| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* Copyright (c) 2017, 2019 The Linux Foundation. All rights reserved. */ |
| |
| #ifndef __A6XX_GPU_H__ |
| #define __A6XX_GPU_H__ |
| |
| |
| #include "adreno_gpu.h" |
| #include "a6xx_enums.xml.h" |
| #include "a7xx_enums.xml.h" |
| #include "a6xx_perfcntrs.xml.h" |
| #include "a7xx_perfcntrs.xml.h" |
| #include "a6xx.xml.h" |
| |
| #include "a6xx_gmu.h" |
| |
| extern bool hang_debug; |
| |
| struct cpu_gpu_lock { |
| uint32_t gpu_req; |
| uint32_t cpu_req; |
| uint32_t turn; |
| union { |
| struct { |
| uint16_t list_length; |
| uint16_t list_offset; |
| }; |
| struct { |
| uint8_t ifpc_list_len; |
| uint8_t preemption_list_len; |
| uint16_t dynamic_list_len; |
| }; |
| }; |
| uint64_t regs[62]; |
| }; |
| |
| /** |
| * struct a6xx_info - a6xx specific information from device table |
| * |
| * @hwcg: hw clock gating register sequence |
| * @protect: CP_PROTECT settings |
| * @pwrup_reglist pwrup reglist for preemption |
| */ |
| struct a6xx_info { |
| const struct adreno_reglist *hwcg; |
| const struct adreno_protect *protect; |
| const struct adreno_reglist_list *pwrup_reglist; |
| u32 gmu_chipid; |
| u32 gmu_cgc_mode; |
| u32 prim_fifo_threshold; |
| const struct a6xx_bcm *bcms; |
| }; |
| |
| struct a6xx_gpu { |
| struct adreno_gpu base; |
| |
| struct drm_gem_object *sqe_bo; |
| uint64_t sqe_iova; |
| |
| struct msm_ringbuffer *cur_ring; |
| struct msm_ringbuffer *next_ring; |
| |
| struct drm_gem_object *preempt_bo[MSM_GPU_MAX_RINGS]; |
| void *preempt[MSM_GPU_MAX_RINGS]; |
| uint64_t preempt_iova[MSM_GPU_MAX_RINGS]; |
| struct drm_gem_object *preempt_smmu_bo[MSM_GPU_MAX_RINGS]; |
| void *preempt_smmu[MSM_GPU_MAX_RINGS]; |
| uint64_t preempt_smmu_iova[MSM_GPU_MAX_RINGS]; |
| uint32_t last_seqno[MSM_GPU_MAX_RINGS]; |
| |
| atomic_t preempt_state; |
| spinlock_t eval_lock; |
| struct timer_list preempt_timer; |
| |
| unsigned int preempt_level; |
| bool uses_gmem; |
| bool skip_save_restore; |
| |
| struct drm_gem_object *preempt_postamble_bo; |
| void *preempt_postamble_ptr; |
| uint64_t preempt_postamble_iova; |
| uint64_t preempt_postamble_len; |
| bool postamble_enabled; |
| |
| struct a6xx_gmu gmu; |
| |
| struct drm_gem_object *shadow_bo; |
| uint64_t shadow_iova; |
| uint32_t *shadow; |
| |
| struct drm_gem_object *pwrup_reglist_bo; |
| void *pwrup_reglist_ptr; |
| uint64_t pwrup_reglist_iova; |
| bool pwrup_reglist_emitted; |
| |
| bool has_whereami; |
| |
| void __iomem *llc_mmio; |
| void *llc_slice; |
| void *htw_llc_slice; |
| bool have_mmu500; |
| bool hung; |
| }; |
| |
| #define to_a6xx_gpu(x) container_of(x, struct a6xx_gpu, base) |
| |
| /* |
| * In order to do lockless preemption we use a simple state machine to progress |
| * through the process. |
| * |
| * PREEMPT_NONE - no preemption in progress. Next state START. |
| * PREEMPT_START - The trigger is evaluating if preemption is possible. Next |
| * states: TRIGGERED, NONE |
| * PREEMPT_FINISH - An intermediate state before moving back to NONE. Next |
| * state: NONE. |
| * PREEMPT_TRIGGERED: A preemption has been executed on the hardware. Next |
| * states: FAULTED, PENDING |
| * PREEMPT_FAULTED: A preemption timed out (never completed). This will trigger |
| * recovery. Next state: N/A |
| * PREEMPT_PENDING: Preemption complete interrupt fired - the callback is |
| * checking the success of the operation. Next state: FAULTED, NONE. |
| */ |
| |
| enum a6xx_preempt_state { |
| PREEMPT_NONE = 0, |
| PREEMPT_START, |
| PREEMPT_FINISH, |
| PREEMPT_TRIGGERED, |
| PREEMPT_FAULTED, |
| PREEMPT_PENDING, |
| }; |
| |
| /* |
| * struct a6xx_preempt_record is a shared buffer between the microcode and the |
| * CPU to store the state for preemption. The record itself is much larger |
| * (2112k) but most of that is used by the CP for storage. |
| * |
| * There is a preemption record assigned per ringbuffer. When the CPU triggers a |
| * preemption, it fills out the record with the useful information (wptr, ring |
| * base, etc) and the microcode uses that information to set up the CP following |
| * the preemption. When a ring is switched out, the CP will save the ringbuffer |
| * state back to the record. In this way, once the records are properly set up |
| * the CPU can quickly switch back and forth between ringbuffers by only |
| * updating a few registers (often only the wptr). |
| * |
| * These are the CPU aware registers in the record: |
| * @magic: Must always be 0xAE399D6EUL |
| * @info: Type of the record - written 0 by the CPU, updated by the CP |
| * @errno: preemption error record |
| * @data: Data field in YIELD and SET_MARKER packets, Written and used by CP |
| * @cntl: Value of RB_CNTL written by CPU, save/restored by CP |
| * @rptr: Value of RB_RPTR written by CPU, save/restored by CP |
| * @wptr: Value of RB_WPTR written by CPU, save/restored by CP |
| * @_pad: Reserved/padding |
| * @rptr_addr: Value of RB_RPTR_ADDR_LO|HI written by CPU, save/restored by CP |
| * @rbase: Value of RB_BASE written by CPU, save/restored by CP |
| * @counter: GPU address of the storage area for the preemption counters |
| * @bv_rptr_addr: Value of BV_RB_RPTR_ADDR_LO|HI written by CPU, save/restored by CP |
| */ |
| struct a6xx_preempt_record { |
| u32 magic; |
| u32 info; |
| u32 errno; |
| u32 data; |
| u32 cntl; |
| u32 rptr; |
| u32 wptr; |
| u32 _pad; |
| u64 rptr_addr; |
| u64 rbase; |
| u64 counter; |
| u64 bv_rptr_addr; |
| }; |
| |
| #define A6XX_PREEMPT_RECORD_MAGIC 0xAE399D6EUL |
| |
| #define PREEMPT_SMMU_INFO_SIZE 4096 |
| |
| #define PREEMPT_RECORD_SIZE(adreno_gpu) \ |
| ((adreno_gpu->info->preempt_record_size) == 0 ? \ |
| 4192 * SZ_1K : (adreno_gpu->info->preempt_record_size)) |
| |
| /* |
| * The preemption counter block is a storage area for the value of the |
| * preemption counters that are saved immediately before context switch. We |
| * append it on to the end of the allocation for the preemption record. |
| */ |
| #define A6XX_PREEMPT_COUNTER_SIZE (16 * 4) |
| |
| struct a7xx_cp_smmu_info { |
| u32 magic; |
| u32 _pad4; |
| u64 ttbr0; |
| u32 asid; |
| u32 context_idr; |
| u32 context_bank; |
| }; |
| |
| #define GEN7_CP_SMMU_INFO_MAGIC 0x241350d5UL |
| |
| /* |
| * Given a register and a count, return a value to program into |
| * REG_CP_PROTECT_REG(n) - this will block both reads and writes for |
| * _len + 1 registers starting at _reg. |
| */ |
| #define A6XX_PROTECT_NORDWR(_reg, _len) \ |
| ((1 << 31) | \ |
| (((_len) & 0x3FFF) << 18) | ((_reg) & 0x3FFFF)) |
| |
| /* |
| * Same as above, but allow reads over the range. For areas of mixed use (such |
| * as performance counters) this allows us to protect a much larger range with a |
| * single register |
| */ |
| #define A6XX_PROTECT_RDONLY(_reg, _len) \ |
| ((((_len) & 0x3FFF) << 18) | ((_reg) & 0x3FFFF)) |
| |
| static inline bool a6xx_has_gbif(struct adreno_gpu *gpu) |
| { |
| if(adreno_is_a630(gpu)) |
| return false; |
| |
| return true; |
| } |
| |
| static inline void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or) |
| { |
| return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or); |
| } |
| |
| static inline u32 a6xx_llc_read(struct a6xx_gpu *a6xx_gpu, u32 reg) |
| { |
| return readl(a6xx_gpu->llc_mmio + (reg << 2)); |
| } |
| |
| static inline void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value) |
| { |
| writel(value, a6xx_gpu->llc_mmio + (reg << 2)); |
| } |
| |
| #define shadowptr(_a6xx_gpu, _ring) ((_a6xx_gpu)->shadow_iova + \ |
| ((_ring)->id * sizeof(uint32_t))) |
| |
| int a6xx_gmu_resume(struct a6xx_gpu *gpu); |
| int a6xx_gmu_stop(struct a6xx_gpu *gpu); |
| |
| int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu); |
| |
| bool a6xx_gmu_isidle(struct a6xx_gmu *gmu); |
| |
| int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state); |
| void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state); |
| |
| int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node); |
| int a6xx_gmu_wrapper_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node); |
| void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu); |
| |
| void a6xx_preempt_init(struct msm_gpu *gpu); |
| void a6xx_preempt_hw_init(struct msm_gpu *gpu); |
| void a6xx_preempt_trigger(struct msm_gpu *gpu); |
| void a6xx_preempt_irq(struct msm_gpu *gpu); |
| void a6xx_preempt_fini(struct msm_gpu *gpu); |
| int a6xx_preempt_submitqueue_setup(struct msm_gpu *gpu, |
| struct msm_gpu_submitqueue *queue); |
| void a6xx_preempt_submitqueue_close(struct msm_gpu *gpu, |
| struct msm_gpu_submitqueue *queue); |
| |
| /* Return true if we are in a preempt state */ |
| static inline bool a6xx_in_preempt(struct a6xx_gpu *a6xx_gpu) |
| { |
| /* |
| * Make sure the read to preempt_state is ordered with respect to reads |
| * of other variables before ... |
| */ |
| smp_rmb(); |
| |
| int preempt_state = atomic_read(&a6xx_gpu->preempt_state); |
| |
| /* ... and after. */ |
| smp_rmb(); |
| |
| return !(preempt_state == PREEMPT_NONE || |
| preempt_state == PREEMPT_FINISH); |
| } |
| |
| void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp, |
| bool suspended); |
| unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu); |
| |
| void a6xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state, |
| struct drm_printer *p); |
| |
| struct msm_gpu_state *a6xx_gpu_state_get(struct msm_gpu *gpu); |
| int a6xx_gpu_state_put(struct msm_gpu_state *state); |
| |
| void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off); |
| void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert); |
| |
| #endif /* __A6XX_GPU_H__ */ |