|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * fs/dax.c - Direct Access filesystem code | 
|  | * Copyright (c) 2013-2014 Intel Corporation | 
|  | * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> | 
|  | * Author: Ross Zwisler <ross.zwisler@linux.intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/vmstat.h> | 
|  | #include <linux/pfn_t.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/iomap.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <asm/pgalloc.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/fs_dax.h> | 
|  |  | 
|  | /* We choose 4096 entries - same as per-zone page wait tables */ | 
|  | #define DAX_WAIT_TABLE_BITS 12 | 
|  | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) | 
|  |  | 
|  | /* The 'colour' (ie low bits) within a PMD of a page offset.  */ | 
|  | #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1) | 
|  | #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT) | 
|  |  | 
|  | static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; | 
|  |  | 
|  | static int __init init_dax_wait_table(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) | 
|  | init_waitqueue_head(wait_table + i); | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(init_dax_wait_table); | 
|  |  | 
|  | /* | 
|  | * DAX pagecache entries use XArray value entries so they can't be mistaken | 
|  | * for pages.  We use one bit for locking, one bit for the entry size (PMD) | 
|  | * and two more to tell us if the entry is a zero page or an empty entry that | 
|  | * is just used for locking.  In total four special bits. | 
|  | * | 
|  | * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE | 
|  | * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem | 
|  | * block allocation. | 
|  | */ | 
|  | #define DAX_SHIFT	(4) | 
|  | #define DAX_LOCKED	(1UL << 0) | 
|  | #define DAX_PMD		(1UL << 1) | 
|  | #define DAX_ZERO_PAGE	(1UL << 2) | 
|  | #define DAX_EMPTY	(1UL << 3) | 
|  |  | 
|  | static unsigned long dax_to_pfn(void *entry) | 
|  | { | 
|  | return xa_to_value(entry) >> DAX_SHIFT; | 
|  | } | 
|  |  | 
|  | static struct folio *dax_to_folio(void *entry) | 
|  | { | 
|  | return page_folio(pfn_to_page(dax_to_pfn(entry))); | 
|  | } | 
|  |  | 
|  | static void *dax_make_entry(pfn_t pfn, unsigned long flags) | 
|  | { | 
|  | return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); | 
|  | } | 
|  |  | 
|  | static bool dax_is_locked(void *entry) | 
|  | { | 
|  | return xa_to_value(entry) & DAX_LOCKED; | 
|  | } | 
|  |  | 
|  | static unsigned int dax_entry_order(void *entry) | 
|  | { | 
|  | if (xa_to_value(entry) & DAX_PMD) | 
|  | return PMD_ORDER; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long dax_is_pmd_entry(void *entry) | 
|  | { | 
|  | return xa_to_value(entry) & DAX_PMD; | 
|  | } | 
|  |  | 
|  | static bool dax_is_pte_entry(void *entry) | 
|  | { | 
|  | return !(xa_to_value(entry) & DAX_PMD); | 
|  | } | 
|  |  | 
|  | static int dax_is_zero_entry(void *entry) | 
|  | { | 
|  | return xa_to_value(entry) & DAX_ZERO_PAGE; | 
|  | } | 
|  |  | 
|  | static int dax_is_empty_entry(void *entry) | 
|  | { | 
|  | return xa_to_value(entry) & DAX_EMPTY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * true if the entry that was found is of a smaller order than the entry | 
|  | * we were looking for | 
|  | */ | 
|  | static bool dax_is_conflict(void *entry) | 
|  | { | 
|  | return entry == XA_RETRY_ENTRY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DAX page cache entry locking | 
|  | */ | 
|  | struct exceptional_entry_key { | 
|  | struct xarray *xa; | 
|  | pgoff_t entry_start; | 
|  | }; | 
|  |  | 
|  | struct wait_exceptional_entry_queue { | 
|  | wait_queue_entry_t wait; | 
|  | struct exceptional_entry_key key; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum dax_wake_mode: waitqueue wakeup behaviour | 
|  | * @WAKE_ALL: wake all waiters in the waitqueue | 
|  | * @WAKE_NEXT: wake only the first waiter in the waitqueue | 
|  | */ | 
|  | enum dax_wake_mode { | 
|  | WAKE_ALL, | 
|  | WAKE_NEXT, | 
|  | }; | 
|  |  | 
|  | static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, | 
|  | void *entry, struct exceptional_entry_key *key) | 
|  | { | 
|  | unsigned long hash; | 
|  | unsigned long index = xas->xa_index; | 
|  |  | 
|  | /* | 
|  | * If 'entry' is a PMD, align the 'index' that we use for the wait | 
|  | * queue to the start of that PMD.  This ensures that all offsets in | 
|  | * the range covered by the PMD map to the same bit lock. | 
|  | */ | 
|  | if (dax_is_pmd_entry(entry)) | 
|  | index &= ~PG_PMD_COLOUR; | 
|  | key->xa = xas->xa; | 
|  | key->entry_start = index; | 
|  |  | 
|  | hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); | 
|  | return wait_table + hash; | 
|  | } | 
|  |  | 
|  | static int wake_exceptional_entry_func(wait_queue_entry_t *wait, | 
|  | unsigned int mode, int sync, void *keyp) | 
|  | { | 
|  | struct exceptional_entry_key *key = keyp; | 
|  | struct wait_exceptional_entry_queue *ewait = | 
|  | container_of(wait, struct wait_exceptional_entry_queue, wait); | 
|  |  | 
|  | if (key->xa != ewait->key.xa || | 
|  | key->entry_start != ewait->key.entry_start) | 
|  | return 0; | 
|  | return autoremove_wake_function(wait, mode, sync, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @entry may no longer be the entry at the index in the mapping. | 
|  | * The important information it's conveying is whether the entry at | 
|  | * this index used to be a PMD entry. | 
|  | */ | 
|  | static void dax_wake_entry(struct xa_state *xas, void *entry, | 
|  | enum dax_wake_mode mode) | 
|  | { | 
|  | struct exceptional_entry_key key; | 
|  | wait_queue_head_t *wq; | 
|  |  | 
|  | wq = dax_entry_waitqueue(xas, entry, &key); | 
|  |  | 
|  | /* | 
|  | * Checking for locked entry and prepare_to_wait_exclusive() happens | 
|  | * under the i_pages lock, ditto for entry handling in our callers. | 
|  | * So at this point all tasks that could have seen our entry locked | 
|  | * must be in the waitqueue and the following check will see them. | 
|  | */ | 
|  | if (waitqueue_active(wq)) | 
|  | __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up entry in page cache, wait for it to become unlocked if it | 
|  | * is a DAX entry and return it.  The caller must subsequently call | 
|  | * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() | 
|  | * if it did.  The entry returned may have a larger order than @order. | 
|  | * If @order is larger than the order of the entry found in i_pages, this | 
|  | * function returns a dax_is_conflict entry. | 
|  | * | 
|  | * Must be called with the i_pages lock held. | 
|  | */ | 
|  | static void *get_next_unlocked_entry(struct xa_state *xas, unsigned int order) | 
|  | { | 
|  | void *entry; | 
|  | struct wait_exceptional_entry_queue ewait; | 
|  | wait_queue_head_t *wq; | 
|  |  | 
|  | init_wait(&ewait.wait); | 
|  | ewait.wait.func = wake_exceptional_entry_func; | 
|  |  | 
|  | for (;;) { | 
|  | entry = xas_find_conflict(xas); | 
|  | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
|  | return entry; | 
|  | if (dax_entry_order(entry) < order) | 
|  | return XA_RETRY_ENTRY; | 
|  | if (!dax_is_locked(entry)) | 
|  | return entry; | 
|  |  | 
|  | wq = dax_entry_waitqueue(xas, entry, &ewait.key); | 
|  | prepare_to_wait_exclusive(wq, &ewait.wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | xas_unlock_irq(xas); | 
|  | xas_reset(xas); | 
|  | schedule(); | 
|  | finish_wait(wq, &ewait.wait); | 
|  | xas_lock_irq(xas); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for the given entry to become unlocked. Caller must hold the i_pages | 
|  | * lock and call either put_unlocked_entry() if it did not lock the entry or | 
|  | * dax_unlock_entry() if it did. Returns an unlocked entry if still present. | 
|  | */ | 
|  | static void *wait_entry_unlocked_exclusive(struct xa_state *xas, void *entry) | 
|  | { | 
|  | struct wait_exceptional_entry_queue ewait; | 
|  | wait_queue_head_t *wq; | 
|  |  | 
|  | init_wait(&ewait.wait); | 
|  | ewait.wait.func = wake_exceptional_entry_func; | 
|  |  | 
|  | while (unlikely(dax_is_locked(entry))) { | 
|  | wq = dax_entry_waitqueue(xas, entry, &ewait.key); | 
|  | prepare_to_wait_exclusive(wq, &ewait.wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | xas_pause(xas); | 
|  | xas_unlock_irq(xas); | 
|  | schedule(); | 
|  | finish_wait(wq, &ewait.wait); | 
|  | xas_lock_irq(xas); | 
|  | entry = xas_load(xas); | 
|  | } | 
|  |  | 
|  | if (xa_is_internal(entry)) | 
|  | return NULL; | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The only thing keeping the address space around is the i_pages lock | 
|  | * (it's cycled in clear_inode() after removing the entries from i_pages) | 
|  | * After we call xas_unlock_irq(), we cannot touch xas->xa. | 
|  | */ | 
|  | static void wait_entry_unlocked(struct xa_state *xas, void *entry) | 
|  | { | 
|  | struct wait_exceptional_entry_queue ewait; | 
|  | wait_queue_head_t *wq; | 
|  |  | 
|  | init_wait(&ewait.wait); | 
|  | ewait.wait.func = wake_exceptional_entry_func; | 
|  |  | 
|  | wq = dax_entry_waitqueue(xas, entry, &ewait.key); | 
|  | /* | 
|  | * Unlike get_next_unlocked_entry() there is no guarantee that this | 
|  | * path ever successfully retrieves an unlocked entry before an | 
|  | * inode dies. Perform a non-exclusive wait in case this path | 
|  | * never successfully performs its own wake up. | 
|  | */ | 
|  | prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); | 
|  | xas_unlock_irq(xas); | 
|  | schedule(); | 
|  | finish_wait(wq, &ewait.wait); | 
|  | } | 
|  |  | 
|  | static void put_unlocked_entry(struct xa_state *xas, void *entry, | 
|  | enum dax_wake_mode mode) | 
|  | { | 
|  | if (entry && !dax_is_conflict(entry)) | 
|  | dax_wake_entry(xas, entry, mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We used the xa_state to get the entry, but then we locked the entry and | 
|  | * dropped the xa_lock, so we know the xa_state is stale and must be reset | 
|  | * before use. | 
|  | */ | 
|  | static void dax_unlock_entry(struct xa_state *xas, void *entry) | 
|  | { | 
|  | void *old; | 
|  |  | 
|  | BUG_ON(dax_is_locked(entry)); | 
|  | xas_reset(xas); | 
|  | xas_lock_irq(xas); | 
|  | old = xas_store(xas, entry); | 
|  | xas_unlock_irq(xas); | 
|  | BUG_ON(!dax_is_locked(old)); | 
|  | dax_wake_entry(xas, entry, WAKE_NEXT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return: The entry stored at this location before it was locked. | 
|  | */ | 
|  | static void *dax_lock_entry(struct xa_state *xas, void *entry) | 
|  | { | 
|  | unsigned long v = xa_to_value(entry); | 
|  | return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); | 
|  | } | 
|  |  | 
|  | static unsigned long dax_entry_size(void *entry) | 
|  | { | 
|  | if (dax_is_zero_entry(entry)) | 
|  | return 0; | 
|  | else if (dax_is_empty_entry(entry)) | 
|  | return 0; | 
|  | else if (dax_is_pmd_entry(entry)) | 
|  | return PMD_SIZE; | 
|  | else | 
|  | return PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A DAX folio is considered shared if it has no mapping set and ->share (which | 
|  | * shares the ->index field) is non-zero. Note this may return false even if the | 
|  | * page is shared between multiple files but has not yet actually been mapped | 
|  | * into multiple address spaces. | 
|  | */ | 
|  | static inline bool dax_folio_is_shared(struct folio *folio) | 
|  | { | 
|  | return !folio->mapping && folio->share; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When it is called by dax_insert_entry(), the shared flag will indicate | 
|  | * whether this entry is shared by multiple files. If the page has not | 
|  | * previously been associated with any mappings the ->mapping and ->index | 
|  | * fields will be set. If it has already been associated with a mapping | 
|  | * the mapping will be cleared and the share count set. It's then up to | 
|  | * reverse map users like memory_failure() to call back into the filesystem to | 
|  | * recover ->mapping and ->index information. For example by implementing | 
|  | * dax_holder_operations. | 
|  | */ | 
|  | static void dax_folio_make_shared(struct folio *folio) | 
|  | { | 
|  | /* | 
|  | * folio is not currently shared so mark it as shared by clearing | 
|  | * folio->mapping. | 
|  | */ | 
|  | folio->mapping = NULL; | 
|  |  | 
|  | /* | 
|  | * folio has previously been mapped into one address space so set the | 
|  | * share count. | 
|  | */ | 
|  | folio->share = 1; | 
|  | } | 
|  |  | 
|  | static inline unsigned long dax_folio_put(struct folio *folio) | 
|  | { | 
|  | unsigned long ref; | 
|  | int order, i; | 
|  |  | 
|  | if (!dax_folio_is_shared(folio)) | 
|  | ref = 0; | 
|  | else | 
|  | ref = --folio->share; | 
|  |  | 
|  | if (ref) | 
|  | return ref; | 
|  |  | 
|  | folio->mapping = NULL; | 
|  | order = folio_order(folio); | 
|  | if (!order) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < (1UL << order); i++) { | 
|  | struct dev_pagemap *pgmap = page_pgmap(&folio->page); | 
|  | struct page *page = folio_page(folio, i); | 
|  | struct folio *new_folio = (struct folio *)page; | 
|  |  | 
|  | ClearPageHead(page); | 
|  | clear_compound_head(page); | 
|  |  | 
|  | new_folio->mapping = NULL; | 
|  | /* | 
|  | * Reset pgmap which was over-written by | 
|  | * prep_compound_page(). | 
|  | */ | 
|  | new_folio->pgmap = pgmap; | 
|  | new_folio->share = 0; | 
|  | WARN_ON_ONCE(folio_ref_count(new_folio)); | 
|  | } | 
|  |  | 
|  | return ref; | 
|  | } | 
|  |  | 
|  | static void dax_folio_init(void *entry) | 
|  | { | 
|  | struct folio *folio = dax_to_folio(entry); | 
|  | int order = dax_entry_order(entry); | 
|  |  | 
|  | /* | 
|  | * Folio should have been split back to order-0 pages in | 
|  | * dax_folio_put() when they were removed from their | 
|  | * final mapping. | 
|  | */ | 
|  | WARN_ON_ONCE(folio_order(folio)); | 
|  |  | 
|  | if (order > 0) { | 
|  | prep_compound_page(&folio->page, order); | 
|  | if (order > 1) | 
|  | INIT_LIST_HEAD(&folio->_deferred_list); | 
|  | WARN_ON_ONCE(folio_ref_count(folio)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dax_associate_entry(void *entry, struct address_space *mapping, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, bool shared) | 
|  | { | 
|  | unsigned long size = dax_entry_size(entry), index; | 
|  | struct folio *folio = dax_to_folio(entry); | 
|  |  | 
|  | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) | 
|  | return; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | 
|  | return; | 
|  |  | 
|  | index = linear_page_index(vma, address & ~(size - 1)); | 
|  | if (shared && (folio->mapping || dax_folio_is_shared(folio))) { | 
|  | if (folio->mapping) | 
|  | dax_folio_make_shared(folio); | 
|  |  | 
|  | WARN_ON_ONCE(!folio->share); | 
|  | WARN_ON_ONCE(dax_entry_order(entry) != folio_order(folio)); | 
|  | folio->share++; | 
|  | } else { | 
|  | WARN_ON_ONCE(folio->mapping); | 
|  | dax_folio_init(entry); | 
|  | folio = dax_to_folio(entry); | 
|  | folio->mapping = mapping; | 
|  | folio->index = index; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void dax_disassociate_entry(void *entry, struct address_space *mapping, | 
|  | bool trunc) | 
|  | { | 
|  | struct folio *folio = dax_to_folio(entry); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | 
|  | return; | 
|  |  | 
|  | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) | 
|  | return; | 
|  |  | 
|  | dax_folio_put(folio); | 
|  | } | 
|  |  | 
|  | static struct page *dax_busy_page(void *entry) | 
|  | { | 
|  | struct folio *folio = dax_to_folio(entry); | 
|  |  | 
|  | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) | 
|  | return NULL; | 
|  |  | 
|  | if (folio_ref_count(folio) - folio_mapcount(folio)) | 
|  | return &folio->page; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dax_lock_folio - Lock the DAX entry corresponding to a folio | 
|  | * @folio: The folio whose entry we want to lock | 
|  | * | 
|  | * Context: Process context. | 
|  | * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could | 
|  | * not be locked. | 
|  | */ | 
|  | dax_entry_t dax_lock_folio(struct folio *folio) | 
|  | { | 
|  | XA_STATE(xas, NULL, 0); | 
|  | void *entry; | 
|  |  | 
|  | /* Ensure folio->mapping isn't freed while we look at it */ | 
|  | rcu_read_lock(); | 
|  | for (;;) { | 
|  | struct address_space *mapping = READ_ONCE(folio->mapping); | 
|  |  | 
|  | entry = NULL; | 
|  | if (!mapping || !dax_mapping(mapping)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * In the device-dax case there's no need to lock, a | 
|  | * struct dev_pagemap pin is sufficient to keep the | 
|  | * inode alive, and we assume we have dev_pagemap pin | 
|  | * otherwise we would not have a valid pfn_to_page() | 
|  | * translation. | 
|  | */ | 
|  | entry = (void *)~0UL; | 
|  | if (S_ISCHR(mapping->host->i_mode)) | 
|  | break; | 
|  |  | 
|  | xas.xa = &mapping->i_pages; | 
|  | xas_lock_irq(&xas); | 
|  | if (mapping != folio->mapping) { | 
|  | xas_unlock_irq(&xas); | 
|  | continue; | 
|  | } | 
|  | xas_set(&xas, folio->index); | 
|  | entry = xas_load(&xas); | 
|  | if (dax_is_locked(entry)) { | 
|  | rcu_read_unlock(); | 
|  | wait_entry_unlocked(&xas, entry); | 
|  | rcu_read_lock(); | 
|  | continue; | 
|  | } | 
|  | dax_lock_entry(&xas, entry); | 
|  | xas_unlock_irq(&xas); | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return (dax_entry_t)entry; | 
|  | } | 
|  |  | 
|  | void dax_unlock_folio(struct folio *folio, dax_entry_t cookie) | 
|  | { | 
|  | struct address_space *mapping = folio->mapping; | 
|  | XA_STATE(xas, &mapping->i_pages, folio->index); | 
|  |  | 
|  | if (S_ISCHR(mapping->host->i_mode)) | 
|  | return; | 
|  |  | 
|  | dax_unlock_entry(&xas, (void *)cookie); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping | 
|  | * @mapping: the file's mapping whose entry we want to lock | 
|  | * @index: the offset within this file | 
|  | * @page: output the dax page corresponding to this dax entry | 
|  | * | 
|  | * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry | 
|  | * could not be locked. | 
|  | */ | 
|  | dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index, | 
|  | struct page **page) | 
|  | { | 
|  | XA_STATE(xas, NULL, 0); | 
|  | void *entry; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (;;) { | 
|  | entry = NULL; | 
|  | if (!dax_mapping(mapping)) | 
|  | break; | 
|  |  | 
|  | xas.xa = &mapping->i_pages; | 
|  | xas_lock_irq(&xas); | 
|  | xas_set(&xas, index); | 
|  | entry = xas_load(&xas); | 
|  | if (dax_is_locked(entry)) { | 
|  | rcu_read_unlock(); | 
|  | wait_entry_unlocked(&xas, entry); | 
|  | rcu_read_lock(); | 
|  | continue; | 
|  | } | 
|  | if (!entry || | 
|  | dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { | 
|  | /* | 
|  | * Because we are looking for entry from file's mapping | 
|  | * and index, so the entry may not be inserted for now, | 
|  | * or even a zero/empty entry.  We don't think this is | 
|  | * an error case.  So, return a special value and do | 
|  | * not output @page. | 
|  | */ | 
|  | entry = (void *)~0UL; | 
|  | } else { | 
|  | *page = pfn_to_page(dax_to_pfn(entry)); | 
|  | dax_lock_entry(&xas, entry); | 
|  | } | 
|  | xas_unlock_irq(&xas); | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return (dax_entry_t)entry; | 
|  | } | 
|  |  | 
|  | void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index, | 
|  | dax_entry_t cookie) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  |  | 
|  | if (cookie == ~0UL) | 
|  | return; | 
|  |  | 
|  | dax_unlock_entry(&xas, (void *)cookie); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find page cache entry at given index. If it is a DAX entry, return it | 
|  | * with the entry locked. If the page cache doesn't contain an entry at | 
|  | * that index, add a locked empty entry. | 
|  | * | 
|  | * When requesting an entry with size DAX_PMD, grab_mapping_entry() will | 
|  | * either return that locked entry or will return VM_FAULT_FALLBACK. | 
|  | * This will happen if there are any PTE entries within the PMD range | 
|  | * that we are requesting. | 
|  | * | 
|  | * We always favor PTE entries over PMD entries. There isn't a flow where we | 
|  | * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD | 
|  | * insertion will fail if it finds any PTE entries already in the tree, and a | 
|  | * PTE insertion will cause an existing PMD entry to be unmapped and | 
|  | * downgraded to PTE entries.  This happens for both PMD zero pages as | 
|  | * well as PMD empty entries. | 
|  | * | 
|  | * The exception to this downgrade path is for PMD entries that have | 
|  | * real storage backing them.  We will leave these real PMD entries in | 
|  | * the tree, and PTE writes will simply dirty the entire PMD entry. | 
|  | * | 
|  | * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For | 
|  | * persistent memory the benefit is doubtful. We can add that later if we can | 
|  | * show it helps. | 
|  | * | 
|  | * On error, this function does not return an ERR_PTR.  Instead it returns | 
|  | * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values | 
|  | * overlap with xarray value entries. | 
|  | */ | 
|  | static void *grab_mapping_entry(struct xa_state *xas, | 
|  | struct address_space *mapping, unsigned int order) | 
|  | { | 
|  | unsigned long index = xas->xa_index; | 
|  | bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */ | 
|  | void *entry; | 
|  |  | 
|  | retry: | 
|  | pmd_downgrade = false; | 
|  | xas_lock_irq(xas); | 
|  | entry = get_next_unlocked_entry(xas, order); | 
|  |  | 
|  | if (entry) { | 
|  | if (dax_is_conflict(entry)) | 
|  | goto fallback; | 
|  | if (!xa_is_value(entry)) { | 
|  | xas_set_err(xas, -EIO); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (order == 0) { | 
|  | if (dax_is_pmd_entry(entry) && | 
|  | (dax_is_zero_entry(entry) || | 
|  | dax_is_empty_entry(entry))) { | 
|  | pmd_downgrade = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pmd_downgrade) { | 
|  | /* | 
|  | * Make sure 'entry' remains valid while we drop | 
|  | * the i_pages lock. | 
|  | */ | 
|  | dax_lock_entry(xas, entry); | 
|  |  | 
|  | /* | 
|  | * Besides huge zero pages the only other thing that gets | 
|  | * downgraded are empty entries which don't need to be | 
|  | * unmapped. | 
|  | */ | 
|  | if (dax_is_zero_entry(entry)) { | 
|  | xas_unlock_irq(xas); | 
|  | unmap_mapping_pages(mapping, | 
|  | xas->xa_index & ~PG_PMD_COLOUR, | 
|  | PG_PMD_NR, false); | 
|  | xas_reset(xas); | 
|  | xas_lock_irq(xas); | 
|  | } | 
|  |  | 
|  | dax_disassociate_entry(entry, mapping, false); | 
|  | xas_store(xas, NULL);	/* undo the PMD join */ | 
|  | dax_wake_entry(xas, entry, WAKE_ALL); | 
|  | mapping->nrpages -= PG_PMD_NR; | 
|  | entry = NULL; | 
|  | xas_set(xas, index); | 
|  | } | 
|  |  | 
|  | if (entry) { | 
|  | dax_lock_entry(xas, entry); | 
|  | } else { | 
|  | unsigned long flags = DAX_EMPTY; | 
|  |  | 
|  | if (order > 0) | 
|  | flags |= DAX_PMD; | 
|  | entry = dax_make_entry(pfn_to_pfn_t(0), flags); | 
|  | dax_lock_entry(xas, entry); | 
|  | if (xas_error(xas)) | 
|  | goto out_unlock; | 
|  | mapping->nrpages += 1UL << order; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | xas_unlock_irq(xas); | 
|  | if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) | 
|  | goto retry; | 
|  | if (xas->xa_node == XA_ERROR(-ENOMEM)) | 
|  | return xa_mk_internal(VM_FAULT_OOM); | 
|  | if (xas_error(xas)) | 
|  | return xa_mk_internal(VM_FAULT_SIGBUS); | 
|  | return entry; | 
|  | fallback: | 
|  | xas_unlock_irq(xas); | 
|  | return xa_mk_internal(VM_FAULT_FALLBACK); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dax_layout_busy_page_range - find first pinned page in @mapping | 
|  | * @mapping: address space to scan for a page with ref count > 1 | 
|  | * @start: Starting offset. Page containing 'start' is included. | 
|  | * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, | 
|  | *       pages from 'start' till the end of file are included. | 
|  | * | 
|  | * DAX requires ZONE_DEVICE mapped pages. These pages are never | 
|  | * 'onlined' to the page allocator so they are considered idle when | 
|  | * page->count == 1. A filesystem uses this interface to determine if | 
|  | * any page in the mapping is busy, i.e. for DMA, or other | 
|  | * get_user_pages() usages. | 
|  | * | 
|  | * It is expected that the filesystem is holding locks to block the | 
|  | * establishment of new mappings in this address_space. I.e. it expects | 
|  | * to be able to run unmap_mapping_range() and subsequently not race | 
|  | * mapping_mapped() becoming true. | 
|  | */ | 
|  | struct page *dax_layout_busy_page_range(struct address_space *mapping, | 
|  | loff_t start, loff_t end) | 
|  | { | 
|  | void *entry; | 
|  | unsigned int scanned = 0; | 
|  | struct page *page = NULL; | 
|  | pgoff_t start_idx = start >> PAGE_SHIFT; | 
|  | pgoff_t end_idx; | 
|  | XA_STATE(xas, &mapping->i_pages, start_idx); | 
|  |  | 
|  | /* | 
|  | * In the 'limited' case get_user_pages() for dax is disabled. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | 
|  | return NULL; | 
|  |  | 
|  | if (!dax_mapping(mapping)) | 
|  | return NULL; | 
|  |  | 
|  | /* If end == LLONG_MAX, all pages from start to till end of file */ | 
|  | if (end == LLONG_MAX) | 
|  | end_idx = ULONG_MAX; | 
|  | else | 
|  | end_idx = end >> PAGE_SHIFT; | 
|  | /* | 
|  | * If we race get_user_pages_fast() here either we'll see the | 
|  | * elevated page count in the iteration and wait, or | 
|  | * get_user_pages_fast() will see that the page it took a reference | 
|  | * against is no longer mapped in the page tables and bail to the | 
|  | * get_user_pages() slow path.  The slow path is protected by | 
|  | * pte_lock() and pmd_lock(). New references are not taken without | 
|  | * holding those locks, and unmap_mapping_pages() will not zero the | 
|  | * pte or pmd without holding the respective lock, so we are | 
|  | * guaranteed to either see new references or prevent new | 
|  | * references from being established. | 
|  | */ | 
|  | unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | xas_for_each(&xas, entry, end_idx) { | 
|  | if (WARN_ON_ONCE(!xa_is_value(entry))) | 
|  | continue; | 
|  | entry = wait_entry_unlocked_exclusive(&xas, entry); | 
|  | if (entry) | 
|  | page = dax_busy_page(entry); | 
|  | put_unlocked_entry(&xas, entry, WAKE_NEXT); | 
|  | if (page) | 
|  | break; | 
|  | if (++scanned % XA_CHECK_SCHED) | 
|  | continue; | 
|  |  | 
|  | xas_pause(&xas); | 
|  | xas_unlock_irq(&xas); | 
|  | cond_resched(); | 
|  | xas_lock_irq(&xas); | 
|  | } | 
|  | xas_unlock_irq(&xas); | 
|  | return page; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); | 
|  |  | 
|  | struct page *dax_layout_busy_page(struct address_space *mapping) | 
|  | { | 
|  | return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_layout_busy_page); | 
|  |  | 
|  | static int __dax_invalidate_entry(struct address_space *mapping, | 
|  | pgoff_t index, bool trunc) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  | int ret = 0; | 
|  | void *entry; | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | entry = get_next_unlocked_entry(&xas, 0); | 
|  | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
|  | goto out; | 
|  | if (!trunc && | 
|  | (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || | 
|  | xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) | 
|  | goto out; | 
|  | dax_disassociate_entry(entry, mapping, trunc); | 
|  | xas_store(&xas, NULL); | 
|  | mapping->nrpages -= 1UL << dax_entry_order(entry); | 
|  | ret = 1; | 
|  | out: | 
|  | put_unlocked_entry(&xas, entry, WAKE_ALL); | 
|  | xas_unlock_irq(&xas); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __dax_clear_dirty_range(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t end) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, start); | 
|  | unsigned int scanned = 0; | 
|  | void *entry; | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | xas_for_each(&xas, entry, end) { | 
|  | entry = wait_entry_unlocked_exclusive(&xas, entry); | 
|  | if (!entry) | 
|  | continue; | 
|  | xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); | 
|  | xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); | 
|  | put_unlocked_entry(&xas, entry, WAKE_NEXT); | 
|  |  | 
|  | if (++scanned % XA_CHECK_SCHED) | 
|  | continue; | 
|  |  | 
|  | xas_pause(&xas); | 
|  | xas_unlock_irq(&xas); | 
|  | cond_resched(); | 
|  | xas_lock_irq(&xas); | 
|  | } | 
|  | xas_unlock_irq(&xas); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete DAX entry at @index from @mapping.  Wait for it | 
|  | * to be unlocked before deleting it. | 
|  | */ | 
|  | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) | 
|  | { | 
|  | int ret = __dax_invalidate_entry(mapping, index, true); | 
|  |  | 
|  | /* | 
|  | * This gets called from truncate / punch_hole path. As such, the caller | 
|  | * must hold locks protecting against concurrent modifications of the | 
|  | * page cache (usually fs-private i_mmap_sem for writing). Since the | 
|  | * caller has seen a DAX entry for this index, we better find it | 
|  | * at that index as well... | 
|  | */ | 
|  | WARN_ON_ONCE(!ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void dax_delete_mapping_range(struct address_space *mapping, | 
|  | loff_t start, loff_t end) | 
|  | { | 
|  | void *entry; | 
|  | pgoff_t start_idx = start >> PAGE_SHIFT; | 
|  | pgoff_t end_idx; | 
|  | XA_STATE(xas, &mapping->i_pages, start_idx); | 
|  |  | 
|  | /* If end == LLONG_MAX, all pages from start to till end of file */ | 
|  | if (end == LLONG_MAX) | 
|  | end_idx = ULONG_MAX; | 
|  | else | 
|  | end_idx = end >> PAGE_SHIFT; | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | xas_for_each(&xas, entry, end_idx) { | 
|  | if (!xa_is_value(entry)) | 
|  | continue; | 
|  | entry = wait_entry_unlocked_exclusive(&xas, entry); | 
|  | if (!entry) | 
|  | continue; | 
|  | dax_disassociate_entry(entry, mapping, true); | 
|  | xas_store(&xas, NULL); | 
|  | mapping->nrpages -= 1UL << dax_entry_order(entry); | 
|  | put_unlocked_entry(&xas, entry, WAKE_ALL); | 
|  | } | 
|  | xas_unlock_irq(&xas); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_delete_mapping_range); | 
|  |  | 
|  | static int wait_page_idle(struct page *page, | 
|  | void (cb)(struct inode *), | 
|  | struct inode *inode) | 
|  | { | 
|  | return ___wait_var_event(page, dax_page_is_idle(page), | 
|  | TASK_INTERRUPTIBLE, 0, 0, cb(inode)); | 
|  | } | 
|  |  | 
|  | static void wait_page_idle_uninterruptible(struct page *page, | 
|  | struct inode *inode) | 
|  | { | 
|  | ___wait_var_event(page, dax_page_is_idle(page), | 
|  | TASK_UNINTERRUPTIBLE, 0, 0, schedule()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmaps the inode and waits for any DMA to complete prior to deleting the | 
|  | * DAX mapping entries for the range. | 
|  | * | 
|  | * For NOWAIT behavior, pass @cb as NULL to early-exit on first found | 
|  | * busy page | 
|  | */ | 
|  | int dax_break_layout(struct inode *inode, loff_t start, loff_t end, | 
|  | void (cb)(struct inode *)) | 
|  | { | 
|  | struct page *page; | 
|  | int error = 0; | 
|  |  | 
|  | if (!dax_mapping(inode->i_mapping)) | 
|  | return 0; | 
|  |  | 
|  | do { | 
|  | page = dax_layout_busy_page_range(inode->i_mapping, start, end); | 
|  | if (!page) | 
|  | break; | 
|  | if (!cb) { | 
|  | error = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | error = wait_page_idle(page, cb, inode); | 
|  | } while (error == 0); | 
|  |  | 
|  | if (!page) | 
|  | dax_delete_mapping_range(inode->i_mapping, start, end); | 
|  |  | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_break_layout); | 
|  |  | 
|  | void dax_break_layout_final(struct inode *inode) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (!dax_mapping(inode->i_mapping)) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | page = dax_layout_busy_page_range(inode->i_mapping, 0, | 
|  | LLONG_MAX); | 
|  | if (!page) | 
|  | break; | 
|  |  | 
|  | wait_page_idle_uninterruptible(page, inode); | 
|  | } while (true); | 
|  |  | 
|  | if (!page) | 
|  | dax_delete_mapping_range(inode->i_mapping, 0, LLONG_MAX); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_break_layout_final); | 
|  |  | 
|  | /* | 
|  | * Invalidate DAX entry if it is clean. | 
|  | */ | 
|  | int dax_invalidate_mapping_entry_sync(struct address_space *mapping, | 
|  | pgoff_t index) | 
|  | { | 
|  | return __dax_invalidate_entry(mapping, index, false); | 
|  | } | 
|  |  | 
|  | static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) | 
|  | { | 
|  | return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); | 
|  | } | 
|  |  | 
|  | static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) | 
|  | { | 
|  | pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); | 
|  | void *vto, *kaddr; | 
|  | long rc; | 
|  | int id; | 
|  |  | 
|  | id = dax_read_lock(); | 
|  | rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS, | 
|  | &kaddr, NULL); | 
|  | if (rc < 0) { | 
|  | dax_read_unlock(id); | 
|  | return rc; | 
|  | } | 
|  | vto = kmap_atomic(vmf->cow_page); | 
|  | copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); | 
|  | kunmap_atomic(vto); | 
|  | dax_read_unlock(id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MAP_SYNC on a dax mapping guarantees dirty metadata is | 
|  | * flushed on write-faults (non-cow), but not read-faults. | 
|  | */ | 
|  | static bool dax_fault_is_synchronous(const struct iomap_iter *iter, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) && | 
|  | (iter->iomap.flags & IOMAP_F_DIRTY); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By this point grab_mapping_entry() has ensured that we have a locked entry | 
|  | * of the appropriate size so we don't have to worry about downgrading PMDs to | 
|  | * PTEs.  If we happen to be trying to insert a PTE and there is a PMD | 
|  | * already in the tree, we will skip the insertion and just dirty the PMD as | 
|  | * appropriate. | 
|  | */ | 
|  | static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf, | 
|  | const struct iomap_iter *iter, void *entry, pfn_t pfn, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
|  | void *new_entry = dax_make_entry(pfn, flags); | 
|  | bool write = iter->flags & IOMAP_WRITE; | 
|  | bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma); | 
|  | bool shared = iter->iomap.flags & IOMAP_F_SHARED; | 
|  |  | 
|  | if (dirty) | 
|  | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
|  |  | 
|  | if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) { | 
|  | unsigned long index = xas->xa_index; | 
|  | /* we are replacing a zero page with block mapping */ | 
|  | if (dax_is_pmd_entry(entry)) | 
|  | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, | 
|  | PG_PMD_NR, false); | 
|  | else /* pte entry */ | 
|  | unmap_mapping_pages(mapping, index, 1, false); | 
|  | } | 
|  |  | 
|  | xas_reset(xas); | 
|  | xas_lock_irq(xas); | 
|  | if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { | 
|  | void *old; | 
|  |  | 
|  | dax_disassociate_entry(entry, mapping, false); | 
|  | dax_associate_entry(new_entry, mapping, vmf->vma, | 
|  | vmf->address, shared); | 
|  |  | 
|  | /* | 
|  | * Only swap our new entry into the page cache if the current | 
|  | * entry is a zero page or an empty entry.  If a normal PTE or | 
|  | * PMD entry is already in the cache, we leave it alone.  This | 
|  | * means that if we are trying to insert a PTE and the | 
|  | * existing entry is a PMD, we will just leave the PMD in the | 
|  | * tree and dirty it if necessary. | 
|  | */ | 
|  | old = dax_lock_entry(xas, new_entry); | 
|  | WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | | 
|  | DAX_LOCKED)); | 
|  | entry = new_entry; | 
|  | } else { | 
|  | xas_load(xas);	/* Walk the xa_state */ | 
|  | } | 
|  |  | 
|  | if (dirty) | 
|  | xas_set_mark(xas, PAGECACHE_TAG_DIRTY); | 
|  |  | 
|  | if (write && shared) | 
|  | xas_set_mark(xas, PAGECACHE_TAG_TOWRITE); | 
|  |  | 
|  | xas_unlock_irq(xas); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, | 
|  | struct address_space *mapping, void *entry) | 
|  | { | 
|  | unsigned long pfn, index, count, end; | 
|  | long ret = 0; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * A page got tagged dirty in DAX mapping? Something is seriously | 
|  | * wrong. | 
|  | */ | 
|  | if (WARN_ON(!xa_is_value(entry))) | 
|  | return -EIO; | 
|  |  | 
|  | if (unlikely(dax_is_locked(entry))) { | 
|  | void *old_entry = entry; | 
|  |  | 
|  | entry = get_next_unlocked_entry(xas, 0); | 
|  |  | 
|  | /* Entry got punched out / reallocated? */ | 
|  | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | 
|  | goto put_unlocked; | 
|  | /* | 
|  | * Entry got reallocated elsewhere? No need to writeback. | 
|  | * We have to compare pfns as we must not bail out due to | 
|  | * difference in lockbit or entry type. | 
|  | */ | 
|  | if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) | 
|  | goto put_unlocked; | 
|  | if (WARN_ON_ONCE(dax_is_empty_entry(entry) || | 
|  | dax_is_zero_entry(entry))) { | 
|  | ret = -EIO; | 
|  | goto put_unlocked; | 
|  | } | 
|  |  | 
|  | /* Another fsync thread may have already done this entry */ | 
|  | if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) | 
|  | goto put_unlocked; | 
|  | } | 
|  |  | 
|  | /* Lock the entry to serialize with page faults */ | 
|  | dax_lock_entry(xas, entry); | 
|  |  | 
|  | /* | 
|  | * We can clear the tag now but we have to be careful so that concurrent | 
|  | * dax_writeback_one() calls for the same index cannot finish before we | 
|  | * actually flush the caches. This is achieved as the calls will look | 
|  | * at the entry only under the i_pages lock and once they do that | 
|  | * they will see the entry locked and wait for it to unlock. | 
|  | */ | 
|  | xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); | 
|  | xas_unlock_irq(xas); | 
|  |  | 
|  | /* | 
|  | * If dax_writeback_mapping_range() was given a wbc->range_start | 
|  | * in the middle of a PMD, the 'index' we use needs to be | 
|  | * aligned to the start of the PMD. | 
|  | * This allows us to flush for PMD_SIZE and not have to worry about | 
|  | * partial PMD writebacks. | 
|  | */ | 
|  | pfn = dax_to_pfn(entry); | 
|  | count = 1UL << dax_entry_order(entry); | 
|  | index = xas->xa_index & ~(count - 1); | 
|  | end = index + count - 1; | 
|  |  | 
|  | /* Walk all mappings of a given index of a file and writeprotect them */ | 
|  | i_mmap_lock_read(mapping); | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { | 
|  | pfn_mkclean_range(pfn, count, index, vma); | 
|  | cond_resched(); | 
|  | } | 
|  | i_mmap_unlock_read(mapping); | 
|  |  | 
|  | dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); | 
|  | /* | 
|  | * After we have flushed the cache, we can clear the dirty tag. There | 
|  | * cannot be new dirty data in the pfn after the flush has completed as | 
|  | * the pfn mappings are writeprotected and fault waits for mapping | 
|  | * entry lock. | 
|  | */ | 
|  | xas_reset(xas); | 
|  | xas_lock_irq(xas); | 
|  | xas_store(xas, entry); | 
|  | xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); | 
|  | dax_wake_entry(xas, entry, WAKE_NEXT); | 
|  |  | 
|  | trace_dax_writeback_one(mapping->host, index, count); | 
|  | return ret; | 
|  |  | 
|  | put_unlocked: | 
|  | put_unlocked_entry(xas, entry, WAKE_NEXT); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush the mapping to the persistent domain within the byte range of [start, | 
|  | * end]. This is required by data integrity operations to ensure file data is | 
|  | * on persistent storage prior to completion of the operation. | 
|  | */ | 
|  | int dax_writeback_mapping_range(struct address_space *mapping, | 
|  | struct dax_device *dax_dev, struct writeback_control *wbc) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); | 
|  | struct inode *inode = mapping->host; | 
|  | pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; | 
|  | void *entry; | 
|  | int ret = 0; | 
|  | unsigned int scanned = 0; | 
|  |  | 
|  | if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | 
|  | return -EIO; | 
|  |  | 
|  | if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) | 
|  | return 0; | 
|  |  | 
|  | trace_dax_writeback_range(inode, xas.xa_index, end_index); | 
|  |  | 
|  | tag_pages_for_writeback(mapping, xas.xa_index, end_index); | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { | 
|  | ret = dax_writeback_one(&xas, dax_dev, mapping, entry); | 
|  | if (ret < 0) { | 
|  | mapping_set_error(mapping, ret); | 
|  | break; | 
|  | } | 
|  | if (++scanned % XA_CHECK_SCHED) | 
|  | continue; | 
|  |  | 
|  | xas_pause(&xas); | 
|  | xas_unlock_irq(&xas); | 
|  | cond_resched(); | 
|  | xas_lock_irq(&xas); | 
|  | } | 
|  | xas_unlock_irq(&xas); | 
|  | trace_dax_writeback_range_done(inode, xas.xa_index, end_index); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | 
|  |  | 
|  | static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos, | 
|  | size_t size, void **kaddr, pfn_t *pfnp) | 
|  | { | 
|  | pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | 
|  | int id, rc = 0; | 
|  | long length; | 
|  |  | 
|  | id = dax_read_lock(); | 
|  | length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), | 
|  | DAX_ACCESS, kaddr, pfnp); | 
|  | if (length < 0) { | 
|  | rc = length; | 
|  | goto out; | 
|  | } | 
|  | if (!pfnp) | 
|  | goto out_check_addr; | 
|  | rc = -EINVAL; | 
|  | if (PFN_PHYS(length) < size) | 
|  | goto out; | 
|  | if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) | 
|  | goto out; | 
|  |  | 
|  | rc = 0; | 
|  |  | 
|  | out_check_addr: | 
|  | if (!kaddr) | 
|  | goto out; | 
|  | if (!*kaddr) | 
|  | rc = -EFAULT; | 
|  | out: | 
|  | dax_read_unlock(id); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page | 
|  | * by copying the data before and after the range to be written. | 
|  | * @pos:	address to do copy from. | 
|  | * @length:	size of copy operation. | 
|  | * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE) | 
|  | * @srcmap:	iomap srcmap | 
|  | * @daddr:	destination address to copy to. | 
|  | * | 
|  | * This can be called from two places. Either during DAX write fault (page | 
|  | * aligned), to copy the length size data to daddr. Or, while doing normal DAX | 
|  | * write operation, dax_iomap_iter() might call this to do the copy of either | 
|  | * start or end unaligned address. In the latter case the rest of the copy of | 
|  | * aligned ranges is taken care by dax_iomap_iter() itself. | 
|  | * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the | 
|  | * area to make sure no old data remains. | 
|  | */ | 
|  | static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size, | 
|  | const struct iomap *srcmap, void *daddr) | 
|  | { | 
|  | loff_t head_off = pos & (align_size - 1); | 
|  | size_t size = ALIGN(head_off + length, align_size); | 
|  | loff_t end = pos + length; | 
|  | loff_t pg_end = round_up(end, align_size); | 
|  | /* copy_all is usually in page fault case */ | 
|  | bool copy_all = head_off == 0 && end == pg_end; | 
|  | /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */ | 
|  | bool zero_edge = srcmap->flags & IOMAP_F_SHARED || | 
|  | srcmap->type == IOMAP_UNWRITTEN; | 
|  | void *saddr = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!zero_edge) { | 
|  | ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL); | 
|  | if (ret) | 
|  | return dax_mem2blk_err(ret); | 
|  | } | 
|  |  | 
|  | if (copy_all) { | 
|  | if (zero_edge) | 
|  | memset(daddr, 0, size); | 
|  | else | 
|  | ret = copy_mc_to_kernel(daddr, saddr, length); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Copy the head part of the range */ | 
|  | if (head_off) { | 
|  | if (zero_edge) | 
|  | memset(daddr, 0, head_off); | 
|  | else { | 
|  | ret = copy_mc_to_kernel(daddr, saddr, head_off); | 
|  | if (ret) | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Copy the tail part of the range */ | 
|  | if (end < pg_end) { | 
|  | loff_t tail_off = head_off + length; | 
|  | loff_t tail_len = pg_end - end; | 
|  |  | 
|  | if (zero_edge) | 
|  | memset(daddr + tail_off, 0, tail_len); | 
|  | else { | 
|  | ret = copy_mc_to_kernel(daddr + tail_off, | 
|  | saddr + tail_off, tail_len); | 
|  | if (ret) | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (zero_edge) | 
|  | dax_flush(srcmap->dax_dev, daddr, size); | 
|  | return ret ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The user has performed a load from a hole in the file.  Allocating a new | 
|  | * page in the file would cause excessive storage usage for workloads with | 
|  | * sparse files.  Instead we insert a read-only mapping of the 4k zero page. | 
|  | * If this page is ever written to we will re-fault and change the mapping to | 
|  | * point to real DAX storage instead. | 
|  | */ | 
|  | static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf, | 
|  | const struct iomap_iter *iter, void **entry) | 
|  | { | 
|  | struct inode *inode = iter->inode; | 
|  | unsigned long vaddr = vmf->address; | 
|  | pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); | 
|  | vm_fault_t ret; | 
|  |  | 
|  | *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE); | 
|  |  | 
|  | ret = vmf_insert_page_mkwrite(vmf, pfn_t_to_page(pfn), false); | 
|  | trace_dax_load_hole(inode, vmf, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX_PMD | 
|  | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, | 
|  | const struct iomap_iter *iter, void **entry) | 
|  | { | 
|  | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
|  | unsigned long pmd_addr = vmf->address & PMD_MASK; | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct inode *inode = mapping->host; | 
|  | pgtable_t pgtable = NULL; | 
|  | struct folio *zero_folio; | 
|  | spinlock_t *ptl; | 
|  | pmd_t pmd_entry; | 
|  | pfn_t pfn; | 
|  |  | 
|  | zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm); | 
|  |  | 
|  | if (unlikely(!zero_folio)) | 
|  | goto fallback; | 
|  |  | 
|  | pfn = page_to_pfn_t(&zero_folio->page); | 
|  | *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, | 
|  | DAX_PMD | DAX_ZERO_PAGE); | 
|  |  | 
|  | if (arch_needs_pgtable_deposit()) { | 
|  | pgtable = pte_alloc_one(vma->vm_mm); | 
|  | if (!pgtable) | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); | 
|  | if (!pmd_none(*(vmf->pmd))) { | 
|  | spin_unlock(ptl); | 
|  | goto fallback; | 
|  | } | 
|  |  | 
|  | if (pgtable) { | 
|  | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); | 
|  | mm_inc_nr_ptes(vma->vm_mm); | 
|  | } | 
|  | pmd_entry = mk_pmd(&zero_folio->page, vmf->vma->vm_page_prot); | 
|  | pmd_entry = pmd_mkhuge(pmd_entry); | 
|  | set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); | 
|  | spin_unlock(ptl); | 
|  | trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry); | 
|  | return VM_FAULT_NOPAGE; | 
|  |  | 
|  | fallback: | 
|  | if (pgtable) | 
|  | pte_free(vma->vm_mm, pgtable); | 
|  | trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry); | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  | #else | 
|  | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, | 
|  | const struct iomap_iter *iter, void **entry) | 
|  | { | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  | #endif /* CONFIG_FS_DAX_PMD */ | 
|  |  | 
|  | static int dax_unshare_iter(struct iomap_iter *iter) | 
|  | { | 
|  | struct iomap *iomap = &iter->iomap; | 
|  | const struct iomap *srcmap = iomap_iter_srcmap(iter); | 
|  | loff_t copy_pos = iter->pos; | 
|  | u64 copy_len = iomap_length(iter); | 
|  | u32 mod; | 
|  | int id = 0; | 
|  | s64 ret; | 
|  | void *daddr = NULL, *saddr = NULL; | 
|  |  | 
|  | if (!iomap_want_unshare_iter(iter)) | 
|  | return iomap_iter_advance_full(iter); | 
|  |  | 
|  | /* | 
|  | * Extend the file range to be aligned to fsblock/pagesize, because | 
|  | * we need to copy entire blocks, not just the byte range specified. | 
|  | * Invalidate the mapping because we're about to CoW. | 
|  | */ | 
|  | mod = offset_in_page(copy_pos); | 
|  | if (mod) { | 
|  | copy_len += mod; | 
|  | copy_pos -= mod; | 
|  | } | 
|  |  | 
|  | mod = offset_in_page(copy_pos + copy_len); | 
|  | if (mod) | 
|  | copy_len += PAGE_SIZE - mod; | 
|  |  | 
|  | invalidate_inode_pages2_range(iter->inode->i_mapping, | 
|  | copy_pos >> PAGE_SHIFT, | 
|  | (copy_pos + copy_len - 1) >> PAGE_SHIFT); | 
|  |  | 
|  | id = dax_read_lock(); | 
|  | ret = dax_iomap_direct_access(iomap, copy_pos, copy_len, &daddr, NULL); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = dax_iomap_direct_access(srcmap, copy_pos, copy_len, &saddr, NULL); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (copy_mc_to_kernel(daddr, saddr, copy_len) != 0) | 
|  | ret = -EIO; | 
|  |  | 
|  | out_unlock: | 
|  | dax_read_unlock(id); | 
|  | if (ret < 0) | 
|  | return dax_mem2blk_err(ret); | 
|  | return iomap_iter_advance_full(iter); | 
|  | } | 
|  |  | 
|  | int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len, | 
|  | const struct iomap_ops *ops) | 
|  | { | 
|  | struct iomap_iter iter = { | 
|  | .inode		= inode, | 
|  | .pos		= pos, | 
|  | .flags		= IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX, | 
|  | }; | 
|  | loff_t size = i_size_read(inode); | 
|  | int ret; | 
|  |  | 
|  | if (pos < 0 || pos >= size) | 
|  | return 0; | 
|  |  | 
|  | iter.len = min(len, size - pos); | 
|  | while ((ret = iomap_iter(&iter, ops)) > 0) | 
|  | iter.status = dax_unshare_iter(&iter); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_file_unshare); | 
|  |  | 
|  | static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size) | 
|  | { | 
|  | const struct iomap *iomap = &iter->iomap; | 
|  | const struct iomap *srcmap = iomap_iter_srcmap(iter); | 
|  | unsigned offset = offset_in_page(pos); | 
|  | pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | 
|  | void *kaddr; | 
|  | long ret; | 
|  |  | 
|  | ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, | 
|  | NULL); | 
|  | if (ret < 0) | 
|  | return dax_mem2blk_err(ret); | 
|  |  | 
|  | memset(kaddr + offset, 0, size); | 
|  | if (iomap->flags & IOMAP_F_SHARED) | 
|  | ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap, | 
|  | kaddr); | 
|  | else | 
|  | dax_flush(iomap->dax_dev, kaddr + offset, size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dax_zero_iter(struct iomap_iter *iter, bool *did_zero) | 
|  | { | 
|  | const struct iomap *iomap = &iter->iomap; | 
|  | const struct iomap *srcmap = iomap_iter_srcmap(iter); | 
|  | u64 length = iomap_length(iter); | 
|  | int ret; | 
|  |  | 
|  | /* already zeroed?  we're done. */ | 
|  | if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) | 
|  | return iomap_iter_advance(iter, &length); | 
|  |  | 
|  | /* | 
|  | * invalidate the pages whose sharing state is to be changed | 
|  | * because of CoW. | 
|  | */ | 
|  | if (iomap->flags & IOMAP_F_SHARED) | 
|  | invalidate_inode_pages2_range(iter->inode->i_mapping, | 
|  | iter->pos >> PAGE_SHIFT, | 
|  | (iter->pos + length - 1) >> PAGE_SHIFT); | 
|  |  | 
|  | do { | 
|  | loff_t pos = iter->pos; | 
|  | unsigned offset = offset_in_page(pos); | 
|  | pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | 
|  | int id; | 
|  |  | 
|  | length = min_t(u64, PAGE_SIZE - offset, length); | 
|  |  | 
|  | id = dax_read_lock(); | 
|  | if (IS_ALIGNED(pos, PAGE_SIZE) && length == PAGE_SIZE) | 
|  | ret = dax_zero_page_range(iomap->dax_dev, pgoff, 1); | 
|  | else | 
|  | ret = dax_memzero(iter, pos, length); | 
|  | dax_read_unlock(id); | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = iomap_iter_advance(iter, &length); | 
|  | if (ret) | 
|  | return ret; | 
|  | } while (length > 0); | 
|  |  | 
|  | if (did_zero) | 
|  | *did_zero = true; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, | 
|  | const struct iomap_ops *ops) | 
|  | { | 
|  | struct iomap_iter iter = { | 
|  | .inode		= inode, | 
|  | .pos		= pos, | 
|  | .len		= len, | 
|  | .flags		= IOMAP_DAX | IOMAP_ZERO, | 
|  | }; | 
|  | int ret; | 
|  |  | 
|  | while ((ret = iomap_iter(&iter, ops)) > 0) | 
|  | iter.status = dax_zero_iter(&iter, did_zero); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_zero_range); | 
|  |  | 
|  | int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, | 
|  | const struct iomap_ops *ops) | 
|  | { | 
|  | unsigned int blocksize = i_blocksize(inode); | 
|  | unsigned int off = pos & (blocksize - 1); | 
|  |  | 
|  | /* Block boundary? Nothing to do */ | 
|  | if (!off) | 
|  | return 0; | 
|  | return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_truncate_page); | 
|  |  | 
|  | static int dax_iomap_iter(struct iomap_iter *iomi, struct iov_iter *iter) | 
|  | { | 
|  | const struct iomap *iomap = &iomi->iomap; | 
|  | const struct iomap *srcmap = iomap_iter_srcmap(iomi); | 
|  | loff_t length = iomap_length(iomi); | 
|  | loff_t pos = iomi->pos; | 
|  | struct dax_device *dax_dev = iomap->dax_dev; | 
|  | loff_t end = pos + length, done = 0; | 
|  | bool write = iov_iter_rw(iter) == WRITE; | 
|  | bool cow = write && iomap->flags & IOMAP_F_SHARED; | 
|  | ssize_t ret = 0; | 
|  | size_t xfer; | 
|  | int id; | 
|  |  | 
|  | if (!write) { | 
|  | end = min(end, i_size_read(iomi->inode)); | 
|  | if (pos >= end) | 
|  | return 0; | 
|  |  | 
|  | if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) { | 
|  | done = iov_iter_zero(min(length, end - pos), iter); | 
|  | return iomap_iter_advance(iomi, &done); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In DAX mode, enforce either pure overwrites of written extents, or | 
|  | * writes to unwritten extents as part of a copy-on-write operation. | 
|  | */ | 
|  | if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED && | 
|  | !(iomap->flags & IOMAP_F_SHARED))) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * Write can allocate block for an area which has a hole page mapped | 
|  | * into page tables. We have to tear down these mappings so that data | 
|  | * written by write(2) is visible in mmap. | 
|  | */ | 
|  | if (iomap->flags & IOMAP_F_NEW || cow) { | 
|  | /* | 
|  | * Filesystem allows CoW on non-shared extents. The src extents | 
|  | * may have been mmapped with dirty mark before. To be able to | 
|  | * invalidate its dax entries, we need to clear the dirty mark | 
|  | * in advance. | 
|  | */ | 
|  | if (cow) | 
|  | __dax_clear_dirty_range(iomi->inode->i_mapping, | 
|  | pos >> PAGE_SHIFT, | 
|  | (end - 1) >> PAGE_SHIFT); | 
|  | invalidate_inode_pages2_range(iomi->inode->i_mapping, | 
|  | pos >> PAGE_SHIFT, | 
|  | (end - 1) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | id = dax_read_lock(); | 
|  | while ((pos = iomi->pos) < end) { | 
|  | unsigned offset = pos & (PAGE_SIZE - 1); | 
|  | const size_t size = ALIGN(length + offset, PAGE_SIZE); | 
|  | pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); | 
|  | ssize_t map_len; | 
|  | bool recovery = false; | 
|  | void *kaddr; | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), | 
|  | DAX_ACCESS, &kaddr, NULL); | 
|  | if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) { | 
|  | map_len = dax_direct_access(dax_dev, pgoff, | 
|  | PHYS_PFN(size), DAX_RECOVERY_WRITE, | 
|  | &kaddr, NULL); | 
|  | if (map_len > 0) | 
|  | recovery = true; | 
|  | } | 
|  | if (map_len < 0) { | 
|  | ret = dax_mem2blk_err(map_len); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (cow) { | 
|  | ret = dax_iomap_copy_around(pos, length, PAGE_SIZE, | 
|  | srcmap, kaddr); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | map_len = PFN_PHYS(map_len); | 
|  | kaddr += offset; | 
|  | map_len -= offset; | 
|  | if (map_len > end - pos) | 
|  | map_len = end - pos; | 
|  |  | 
|  | if (recovery) | 
|  | xfer = dax_recovery_write(dax_dev, pgoff, kaddr, | 
|  | map_len, iter); | 
|  | else if (write) | 
|  | xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, | 
|  | map_len, iter); | 
|  | else | 
|  | xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, | 
|  | map_len, iter); | 
|  |  | 
|  | length = xfer; | 
|  | ret = iomap_iter_advance(iomi, &length); | 
|  | if (!ret && xfer == 0) | 
|  | ret = -EFAULT; | 
|  | if (xfer < map_len) | 
|  | break; | 
|  | } | 
|  | dax_read_unlock(id); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dax_iomap_rw - Perform I/O to a DAX file | 
|  | * @iocb:	The control block for this I/O | 
|  | * @iter:	The addresses to do I/O from or to | 
|  | * @ops:	iomap ops passed from the file system | 
|  | * | 
|  | * This function performs read and write operations to directly mapped | 
|  | * persistent memory.  The callers needs to take care of read/write exclusion | 
|  | * and evicting any page cache pages in the region under I/O. | 
|  | */ | 
|  | ssize_t | 
|  | dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, | 
|  | const struct iomap_ops *ops) | 
|  | { | 
|  | struct iomap_iter iomi = { | 
|  | .inode		= iocb->ki_filp->f_mapping->host, | 
|  | .pos		= iocb->ki_pos, | 
|  | .len		= iov_iter_count(iter), | 
|  | .flags		= IOMAP_DAX, | 
|  | }; | 
|  | loff_t done = 0; | 
|  | int ret; | 
|  |  | 
|  | if (!iomi.len) | 
|  | return 0; | 
|  |  | 
|  | if (iov_iter_rw(iter) == WRITE) { | 
|  | lockdep_assert_held_write(&iomi.inode->i_rwsem); | 
|  | iomi.flags |= IOMAP_WRITE; | 
|  | } else { | 
|  | lockdep_assert_held(&iomi.inode->i_rwsem); | 
|  | } | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) | 
|  | iomi.flags |= IOMAP_NOWAIT; | 
|  |  | 
|  | while ((ret = iomap_iter(&iomi, ops)) > 0) | 
|  | iomi.status = dax_iomap_iter(&iomi, iter); | 
|  |  | 
|  | done = iomi.pos - iocb->ki_pos; | 
|  | iocb->ki_pos = iomi.pos; | 
|  | return done ? done : ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_iomap_rw); | 
|  |  | 
|  | static vm_fault_t dax_fault_return(int error) | 
|  | { | 
|  | if (error == 0) | 
|  | return VM_FAULT_NOPAGE; | 
|  | return vmf_error(error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When handling a synchronous page fault and the inode need a fsync, we can | 
|  | * insert the PTE/PMD into page tables only after that fsync happened. Skip | 
|  | * insertion for now and return the pfn so that caller can insert it after the | 
|  | * fsync is done. | 
|  | */ | 
|  | static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) | 
|  | { | 
|  | if (WARN_ON_ONCE(!pfnp)) | 
|  | return VM_FAULT_SIGBUS; | 
|  | *pfnp = pfn; | 
|  | return VM_FAULT_NEEDDSYNC; | 
|  | } | 
|  |  | 
|  | static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, | 
|  | const struct iomap_iter *iter) | 
|  | { | 
|  | vm_fault_t ret; | 
|  | int error = 0; | 
|  |  | 
|  | switch (iter->iomap.type) { | 
|  | case IOMAP_HOLE: | 
|  | case IOMAP_UNWRITTEN: | 
|  | clear_user_highpage(vmf->cow_page, vmf->address); | 
|  | break; | 
|  | case IOMAP_MAPPED: | 
|  | error = copy_cow_page_dax(vmf, iter); | 
|  | break; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | error = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (error) | 
|  | return dax_fault_return(error); | 
|  |  | 
|  | __SetPageUptodate(vmf->cow_page); | 
|  | ret = finish_fault(vmf); | 
|  | if (!ret) | 
|  | return VM_FAULT_DONE_COW; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. | 
|  | * @vmf:	vm fault instance | 
|  | * @iter:	iomap iter | 
|  | * @pfnp:	pfn to be returned | 
|  | * @xas:	the dax mapping tree of a file | 
|  | * @entry:	an unlocked dax entry to be inserted | 
|  | * @pmd:	distinguish whether it is a pmd fault | 
|  | */ | 
|  | static vm_fault_t dax_fault_iter(struct vm_fault *vmf, | 
|  | const struct iomap_iter *iter, pfn_t *pfnp, | 
|  | struct xa_state *xas, void **entry, bool pmd) | 
|  | { | 
|  | const struct iomap *iomap = &iter->iomap; | 
|  | const struct iomap *srcmap = iomap_iter_srcmap(iter); | 
|  | size_t size = pmd ? PMD_SIZE : PAGE_SIZE; | 
|  | loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; | 
|  | bool write = iter->flags & IOMAP_WRITE; | 
|  | unsigned long entry_flags = pmd ? DAX_PMD : 0; | 
|  | struct folio *folio; | 
|  | int ret, err = 0; | 
|  | pfn_t pfn; | 
|  | void *kaddr; | 
|  |  | 
|  | if (!pmd && vmf->cow_page) | 
|  | return dax_fault_cow_page(vmf, iter); | 
|  |  | 
|  | /* if we are reading UNWRITTEN and HOLE, return a hole. */ | 
|  | if (!write && | 
|  | (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { | 
|  | if (!pmd) | 
|  | return dax_load_hole(xas, vmf, iter, entry); | 
|  | return dax_pmd_load_hole(xas, vmf, iter, entry); | 
|  | } | 
|  |  | 
|  | if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) { | 
|  | WARN_ON_ONCE(1); | 
|  | return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn); | 
|  | if (err) | 
|  | return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); | 
|  |  | 
|  | *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags); | 
|  |  | 
|  | if (write && iomap->flags & IOMAP_F_SHARED) { | 
|  | err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr); | 
|  | if (err) | 
|  | return dax_fault_return(err); | 
|  | } | 
|  |  | 
|  | folio = dax_to_folio(*entry); | 
|  | if (dax_fault_is_synchronous(iter, vmf->vma)) | 
|  | return dax_fault_synchronous_pfnp(pfnp, pfn); | 
|  |  | 
|  | folio_ref_inc(folio); | 
|  | if (pmd) | 
|  | ret = vmf_insert_folio_pmd(vmf, pfn_folio(pfn_t_to_pfn(pfn)), | 
|  | write); | 
|  | else | 
|  | ret = vmf_insert_page_mkwrite(vmf, pfn_t_to_page(pfn), write); | 
|  | folio_put(folio); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, | 
|  | int *iomap_errp, const struct iomap_ops *ops) | 
|  | { | 
|  | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
|  | XA_STATE(xas, &mapping->i_pages, vmf->pgoff); | 
|  | struct iomap_iter iter = { | 
|  | .inode		= mapping->host, | 
|  | .pos		= (loff_t)vmf->pgoff << PAGE_SHIFT, | 
|  | .len		= PAGE_SIZE, | 
|  | .flags		= IOMAP_DAX | IOMAP_FAULT, | 
|  | }; | 
|  | vm_fault_t ret = 0; | 
|  | void *entry; | 
|  | int error; | 
|  |  | 
|  | trace_dax_pte_fault(iter.inode, vmf, ret); | 
|  | /* | 
|  | * Check whether offset isn't beyond end of file now. Caller is supposed | 
|  | * to hold locks serializing us with truncate / punch hole so this is | 
|  | * a reliable test. | 
|  | */ | 
|  | if (iter.pos >= i_size_read(iter.inode)) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) | 
|  | iter.flags |= IOMAP_WRITE; | 
|  |  | 
|  | entry = grab_mapping_entry(&xas, mapping, 0); | 
|  | if (xa_is_internal(entry)) { | 
|  | ret = xa_to_internal(entry); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is possible, particularly with mixed reads & writes to private | 
|  | * mappings, that we have raced with a PMD fault that overlaps with | 
|  | * the PTE we need to set up.  If so just return and the fault will be | 
|  | * retried. | 
|  | */ | 
|  | if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto unlock_entry; | 
|  | } | 
|  |  | 
|  | while ((error = iomap_iter(&iter, ops)) > 0) { | 
|  | if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { | 
|  | iter.status = -EIO;	/* fs corruption? */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); | 
|  | if (ret != VM_FAULT_SIGBUS && | 
|  | (iter.iomap.flags & IOMAP_F_NEW)) { | 
|  | count_vm_event(PGMAJFAULT); | 
|  | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); | 
|  | ret |= VM_FAULT_MAJOR; | 
|  | } | 
|  |  | 
|  | if (!(ret & VM_FAULT_ERROR)) { | 
|  | u64 length = PAGE_SIZE; | 
|  | iter.status = iomap_iter_advance(&iter, &length); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (iomap_errp) | 
|  | *iomap_errp = error; | 
|  | if (!ret && error) | 
|  | ret = dax_fault_return(error); | 
|  |  | 
|  | unlock_entry: | 
|  | dax_unlock_entry(&xas, entry); | 
|  | out: | 
|  | trace_dax_pte_fault_done(iter.inode, vmf, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FS_DAX_PMD | 
|  | static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, | 
|  | pgoff_t max_pgoff) | 
|  | { | 
|  | unsigned long pmd_addr = vmf->address & PMD_MASK; | 
|  | bool write = vmf->flags & FAULT_FLAG_WRITE; | 
|  |  | 
|  | /* | 
|  | * Make sure that the faulting address's PMD offset (color) matches | 
|  | * the PMD offset from the start of the file.  This is necessary so | 
|  | * that a PMD range in the page table overlaps exactly with a PMD | 
|  | * range in the page cache. | 
|  | */ | 
|  | if ((vmf->pgoff & PG_PMD_COLOUR) != | 
|  | ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) | 
|  | return true; | 
|  |  | 
|  | /* Fall back to PTEs if we're going to COW */ | 
|  | if (write && !(vmf->vma->vm_flags & VM_SHARED)) | 
|  | return true; | 
|  |  | 
|  | /* If the PMD would extend outside the VMA */ | 
|  | if (pmd_addr < vmf->vma->vm_start) | 
|  | return true; | 
|  | if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) | 
|  | return true; | 
|  |  | 
|  | /* If the PMD would extend beyond the file size */ | 
|  | if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, | 
|  | const struct iomap_ops *ops) | 
|  | { | 
|  | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
|  | XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); | 
|  | struct iomap_iter iter = { | 
|  | .inode		= mapping->host, | 
|  | .len		= PMD_SIZE, | 
|  | .flags		= IOMAP_DAX | IOMAP_FAULT, | 
|  | }; | 
|  | vm_fault_t ret = VM_FAULT_FALLBACK; | 
|  | pgoff_t max_pgoff; | 
|  | void *entry; | 
|  |  | 
|  | if (vmf->flags & FAULT_FLAG_WRITE) | 
|  | iter.flags |= IOMAP_WRITE; | 
|  |  | 
|  | /* | 
|  | * Check whether offset isn't beyond end of file now. Caller is | 
|  | * supposed to hold locks serializing us with truncate / punch hole so | 
|  | * this is a reliable test. | 
|  | */ | 
|  | max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); | 
|  |  | 
|  | trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); | 
|  |  | 
|  | if (xas.xa_index >= max_pgoff) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) | 
|  | goto fallback; | 
|  |  | 
|  | /* | 
|  | * grab_mapping_entry() will make sure we get an empty PMD entry, | 
|  | * a zero PMD entry or a DAX PMD.  If it can't (because a PTE | 
|  | * entry is already in the array, for instance), it will return | 
|  | * VM_FAULT_FALLBACK. | 
|  | */ | 
|  | entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); | 
|  | if (xa_is_internal(entry)) { | 
|  | ret = xa_to_internal(entry); | 
|  | goto fallback; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is possible, particularly with mixed reads & writes to private | 
|  | * mappings, that we have raced with a PTE fault that overlaps with | 
|  | * the PMD we need to set up.  If so just return and the fault will be | 
|  | * retried. | 
|  | */ | 
|  | if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && | 
|  | !pmd_devmap(*vmf->pmd)) { | 
|  | ret = 0; | 
|  | goto unlock_entry; | 
|  | } | 
|  |  | 
|  | iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; | 
|  | while (iomap_iter(&iter, ops) > 0) { | 
|  | if (iomap_length(&iter) < PMD_SIZE) | 
|  | continue; /* actually breaks out of the loop */ | 
|  |  | 
|  | ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); | 
|  | if (ret != VM_FAULT_FALLBACK) { | 
|  | u64 length = PMD_SIZE; | 
|  | iter.status = iomap_iter_advance(&iter, &length); | 
|  | } | 
|  | } | 
|  |  | 
|  | unlock_entry: | 
|  | dax_unlock_entry(&xas, entry); | 
|  | fallback: | 
|  | if (ret == VM_FAULT_FALLBACK) { | 
|  | split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); | 
|  | count_vm_event(THP_FAULT_FALLBACK); | 
|  | } | 
|  | out: | 
|  | trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, | 
|  | const struct iomap_ops *ops) | 
|  | { | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  | #endif /* CONFIG_FS_DAX_PMD */ | 
|  |  | 
|  | /** | 
|  | * dax_iomap_fault - handle a page fault on a DAX file | 
|  | * @vmf: The description of the fault | 
|  | * @order: Order of the page to fault in | 
|  | * @pfnp: PFN to insert for synchronous faults if fsync is required | 
|  | * @iomap_errp: Storage for detailed error code in case of error | 
|  | * @ops: Iomap ops passed from the file system | 
|  | * | 
|  | * When a page fault occurs, filesystems may call this helper in | 
|  | * their fault handler for DAX files. dax_iomap_fault() assumes the caller | 
|  | * has done all the necessary locking for page fault to proceed | 
|  | * successfully. | 
|  | */ | 
|  | vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order, | 
|  | pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) | 
|  | { | 
|  | if (order == 0) | 
|  | return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); | 
|  | else if (order == PMD_ORDER) | 
|  | return dax_iomap_pmd_fault(vmf, pfnp, ops); | 
|  | else | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_iomap_fault); | 
|  |  | 
|  | /* | 
|  | * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables | 
|  | * @vmf: The description of the fault | 
|  | * @pfn: PFN to insert | 
|  | * @order: Order of entry to insert. | 
|  | * | 
|  | * This function inserts a writeable PTE or PMD entry into the page tables | 
|  | * for an mmaped DAX file.  It also marks the page cache entry as dirty. | 
|  | */ | 
|  | static vm_fault_t | 
|  | dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) | 
|  | { | 
|  | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | 
|  | XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); | 
|  | struct folio *folio; | 
|  | void *entry; | 
|  | vm_fault_t ret; | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  | entry = get_next_unlocked_entry(&xas, order); | 
|  | /* Did we race with someone splitting entry or so? */ | 
|  | if (!entry || dax_is_conflict(entry) || | 
|  | (order == 0 && !dax_is_pte_entry(entry))) { | 
|  | put_unlocked_entry(&xas, entry, WAKE_NEXT); | 
|  | xas_unlock_irq(&xas); | 
|  | trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, | 
|  | VM_FAULT_NOPAGE); | 
|  | return VM_FAULT_NOPAGE; | 
|  | } | 
|  | xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); | 
|  | dax_lock_entry(&xas, entry); | 
|  | xas_unlock_irq(&xas); | 
|  | folio = pfn_folio(pfn_t_to_pfn(pfn)); | 
|  | folio_ref_inc(folio); | 
|  | if (order == 0) | 
|  | ret = vmf_insert_page_mkwrite(vmf, &folio->page, true); | 
|  | #ifdef CONFIG_FS_DAX_PMD | 
|  | else if (order == PMD_ORDER) | 
|  | ret = vmf_insert_folio_pmd(vmf, folio, FAULT_FLAG_WRITE); | 
|  | #endif | 
|  | else | 
|  | ret = VM_FAULT_FALLBACK; | 
|  | folio_put(folio); | 
|  | dax_unlock_entry(&xas, entry); | 
|  | trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dax_finish_sync_fault - finish synchronous page fault | 
|  | * @vmf: The description of the fault | 
|  | * @order: Order of entry to be inserted | 
|  | * @pfn: PFN to insert | 
|  | * | 
|  | * This function ensures that the file range touched by the page fault is | 
|  | * stored persistently on the media and handles inserting of appropriate page | 
|  | * table entry. | 
|  | */ | 
|  | vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order, | 
|  | pfn_t pfn) | 
|  | { | 
|  | int err; | 
|  | loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; | 
|  | size_t len = PAGE_SIZE << order; | 
|  |  | 
|  | err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); | 
|  | if (err) | 
|  | return VM_FAULT_SIGBUS; | 
|  | return dax_insert_pfn_mkwrite(vmf, pfn, order); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_finish_sync_fault); | 
|  |  | 
|  | static int dax_range_compare_iter(struct iomap_iter *it_src, | 
|  | struct iomap_iter *it_dest, u64 len, bool *same) | 
|  | { | 
|  | const struct iomap *smap = &it_src->iomap; | 
|  | const struct iomap *dmap = &it_dest->iomap; | 
|  | loff_t pos1 = it_src->pos, pos2 = it_dest->pos; | 
|  | u64 dest_len; | 
|  | void *saddr, *daddr; | 
|  | int id, ret; | 
|  |  | 
|  | len = min(len, min(smap->length, dmap->length)); | 
|  |  | 
|  | if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) { | 
|  | *same = true; | 
|  | goto advance; | 
|  | } | 
|  |  | 
|  | if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) { | 
|  | *same = false; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | id = dax_read_lock(); | 
|  | ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE), | 
|  | &saddr, NULL); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE), | 
|  | &daddr, NULL); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | *same = !memcmp(saddr, daddr, len); | 
|  | if (!*same) | 
|  | len = 0; | 
|  | dax_read_unlock(id); | 
|  |  | 
|  | advance: | 
|  | dest_len = len; | 
|  | ret = iomap_iter_advance(it_src, &len); | 
|  | if (!ret) | 
|  | ret = iomap_iter_advance(it_dest, &dest_len); | 
|  | return ret; | 
|  |  | 
|  | out_unlock: | 
|  | dax_read_unlock(id); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff, | 
|  | struct inode *dst, loff_t dstoff, loff_t len, bool *same, | 
|  | const struct iomap_ops *ops) | 
|  | { | 
|  | struct iomap_iter src_iter = { | 
|  | .inode		= src, | 
|  | .pos		= srcoff, | 
|  | .len		= len, | 
|  | .flags		= IOMAP_DAX, | 
|  | }; | 
|  | struct iomap_iter dst_iter = { | 
|  | .inode		= dst, | 
|  | .pos		= dstoff, | 
|  | .len		= len, | 
|  | .flags		= IOMAP_DAX, | 
|  | }; | 
|  | int ret, status; | 
|  |  | 
|  | while ((ret = iomap_iter(&src_iter, ops)) > 0 && | 
|  | (ret = iomap_iter(&dst_iter, ops)) > 0) { | 
|  | status = dax_range_compare_iter(&src_iter, &dst_iter, | 
|  | min(src_iter.len, dst_iter.len), same); | 
|  | if (status < 0) | 
|  | return ret; | 
|  | src_iter.status = dst_iter.status = status; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in, | 
|  | struct file *file_out, loff_t pos_out, | 
|  | loff_t *len, unsigned int remap_flags, | 
|  | const struct iomap_ops *ops) | 
|  | { | 
|  | return __generic_remap_file_range_prep(file_in, pos_in, file_out, | 
|  | pos_out, len, remap_flags, ops); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dax_remap_file_range_prep); |