| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2024-2025 ARM Limited, All Rights Reserved. |
| */ |
| |
| #define pr_fmt(fmt) "GICv5 ITS: " fmt |
| |
| #include <linux/bitmap.h> |
| #include <linux/iommu.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/msi.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/slab.h> |
| |
| #include <linux/irqchip.h> |
| #include <linux/irqchip/arm-gic-v5.h> |
| #include <linux/irqchip/irq-msi-lib.h> |
| |
| #include "irq-gic-its-msi-parent.h" |
| |
| #define ITS_FLAGS_NON_COHERENT BIT(0) |
| |
| struct gicv5_its_chip_data { |
| struct xarray its_devices; |
| struct mutex dev_alloc_lock; |
| struct fwnode_handle *fwnode; |
| struct gicv5_its_devtab_cfg devtab_cfgr; |
| void __iomem *its_base; |
| u32 flags; |
| unsigned int msi_domain_flags; |
| }; |
| |
| struct gicv5_its_dev { |
| struct gicv5_its_chip_data *its_node; |
| struct gicv5_its_itt_cfg itt_cfg; |
| unsigned long *event_map; |
| u32 device_id; |
| u32 num_events; |
| phys_addr_t its_trans_phys_base; |
| }; |
| |
| static u32 its_readl_relaxed(struct gicv5_its_chip_data *its_node, const u32 reg_offset) |
| { |
| return readl_relaxed(its_node->its_base + reg_offset); |
| } |
| |
| static void its_writel_relaxed(struct gicv5_its_chip_data *its_node, const u32 val, |
| const u32 reg_offset) |
| { |
| writel_relaxed(val, its_node->its_base + reg_offset); |
| } |
| |
| static void its_writeq_relaxed(struct gicv5_its_chip_data *its_node, const u64 val, |
| const u32 reg_offset) |
| { |
| writeq_relaxed(val, its_node->its_base + reg_offset); |
| } |
| |
| static void gicv5_its_dcache_clean(struct gicv5_its_chip_data *its, void *start, |
| size_t sz) |
| { |
| void *end = start + sz; |
| |
| if (its->flags & ITS_FLAGS_NON_COHERENT) |
| dcache_clean_inval_poc((unsigned long)start, (unsigned long)end); |
| else |
| dsb(ishst); |
| } |
| |
| static void its_write_table_entry(struct gicv5_its_chip_data *its, __le64 *entry, |
| u64 val) |
| { |
| WRITE_ONCE(*entry, cpu_to_le64(val)); |
| gicv5_its_dcache_clean(its, entry, sizeof(*entry)); |
| } |
| |
| #define devtab_cfgr_field(its, f) \ |
| FIELD_GET(GICV5_ITS_DT_CFGR_##f, (its)->devtab_cfgr.cfgr) |
| |
| static int gicv5_its_cache_sync(struct gicv5_its_chip_data *its) |
| { |
| return gicv5_wait_for_op_atomic(its->its_base, GICV5_ITS_STATUSR, |
| GICV5_ITS_STATUSR_IDLE, NULL); |
| } |
| |
| static void gicv5_its_syncr(struct gicv5_its_chip_data *its, |
| struct gicv5_its_dev *its_dev) |
| { |
| u64 syncr; |
| |
| syncr = FIELD_PREP(GICV5_ITS_SYNCR_SYNC, 1) | |
| FIELD_PREP(GICV5_ITS_SYNCR_DEVICEID, its_dev->device_id); |
| |
| its_writeq_relaxed(its, syncr, GICV5_ITS_SYNCR); |
| |
| gicv5_wait_for_op(its->its_base, GICV5_ITS_SYNC_STATUSR, GICV5_ITS_SYNC_STATUSR_IDLE); |
| } |
| |
| /* Number of bits required for each L2 {device/interrupt translation} table size */ |
| #define ITS_L2SZ_64K_L2_BITS 13 |
| #define ITS_L2SZ_16K_L2_BITS 11 |
| #define ITS_L2SZ_4K_L2_BITS 9 |
| |
| static unsigned int gicv5_its_l2sz_to_l2_bits(unsigned int sz) |
| { |
| switch (sz) { |
| case GICV5_ITS_DT_ITT_CFGR_L2SZ_64k: |
| return ITS_L2SZ_64K_L2_BITS; |
| case GICV5_ITS_DT_ITT_CFGR_L2SZ_16k: |
| return ITS_L2SZ_16K_L2_BITS; |
| case GICV5_ITS_DT_ITT_CFGR_L2SZ_4k: |
| default: |
| return ITS_L2SZ_4K_L2_BITS; |
| } |
| } |
| |
| static int gicv5_its_itt_cache_inv(struct gicv5_its_chip_data *its, u32 device_id, |
| u16 event_id) |
| { |
| u32 eventr, eidr; |
| u64 didr; |
| |
| didr = FIELD_PREP(GICV5_ITS_DIDR_DEVICEID, device_id); |
| eidr = FIELD_PREP(GICV5_ITS_EIDR_EVENTID, event_id); |
| eventr = FIELD_PREP(GICV5_ITS_INV_EVENTR_I, 0x1); |
| |
| its_writeq_relaxed(its, didr, GICV5_ITS_DIDR); |
| its_writel_relaxed(its, eidr, GICV5_ITS_EIDR); |
| its_writel_relaxed(its, eventr, GICV5_ITS_INV_EVENTR); |
| |
| return gicv5_its_cache_sync(its); |
| } |
| |
| static void gicv5_its_free_itt_linear(struct gicv5_its_dev *its_dev) |
| { |
| kfree(its_dev->itt_cfg.linear.itt); |
| } |
| |
| static void gicv5_its_free_itt_two_level(struct gicv5_its_dev *its_dev) |
| { |
| unsigned int i, num_ents = its_dev->itt_cfg.l2.num_l1_ents; |
| |
| for (i = 0; i < num_ents; i++) |
| kfree(its_dev->itt_cfg.l2.l2ptrs[i]); |
| |
| kfree(its_dev->itt_cfg.l2.l2ptrs); |
| kfree(its_dev->itt_cfg.l2.l1itt); |
| } |
| |
| static void gicv5_its_free_itt(struct gicv5_its_dev *its_dev) |
| { |
| if (!its_dev->itt_cfg.l2itt) |
| gicv5_its_free_itt_linear(its_dev); |
| else |
| gicv5_its_free_itt_two_level(its_dev); |
| } |
| |
| static int gicv5_its_create_itt_linear(struct gicv5_its_chip_data *its, |
| struct gicv5_its_dev *its_dev, |
| unsigned int event_id_bits) |
| { |
| unsigned int num_ents = BIT(event_id_bits); |
| __le64 *itt; |
| |
| itt = kcalloc(num_ents, sizeof(*itt), GFP_KERNEL); |
| if (!itt) |
| return -ENOMEM; |
| |
| its_dev->itt_cfg.linear.itt = itt; |
| its_dev->itt_cfg.linear.num_ents = num_ents; |
| its_dev->itt_cfg.l2itt = false; |
| its_dev->itt_cfg.event_id_bits = event_id_bits; |
| |
| gicv5_its_dcache_clean(its, itt, num_ents * sizeof(*itt)); |
| |
| return 0; |
| } |
| |
| /* |
| * Allocate a two-level ITT. All ITT entries are allocated in one go, unlike |
| * with the device table. Span may be used to limit the second level table |
| * size, where possible. |
| */ |
| static int gicv5_its_create_itt_two_level(struct gicv5_its_chip_data *its, |
| struct gicv5_its_dev *its_dev, |
| unsigned int event_id_bits, |
| unsigned int itt_l2sz, |
| unsigned int num_events) |
| { |
| unsigned int l1_bits, l2_bits, span, events_per_l2_table; |
| unsigned int i, complete_tables, final_span, num_ents; |
| __le64 *itt_l1, *itt_l2, **l2ptrs; |
| int ret; |
| u64 val; |
| |
| ret = gicv5_its_l2sz_to_l2_bits(itt_l2sz); |
| if (ret >= event_id_bits) { |
| pr_debug("Incorrect l2sz (0x%x) for %u EventID bits. Cannot allocate ITT\n", |
| itt_l2sz, event_id_bits); |
| return -EINVAL; |
| } |
| |
| l2_bits = ret; |
| |
| l1_bits = event_id_bits - l2_bits; |
| |
| num_ents = BIT(l1_bits); |
| |
| itt_l1 = kcalloc(num_ents, sizeof(*itt_l1), GFP_KERNEL); |
| if (!itt_l1) |
| return -ENOMEM; |
| |
| l2ptrs = kcalloc(num_ents, sizeof(*l2ptrs), GFP_KERNEL); |
| if (!l2ptrs) { |
| kfree(itt_l1); |
| return -ENOMEM; |
| } |
| |
| its_dev->itt_cfg.l2.l2ptrs = l2ptrs; |
| |
| its_dev->itt_cfg.l2.l2sz = itt_l2sz; |
| its_dev->itt_cfg.l2.l1itt = itt_l1; |
| its_dev->itt_cfg.l2.num_l1_ents = num_ents; |
| its_dev->itt_cfg.l2itt = true; |
| its_dev->itt_cfg.event_id_bits = event_id_bits; |
| |
| /* |
| * Need to determine how many entries there are per L2 - this is based |
| * on the number of bits in the table. |
| */ |
| events_per_l2_table = BIT(l2_bits); |
| complete_tables = num_events / events_per_l2_table; |
| final_span = order_base_2(num_events % events_per_l2_table); |
| |
| for (i = 0; i < num_ents; i++) { |
| size_t l2sz; |
| |
| span = i == complete_tables ? final_span : l2_bits; |
| |
| itt_l2 = kcalloc(BIT(span), sizeof(*itt_l2), GFP_KERNEL); |
| if (!itt_l2) { |
| ret = -ENOMEM; |
| goto out_free; |
| } |
| |
| its_dev->itt_cfg.l2.l2ptrs[i] = itt_l2; |
| |
| l2sz = BIT(span) * sizeof(*itt_l2); |
| |
| gicv5_its_dcache_clean(its, itt_l2, l2sz); |
| |
| val = (virt_to_phys(itt_l2) & GICV5_ITTL1E_L2_ADDR_MASK) | |
| FIELD_PREP(GICV5_ITTL1E_SPAN, span) | |
| FIELD_PREP(GICV5_ITTL1E_VALID, 0x1); |
| |
| WRITE_ONCE(itt_l1[i], cpu_to_le64(val)); |
| } |
| |
| gicv5_its_dcache_clean(its, itt_l1, num_ents * sizeof(*itt_l1)); |
| |
| return 0; |
| |
| out_free: |
| for (i = i - 1; i >= 0; i--) |
| kfree(its_dev->itt_cfg.l2.l2ptrs[i]); |
| |
| kfree(its_dev->itt_cfg.l2.l2ptrs); |
| kfree(itt_l1); |
| return ret; |
| } |
| |
| /* |
| * Function to check whether the device table or ITT table support |
| * a two-level table and if so depending on the number of id_bits |
| * requested, determine whether a two-level table is required. |
| * |
| * Return the 2-level size value if a two level table is deemed |
| * necessary. |
| */ |
| static bool gicv5_its_l2sz_two_level(bool devtab, u32 its_idr1, u8 id_bits, u8 *sz) |
| { |
| unsigned int l2_bits, l2_sz; |
| |
| if (devtab && !FIELD_GET(GICV5_ITS_IDR1_DT_LEVELS, its_idr1)) |
| return false; |
| |
| if (!devtab && !FIELD_GET(GICV5_ITS_IDR1_ITT_LEVELS, its_idr1)) |
| return false; |
| |
| /* |
| * Pick an L2 size that matches the pagesize; if a match |
| * is not found, go for the smallest supported l2 size granule. |
| * |
| * This ensures that we will always be able to allocate |
| * contiguous memory at L2. |
| */ |
| switch (PAGE_SIZE) { |
| case SZ_64K: |
| if (GICV5_ITS_IDR1_L2SZ_SUPPORT_64KB(its_idr1)) { |
| l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_64k; |
| break; |
| } |
| fallthrough; |
| case SZ_4K: |
| if (GICV5_ITS_IDR1_L2SZ_SUPPORT_4KB(its_idr1)) { |
| l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_4k; |
| break; |
| } |
| fallthrough; |
| case SZ_16K: |
| if (GICV5_ITS_IDR1_L2SZ_SUPPORT_16KB(its_idr1)) { |
| l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_16k; |
| break; |
| } |
| if (GICV5_ITS_IDR1_L2SZ_SUPPORT_4KB(its_idr1)) { |
| l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_4k; |
| break; |
| } |
| if (GICV5_ITS_IDR1_L2SZ_SUPPORT_64KB(its_idr1)) { |
| l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_64k; |
| break; |
| } |
| |
| l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_4k; |
| break; |
| } |
| |
| l2_bits = gicv5_its_l2sz_to_l2_bits(l2_sz); |
| |
| if (l2_bits > id_bits) |
| return false; |
| |
| *sz = l2_sz; |
| |
| return true; |
| } |
| |
| static __le64 *gicv5_its_device_get_itte_ref(struct gicv5_its_dev *its_dev, |
| u16 event_id) |
| { |
| unsigned int l1_idx, l2_idx, l2_bits; |
| __le64 *l2_itt; |
| |
| if (!its_dev->itt_cfg.l2itt) { |
| __le64 *itt = its_dev->itt_cfg.linear.itt; |
| |
| return &itt[event_id]; |
| } |
| |
| l2_bits = gicv5_its_l2sz_to_l2_bits(its_dev->itt_cfg.l2.l2sz); |
| l1_idx = event_id >> l2_bits; |
| l2_idx = event_id & GENMASK(l2_bits - 1, 0); |
| l2_itt = its_dev->itt_cfg.l2.l2ptrs[l1_idx]; |
| |
| return &l2_itt[l2_idx]; |
| } |
| |
| static int gicv5_its_device_cache_inv(struct gicv5_its_chip_data *its, |
| struct gicv5_its_dev *its_dev) |
| { |
| u32 devicer; |
| u64 didr; |
| |
| didr = FIELD_PREP(GICV5_ITS_DIDR_DEVICEID, its_dev->device_id); |
| devicer = FIELD_PREP(GICV5_ITS_INV_DEVICER_I, 0x1) | |
| FIELD_PREP(GICV5_ITS_INV_DEVICER_EVENTID_BITS, |
| its_dev->itt_cfg.event_id_bits) | |
| FIELD_PREP(GICV5_ITS_INV_DEVICER_L1, 0x0); |
| its_writeq_relaxed(its, didr, GICV5_ITS_DIDR); |
| its_writel_relaxed(its, devicer, GICV5_ITS_INV_DEVICER); |
| |
| return gicv5_its_cache_sync(its); |
| } |
| |
| /* |
| * Allocate a level 2 device table entry, update L1 parent to reference it. |
| * Only used for 2-level device tables, and it is called on demand. |
| */ |
| static int gicv5_its_alloc_l2_devtab(struct gicv5_its_chip_data *its, |
| unsigned int l1_index) |
| { |
| __le64 *l2devtab, *l1devtab = its->devtab_cfgr.l2.l1devtab; |
| u8 span, l2sz, l2_bits; |
| u64 l1dte; |
| |
| if (FIELD_GET(GICV5_DTL1E_VALID, le64_to_cpu(l1devtab[l1_index]))) |
| return 0; |
| |
| span = FIELD_GET(GICV5_DTL1E_SPAN, le64_to_cpu(l1devtab[l1_index])); |
| l2sz = devtab_cfgr_field(its, L2SZ); |
| |
| l2_bits = gicv5_its_l2sz_to_l2_bits(l2sz); |
| |
| /* |
| * Span allows us to create a smaller L2 device table. |
| * If it is too large, use the number of allowed L2 bits. |
| */ |
| if (span > l2_bits) |
| span = l2_bits; |
| |
| l2devtab = kcalloc(BIT(span), sizeof(*l2devtab), GFP_KERNEL); |
| if (!l2devtab) |
| return -ENOMEM; |
| |
| its->devtab_cfgr.l2.l2ptrs[l1_index] = l2devtab; |
| |
| l1dte = FIELD_PREP(GICV5_DTL1E_SPAN, span) | |
| (virt_to_phys(l2devtab) & GICV5_DTL1E_L2_ADDR_MASK) | |
| FIELD_PREP(GICV5_DTL1E_VALID, 0x1); |
| its_write_table_entry(its, &l1devtab[l1_index], l1dte); |
| |
| return 0; |
| } |
| |
| static __le64 *gicv5_its_devtab_get_dte_ref(struct gicv5_its_chip_data *its, |
| u32 device_id, bool alloc) |
| { |
| u8 str = devtab_cfgr_field(its, STRUCTURE); |
| unsigned int l2sz, l2_bits, l1_idx, l2_idx; |
| __le64 *l2devtab; |
| int ret; |
| |
| if (str == GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR) { |
| l2devtab = its->devtab_cfgr.linear.devtab; |
| return &l2devtab[device_id]; |
| } |
| |
| l2sz = devtab_cfgr_field(its, L2SZ); |
| l2_bits = gicv5_its_l2sz_to_l2_bits(l2sz); |
| l1_idx = device_id >> l2_bits; |
| l2_idx = device_id & GENMASK(l2_bits - 1, 0); |
| |
| if (alloc) { |
| /* |
| * Allocate a new L2 device table here before |
| * continuing. We make the assumption that the span in |
| * the L1 table has been set correctly, and blindly use |
| * that value. |
| */ |
| ret = gicv5_its_alloc_l2_devtab(its, l1_idx); |
| if (ret) |
| return NULL; |
| } |
| |
| l2devtab = its->devtab_cfgr.l2.l2ptrs[l1_idx]; |
| return &l2devtab[l2_idx]; |
| } |
| |
| /* |
| * Register a new device in the device table. Allocate an ITT and |
| * program the L2DTE entry according to the ITT structure that |
| * was chosen. |
| */ |
| static int gicv5_its_device_register(struct gicv5_its_chip_data *its, |
| struct gicv5_its_dev *its_dev) |
| { |
| u8 event_id_bits, device_id_bits, itt_struct, itt_l2sz; |
| phys_addr_t itt_phys_base; |
| bool two_level_itt; |
| u32 idr1, idr2; |
| __le64 *dte; |
| u64 val; |
| int ret; |
| |
| device_id_bits = devtab_cfgr_field(its, DEVICEID_BITS); |
| |
| if (its_dev->device_id >= BIT(device_id_bits)) { |
| pr_err("Supplied DeviceID (%u) outside of Device Table range (%u)!", |
| its_dev->device_id, (u32)GENMASK(device_id_bits - 1, 0)); |
| return -EINVAL; |
| } |
| |
| dte = gicv5_its_devtab_get_dte_ref(its, its_dev->device_id, true); |
| if (!dte) |
| return -ENOMEM; |
| |
| if (FIELD_GET(GICV5_DTL2E_VALID, le64_to_cpu(*dte))) |
| return -EBUSY; |
| |
| /* |
| * Determine how many bits we need, validate those against the max. |
| * Based on these, determine if we should go for a 1- or 2-level ITT. |
| */ |
| event_id_bits = order_base_2(its_dev->num_events); |
| |
| idr2 = its_readl_relaxed(its, GICV5_ITS_IDR2); |
| |
| if (event_id_bits > FIELD_GET(GICV5_ITS_IDR2_EVENTID_BITS, idr2)) { |
| pr_err("Required EventID bits (%u) larger than supported bits (%u)!", |
| event_id_bits, |
| (u8)FIELD_GET(GICV5_ITS_IDR2_EVENTID_BITS, idr2)); |
| return -EINVAL; |
| } |
| |
| idr1 = its_readl_relaxed(its, GICV5_ITS_IDR1); |
| |
| /* |
| * L2 ITT size is programmed into the L2DTE regardless of |
| * whether a two-level or linear ITT is built, init it. |
| */ |
| itt_l2sz = 0; |
| |
| two_level_itt = gicv5_its_l2sz_two_level(false, idr1, event_id_bits, |
| &itt_l2sz); |
| if (two_level_itt) |
| ret = gicv5_its_create_itt_two_level(its, its_dev, event_id_bits, |
| itt_l2sz, |
| its_dev->num_events); |
| else |
| ret = gicv5_its_create_itt_linear(its, its_dev, event_id_bits); |
| if (ret) |
| return ret; |
| |
| itt_phys_base = two_level_itt ? virt_to_phys(its_dev->itt_cfg.l2.l1itt) : |
| virt_to_phys(its_dev->itt_cfg.linear.itt); |
| |
| itt_struct = two_level_itt ? GICV5_ITS_DT_ITT_CFGR_STRUCTURE_TWO_LEVEL : |
| GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR; |
| |
| val = FIELD_PREP(GICV5_DTL2E_EVENT_ID_BITS, event_id_bits) | |
| FIELD_PREP(GICV5_DTL2E_ITT_STRUCTURE, itt_struct) | |
| (itt_phys_base & GICV5_DTL2E_ITT_ADDR_MASK) | |
| FIELD_PREP(GICV5_DTL2E_ITT_L2SZ, itt_l2sz) | |
| FIELD_PREP(GICV5_DTL2E_VALID, 0x1); |
| |
| its_write_table_entry(its, dte, val); |
| |
| ret = gicv5_its_device_cache_inv(its, its_dev); |
| if (ret) { |
| its_write_table_entry(its, dte, 0); |
| gicv5_its_free_itt(its_dev); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Unregister a device in the device table. Lookup the device by ID, free the |
| * corresponding ITT, mark the device as invalid in the device table. |
| */ |
| static int gicv5_its_device_unregister(struct gicv5_its_chip_data *its, |
| struct gicv5_its_dev *its_dev) |
| { |
| __le64 *dte; |
| |
| dte = gicv5_its_devtab_get_dte_ref(its, its_dev->device_id, false); |
| |
| if (!FIELD_GET(GICV5_DTL2E_VALID, le64_to_cpu(*dte))) { |
| pr_debug("Device table entry for DeviceID 0x%x is not valid. Nothing to clean up!", |
| its_dev->device_id); |
| return -EINVAL; |
| } |
| |
| /* Zero everything - make it clear that this is an invalid entry */ |
| its_write_table_entry(its, dte, 0); |
| |
| gicv5_its_free_itt(its_dev); |
| |
| return gicv5_its_device_cache_inv(its, its_dev); |
| } |
| |
| /* |
| * Allocate a 1-level device table. All entries are allocated, but marked |
| * invalid. |
| */ |
| static int gicv5_its_alloc_devtab_linear(struct gicv5_its_chip_data *its, |
| u8 device_id_bits) |
| { |
| __le64 *devtab; |
| size_t sz; |
| u64 baser; |
| u32 cfgr; |
| |
| /* |
| * We expect a GICv5 implementation requiring a large number of |
| * deviceID bits to support a 2-level device table. If that's not |
| * the case, cap the number of deviceIDs supported according to the |
| * kmalloc limits so that the system can chug along with a linear |
| * device table. |
| */ |
| sz = BIT_ULL(device_id_bits) * sizeof(*devtab); |
| if (sz > KMALLOC_MAX_SIZE) { |
| u8 device_id_cap = ilog2(KMALLOC_MAX_SIZE/sizeof(*devtab)); |
| |
| pr_warn("Limiting device ID bits from %u to %u\n", |
| device_id_bits, device_id_cap); |
| device_id_bits = device_id_cap; |
| } |
| |
| devtab = kcalloc(BIT(device_id_bits), sizeof(*devtab), GFP_KERNEL); |
| if (!devtab) |
| return -ENOMEM; |
| |
| gicv5_its_dcache_clean(its, devtab, sz); |
| |
| cfgr = FIELD_PREP(GICV5_ITS_DT_CFGR_STRUCTURE, |
| GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR) | |
| FIELD_PREP(GICV5_ITS_DT_CFGR_L2SZ, 0) | |
| FIELD_PREP(GICV5_ITS_DT_CFGR_DEVICEID_BITS, device_id_bits); |
| its_writel_relaxed(its, cfgr, GICV5_ITS_DT_CFGR); |
| |
| baser = virt_to_phys(devtab) & GICV5_ITS_DT_BASER_ADDR_MASK; |
| its_writeq_relaxed(its, baser, GICV5_ITS_DT_BASER); |
| |
| its->devtab_cfgr.cfgr = cfgr; |
| its->devtab_cfgr.linear.devtab = devtab; |
| |
| return 0; |
| } |
| |
| /* |
| * Allocate a 2-level device table. L2 entries are not allocated, |
| * they are allocated on-demand. |
| */ |
| static int gicv5_its_alloc_devtab_two_level(struct gicv5_its_chip_data *its, |
| u8 device_id_bits, |
| u8 devtab_l2sz) |
| { |
| unsigned int l1_bits, l2_bits, i; |
| __le64 *l1devtab, **l2ptrs; |
| size_t l1_sz; |
| u64 baser; |
| u32 cfgr; |
| |
| l2_bits = gicv5_its_l2sz_to_l2_bits(devtab_l2sz); |
| |
| l1_bits = device_id_bits - l2_bits; |
| l1_sz = BIT(l1_bits) * sizeof(*l1devtab); |
| /* |
| * With 2-level device table support it is highly unlikely |
| * that we are not able to allocate the required amount of |
| * device table memory to cover deviceID space; cap the |
| * deviceID space if we encounter such set-up. |
| * If this ever becomes a problem we could revisit the policy |
| * behind level 2 size selection to reduce level-1 deviceID bits. |
| */ |
| if (l1_sz > KMALLOC_MAX_SIZE) { |
| l1_bits = ilog2(KMALLOC_MAX_SIZE/sizeof(*l1devtab)); |
| |
| pr_warn("Limiting device ID bits from %u to %u\n", |
| device_id_bits, l1_bits + l2_bits); |
| device_id_bits = l1_bits + l2_bits; |
| l1_sz = KMALLOC_MAX_SIZE; |
| } |
| |
| l1devtab = kcalloc(BIT(l1_bits), sizeof(*l1devtab), GFP_KERNEL); |
| if (!l1devtab) |
| return -ENOMEM; |
| |
| l2ptrs = kcalloc(BIT(l1_bits), sizeof(*l2ptrs), GFP_KERNEL); |
| if (!l2ptrs) { |
| kfree(l1devtab); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < BIT(l1_bits); i++) |
| l1devtab[i] = cpu_to_le64(FIELD_PREP(GICV5_DTL1E_SPAN, l2_bits)); |
| |
| gicv5_its_dcache_clean(its, l1devtab, l1_sz); |
| |
| cfgr = FIELD_PREP(GICV5_ITS_DT_CFGR_STRUCTURE, |
| GICV5_ITS_DT_ITT_CFGR_STRUCTURE_TWO_LEVEL) | |
| FIELD_PREP(GICV5_ITS_DT_CFGR_L2SZ, devtab_l2sz) | |
| FIELD_PREP(GICV5_ITS_DT_CFGR_DEVICEID_BITS, device_id_bits); |
| its_writel_relaxed(its, cfgr, GICV5_ITS_DT_CFGR); |
| |
| baser = virt_to_phys(l1devtab) & GICV5_ITS_DT_BASER_ADDR_MASK; |
| its_writeq_relaxed(its, baser, GICV5_ITS_DT_BASER); |
| |
| its->devtab_cfgr.cfgr = cfgr; |
| its->devtab_cfgr.l2.l1devtab = l1devtab; |
| its->devtab_cfgr.l2.l2ptrs = l2ptrs; |
| |
| return 0; |
| } |
| |
| /* |
| * Initialise the device table as either 1- or 2-level depending on what is |
| * supported by the hardware. |
| */ |
| static int gicv5_its_init_devtab(struct gicv5_its_chip_data *its) |
| { |
| u8 device_id_bits, devtab_l2sz; |
| bool two_level_devtab; |
| u32 idr1; |
| |
| idr1 = its_readl_relaxed(its, GICV5_ITS_IDR1); |
| |
| device_id_bits = FIELD_GET(GICV5_ITS_IDR1_DEVICEID_BITS, idr1); |
| two_level_devtab = gicv5_its_l2sz_two_level(true, idr1, device_id_bits, |
| &devtab_l2sz); |
| if (two_level_devtab) |
| return gicv5_its_alloc_devtab_two_level(its, device_id_bits, |
| devtab_l2sz); |
| else |
| return gicv5_its_alloc_devtab_linear(its, device_id_bits); |
| } |
| |
| static void gicv5_its_deinit_devtab(struct gicv5_its_chip_data *its) |
| { |
| u8 str = devtab_cfgr_field(its, STRUCTURE); |
| |
| if (str == GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR) { |
| kfree(its->devtab_cfgr.linear.devtab); |
| } else { |
| kfree(its->devtab_cfgr.l2.l1devtab); |
| kfree(its->devtab_cfgr.l2.l2ptrs); |
| } |
| } |
| |
| static void gicv5_its_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) |
| { |
| struct gicv5_its_dev *its_dev = irq_data_get_irq_chip_data(d); |
| u64 addr = its_dev->its_trans_phys_base; |
| |
| msg->data = FIELD_GET(GICV5_ITS_HWIRQ_EVENT_ID, d->hwirq); |
| msi_msg_set_addr(irq_data_get_msi_desc(d), msg, addr); |
| } |
| |
| static const struct irq_chip gicv5_its_irq_chip = { |
| .name = "GICv5-ITS-MSI", |
| .irq_mask = irq_chip_mask_parent, |
| .irq_unmask = irq_chip_unmask_parent, |
| .irq_eoi = irq_chip_eoi_parent, |
| .irq_set_affinity = irq_chip_set_affinity_parent, |
| .irq_get_irqchip_state = irq_chip_get_parent_state, |
| .irq_set_irqchip_state = irq_chip_set_parent_state, |
| .irq_compose_msi_msg = gicv5_its_compose_msi_msg, |
| }; |
| |
| static struct gicv5_its_dev *gicv5_its_find_device(struct gicv5_its_chip_data *its, |
| u32 device_id) |
| { |
| struct gicv5_its_dev *dev = xa_load(&its->its_devices, device_id); |
| |
| return dev ? dev : ERR_PTR(-ENODEV); |
| } |
| |
| static struct gicv5_its_dev *gicv5_its_alloc_device(struct gicv5_its_chip_data *its, int nvec, |
| u32 dev_id) |
| { |
| struct gicv5_its_dev *its_dev; |
| void *entry; |
| int ret; |
| |
| its_dev = gicv5_its_find_device(its, dev_id); |
| if (!IS_ERR(its_dev)) { |
| pr_err("A device with this DeviceID (0x%x) has already been registered.\n", |
| dev_id); |
| |
| return ERR_PTR(-EBUSY); |
| } |
| |
| its_dev = kzalloc(sizeof(*its_dev), GFP_KERNEL); |
| if (!its_dev) |
| return ERR_PTR(-ENOMEM); |
| |
| its_dev->device_id = dev_id; |
| its_dev->num_events = nvec; |
| |
| ret = gicv5_its_device_register(its, its_dev); |
| if (ret) { |
| pr_err("Failed to register the device\n"); |
| goto out_dev_free; |
| } |
| |
| gicv5_its_device_cache_inv(its, its_dev); |
| |
| its_dev->its_node = its; |
| |
| its_dev->event_map = (unsigned long *)bitmap_zalloc(its_dev->num_events, GFP_KERNEL); |
| if (!its_dev->event_map) { |
| ret = -ENOMEM; |
| goto out_unregister; |
| } |
| |
| entry = xa_store(&its->its_devices, dev_id, its_dev, GFP_KERNEL); |
| if (xa_is_err(entry)) { |
| ret = xa_err(entry); |
| goto out_bitmap_free; |
| } |
| |
| return its_dev; |
| |
| out_bitmap_free: |
| bitmap_free(its_dev->event_map); |
| out_unregister: |
| gicv5_its_device_unregister(its, its_dev); |
| out_dev_free: |
| kfree(its_dev); |
| return ERR_PTR(ret); |
| } |
| |
| static int gicv5_its_msi_prepare(struct irq_domain *domain, struct device *dev, |
| int nvec, msi_alloc_info_t *info) |
| { |
| u32 dev_id = info->scratchpad[0].ul; |
| struct msi_domain_info *msi_info; |
| struct gicv5_its_chip_data *its; |
| struct gicv5_its_dev *its_dev; |
| |
| msi_info = msi_get_domain_info(domain); |
| its = msi_info->data; |
| |
| guard(mutex)(&its->dev_alloc_lock); |
| |
| its_dev = gicv5_its_alloc_device(its, nvec, dev_id); |
| if (IS_ERR(its_dev)) |
| return PTR_ERR(its_dev); |
| |
| its_dev->its_trans_phys_base = info->scratchpad[1].ul; |
| info->scratchpad[0].ptr = its_dev; |
| |
| return 0; |
| } |
| |
| static void gicv5_its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info) |
| { |
| struct gicv5_its_dev *its_dev = info->scratchpad[0].ptr; |
| struct msi_domain_info *msi_info; |
| struct gicv5_its_chip_data *its; |
| |
| msi_info = msi_get_domain_info(domain); |
| its = msi_info->data; |
| |
| guard(mutex)(&its->dev_alloc_lock); |
| |
| if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map, its_dev->num_events))) |
| return; |
| |
| xa_erase(&its->its_devices, its_dev->device_id); |
| bitmap_free(its_dev->event_map); |
| gicv5_its_device_unregister(its, its_dev); |
| kfree(its_dev); |
| } |
| |
| static struct msi_domain_ops gicv5_its_msi_domain_ops = { |
| .msi_prepare = gicv5_its_msi_prepare, |
| .msi_teardown = gicv5_its_msi_teardown, |
| }; |
| |
| static int gicv5_its_map_event(struct gicv5_its_dev *its_dev, u16 event_id, u32 lpi) |
| { |
| struct gicv5_its_chip_data *its = its_dev->its_node; |
| u64 itt_entry; |
| __le64 *itte; |
| |
| itte = gicv5_its_device_get_itte_ref(its_dev, event_id); |
| |
| if (FIELD_GET(GICV5_ITTL2E_VALID, *itte)) |
| return -EEXIST; |
| |
| itt_entry = FIELD_PREP(GICV5_ITTL2E_LPI_ID, lpi) | |
| FIELD_PREP(GICV5_ITTL2E_VALID, 0x1); |
| |
| its_write_table_entry(its, itte, itt_entry); |
| |
| gicv5_its_itt_cache_inv(its, its_dev->device_id, event_id); |
| |
| return 0; |
| } |
| |
| static void gicv5_its_unmap_event(struct gicv5_its_dev *its_dev, u16 event_id) |
| { |
| struct gicv5_its_chip_data *its = its_dev->its_node; |
| u64 itte_val; |
| __le64 *itte; |
| |
| itte = gicv5_its_device_get_itte_ref(its_dev, event_id); |
| |
| itte_val = le64_to_cpu(*itte); |
| itte_val &= ~GICV5_ITTL2E_VALID; |
| |
| its_write_table_entry(its, itte, itte_val); |
| |
| gicv5_its_itt_cache_inv(its, its_dev->device_id, event_id); |
| } |
| |
| static int gicv5_its_alloc_eventid(struct gicv5_its_dev *its_dev, msi_alloc_info_t *info, |
| unsigned int nr_irqs, u32 *eventid) |
| { |
| int event_id_base; |
| |
| if (!(info->flags & MSI_ALLOC_FLAGS_FIXED_MSG_DATA)) { |
| event_id_base = bitmap_find_free_region(its_dev->event_map, |
| its_dev->num_events, |
| get_count_order(nr_irqs)); |
| if (event_id_base < 0) |
| return event_id_base; |
| } else { |
| /* |
| * We want to have a fixed EventID mapped for hardcoded |
| * message data allocations. |
| */ |
| if (WARN_ON_ONCE(nr_irqs != 1)) |
| return -EINVAL; |
| |
| event_id_base = info->hwirq; |
| |
| if (event_id_base >= its_dev->num_events) { |
| pr_err("EventID ouside of ITT range; cannot allocate an ITT entry!\n"); |
| |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(event_id_base, its_dev->event_map)) { |
| pr_warn("Can't reserve event_id bitmap\n"); |
| return -EINVAL; |
| |
| } |
| } |
| |
| *eventid = event_id_base; |
| |
| return 0; |
| } |
| |
| static void gicv5_its_free_eventid(struct gicv5_its_dev *its_dev, u32 event_id_base, |
| unsigned int nr_irqs) |
| { |
| bitmap_release_region(its_dev->event_map, event_id_base, |
| get_count_order(nr_irqs)); |
| } |
| |
| static int gicv5_its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| u32 device_id, event_id_base, lpi; |
| struct gicv5_its_dev *its_dev; |
| msi_alloc_info_t *info = arg; |
| irq_hw_number_t hwirq; |
| struct irq_data *irqd; |
| int ret, i; |
| |
| its_dev = info->scratchpad[0].ptr; |
| |
| ret = gicv5_its_alloc_eventid(its_dev, info, nr_irqs, &event_id_base); |
| if (ret) |
| return ret; |
| |
| ret = iommu_dma_prepare_msi(info->desc, its_dev->its_trans_phys_base); |
| if (ret) |
| goto out_eventid; |
| |
| device_id = its_dev->device_id; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| lpi = gicv5_alloc_lpi(); |
| if (ret < 0) { |
| pr_debug("Failed to find free LPI!\n"); |
| goto out_eventid; |
| } |
| |
| ret = irq_domain_alloc_irqs_parent(domain, virq + i, 1, &lpi); |
| if (ret) |
| goto out_free_lpi; |
| |
| /* |
| * Store eventid and deviceid into the hwirq for later use. |
| * |
| * hwirq = event_id << 32 | device_id |
| */ |
| hwirq = FIELD_PREP(GICV5_ITS_HWIRQ_DEVICE_ID, device_id) | |
| FIELD_PREP(GICV5_ITS_HWIRQ_EVENT_ID, (u64)event_id_base + i); |
| irq_domain_set_info(domain, virq + i, hwirq, |
| &gicv5_its_irq_chip, its_dev, |
| handle_fasteoi_irq, NULL, NULL); |
| |
| irqd = irq_get_irq_data(virq + i); |
| irqd_set_single_target(irqd); |
| irqd_set_affinity_on_activate(irqd); |
| } |
| |
| return 0; |
| |
| out_free_lpi: |
| gicv5_free_lpi(lpi); |
| out_eventid: |
| gicv5_its_free_eventid(its_dev, event_id_base, nr_irqs); |
| return ret; |
| } |
| |
| static void gicv5_its_irq_domain_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| struct irq_data *d = irq_domain_get_irq_data(domain, virq); |
| struct gicv5_its_chip_data *its; |
| struct gicv5_its_dev *its_dev; |
| u16 event_id_base; |
| unsigned int i; |
| |
| its_dev = irq_data_get_irq_chip_data(d); |
| its = its_dev->its_node; |
| |
| event_id_base = FIELD_GET(GICV5_ITS_HWIRQ_EVENT_ID, d->hwirq); |
| |
| bitmap_release_region(its_dev->event_map, event_id_base, |
| get_count_order(nr_irqs)); |
| |
| /* Hierarchically free irq data */ |
| for (i = 0; i < nr_irqs; i++) { |
| d = irq_domain_get_irq_data(domain, virq + i); |
| |
| gicv5_free_lpi(d->parent_data->hwirq); |
| irq_domain_reset_irq_data(d); |
| irq_domain_free_irqs_parent(domain, virq + i, 1); |
| } |
| |
| gicv5_its_syncr(its, its_dev); |
| gicv5_irs_syncr(); |
| } |
| |
| static int gicv5_its_irq_domain_activate(struct irq_domain *domain, struct irq_data *d, |
| bool reserve) |
| { |
| struct gicv5_its_dev *its_dev = irq_data_get_irq_chip_data(d); |
| u16 event_id; |
| u32 lpi; |
| |
| event_id = FIELD_GET(GICV5_ITS_HWIRQ_EVENT_ID, d->hwirq); |
| lpi = d->parent_data->hwirq; |
| |
| return gicv5_its_map_event(its_dev, event_id, lpi); |
| } |
| |
| static void gicv5_its_irq_domain_deactivate(struct irq_domain *domain, |
| struct irq_data *d) |
| { |
| struct gicv5_its_dev *its_dev = irq_data_get_irq_chip_data(d); |
| u16 event_id; |
| |
| event_id = FIELD_GET(GICV5_ITS_HWIRQ_EVENT_ID, d->hwirq); |
| |
| gicv5_its_unmap_event(its_dev, event_id); |
| } |
| |
| static const struct irq_domain_ops gicv5_its_irq_domain_ops = { |
| .alloc = gicv5_its_irq_domain_alloc, |
| .free = gicv5_its_irq_domain_free, |
| .activate = gicv5_its_irq_domain_activate, |
| .deactivate = gicv5_its_irq_domain_deactivate, |
| .select = msi_lib_irq_domain_select, |
| }; |
| |
| static int gicv5_its_write_cr0(struct gicv5_its_chip_data *its, bool enable) |
| { |
| u32 cr0 = FIELD_PREP(GICV5_ITS_CR0_ITSEN, enable); |
| |
| its_writel_relaxed(its, cr0, GICV5_ITS_CR0); |
| return gicv5_wait_for_op_atomic(its->its_base, GICV5_ITS_CR0, |
| GICV5_ITS_CR0_IDLE, NULL); |
| } |
| |
| static int gicv5_its_enable(struct gicv5_its_chip_data *its) |
| { |
| return gicv5_its_write_cr0(its, true); |
| } |
| |
| static int gicv5_its_disable(struct gicv5_its_chip_data *its) |
| { |
| return gicv5_its_write_cr0(its, false); |
| } |
| |
| static void gicv5_its_print_info(struct gicv5_its_chip_data *its_node) |
| { |
| bool devtab_linear; |
| u8 device_id_bits; |
| u8 str; |
| |
| device_id_bits = devtab_cfgr_field(its_node, DEVICEID_BITS); |
| |
| str = devtab_cfgr_field(its_node, STRUCTURE); |
| devtab_linear = (str == GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR); |
| |
| pr_info("ITS %s enabled using %s device table device_id_bits %u\n", |
| fwnode_get_name(its_node->fwnode), |
| devtab_linear ? "linear" : "2-level", |
| device_id_bits); |
| } |
| |
| static int gicv5_its_init_domain(struct gicv5_its_chip_data *its, struct irq_domain *parent) |
| { |
| struct irq_domain_info dom_info = { |
| .fwnode = its->fwnode, |
| .ops = &gicv5_its_irq_domain_ops, |
| .domain_flags = its->msi_domain_flags, |
| .parent = parent, |
| }; |
| struct msi_domain_info *info; |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| info->ops = &gicv5_its_msi_domain_ops; |
| info->data = its; |
| dom_info.host_data = info; |
| |
| if (!msi_create_parent_irq_domain(&dom_info, &gic_v5_its_msi_parent_ops)) { |
| kfree(info); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int __init gicv5_its_init_bases(void __iomem *its_base, struct fwnode_handle *handle, |
| struct irq_domain *parent_domain) |
| { |
| struct device_node *np = to_of_node(handle); |
| struct gicv5_its_chip_data *its_node; |
| u32 cr0, cr1; |
| bool enabled; |
| int ret; |
| |
| its_node = kzalloc(sizeof(*its_node), GFP_KERNEL); |
| if (!its_node) |
| return -ENOMEM; |
| |
| mutex_init(&its_node->dev_alloc_lock); |
| xa_init(&its_node->its_devices); |
| its_node->fwnode = handle; |
| its_node->its_base = its_base; |
| its_node->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI | |
| IRQ_DOMAIN_FLAG_FWNODE_PARENT; |
| |
| cr0 = its_readl_relaxed(its_node, GICV5_ITS_CR0); |
| enabled = FIELD_GET(GICV5_ITS_CR0_ITSEN, cr0); |
| if (WARN(enabled, "ITS %s enabled, disabling it before proceeding\n", np->full_name)) { |
| ret = gicv5_its_disable(its_node); |
| if (ret) |
| goto out_free_node; |
| } |
| |
| if (of_property_read_bool(np, "dma-noncoherent")) { |
| /* |
| * A non-coherent ITS implies that some cache levels cannot be |
| * used coherently by the cores and GIC. Our only option is to mark |
| * memory attributes for the GIC as non-cacheable; by default, |
| * non-cacheable memory attributes imply outer-shareable |
| * shareability, the value written into ITS_CR1_SH is ignored. |
| */ |
| cr1 = FIELD_PREP(GICV5_ITS_CR1_ITT_RA, GICV5_NO_READ_ALLOC) | |
| FIELD_PREP(GICV5_ITS_CR1_DT_RA, GICV5_NO_READ_ALLOC) | |
| FIELD_PREP(GICV5_ITS_CR1_IC, GICV5_NON_CACHE) | |
| FIELD_PREP(GICV5_ITS_CR1_OC, GICV5_NON_CACHE); |
| its_node->flags |= ITS_FLAGS_NON_COHERENT; |
| } else { |
| cr1 = FIELD_PREP(GICV5_ITS_CR1_ITT_RA, GICV5_READ_ALLOC) | |
| FIELD_PREP(GICV5_ITS_CR1_DT_RA, GICV5_READ_ALLOC) | |
| FIELD_PREP(GICV5_ITS_CR1_IC, GICV5_WB_CACHE) | |
| FIELD_PREP(GICV5_ITS_CR1_OC, GICV5_WB_CACHE) | |
| FIELD_PREP(GICV5_ITS_CR1_SH, GICV5_INNER_SHARE); |
| } |
| |
| its_writel_relaxed(its_node, cr1, GICV5_ITS_CR1); |
| |
| ret = gicv5_its_init_devtab(its_node); |
| if (ret) |
| goto out_free_node; |
| |
| ret = gicv5_its_enable(its_node); |
| if (ret) |
| goto out_free_devtab; |
| |
| ret = gicv5_its_init_domain(its_node, parent_domain); |
| if (ret) |
| goto out_disable_its; |
| |
| gicv5_its_print_info(its_node); |
| |
| return 0; |
| |
| out_disable_its: |
| gicv5_its_disable(its_node); |
| out_free_devtab: |
| gicv5_its_deinit_devtab(its_node); |
| out_free_node: |
| kfree(its_node); |
| return ret; |
| } |
| |
| static int __init gicv5_its_init(struct device_node *node) |
| { |
| void __iomem *its_base; |
| int ret, idx; |
| |
| idx = of_property_match_string(node, "reg-names", "ns-config"); |
| if (idx < 0) { |
| pr_err("%pOF: ns-config reg-name not present\n", node); |
| return -ENODEV; |
| } |
| |
| its_base = of_io_request_and_map(node, idx, of_node_full_name(node)); |
| if (IS_ERR(its_base)) { |
| pr_err("%pOF: unable to map GICv5 ITS_CONFIG_FRAME\n", node); |
| return PTR_ERR(its_base); |
| } |
| |
| ret = gicv5_its_init_bases(its_base, of_fwnode_handle(node), |
| gicv5_global_data.lpi_domain); |
| if (ret) |
| goto out_unmap; |
| |
| return 0; |
| |
| out_unmap: |
| iounmap(its_base); |
| return ret; |
| } |
| |
| void __init gicv5_its_of_probe(struct device_node *parent) |
| { |
| struct device_node *np; |
| |
| for_each_available_child_of_node(parent, np) { |
| if (!of_device_is_compatible(np, "arm,gic-v5-its")) |
| continue; |
| |
| if (gicv5_its_init(np)) |
| pr_err("Failed to init ITS %s\n", np->full_name); |
| } |
| } |