int qed_int_sb_init(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | struct qed_sb_info *sb_info, | 
|  | void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id) | 
|  | { | 
|  | sb_info->sb_virt = sb_virt_addr; | 
|  | sb_info->sb_phys = sb_phy_addr; | 
|  |  | 
|  | sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id); | 
|  |  | 
|  | if (sb_id != QED_SP_SB_ID) { | 
|  | if (IS_PF(p_hwfn->cdev)) { | 
|  | struct qed_igu_info *p_info; | 
|  | struct qed_igu_block *p_block; | 
|  |  | 
|  | p_info = p_hwfn->hw_info.p_igu_info; | 
|  | p_block = &p_info->entry[sb_info->igu_sb_id]; | 
|  |  | 
|  | p_block->sb_info = sb_info; | 
|  | p_block->status &= ~QED_IGU_STATUS_FREE; | 
|  | p_info->usage.free_cnt--; | 
|  | } else { | 
|  | qed_vf_set_sb_info(p_hwfn, sb_id, sb_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | sb_info->cdev = p_hwfn->cdev; | 
|  |  | 
|  | /* The igu address will hold the absolute address that needs to be | 
|  | * written to for a specific status block | 
|  | */ | 
|  | if (IS_PF(p_hwfn->cdev)) { | 
|  | sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + | 
|  | GTT_BAR0_MAP_REG_IGU_CMD + | 
|  | (sb_info->igu_sb_id << 3); | 
|  | } else { | 
|  | sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + | 
|  | PXP_VF_BAR0_START_IGU + | 
|  | ((IGU_CMD_INT_ACK_BASE + | 
|  | sb_info->igu_sb_id) << 3); | 
|  | } | 
|  |  | 
|  | sb_info->flags |= QED_SB_INFO_INIT; | 
|  |  | 
|  | qed_int_sb_setup(p_hwfn, p_ptt, sb_info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_int_sb_release(struct qed_hwfn *p_hwfn, | 
|  | struct qed_sb_info *sb_info, u16 sb_id) | 
|  | { | 
|  | struct qed_igu_block *p_block; | 
|  | struct qed_igu_info *p_info; | 
|  |  | 
|  | if (!sb_info) | 
|  | return 0; | 
|  |  | 
|  | /* zero status block and ack counter */ | 
|  | sb_info->sb_ack = 0; | 
|  | memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); | 
|  |  | 
|  | if (IS_VF(p_hwfn->cdev)) { | 
|  | qed_vf_set_sb_info(p_hwfn, sb_id, NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p_info = p_hwfn->hw_info.p_igu_info; | 
|  | p_block = &p_info->entry[sb_info->igu_sb_id]; | 
|  |  | 
|  | /* Vector 0 is reserved to Default SB */ | 
|  | if (!p_block->vector_number) { | 
|  | DP_ERR(p_hwfn, "Do Not free sp sb using this function"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Lose reference to client's SB info, and fix counters */ | 
|  | p_block->sb_info = NULL; | 
|  | p_block->status |= QED_IGU_STATUS_FREE; | 
|  | p_info->usage.free_cnt++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb; | 
|  |  | 
|  | if (!p_sb) | 
|  | return; | 
|  |  | 
|  | if (p_sb->sb_info.sb_virt) | 
|  | dma_free_coherent(&p_hwfn->cdev->pdev->dev, | 
|  | SB_ALIGNED_SIZE(p_hwfn), | 
|  | p_sb->sb_info.sb_virt, | 
|  | p_sb->sb_info.sb_phys); | 
|  | kfree(p_sb); | 
|  | p_hwfn->p_sp_sb = NULL; | 
|  | } | 
|  |  | 
|  | static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_sb_sp_info *p_sb; | 
|  | dma_addr_t p_phys = 0; | 
|  | void *p_virt; | 
|  |  | 
|  | /* SB struct */ | 
|  | p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); | 
|  | if (!p_sb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* SB ring  */ | 
|  | p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, | 
|  | SB_ALIGNED_SIZE(p_hwfn), | 
|  | &p_phys, GFP_KERNEL); | 
|  | if (!p_virt) { | 
|  | kfree(p_sb); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Status Block setup */ | 
|  | p_hwfn->p_sp_sb = p_sb; | 
|  | qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt, | 
|  | p_phys, QED_SP_SB_ID); | 
|  |  | 
|  | memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int qed_int_register_cb(struct qed_hwfn *p_hwfn, | 
|  | qed_int_comp_cb_t comp_cb, | 
|  | void *cookie, u8 *sb_idx, __le16 **p_fw_cons) | 
|  | { | 
|  | struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; | 
|  | int rc = -ENOMEM; | 
|  | u8 pi; | 
|  |  | 
|  | /* Look for a free index */ | 
|  | for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) { | 
|  | if (p_sp_sb->pi_info_arr[pi].comp_cb) | 
|  | continue; | 
|  |  | 
|  | p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb; | 
|  | p_sp_sb->pi_info_arr[pi].cookie = cookie; | 
|  | *sb_idx = pi; | 
|  | *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi]; | 
|  | rc = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi) | 
|  | { | 
|  | struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; | 
|  |  | 
|  | if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p_sp_sb->pi_info_arr[pi].comp_cb = NULL; | 
|  | p_sp_sb->pi_info_arr[pi].cookie = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | return p_hwfn->p_sp_sb->sb_info.igu_sb_id; | 
|  | } | 
|  |  | 
|  | void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, enum qed_int_mode int_mode) | 
|  | { | 
|  | u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN; | 
|  |  | 
|  | p_hwfn->cdev->int_mode = int_mode; | 
|  | switch (p_hwfn->cdev->int_mode) { | 
|  | case QED_INT_MODE_INTA: | 
|  | igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN; | 
|  | igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; | 
|  | break; | 
|  |  | 
|  | case QED_INT_MODE_MSI: | 
|  | igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; | 
|  | igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; | 
|  | break; | 
|  |  | 
|  | case QED_INT_MODE_MSIX: | 
|  | igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; | 
|  | break; | 
|  | case QED_INT_MODE_POLL: | 
|  | break; | 
|  | } | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf); | 
|  | } | 
|  |  | 
|  | static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt) | 
|  | { | 
|  |  | 
|  | /* Configure AEU signal change to produce attentions */ | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0); | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff); | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff); | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff); | 
|  |  | 
|  | /* Unmask AEU signals toward IGU */ | 
|  | qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff); | 
|  | } | 
|  |  | 
|  | int | 
|  | qed_int_igu_enable(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, enum qed_int_mode int_mode) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | qed_int_igu_enable_attn(p_hwfn, p_ptt); | 
|  |  | 
|  | if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) { | 
|  | rc = qed_slowpath_irq_req(p_hwfn); | 
|  | if (rc) { | 
|  | DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | p_hwfn->b_int_requested = true; | 
|  | } | 
|  | /* Enable interrupt Generation */ | 
|  | qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode); | 
|  | p_hwfn->b_int_enabled = 1; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | p_hwfn->b_int_enabled = 0; | 
|  |  | 
|  | if (IS_VF(p_hwfn->cdev)) | 
|  | return; | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0); | 
|  | } | 
|  |  | 
|  | #define IGU_CLEANUP_SLEEP_LENGTH                (1000) | 
|  | static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u16 igu_sb_id, | 
|  | bool cleanup_set, u16 opaque_fid) | 
|  | { | 
|  | u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0; | 
|  | u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id; | 
|  | u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH; | 
|  |  | 
|  | /* Set the data field */ | 
|  | SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0); | 
|  | SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0); | 
|  | SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET); | 
|  |  | 
|  | /* Set the control register */ | 
|  | SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr); | 
|  | SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid); | 
|  | SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR); | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data); | 
|  |  | 
|  | barrier(); | 
|  |  | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl); | 
|  |  | 
|  | /* calculate where to read the status bit from */ | 
|  | sb_bit = 1 << (igu_sb_id % 32); | 
|  | sb_bit_addr = igu_sb_id / 32 * sizeof(u32); | 
|  |  | 
|  | sb_bit_addr += IGU_REG_CLEANUP_STATUS_0; | 
|  |  | 
|  | /* Now wait for the command to complete */ | 
|  | do { | 
|  | val = qed_rd(p_hwfn, p_ptt, sb_bit_addr); | 
|  |  | 
|  | if ((val & sb_bit) == (cleanup_set ? sb_bit : 0)) | 
|  | break; | 
|  |  | 
|  | usleep_range(5000, 10000); | 
|  | } while (--sleep_cnt); | 
|  |  | 
|  | if (!sleep_cnt) | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Timeout waiting for clear status 0x%08x [for sb %d]\n", | 
|  | val, igu_sb_id); | 
|  | } | 
|  |  | 
|  | void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | u16 igu_sb_id, u16 opaque, bool b_set) | 
|  | { | 
|  | struct qed_igu_block *p_block; | 
|  | int pi, i; | 
|  |  | 
|  | p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n", | 
|  | igu_sb_id, | 
|  | p_block->function_id, | 
|  | p_block->is_pf, p_block->vector_number); | 
|  |  | 
|  | /* Set */ | 
|  | if (b_set) | 
|  | qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque); | 
|  |  | 
|  | /* Clear */ | 
|  | qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque); | 
|  |  | 
|  | /* Wait for the IGU SB to cleanup */ | 
|  | for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) { | 
|  | u32 val; | 
|  |  | 
|  | val = qed_rd(p_hwfn, p_ptt, | 
|  | IGU_REG_WRITE_DONE_PENDING + | 
|  | ((igu_sb_id / 32) * 4)); | 
|  | if (val & BIT((igu_sb_id % 32))) | 
|  | usleep_range(10, 20); | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (i == IGU_CLEANUP_SLEEP_LENGTH) | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n", | 
|  | igu_sb_id); | 
|  |  | 
|  | /* Clear the CAU for the SB */ | 
|  | for (pi = 0; pi < 12; pi++) | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0); | 
|  | } | 
|  |  | 
|  | void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, | 
|  | bool b_set, bool b_slowpath) | 
|  | { | 
|  | struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; | 
|  | struct qed_igu_block *p_block; | 
|  | u16 igu_sb_id = 0; | 
|  | u32 val = 0; | 
|  |  | 
|  | val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION); | 
|  | val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN; | 
|  | val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN; | 
|  | qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val); | 
|  |  | 
|  | for (igu_sb_id = 0; | 
|  | igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { | 
|  | p_block = &p_info->entry[igu_sb_id]; | 
|  |  | 
|  | if (!(p_block->status & QED_IGU_STATUS_VALID) || | 
|  | !p_block->is_pf || | 
|  | (p_block->status & QED_IGU_STATUS_DSB)) | 
|  | continue; | 
|  |  | 
|  | qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id, | 
|  | p_hwfn->hw_info.opaque_fid, | 
|  | b_set); | 
|  | } | 
|  |  | 
|  | if (b_slowpath) | 
|  | qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, | 
|  | p_info->igu_dsb_id, | 
|  | p_hwfn->hw_info.opaque_fid, | 
|  | b_set); | 
|  | } | 
|  |  | 
|  | int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; | 
|  | struct qed_igu_block *p_block; | 
|  | int pf_sbs, vf_sbs; | 
|  | u16 igu_sb_id; | 
|  | u32 val, rval; | 
|  |  | 
|  | if (!RESC_NUM(p_hwfn, QED_SB)) { | 
|  | p_info->b_allow_pf_vf_change = false; | 
|  | } else { | 
|  | /* Use the numbers the MFW have provided - | 
|  | * don't forget MFW accounts for the default SB as well. | 
|  | */ | 
|  | p_info->b_allow_pf_vf_change = true; | 
|  |  | 
|  | if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) { | 
|  | DP_INFO(p_hwfn, | 
|  | "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n", | 
|  | RESC_NUM(p_hwfn, QED_SB) - 1, | 
|  | p_info->usage.cnt); | 
|  | p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1; | 
|  | } | 
|  |  | 
|  | if (IS_PF_SRIOV(p_hwfn)) { | 
|  | u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs; | 
|  |  | 
|  | if (vfs != p_info->usage.iov_cnt) | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_INTR, | 
|  | "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n", | 
|  | p_info->usage.iov_cnt, vfs); | 
|  |  | 
|  | /* At this point we know how many SBs we have totally | 
|  | * in IGU + number of PF SBs. So we can validate that | 
|  | * we'd have sufficient for VF. | 
|  | */ | 
|  | if (vfs > p_info->usage.free_cnt + | 
|  | p_info->usage.free_cnt_iov - p_info->usage.cnt) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n", | 
|  | p_info->usage.free_cnt + | 
|  | p_info->usage.free_cnt_iov, | 
|  | p_info->usage.cnt, vfs); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Currently cap the number of VFs SBs by the | 
|  | * number of VFs. | 
|  | */ | 
|  | p_info->usage.iov_cnt = vfs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Mark all SBs as free, now in the right PF/VFs division */ | 
|  | p_info->usage.free_cnt = p_info->usage.cnt; | 
|  | p_info->usage.free_cnt_iov = p_info->usage.iov_cnt; | 
|  | p_info->usage.orig = p_info->usage.cnt; | 
|  | p_info->usage.iov_orig = p_info->usage.iov_cnt; | 
|  |  | 
|  | /* We now proceed to re-configure the IGU cam to reflect the initial | 
|  | * configuration. We can start with the Default SB. | 
|  | */ | 
|  | pf_sbs = p_info->usage.cnt; | 
|  | vf_sbs = p_info->usage.iov_cnt; | 
|  |  | 
|  | for (igu_sb_id = p_info->igu_dsb_id; | 
|  | igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { | 
|  | p_block = &p_info->entry[igu_sb_id]; | 
|  | val = 0; | 
|  |  | 
|  | if (!(p_block->status & QED_IGU_STATUS_VALID)) | 
|  | continue; | 
|  |  | 
|  | if (p_block->status & QED_IGU_STATUS_DSB) { | 
|  | p_block->function_id = p_hwfn->rel_pf_id; | 
|  | p_block->is_pf = 1; | 
|  | p_block->vector_number = 0; | 
|  | p_block->status = QED_IGU_STATUS_VALID | | 
|  | QED_IGU_STATUS_PF | | 
|  | QED_IGU_STATUS_DSB; | 
|  | } else if (pf_sbs) { | 
|  | pf_sbs--; | 
|  | p_block->function_id = p_hwfn->rel_pf_id; | 
|  | p_block->is_pf = 1; | 
|  | p_block->vector_number = p_info->usage.cnt - pf_sbs; | 
|  | p_block->status = QED_IGU_STATUS_VALID | | 
|  | QED_IGU_STATUS_PF | | 
|  | QED_IGU_STATUS_FREE; | 
|  | } else if (vf_sbs) { | 
|  | p_block->function_id = | 
|  | p_hwfn->cdev->p_iov_info->first_vf_in_pf + | 
|  | p_info->usage.iov_cnt - vf_sbs; | 
|  | p_block->is_pf = 0; | 
|  | p_block->vector_number = 0; | 
|  | p_block->status = QED_IGU_STATUS_VALID | | 
|  | QED_IGU_STATUS_FREE; | 
|  | vf_sbs--; | 
|  | } else { | 
|  | p_block->function_id = 0; | 
|  | p_block->is_pf = 0; | 
|  | p_block->vector_number = 0; | 
|  | } | 
|  |  | 
|  | SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, | 
|  | p_block->function_id); | 
|  | SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf); | 
|  | SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, | 
|  | p_block->vector_number); | 
|  |  | 
|  | /* VF entries would be enabled when VF is initializaed */ | 
|  | SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf); | 
|  |  | 
|  | rval = qed_rd(p_hwfn, p_ptt, | 
|  | IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); | 
|  |  | 
|  | if (rval != val) { | 
|  | qed_wr(p_hwfn, p_ptt, | 
|  | IGU_REG_MAPPING_MEMORY + | 
|  | sizeof(u32) * igu_sb_id, val); | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, | 
|  | NETIF_MSG_INTR, | 
|  | "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n", | 
|  | igu_sb_id, | 
|  | p_block->function_id, | 
|  | p_block->is_pf, | 
|  | p_block->vector_number, rval, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn, | 
|  | struct qed_ptt *p_ptt, u16 igu_sb_id) | 
|  | { | 
|  | u32 val = qed_rd(p_hwfn, p_ptt, | 
|  | IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); | 
|  | struct qed_igu_block *p_block; | 
|  |  | 
|  | p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; | 
|  |  | 
|  | /* Fill the block information */ | 
|  | p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER); | 
|  | p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID); | 
|  | p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER); | 
|  | p_block->igu_sb_id = igu_sb_id; | 
|  | } | 
|  |  | 
|  | int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | struct qed_igu_info *p_igu_info; | 
|  | struct qed_igu_block *p_block; | 
|  | u32 min_vf = 0, max_vf = 0; | 
|  | u16 igu_sb_id; | 
|  |  | 
|  | p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL); | 
|  | if (!p_hwfn->hw_info.p_igu_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p_igu_info = p_hwfn->hw_info.p_igu_info; | 
|  |  | 
|  | /* Distinguish between existent and non-existent default SB */ | 
|  | p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX; | 
|  |  | 
|  | /* Find the range of VF ids whose SB belong to this PF */ | 
|  | if (p_hwfn->cdev->p_iov_info) { | 
|  | struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; | 
|  |  | 
|  | min_vf	= p_iov->first_vf_in_pf; | 
|  | max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs; | 
|  | } | 
|  |  | 
|  | for (igu_sb_id = 0; | 
|  | igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { | 
|  | /* Read current entry; Notice it might not belong to this PF */ | 
|  | qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id); | 
|  | p_block = &p_igu_info->entry[igu_sb_id]; | 
|  |  | 
|  | if ((p_block->is_pf) && | 
|  | (p_block->function_id == p_hwfn->rel_pf_id)) { | 
|  | p_block->status = QED_IGU_STATUS_PF | | 
|  | QED_IGU_STATUS_VALID | | 
|  | QED_IGU_STATUS_FREE; | 
|  |  | 
|  | if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) | 
|  | p_igu_info->usage.cnt++; | 
|  | } else if (!(p_block->is_pf) && | 
|  | (p_block->function_id >= min_vf) && | 
|  | (p_block->function_id < max_vf)) { | 
|  | /* Available for VFs of this PF */ | 
|  | p_block->status = QED_IGU_STATUS_VALID | | 
|  | QED_IGU_STATUS_FREE; | 
|  |  | 
|  | if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) | 
|  | p_igu_info->usage.iov_cnt++; | 
|  | } | 
|  |  | 
|  | /* Mark the First entry belonging to the PF or its VFs | 
|  | * as the default SB [we'll reset IGU prior to first usage]. | 
|  | */ | 
|  | if ((p_block->status & QED_IGU_STATUS_VALID) && | 
|  | (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) { | 
|  | p_igu_info->igu_dsb_id = igu_sb_id; | 
|  | p_block->status |= QED_IGU_STATUS_DSB; | 
|  | } | 
|  |  | 
|  | /* limit number of prints by having each PF print only its | 
|  | * entries with the exception of PF0 which would print | 
|  | * everything. | 
|  | */ | 
|  | if ((p_block->status & QED_IGU_STATUS_VALID) || | 
|  | (p_hwfn->abs_pf_id == 0)) { | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n", | 
|  | igu_sb_id, p_block->function_id, | 
|  | p_block->is_pf, p_block->vector_number); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) { | 
|  | DP_NOTICE(p_hwfn, | 
|  | "IGU CAM returned invalid values igu_dsb_id=0x%x\n", | 
|  | p_igu_info->igu_dsb_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* All non default SB are considered free at this point */ | 
|  | p_igu_info->usage.free_cnt = p_igu_info->usage.cnt; | 
|  | p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt; | 
|  |  | 
|  | DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, | 
|  | "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n", | 
|  | p_igu_info->igu_dsb_id, | 
|  | p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qed_int_igu_init_rt() - Initialize IGU runtime registers. | 
|  | * | 
|  | * @p_hwfn: HW device data. | 
|  | */ | 
|  | void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN; | 
|  |  | 
|  | STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf); | 
|  | } | 
|  |  | 
|  | u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - | 
|  | IGU_CMD_INT_ACK_BASE; | 
|  | u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - | 
|  | IGU_CMD_INT_ACK_BASE; | 
|  | u32 intr_status_hi = 0, intr_status_lo = 0; | 
|  | u64 intr_status = 0; | 
|  |  | 
|  | intr_status_lo = REG_RD(p_hwfn, | 
|  | GTT_BAR0_MAP_REG_IGU_CMD + | 
|  | lsb_igu_cmd_addr * 8); | 
|  | intr_status_hi = REG_RD(p_hwfn, | 
|  | GTT_BAR0_MAP_REG_IGU_CMD + | 
|  | msb_igu_cmd_addr * 8); | 
|  | intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo; | 
|  |  | 
|  | return intr_status; | 
|  | } | 
|  |  | 
|  | static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc); | 
|  | p_hwfn->b_sp_dpc_enabled = true; | 
|  | } | 
|  |  | 
|  | int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void qed_int_free(struct qed_hwfn *p_hwfn) | 
|  | { | 
|  | qed_int_sp_sb_free(p_hwfn); | 
|  | qed_int_sb_attn_free(p_hwfn); | 
|  | } | 
|  |  | 
|  | void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) | 
|  | { | 
|  | qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info); | 
|  | qed_int_sb_attn_setup(p_hwfn, p_ptt); | 
|  | qed_int_sp_dpc_setup(p_hwfn); | 
|  | } | 
|  |  | 
|  | void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn, | 
|  | struct qed_sb_cnt_info *p_sb_cnt_info) | 
|  | { | 
|  | struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info; | 
|  |  | 
|  | if (!info || !p_sb_cnt_info) | 
|  | return; | 
|  |  | 
|  | memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info)); | 
|  | } | 
|  |  | 
|  | void qed_int_disable_post_isr_release(struct qed_dev *cdev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_hwfn(cdev, i) | 
|  | cdev->hwfns[i].b_int_requested = false; | 
|  | } | 
|  |  | 
|  | void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable) | 
|  | { | 
|  | cdev->attn_clr_en = clr_enable; | 
|  | } | 
|  |  | 
|  | int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, | 
|  | u8 timer_res, u16 sb_id, bool tx) | 
|  | { | 
|  | struct cau_sb_entry sb_entry; | 
|  | u32 params; | 
|  | int rc; | 
|  |  | 
|  | if (!p_hwfn->hw_init_done) { | 
|  | DP_ERR(p_hwfn, "hardware not initialized yet\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY + | 
|  | sb_id * sizeof(u64), | 
|  | (u64)(uintptr_t)&sb_entry, 2, NULL); | 
|  | if (rc) { | 
|  | DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | params = le32_to_cpu(sb_entry.params); | 
|  |  | 
|  | if (tx) | 
|  | SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); | 
|  | else | 
|  | SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); | 
|  |  | 
|  | sb_entry.params = cpu_to_le32(params); | 
|  |  | 
|  | rc = qed_dmae_host2grc(p_hwfn, p_ptt, | 
|  | (u64)(uintptr_t)&sb_entry, | 
|  | CAU_REG_SB_VAR_MEMORY + | 
|  | sb_id * sizeof(u64), 2, NULL); | 
|  | if (rc) { | 
|  | DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, | 
|  | struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info) | 
|  | { | 
|  | u16 sbid = p_sb->igu_sb_id; | 
|  | u32 i; | 
|  |  | 
|  | if (IS_VF(p_hwfn->cdev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sbid >= NUM_OF_SBS(p_hwfn->cdev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4); | 
|  | p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4); | 
|  |  | 
|  | for (i = 0; i < PIS_PER_SB; i++) | 
|  | p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt, | 
|  | CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4); | 
|  |  | 
|  | return 0; | 
|  | } |