blob: a198e40c799b4883d4ebb109431920d34974c5dc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include "cgroup-internal.h"
#include <linux/sched/cputime.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <trace/events/cgroup.h>
static DEFINE_SPINLOCK(rstat_base_lock);
static DEFINE_PER_CPU(struct llist_head, rstat_backlog_list);
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
/*
* Determines whether a given css can participate in rstat.
* css's that are cgroup::self use rstat for base stats.
* Other css's associated with a subsystem use rstat only when
* they define the ss->css_rstat_flush callback.
*/
static inline bool css_uses_rstat(struct cgroup_subsys_state *css)
{
return css_is_self(css) || css->ss->css_rstat_flush != NULL;
}
static struct css_rstat_cpu *css_rstat_cpu(
struct cgroup_subsys_state *css, int cpu)
{
return per_cpu_ptr(css->rstat_cpu, cpu);
}
static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu(
struct cgroup *cgrp, int cpu)
{
return per_cpu_ptr(cgrp->rstat_base_cpu, cpu);
}
static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss)
{
if (ss)
return &ss->rstat_ss_lock;
return &rstat_base_lock;
}
static inline struct llist_head *ss_lhead_cpu(struct cgroup_subsys *ss, int cpu)
{
if (ss)
return per_cpu_ptr(ss->lhead, cpu);
return per_cpu_ptr(&rstat_backlog_list, cpu);
}
/**
* css_rstat_updated - keep track of updated rstat_cpu
* @css: target cgroup subsystem state
* @cpu: cpu on which rstat_cpu was updated
*
* Atomically inserts the css in the ss's llist for the given cpu. This is
* reentrant safe i.e. safe against softirq, hardirq and nmi. The ss's llist
* will be processed at the flush time to create the update tree.
*
* NOTE: if the user needs the guarantee that the updater either add itself in
* the lockless list or the concurrent flusher flushes its updated stats, a
* memory barrier is needed before the call to css_rstat_updated() i.e. a
* barrier after updating the per-cpu stats and before calling
* css_rstat_updated().
*/
__bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu)
{
struct llist_head *lhead;
struct css_rstat_cpu *rstatc;
struct css_rstat_cpu __percpu *rstatc_pcpu;
struct llist_node *self;
/*
* Since bpf programs can call this function, prevent access to
* uninitialized rstat pointers.
*/
if (!css_uses_rstat(css))
return;
lockdep_assert_preemption_disabled();
/*
* For archs withnot nmi safe cmpxchg or percpu ops support, ignore
* the requests from nmi context.
*/
if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
!IS_ENABLED(CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS)) && in_nmi())
return;
rstatc = css_rstat_cpu(css, cpu);
/*
* If already on list return. This check is racy and smp_mb() is needed
* to pair it with the smp_mb() in css_process_update_tree() if the
* guarantee that the updated stats are visible to concurrent flusher is
* needed.
*/
if (llist_on_list(&rstatc->lnode))
return;
/*
* This function can be renentered by irqs and nmis for the same cgroup
* and may try to insert the same per-cpu lnode into the llist. Note
* that llist_add() does not protect against such scenarios.
*
* To protect against such stacked contexts of irqs/nmis, we use the
* fact that lnode points to itself when not on a list and then use
* this_cpu_cmpxchg() to atomically set to NULL to select the winner
* which will call llist_add(). The losers can assume the insertion is
* successful and the winner will eventually add the per-cpu lnode to
* the llist.
*/
self = &rstatc->lnode;
rstatc_pcpu = css->rstat_cpu;
if (this_cpu_cmpxchg(rstatc_pcpu->lnode.next, self, NULL) != self)
return;
lhead = ss_lhead_cpu(css->ss, cpu);
llist_add(&rstatc->lnode, lhead);
}
static void __css_process_update_tree(struct cgroup_subsys_state *css, int cpu)
{
/* put @css and all ancestors on the corresponding updated lists */
while (true) {
struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
struct cgroup_subsys_state *parent = css->parent;
struct css_rstat_cpu *prstatc;
/*
* Both additions and removals are bottom-up. If a cgroup
* is already in the tree, all ancestors are.
*/
if (rstatc->updated_next)
break;
/* Root has no parent to link it to, but mark it busy */
if (!parent) {
rstatc->updated_next = css;
break;
}
prstatc = css_rstat_cpu(parent, cpu);
rstatc->updated_next = prstatc->updated_children;
prstatc->updated_children = css;
css = parent;
}
}
static void css_process_update_tree(struct cgroup_subsys *ss, int cpu)
{
struct llist_head *lhead = ss_lhead_cpu(ss, cpu);
struct llist_node *lnode;
while ((lnode = llist_del_first_init(lhead))) {
struct css_rstat_cpu *rstatc;
/*
* smp_mb() is needed here (more specifically in between
* init_llist_node() and per-cpu stats flushing) if the
* guarantee is required by a rstat user where etiher the
* updater should add itself on the lockless list or the
* flusher flush the stats updated by the updater who have
* observed that they are already on the list. The
* corresponding barrier pair for this one should be before
* css_rstat_updated() by the user.
*
* For now, there aren't any such user, so not adding the
* barrier here but if such a use-case arise, please add
* smp_mb() here.
*/
rstatc = container_of(lnode, struct css_rstat_cpu, lnode);
__css_process_update_tree(rstatc->owner, cpu);
}
}
/**
* css_rstat_push_children - push children css's into the given list
* @head: current head of the list (= subtree root)
* @child: first child of the root
* @cpu: target cpu
* Return: A new singly linked list of css's to be flushed
*
* Iteratively traverse down the css_rstat_cpu updated tree level by
* level and push all the parents first before their next level children
* into a singly linked list via the rstat_flush_next pointer built from the
* tail backward like "pushing" css's into a stack. The root is pushed by
* the caller.
*/
static struct cgroup_subsys_state *css_rstat_push_children(
struct cgroup_subsys_state *head,
struct cgroup_subsys_state *child, int cpu)
{
struct cgroup_subsys_state *cnext = child; /* Next head of child css level */
struct cgroup_subsys_state *ghead = NULL; /* Head of grandchild css level */
struct cgroup_subsys_state *parent, *grandchild;
struct css_rstat_cpu *crstatc;
child->rstat_flush_next = NULL;
/*
* The subsystem rstat lock must be held for the whole duration from
* here as the rstat_flush_next list is being constructed to when
* it is consumed later in css_rstat_flush().
*/
lockdep_assert_held(ss_rstat_lock(head->ss));
/*
* Notation: -> updated_next pointer
* => rstat_flush_next pointer
*
* Assuming the following sample updated_children lists:
* P: C1 -> C2 -> P
* C1: G11 -> G12 -> C1
* C2: G21 -> G22 -> C2
*
* After 1st iteration:
* head => C2 => C1 => NULL
* ghead => G21 => G11 => NULL
*
* After 2nd iteration:
* head => G12 => G11 => G22 => G21 => C2 => C1 => NULL
*/
next_level:
while (cnext) {
child = cnext;
cnext = child->rstat_flush_next;
parent = child->parent;
/* updated_next is parent cgroup terminated if !NULL */
while (child != parent) {
child->rstat_flush_next = head;
head = child;
crstatc = css_rstat_cpu(child, cpu);
grandchild = crstatc->updated_children;
if (grandchild != child) {
/* Push the grand child to the next level */
crstatc->updated_children = child;
grandchild->rstat_flush_next = ghead;
ghead = grandchild;
}
child = crstatc->updated_next;
crstatc->updated_next = NULL;
}
}
if (ghead) {
cnext = ghead;
ghead = NULL;
goto next_level;
}
return head;
}
/**
* css_rstat_updated_list - build a list of updated css's to be flushed
* @root: root of the css subtree to traverse
* @cpu: target cpu
* Return: A singly linked list of css's to be flushed
*
* Walks the updated rstat_cpu tree on @cpu from @root. During traversal,
* each returned css is unlinked from the updated tree.
*
* The only ordering guarantee is that, for a parent and a child pair
* covered by a given traversal, the child is before its parent in
* the list.
*
* Note that updated_children is self terminated and points to a list of
* child css's if not empty. Whereas updated_next is like a sibling link
* within the children list and terminated by the parent css. An exception
* here is the css root whose updated_next can be self terminated.
*/
static struct cgroup_subsys_state *css_rstat_updated_list(
struct cgroup_subsys_state *root, int cpu)
{
struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu);
struct cgroup_subsys_state *head = NULL, *parent, *child;
css_process_update_tree(root->ss, cpu);
/* Return NULL if this subtree is not on-list */
if (!rstatc->updated_next)
return NULL;
/*
* Unlink @root from its parent. As the updated_children list is
* singly linked, we have to walk it to find the removal point.
*/
parent = root->parent;
if (parent) {
struct css_rstat_cpu *prstatc;
struct cgroup_subsys_state **nextp;
prstatc = css_rstat_cpu(parent, cpu);
nextp = &prstatc->updated_children;
while (*nextp != root) {
struct css_rstat_cpu *nrstatc;
nrstatc = css_rstat_cpu(*nextp, cpu);
WARN_ON_ONCE(*nextp == parent);
nextp = &nrstatc->updated_next;
}
*nextp = rstatc->updated_next;
}
rstatc->updated_next = NULL;
/* Push @root to the list first before pushing the children */
head = root;
root->rstat_flush_next = NULL;
child = rstatc->updated_children;
rstatc->updated_children = root;
if (child != root)
head = css_rstat_push_children(head, child, cpu);
return head;
}
/*
* A hook for bpf stat collectors to attach to and flush their stats.
* Together with providing bpf kfuncs for css_rstat_updated() and
* css_rstat_flush(), this enables a complete workflow where bpf progs that
* collect cgroup stats can integrate with rstat for efficient flushing.
*
* A static noinline declaration here could cause the compiler to optimize away
* the function. A global noinline declaration will keep the definition, but may
* optimize away the callsite. Therefore, __weak is needed to ensure that the
* call is still emitted, by telling the compiler that we don't know what the
* function might eventually be.
*/
__bpf_hook_start();
__weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
struct cgroup *parent, int cpu)
{
}
__bpf_hook_end();
/*
* Helper functions for locking.
*
* This makes it easier to diagnose locking issues and contention in
* production environments. The parameter @cpu_in_loop indicate lock
* was released and re-taken when collection data from the CPUs. The
* value -1 is used when obtaining the main lock else this is the CPU
* number processed last.
*/
static inline void __css_rstat_lock(struct cgroup_subsys_state *css,
int cpu_in_loop)
__acquires(ss_rstat_lock(css->ss))
{
struct cgroup *cgrp = css->cgroup;
spinlock_t *lock;
bool contended;
lock = ss_rstat_lock(css->ss);
contended = !spin_trylock_irq(lock);
if (contended) {
trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended);
spin_lock_irq(lock);
}
trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended);
}
static inline void __css_rstat_unlock(struct cgroup_subsys_state *css,
int cpu_in_loop)
__releases(ss_rstat_lock(css->ss))
{
struct cgroup *cgrp = css->cgroup;
spinlock_t *lock;
lock = ss_rstat_lock(css->ss);
trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false);
spin_unlock_irq(lock);
}
/**
* css_rstat_flush - flush stats in @css's rstat subtree
* @css: target cgroup subsystem state
*
* Collect all per-cpu stats in @css's subtree into the global counters
* and propagate them upwards. After this function returns, all rstat
* nodes in the subtree have up-to-date ->stat.
*
* This also gets all rstat nodes in the subtree including @css off the
* ->updated_children lists.
*
* This function may block.
*/
__bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css)
{
int cpu;
bool is_self = css_is_self(css);
/*
* Since bpf programs can call this function, prevent access to
* uninitialized rstat pointers.
*/
if (!css_uses_rstat(css))
return;
might_sleep();
for_each_possible_cpu(cpu) {
struct cgroup_subsys_state *pos;
/* Reacquire for each CPU to avoid disabling IRQs too long */
__css_rstat_lock(css, cpu);
pos = css_rstat_updated_list(css, cpu);
for (; pos; pos = pos->rstat_flush_next) {
if (is_self) {
cgroup_base_stat_flush(pos->cgroup, cpu);
bpf_rstat_flush(pos->cgroup,
cgroup_parent(pos->cgroup), cpu);
} else
pos->ss->css_rstat_flush(pos, cpu);
}
__css_rstat_unlock(css, cpu);
if (!cond_resched())
cpu_relax();
}
}
int css_rstat_init(struct cgroup_subsys_state *css)
{
struct cgroup *cgrp = css->cgroup;
int cpu;
bool is_self = css_is_self(css);
if (is_self) {
/* the root cgrp has rstat_base_cpu preallocated */
if (!cgrp->rstat_base_cpu) {
cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu);
if (!cgrp->rstat_base_cpu)
return -ENOMEM;
}
} else if (css->ss->css_rstat_flush == NULL)
return 0;
/* the root cgrp's self css has rstat_cpu preallocated */
if (!css->rstat_cpu) {
css->rstat_cpu = alloc_percpu(struct css_rstat_cpu);
if (!css->rstat_cpu) {
if (is_self)
free_percpu(cgrp->rstat_base_cpu);
return -ENOMEM;
}
}
/* ->updated_children list is self terminated */
for_each_possible_cpu(cpu) {
struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
rstatc->owner = rstatc->updated_children = css;
init_llist_node(&rstatc->lnode);
if (is_self) {
struct cgroup_rstat_base_cpu *rstatbc;
rstatbc = cgroup_rstat_base_cpu(cgrp, cpu);
u64_stats_init(&rstatbc->bsync);
}
}
return 0;
}
void css_rstat_exit(struct cgroup_subsys_state *css)
{
int cpu;
if (!css_uses_rstat(css))
return;
if (!css->rstat_cpu)
return;
css_rstat_flush(css);
/* sanity check */
for_each_possible_cpu(cpu) {
struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
if (WARN_ON_ONCE(rstatc->updated_children != css) ||
WARN_ON_ONCE(rstatc->updated_next))
return;
}
if (css_is_self(css)) {
struct cgroup *cgrp = css->cgroup;
free_percpu(cgrp->rstat_base_cpu);
cgrp->rstat_base_cpu = NULL;
}
free_percpu(css->rstat_cpu);
css->rstat_cpu = NULL;
}
/**
* ss_rstat_init - subsystem-specific rstat initialization
* @ss: target subsystem
*
* If @ss is NULL, the static locks associated with the base stats
* are initialized. If @ss is non-NULL, the subsystem-specific locks
* are initialized.
*/
int __init ss_rstat_init(struct cgroup_subsys *ss)
{
int cpu;
if (ss) {
ss->lhead = alloc_percpu(struct llist_head);
if (!ss->lhead)
return -ENOMEM;
}
spin_lock_init(ss_rstat_lock(ss));
for_each_possible_cpu(cpu)
init_llist_head(ss_lhead_cpu(ss, cpu));
return 0;
}
/*
* Functions for cgroup basic resource statistics implemented on top of
* rstat.
*/
static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
struct cgroup_base_stat *src_bstat)
{
dst_bstat->cputime.utime += src_bstat->cputime.utime;
dst_bstat->cputime.stime += src_bstat->cputime.stime;
dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
#ifdef CONFIG_SCHED_CORE
dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
#endif
dst_bstat->ntime += src_bstat->ntime;
}
static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
struct cgroup_base_stat *src_bstat)
{
dst_bstat->cputime.utime -= src_bstat->cputime.utime;
dst_bstat->cputime.stime -= src_bstat->cputime.stime;
dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
#ifdef CONFIG_SCHED_CORE
dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
#endif
dst_bstat->ntime -= src_bstat->ntime;
}
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
{
struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu);
struct cgroup *parent = cgroup_parent(cgrp);
struct cgroup_rstat_base_cpu *prstatbc;
struct cgroup_base_stat delta;
unsigned seq;
/* Root-level stats are sourced from system-wide CPU stats */
if (!parent)
return;
/* fetch the current per-cpu values */
do {
seq = __u64_stats_fetch_begin(&rstatbc->bsync);
delta = rstatbc->bstat;
} while (__u64_stats_fetch_retry(&rstatbc->bsync, seq));
/* propagate per-cpu delta to cgroup and per-cpu global statistics */
cgroup_base_stat_sub(&delta, &rstatbc->last_bstat);
cgroup_base_stat_add(&cgrp->bstat, &delta);
cgroup_base_stat_add(&rstatbc->last_bstat, &delta);
cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta);
/* propagate cgroup and per-cpu global delta to parent (unless that's root) */
if (cgroup_parent(parent)) {
delta = cgrp->bstat;
cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
cgroup_base_stat_add(&parent->bstat, &delta);
cgroup_base_stat_add(&cgrp->last_bstat, &delta);
delta = rstatbc->subtree_bstat;
prstatbc = cgroup_rstat_base_cpu(parent, cpu);
cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat);
cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta);
cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta);
}
}
static struct cgroup_rstat_base_cpu *
cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
{
struct cgroup_rstat_base_cpu *rstatbc;
rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu);
*flags = u64_stats_update_begin_irqsave(&rstatbc->bsync);
return rstatbc;
}
static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
struct cgroup_rstat_base_cpu *rstatbc,
unsigned long flags)
{
u64_stats_update_end_irqrestore(&rstatbc->bsync, flags);
css_rstat_updated(&cgrp->self, smp_processor_id());
put_cpu_ptr(rstatbc);
}
void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
{
struct cgroup_rstat_base_cpu *rstatbc;
unsigned long flags;
rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
rstatbc->bstat.cputime.sum_exec_runtime += delta_exec;
cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags);
}
void __cgroup_account_cputime_field(struct cgroup *cgrp,
enum cpu_usage_stat index, u64 delta_exec)
{
struct cgroup_rstat_base_cpu *rstatbc;
unsigned long flags;
rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
switch (index) {
case CPUTIME_NICE:
rstatbc->bstat.ntime += delta_exec;
fallthrough;
case CPUTIME_USER:
rstatbc->bstat.cputime.utime += delta_exec;
break;
case CPUTIME_SYSTEM:
case CPUTIME_IRQ:
case CPUTIME_SOFTIRQ:
rstatbc->bstat.cputime.stime += delta_exec;
break;
#ifdef CONFIG_SCHED_CORE
case CPUTIME_FORCEIDLE:
rstatbc->bstat.forceidle_sum += delta_exec;
break;
#endif
default:
break;
}
cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags);
}
/*
* compute the cputime for the root cgroup by getting the per cpu data
* at a global level, then categorizing the fields in a manner consistent
* with how it is done by __cgroup_account_cputime_field for each bit of
* cpu time attributed to a cgroup.
*/
static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
{
struct task_cputime *cputime = &bstat->cputime;
int i;
memset(bstat, 0, sizeof(*bstat));
for_each_possible_cpu(i) {
struct kernel_cpustat kcpustat;
u64 *cpustat = kcpustat.cpustat;
u64 user = 0;
u64 sys = 0;
kcpustat_cpu_fetch(&kcpustat, i);
user += cpustat[CPUTIME_USER];
user += cpustat[CPUTIME_NICE];
cputime->utime += user;
sys += cpustat[CPUTIME_SYSTEM];
sys += cpustat[CPUTIME_IRQ];
sys += cpustat[CPUTIME_SOFTIRQ];
cputime->stime += sys;
cputime->sum_exec_runtime += user;
cputime->sum_exec_runtime += sys;
#ifdef CONFIG_SCHED_CORE
bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
#endif
bstat->ntime += cpustat[CPUTIME_NICE];
}
}
static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat)
{
#ifdef CONFIG_SCHED_CORE
u64 forceidle_time = bstat->forceidle_sum;
do_div(forceidle_time, NSEC_PER_USEC);
seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
#endif
}
void cgroup_base_stat_cputime_show(struct seq_file *seq)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
struct cgroup_base_stat bstat;
if (cgroup_parent(cgrp)) {
css_rstat_flush(&cgrp->self);
__css_rstat_lock(&cgrp->self, -1);
bstat = cgrp->bstat;
cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
&bstat.cputime.utime, &bstat.cputime.stime);
__css_rstat_unlock(&cgrp->self, -1);
} else {
root_cgroup_cputime(&bstat);
}
do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC);
do_div(bstat.cputime.utime, NSEC_PER_USEC);
do_div(bstat.cputime.stime, NSEC_PER_USEC);
do_div(bstat.ntime, NSEC_PER_USEC);
seq_printf(seq, "usage_usec %llu\n"
"user_usec %llu\n"
"system_usec %llu\n"
"nice_usec %llu\n",
bstat.cputime.sum_exec_runtime,
bstat.cputime.utime,
bstat.cputime.stime,
bstat.ntime);
cgroup_force_idle_show(seq, &bstat);
}
/* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */
BTF_KFUNCS_START(bpf_rstat_kfunc_ids)
BTF_ID_FLAGS(func, css_rstat_updated)
BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE)
BTF_KFUNCS_END(bpf_rstat_kfunc_ids)
static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
.owner = THIS_MODULE,
.set = &bpf_rstat_kfunc_ids,
};
static int __init bpf_rstat_kfunc_init(void)
{
return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
&bpf_rstat_kfunc_set);
}
late_initcall(bpf_rstat_kfunc_init);