| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2021 Facebook */ |
| |
| #define _GNU_SOURCE /* See feature_test_macros(7) */ |
| #include <unistd.h> |
| #include <sched.h> |
| #include <pthread.h> |
| #include <sys/syscall.h> /* For SYS_xxx definitions */ |
| #include <sys/types.h> |
| #include <sys/eventfd.h> |
| #include <sys/mman.h> |
| #include <test_progs.h> |
| #include <bpf/btf.h> |
| #include "task_local_storage_helpers.h" |
| #include "task_local_storage.skel.h" |
| #include "task_local_storage_exit_creds.skel.h" |
| #include "task_ls_recursion.skel.h" |
| #include "task_storage_nodeadlock.skel.h" |
| #include "uptr_test_common.h" |
| #include "task_ls_uptr.skel.h" |
| #include "uptr_update_failure.skel.h" |
| #include "uptr_failure.skel.h" |
| #include "uptr_map_failure.skel.h" |
| |
| static void test_sys_enter_exit(void) |
| { |
| struct task_local_storage *skel; |
| int err; |
| |
| skel = task_local_storage__open_and_load(); |
| if (!ASSERT_OK_PTR(skel, "skel_open_and_load")) |
| return; |
| |
| skel->bss->target_pid = sys_gettid(); |
| |
| err = task_local_storage__attach(skel); |
| if (!ASSERT_OK(err, "skel_attach")) |
| goto out; |
| |
| sys_gettid(); |
| sys_gettid(); |
| |
| /* 3x syscalls: 1x attach and 2x gettid */ |
| ASSERT_EQ(skel->bss->enter_cnt, 3, "enter_cnt"); |
| ASSERT_EQ(skel->bss->exit_cnt, 3, "exit_cnt"); |
| ASSERT_EQ(skel->bss->mismatch_cnt, 0, "mismatch_cnt"); |
| out: |
| task_local_storage__destroy(skel); |
| } |
| |
| static void test_exit_creds(void) |
| { |
| struct task_local_storage_exit_creds *skel; |
| int err, run_count, sync_rcu_calls = 0; |
| const int MAX_SYNC_RCU_CALLS = 1000; |
| |
| skel = task_local_storage_exit_creds__open_and_load(); |
| if (!ASSERT_OK_PTR(skel, "skel_open_and_load")) |
| return; |
| |
| err = task_local_storage_exit_creds__attach(skel); |
| if (!ASSERT_OK(err, "skel_attach")) |
| goto out; |
| |
| /* trigger at least one exit_creds() */ |
| if (CHECK_FAIL(system("ls > /dev/null"))) |
| goto out; |
| |
| /* kern_sync_rcu is not enough on its own as the read section we want |
| * to wait for may start after we enter synchronize_rcu, so our call |
| * won't wait for the section to finish. Loop on the run counter |
| * as well to ensure the program has run. |
| */ |
| do { |
| kern_sync_rcu(); |
| run_count = __atomic_load_n(&skel->bss->run_count, __ATOMIC_SEQ_CST); |
| } while (run_count == 0 && ++sync_rcu_calls < MAX_SYNC_RCU_CALLS); |
| |
| ASSERT_NEQ(sync_rcu_calls, MAX_SYNC_RCU_CALLS, |
| "sync_rcu count too high"); |
| ASSERT_NEQ(run_count, 0, "run_count"); |
| ASSERT_EQ(skel->bss->valid_ptr_count, 0, "valid_ptr_count"); |
| ASSERT_NEQ(skel->bss->null_ptr_count, 0, "null_ptr_count"); |
| out: |
| task_local_storage_exit_creds__destroy(skel); |
| } |
| |
| static void test_recursion(void) |
| { |
| int err, map_fd, prog_fd, task_fd; |
| struct task_ls_recursion *skel; |
| struct bpf_prog_info info; |
| __u32 info_len = sizeof(info); |
| long value; |
| |
| task_fd = sys_pidfd_open(getpid(), 0); |
| if (!ASSERT_NEQ(task_fd, -1, "sys_pidfd_open")) |
| return; |
| |
| skel = task_ls_recursion__open_and_load(); |
| if (!ASSERT_OK_PTR(skel, "skel_open_and_load")) |
| goto out; |
| |
| err = task_ls_recursion__attach(skel); |
| if (!ASSERT_OK(err, "skel_attach")) |
| goto out; |
| |
| /* trigger sys_enter, make sure it does not cause deadlock */ |
| skel->bss->test_pid = getpid(); |
| sys_gettid(); |
| skel->bss->test_pid = 0; |
| task_ls_recursion__detach(skel); |
| |
| /* Refer to the comment in BPF_PROG(on_update) for |
| * the explanation on the value 201 and 100. |
| */ |
| map_fd = bpf_map__fd(skel->maps.map_a); |
| err = bpf_map_lookup_elem(map_fd, &task_fd, &value); |
| ASSERT_OK(err, "lookup map_a"); |
| ASSERT_EQ(value, 201, "map_a value"); |
| ASSERT_EQ(skel->bss->nr_del_errs, 1, "bpf_task_storage_delete busy"); |
| |
| map_fd = bpf_map__fd(skel->maps.map_b); |
| err = bpf_map_lookup_elem(map_fd, &task_fd, &value); |
| ASSERT_OK(err, "lookup map_b"); |
| ASSERT_EQ(value, 100, "map_b value"); |
| |
| prog_fd = bpf_program__fd(skel->progs.on_update); |
| memset(&info, 0, sizeof(info)); |
| err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len); |
| ASSERT_OK(err, "get prog info"); |
| ASSERT_EQ(info.recursion_misses, 0, "on_update prog recursion"); |
| |
| prog_fd = bpf_program__fd(skel->progs.on_enter); |
| memset(&info, 0, sizeof(info)); |
| err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len); |
| ASSERT_OK(err, "get prog info"); |
| ASSERT_EQ(info.recursion_misses, 0, "on_enter prog recursion"); |
| |
| out: |
| close(task_fd); |
| task_ls_recursion__destroy(skel); |
| } |
| |
| static bool stop; |
| |
| static void waitall(const pthread_t *tids, int nr) |
| { |
| int i; |
| |
| stop = true; |
| for (i = 0; i < nr; i++) |
| pthread_join(tids[i], NULL); |
| } |
| |
| static void *sock_create_loop(void *arg) |
| { |
| struct task_storage_nodeadlock *skel = arg; |
| int fd; |
| |
| while (!stop) { |
| fd = socket(AF_INET, SOCK_STREAM, 0); |
| close(fd); |
| if (skel->bss->nr_get_errs || skel->bss->nr_del_errs) |
| stop = true; |
| } |
| |
| return NULL; |
| } |
| |
| static void test_nodeadlock(void) |
| { |
| struct task_storage_nodeadlock *skel; |
| struct bpf_prog_info info = {}; |
| __u32 info_len = sizeof(info); |
| const int nr_threads = 32; |
| pthread_t tids[nr_threads]; |
| int i, prog_fd, err; |
| cpu_set_t old, new; |
| |
| /* Pin all threads to one cpu to increase the chance of preemption |
| * in a sleepable bpf prog. |
| */ |
| CPU_ZERO(&new); |
| CPU_SET(0, &new); |
| err = sched_getaffinity(getpid(), sizeof(old), &old); |
| if (!ASSERT_OK(err, "getaffinity")) |
| return; |
| err = sched_setaffinity(getpid(), sizeof(new), &new); |
| if (!ASSERT_OK(err, "setaffinity")) |
| return; |
| |
| skel = task_storage_nodeadlock__open_and_load(); |
| if (!ASSERT_OK_PTR(skel, "open_and_load")) |
| goto done; |
| |
| /* Unnecessary recursion and deadlock detection are reproducible |
| * in the preemptible kernel. |
| */ |
| if (!skel->kconfig->CONFIG_PREEMPTION) { |
| test__skip(); |
| goto done; |
| } |
| |
| err = task_storage_nodeadlock__attach(skel); |
| ASSERT_OK(err, "attach prog"); |
| |
| for (i = 0; i < nr_threads; i++) { |
| err = pthread_create(&tids[i], NULL, sock_create_loop, skel); |
| if (err) { |
| /* Only assert once here to avoid excessive |
| * PASS printing during test failure. |
| */ |
| ASSERT_OK(err, "pthread_create"); |
| waitall(tids, i); |
| goto done; |
| } |
| } |
| |
| /* With 32 threads, 1s is enough to reproduce the issue */ |
| sleep(1); |
| waitall(tids, nr_threads); |
| |
| info_len = sizeof(info); |
| prog_fd = bpf_program__fd(skel->progs.socket_post_create); |
| err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len); |
| ASSERT_OK(err, "get prog info"); |
| ASSERT_EQ(info.recursion_misses, 0, "prog recursion"); |
| |
| ASSERT_EQ(skel->bss->nr_get_errs, 0, "bpf_task_storage_get busy"); |
| ASSERT_EQ(skel->bss->nr_del_errs, 0, "bpf_task_storage_delete busy"); |
| |
| done: |
| task_storage_nodeadlock__destroy(skel); |
| sched_setaffinity(getpid(), sizeof(old), &old); |
| } |
| |
| static struct user_data udata __attribute__((aligned(16))) = { |
| .a = 1, |
| .b = 2, |
| }; |
| |
| static struct user_data udata2 __attribute__((aligned(16))) = { |
| .a = 3, |
| .b = 4, |
| }; |
| |
| static void check_udata2(int expected) |
| { |
| udata2.result = udata2.nested_result = 0; |
| usleep(1); |
| ASSERT_EQ(udata2.result, expected, "udata2.result"); |
| ASSERT_EQ(udata2.nested_result, expected, "udata2.nested_result"); |
| } |
| |
| static void test_uptr_basic(void) |
| { |
| int map_fd, parent_task_fd, ev_fd; |
| struct value_type value = {}; |
| struct task_ls_uptr *skel; |
| pid_t child_pid, my_tid; |
| __u64 ev_dummy_data = 1; |
| int err; |
| |
| my_tid = sys_gettid(); |
| parent_task_fd = sys_pidfd_open(my_tid, 0); |
| if (!ASSERT_OK_FD(parent_task_fd, "parent_task_fd")) |
| return; |
| |
| ev_fd = eventfd(0, 0); |
| if (!ASSERT_OK_FD(ev_fd, "ev_fd")) { |
| close(parent_task_fd); |
| return; |
| } |
| |
| skel = task_ls_uptr__open_and_load(); |
| if (!ASSERT_OK_PTR(skel, "skel_open_and_load")) |
| goto out; |
| |
| map_fd = bpf_map__fd(skel->maps.datamap); |
| value.udata = &udata; |
| value.nested.udata = &udata; |
| err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_NOEXIST); |
| if (!ASSERT_OK(err, "update_elem(udata)")) |
| goto out; |
| |
| err = task_ls_uptr__attach(skel); |
| if (!ASSERT_OK(err, "skel_attach")) |
| goto out; |
| |
| child_pid = fork(); |
| if (!ASSERT_NEQ(child_pid, -1, "fork")) |
| goto out; |
| |
| /* Call syscall in the child process, but access the map value of |
| * the parent process in the BPF program to check if the user kptr |
| * is translated/mapped correctly. |
| */ |
| if (child_pid == 0) { |
| /* child */ |
| |
| /* Overwrite the user_data in the child process to check if |
| * the BPF program accesses the user_data of the parent. |
| */ |
| udata.a = 0; |
| udata.b = 0; |
| |
| /* Wait for the parent to set child_pid */ |
| read(ev_fd, &ev_dummy_data, sizeof(ev_dummy_data)); |
| exit(0); |
| } |
| |
| skel->bss->parent_pid = my_tid; |
| skel->bss->target_pid = child_pid; |
| |
| write(ev_fd, &ev_dummy_data, sizeof(ev_dummy_data)); |
| |
| err = waitpid(child_pid, NULL, 0); |
| ASSERT_EQ(err, child_pid, "waitpid"); |
| ASSERT_EQ(udata.result, MAGIC_VALUE + udata.a + udata.b, "udata.result"); |
| ASSERT_EQ(udata.nested_result, MAGIC_VALUE + udata.a + udata.b, "udata.nested_result"); |
| |
| skel->bss->target_pid = my_tid; |
| |
| /* update_elem: uptr changes from udata1 to udata2 */ |
| value.udata = &udata2; |
| value.nested.udata = &udata2; |
| err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST); |
| if (!ASSERT_OK(err, "update_elem(udata2)")) |
| goto out; |
| check_udata2(MAGIC_VALUE + udata2.a + udata2.b); |
| |
| /* update_elem: uptr changes from udata2 uptr to NULL */ |
| memset(&value, 0, sizeof(value)); |
| err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST); |
| if (!ASSERT_OK(err, "update_elem(udata2)")) |
| goto out; |
| check_udata2(0); |
| |
| /* update_elem: uptr changes from NULL to udata2 */ |
| value.udata = &udata2; |
| value.nested.udata = &udata2; |
| err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST); |
| if (!ASSERT_OK(err, "update_elem(udata2)")) |
| goto out; |
| check_udata2(MAGIC_VALUE + udata2.a + udata2.b); |
| |
| /* Check if user programs can access the value of user kptrs |
| * through bpf_map_lookup_elem(). Make sure the kernel value is not |
| * leaked. |
| */ |
| err = bpf_map_lookup_elem(map_fd, &parent_task_fd, &value); |
| if (!ASSERT_OK(err, "bpf_map_lookup_elem")) |
| goto out; |
| ASSERT_EQ(value.udata, NULL, "value.udata"); |
| ASSERT_EQ(value.nested.udata, NULL, "value.nested.udata"); |
| |
| /* delete_elem */ |
| err = bpf_map_delete_elem(map_fd, &parent_task_fd); |
| ASSERT_OK(err, "delete_elem(udata2)"); |
| check_udata2(0); |
| |
| /* update_elem: add uptr back to test map_free */ |
| value.udata = &udata2; |
| value.nested.udata = &udata2; |
| err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_NOEXIST); |
| ASSERT_OK(err, "update_elem(udata2)"); |
| |
| out: |
| task_ls_uptr__destroy(skel); |
| close(ev_fd); |
| close(parent_task_fd); |
| } |
| |
| static void test_uptr_across_pages(void) |
| { |
| int page_size = getpagesize(); |
| struct value_type value = {}; |
| struct task_ls_uptr *skel; |
| int err, task_fd, map_fd; |
| void *mem; |
| |
| task_fd = sys_pidfd_open(getpid(), 0); |
| if (!ASSERT_OK_FD(task_fd, "task_fd")) |
| return; |
| |
| mem = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (!ASSERT_OK_PTR(mem, "mmap(page_size * 2)")) { |
| close(task_fd); |
| return; |
| } |
| |
| skel = task_ls_uptr__open_and_load(); |
| if (!ASSERT_OK_PTR(skel, "skel_open_and_load")) |
| goto out; |
| |
| map_fd = bpf_map__fd(skel->maps.datamap); |
| value.udata = mem + page_size - offsetof(struct user_data, b); |
| err = bpf_map_update_elem(map_fd, &task_fd, &value, 0); |
| if (!ASSERT_ERR(err, "update_elem(udata)")) |
| goto out; |
| ASSERT_EQ(errno, EOPNOTSUPP, "errno"); |
| |
| value.udata = mem + page_size - sizeof(struct user_data); |
| err = bpf_map_update_elem(map_fd, &task_fd, &value, 0); |
| ASSERT_OK(err, "update_elem(udata)"); |
| |
| out: |
| task_ls_uptr__destroy(skel); |
| close(task_fd); |
| munmap(mem, page_size * 2); |
| } |
| |
| static void test_uptr_update_failure(void) |
| { |
| struct value_lock_type value = {}; |
| struct uptr_update_failure *skel; |
| int err, task_fd, map_fd; |
| |
| task_fd = sys_pidfd_open(getpid(), 0); |
| if (!ASSERT_OK_FD(task_fd, "task_fd")) |
| return; |
| |
| skel = uptr_update_failure__open_and_load(); |
| if (!ASSERT_OK_PTR(skel, "skel_open_and_load")) |
| goto out; |
| |
| map_fd = bpf_map__fd(skel->maps.datamap); |
| |
| value.udata = &udata; |
| err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_F_LOCK); |
| if (!ASSERT_ERR(err, "update_elem(udata, BPF_F_LOCK)")) |
| goto out; |
| ASSERT_EQ(errno, EOPNOTSUPP, "errno"); |
| |
| err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_EXIST); |
| if (!ASSERT_ERR(err, "update_elem(udata, BPF_EXIST)")) |
| goto out; |
| ASSERT_EQ(errno, ENOENT, "errno"); |
| |
| err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_NOEXIST); |
| if (!ASSERT_OK(err, "update_elem(udata, BPF_NOEXIST)")) |
| goto out; |
| |
| value.udata = &udata2; |
| err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_NOEXIST); |
| if (!ASSERT_ERR(err, "update_elem(udata2, BPF_NOEXIST)")) |
| goto out; |
| ASSERT_EQ(errno, EEXIST, "errno"); |
| |
| out: |
| uptr_update_failure__destroy(skel); |
| close(task_fd); |
| } |
| |
| static void test_uptr_map_failure(const char *map_name, int expected_errno) |
| { |
| LIBBPF_OPTS(bpf_map_create_opts, create_attr); |
| struct uptr_map_failure *skel; |
| struct bpf_map *map; |
| struct btf *btf; |
| int map_fd, err; |
| |
| skel = uptr_map_failure__open(); |
| if (!ASSERT_OK_PTR(skel, "uptr_map_failure__open")) |
| return; |
| |
| map = bpf_object__find_map_by_name(skel->obj, map_name); |
| btf = bpf_object__btf(skel->obj); |
| err = btf__load_into_kernel(btf); |
| if (!ASSERT_OK(err, "btf__load_into_kernel")) |
| goto done; |
| |
| create_attr.map_flags = bpf_map__map_flags(map); |
| create_attr.btf_fd = btf__fd(btf); |
| create_attr.btf_key_type_id = bpf_map__btf_key_type_id(map); |
| create_attr.btf_value_type_id = bpf_map__btf_value_type_id(map); |
| map_fd = bpf_map_create(bpf_map__type(map), map_name, |
| bpf_map__key_size(map), bpf_map__value_size(map), |
| 0, &create_attr); |
| if (ASSERT_ERR_FD(map_fd, "map_create")) |
| ASSERT_EQ(errno, expected_errno, "errno"); |
| else |
| close(map_fd); |
| |
| done: |
| uptr_map_failure__destroy(skel); |
| } |
| |
| void test_task_local_storage(void) |
| { |
| if (test__start_subtest("sys_enter_exit")) |
| test_sys_enter_exit(); |
| if (test__start_subtest("exit_creds")) |
| test_exit_creds(); |
| if (test__start_subtest("recursion")) |
| test_recursion(); |
| if (test__start_subtest("nodeadlock")) |
| test_nodeadlock(); |
| if (test__start_subtest("uptr_basic")) |
| test_uptr_basic(); |
| if (test__start_subtest("uptr_across_pages")) |
| test_uptr_across_pages(); |
| if (test__start_subtest("uptr_update_failure")) |
| test_uptr_update_failure(); |
| if (test__start_subtest("uptr_map_failure_e2big")) { |
| if (getpagesize() == PAGE_SIZE) |
| test_uptr_map_failure("large_uptr_map", E2BIG); |
| else |
| test__skip(); |
| } |
| if (test__start_subtest("uptr_map_failure_size0")) |
| test_uptr_map_failure("empty_uptr_map", EINVAL); |
| if (test__start_subtest("uptr_map_failure_kstruct")) |
| test_uptr_map_failure("kstruct_uptr_map", EINVAL); |
| RUN_TESTS(uptr_failure); |
| } |