blob: 3ff00fb624a44b964cc54954f1f088cabe11a901 [file] [log] [blame]
/*
* parse_vdso.c: Linux reference vDSO parser
* Written by Andrew Lutomirski, 2011-2014.
*
* This code is meant to be linked in to various programs that run on Linux.
* As such, it is available with as few restrictions as possible. This file
* is licensed under the Creative Commons Zero License, version 1.0,
* available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
*
* The vDSO is a regular ELF DSO that the kernel maps into user space when
* it starts a program. It works equally well in statically and dynamically
* linked binaries.
*
* This code is tested on x86. In principle it should work on any
* architecture that has a vDSO.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <limits.h>
#include <linux/auxvec.h>
#include <linux/elf.h>
#include "parse_vdso.h"
/* And here's the code. */
#ifndef ELF_BITS
# if __SIZEOF_LONG__ >= 8
# define ELF_BITS 64
# else
# define ELF_BITS 32
# endif
#endif
#define ELF_BITS_XFORM2(bits, x) Elf##bits##_##x
#define ELF_BITS_XFORM(bits, x) ELF_BITS_XFORM2(bits, x)
#define ELF(x) ELF_BITS_XFORM(ELF_BITS, x)
#ifdef __s390x__
#define ELF_HASH_ENTRY ELF(Xword)
#else
#define ELF_HASH_ENTRY ELF(Word)
#endif
static struct vdso_info
{
bool valid;
/* Load information */
uintptr_t load_addr;
uintptr_t load_offset; /* load_addr - recorded vaddr */
/* Symbol table */
ELF(Sym) *symtab;
const char *symstrings;
ELF(Word) *gnu_hash, *gnu_bucket;
ELF_HASH_ENTRY *bucket, *chain;
ELF_HASH_ENTRY nbucket, nchain;
/* Version table */
ELF(Versym) *versym;
ELF(Verdef) *verdef;
} vdso_info;
/*
* Straight from the ELF specification...and then tweaked slightly, in order to
* avoid a few clang warnings.
*/
static unsigned long elf_hash(const char *name)
{
unsigned long h = 0, g;
const unsigned char *uch_name = (const unsigned char *)name;
while (*uch_name)
{
h = (h << 4) + *uch_name++;
g = h & 0xf0000000;
if (g)
h ^= g >> 24;
h &= ~g;
}
return h;
}
static uint32_t gnu_hash(const char *name)
{
const unsigned char *s = (void *)name;
uint32_t h = 5381;
for (; *s; s++)
h += h * 32 + *s;
return h;
}
void vdso_init_from_sysinfo_ehdr(uintptr_t base)
{
size_t i;
bool found_vaddr = false;
vdso_info.valid = false;
vdso_info.load_addr = base;
ELF(Ehdr) *hdr = (ELF(Ehdr)*)base;
if (hdr->e_ident[EI_CLASS] !=
(ELF_BITS == 32 ? ELFCLASS32 : ELFCLASS64)) {
return; /* Wrong ELF class -- check ELF_BITS */
}
ELF(Phdr) *pt = (ELF(Phdr)*)(vdso_info.load_addr + hdr->e_phoff);
ELF(Dyn) *dyn = 0;
/*
* We need two things from the segment table: the load offset
* and the dynamic table.
*/
for (i = 0; i < hdr->e_phnum; i++)
{
if (pt[i].p_type == PT_LOAD && !found_vaddr) {
found_vaddr = true;
vdso_info.load_offset = base
+ (uintptr_t)pt[i].p_offset
- (uintptr_t)pt[i].p_vaddr;
} else if (pt[i].p_type == PT_DYNAMIC) {
dyn = (ELF(Dyn)*)(base + pt[i].p_offset);
}
}
if (!found_vaddr || !dyn)
return; /* Failed */
/*
* Fish out the useful bits of the dynamic table.
*/
ELF_HASH_ENTRY *hash = 0;
vdso_info.symstrings = 0;
vdso_info.gnu_hash = 0;
vdso_info.symtab = 0;
vdso_info.versym = 0;
vdso_info.verdef = 0;
for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
switch (dyn[i].d_tag) {
case DT_STRTAB:
vdso_info.symstrings = (const char *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_SYMTAB:
vdso_info.symtab = (ELF(Sym) *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_HASH:
hash = (ELF_HASH_ENTRY *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_GNU_HASH:
vdso_info.gnu_hash =
(ELF(Word) *)((uintptr_t)dyn[i].d_un.d_ptr +
vdso_info.load_offset);
break;
case DT_VERSYM:
vdso_info.versym = (ELF(Versym) *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
case DT_VERDEF:
vdso_info.verdef = (ELF(Verdef) *)
((uintptr_t)dyn[i].d_un.d_ptr
+ vdso_info.load_offset);
break;
}
}
if (!vdso_info.symstrings || !vdso_info.symtab ||
(!hash && !vdso_info.gnu_hash))
return; /* Failed */
if (!vdso_info.verdef)
vdso_info.versym = 0;
/* Parse the hash table header. */
if (vdso_info.gnu_hash) {
vdso_info.nbucket = vdso_info.gnu_hash[0];
/* The bucket array is located after the header (4 uint32) and the bloom
* filter (size_t array of gnu_hash[2] elements).
*/
vdso_info.gnu_bucket = vdso_info.gnu_hash + 4 +
sizeof(size_t) / 4 * vdso_info.gnu_hash[2];
} else {
vdso_info.nbucket = hash[0];
vdso_info.nchain = hash[1];
vdso_info.bucket = &hash[2];
vdso_info.chain = &hash[vdso_info.nbucket + 2];
}
/* That's all we need. */
vdso_info.valid = true;
}
static bool vdso_match_version(ELF(Versym) ver,
const char *name, ELF(Word) hash)
{
/*
* This is a helper function to check if the version indexed by
* ver matches name (which hashes to hash).
*
* The version definition table is a mess, and I don't know how
* to do this in better than linear time without allocating memory
* to build an index. I also don't know why the table has
* variable size entries in the first place.
*
* For added fun, I can't find a comprehensible specification of how
* to parse all the weird flags in the table.
*
* So I just parse the whole table every time.
*/
/* First step: find the version definition */
ver &= 0x7fff; /* Apparently bit 15 means "hidden" */
ELF(Verdef) *def = vdso_info.verdef;
while(true) {
if ((def->vd_flags & VER_FLG_BASE) == 0
&& (def->vd_ndx & 0x7fff) == ver)
break;
if (def->vd_next == 0)
return false; /* No definition. */
def = (ELF(Verdef) *)((char *)def + def->vd_next);
}
/* Now figure out whether it matches. */
ELF(Verdaux) *aux = (ELF(Verdaux)*)((char *)def + def->vd_aux);
return def->vd_hash == hash
&& !strcmp(name, vdso_info.symstrings + aux->vda_name);
}
static bool check_sym(ELF(Sym) *sym, ELF(Word) i, const char *name,
const char *version, unsigned long ver_hash)
{
/* Check for a defined global or weak function w/ right name. */
if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
return false;
if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
ELF64_ST_BIND(sym->st_info) != STB_WEAK)
return false;
if (strcmp(name, vdso_info.symstrings + sym->st_name))
return false;
/* Check symbol version. */
if (vdso_info.versym &&
!vdso_match_version(vdso_info.versym[i], version, ver_hash))
return false;
return true;
}
void *vdso_sym(const char *version, const char *name)
{
unsigned long ver_hash;
if (!vdso_info.valid)
return 0;
ver_hash = elf_hash(version);
ELF(Word) i;
if (vdso_info.gnu_hash) {
uint32_t h1 = gnu_hash(name), h2, *hashval;
i = vdso_info.gnu_bucket[h1 % vdso_info.nbucket];
if (i == 0)
return 0;
h1 |= 1;
hashval = vdso_info.gnu_bucket + vdso_info.nbucket +
(i - vdso_info.gnu_hash[1]);
for (;; i++) {
ELF(Sym) *sym = &vdso_info.symtab[i];
h2 = *hashval++;
if (h1 == (h2 | 1) &&
check_sym(sym, i, name, version, ver_hash))
return (void *)(vdso_info.load_offset +
sym->st_value);
if (h2 & 1)
break;
}
} else {
i = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
for (; i; i = vdso_info.chain[i]) {
ELF(Sym) *sym = &vdso_info.symtab[i];
if (sym->st_shndx != SHN_UNDEF &&
check_sym(sym, i, name, version, ver_hash))
return (void *)(vdso_info.load_offset +
sym->st_value);
}
}
return 0;
}