|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/arch/arm/mm/mmu.c | 
|  | * | 
|  | *  Copyright (C) 1995-2005 Russell King | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sizes.h> | 
|  |  | 
|  | #include <asm/cp15.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/cachetype.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/smp_plat.h> | 
|  | #include <asm/tcm.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/highmem.h> | 
|  | #include <asm/system_info.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/procinfo.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/kasan_def.h> | 
|  |  | 
|  | #include <asm/mach/arch.h> | 
|  | #include <asm/mach/map.h> | 
|  | #include <asm/mach/pci.h> | 
|  | #include <asm/fixmap.h> | 
|  |  | 
|  | #include "fault.h" | 
|  | #include "mm.h" | 
|  |  | 
|  | extern unsigned long __atags_pointer; | 
|  |  | 
|  | /* | 
|  | * empty_zero_page is a special page that is used for | 
|  | * zero-initialized data and COW. | 
|  | */ | 
|  | struct page *empty_zero_page; | 
|  | EXPORT_SYMBOL(empty_zero_page); | 
|  |  | 
|  | /* | 
|  | * The pmd table for the upper-most set of pages. | 
|  | */ | 
|  | pmd_t *top_pmd; | 
|  |  | 
|  | pmdval_t user_pmd_table = _PAGE_USER_TABLE; | 
|  |  | 
|  | #define CPOLICY_UNCACHED	0 | 
|  | #define CPOLICY_BUFFERED	1 | 
|  | #define CPOLICY_WRITETHROUGH	2 | 
|  | #define CPOLICY_WRITEBACK	3 | 
|  | #define CPOLICY_WRITEALLOC	4 | 
|  |  | 
|  | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; | 
|  | static unsigned int ecc_mask __initdata = 0; | 
|  | pgprot_t pgprot_user; | 
|  | pgprot_t pgprot_kernel; | 
|  |  | 
|  | EXPORT_SYMBOL(pgprot_user); | 
|  | EXPORT_SYMBOL(pgprot_kernel); | 
|  |  | 
|  | struct cachepolicy { | 
|  | const char	policy[16]; | 
|  | unsigned int	cr_mask; | 
|  | pmdval_t	pmd; | 
|  | pteval_t	pte; | 
|  | }; | 
|  |  | 
|  | static struct cachepolicy cache_policies[] __initdata = { | 
|  | { | 
|  | .policy		= "uncached", | 
|  | .cr_mask	= CR_W|CR_C, | 
|  | .pmd		= PMD_SECT_UNCACHED, | 
|  | .pte		= L_PTE_MT_UNCACHED, | 
|  | }, { | 
|  | .policy		= "buffered", | 
|  | .cr_mask	= CR_C, | 
|  | .pmd		= PMD_SECT_BUFFERED, | 
|  | .pte		= L_PTE_MT_BUFFERABLE, | 
|  | }, { | 
|  | .policy		= "writethrough", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WT, | 
|  | .pte		= L_PTE_MT_WRITETHROUGH, | 
|  | }, { | 
|  | .policy		= "writeback", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WB, | 
|  | .pte		= L_PTE_MT_WRITEBACK, | 
|  | }, { | 
|  | .policy		= "writealloc", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WBWA, | 
|  | .pte		= L_PTE_MT_WRITEALLOC, | 
|  | } | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CPU_CP15 | 
|  | static unsigned long initial_pmd_value __initdata = 0; | 
|  |  | 
|  | /* | 
|  | * Initialise the cache_policy variable with the initial state specified | 
|  | * via the "pmd" value.  This is used to ensure that on ARMv6 and later, | 
|  | * the C code sets the page tables up with the same policy as the head | 
|  | * assembly code, which avoids an illegal state where the TLBs can get | 
|  | * confused.  See comments in early_cachepolicy() for more information. | 
|  | */ | 
|  | void __init init_default_cache_policy(unsigned long pmd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | initial_pmd_value = pmd; | 
|  |  | 
|  | pmd &= PMD_SECT_CACHE_MASK; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) | 
|  | if (cache_policies[i].pmd == pmd) { | 
|  | cachepolicy = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == ARRAY_SIZE(cache_policies)) | 
|  | pr_err("ERROR: could not find cache policy\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are useful for identifying cache coherency problems by allowing | 
|  | * the cache or the cache and writebuffer to be turned off.  (Note: the | 
|  | * write buffer should not be on and the cache off). | 
|  | */ | 
|  | static int __init early_cachepolicy(char *p) | 
|  | { | 
|  | int i, selected = -1; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { | 
|  | int len = strlen(cache_policies[i].policy); | 
|  |  | 
|  | if (memcmp(p, cache_policies[i].policy, len) == 0) { | 
|  | selected = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (selected == -1) | 
|  | pr_err("ERROR: unknown or unsupported cache policy\n"); | 
|  |  | 
|  | /* | 
|  | * This restriction is partly to do with the way we boot; it is | 
|  | * unpredictable to have memory mapped using two different sets of | 
|  | * memory attributes (shared, type, and cache attribs).  We can not | 
|  | * change these attributes once the initial assembly has setup the | 
|  | * page tables. | 
|  | */ | 
|  | if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { | 
|  | pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", | 
|  | cache_policies[cachepolicy].policy); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (selected != cachepolicy) { | 
|  | unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); | 
|  | cachepolicy = selected; | 
|  | flush_cache_all(); | 
|  | set_cr(cr); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | early_param("cachepolicy", early_cachepolicy); | 
|  |  | 
|  | static int __init early_nocache(char *__unused) | 
|  | { | 
|  | char *p = "buffered"; | 
|  | pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(p); | 
|  | return 0; | 
|  | } | 
|  | early_param("nocache", early_nocache); | 
|  |  | 
|  | static int __init early_nowrite(char *__unused) | 
|  | { | 
|  | char *p = "uncached"; | 
|  | pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(p); | 
|  | return 0; | 
|  | } | 
|  | early_param("nowb", early_nowrite); | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | static int __init early_ecc(char *p) | 
|  | { | 
|  | if (memcmp(p, "on", 2) == 0) | 
|  | ecc_mask = PMD_PROTECTION; | 
|  | else if (memcmp(p, "off", 3) == 0) | 
|  | ecc_mask = 0; | 
|  | return 0; | 
|  | } | 
|  | early_param("ecc", early_ecc); | 
|  | #endif | 
|  |  | 
|  | #else /* ifdef CONFIG_CPU_CP15 */ | 
|  |  | 
|  | static int __init early_cachepolicy(char *p) | 
|  | { | 
|  | pr_warn("cachepolicy kernel parameter not supported without cp15\n"); | 
|  | return 0; | 
|  | } | 
|  | early_param("cachepolicy", early_cachepolicy); | 
|  |  | 
|  | static int __init noalign_setup(char *__unused) | 
|  | { | 
|  | pr_warn("noalign kernel parameter not supported without cp15\n"); | 
|  | return 1; | 
|  | } | 
|  | __setup("noalign", noalign_setup); | 
|  |  | 
|  | #endif /* ifdef CONFIG_CPU_CP15 / else */ | 
|  |  | 
|  | #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN | 
|  | #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE | 
|  | #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE | 
|  |  | 
|  | static struct mem_type mem_types[] __ro_after_init = { | 
|  | [MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | | 
|  | L_PTE_SHARED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_CACHED] = {	  /* ioremap_cache */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_WC] = {	/* ioremap_wc */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_UNCACHED] = { | 
|  | .prot_pte	= PROT_PTE_DEVICE, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_CACHECLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | [MT_MINICLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | #endif | 
|  | [MT_LOW_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_RDONLY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_VECTORS, | 
|  | }, | 
|  | [MT_HIGH_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_USER | L_PTE_RDONLY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_VECTORS, | 
|  | }, | 
|  | [MT_MEMORY_RWX] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RW] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_XN, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RO] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_XN | L_PTE_RDONLY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | .prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2, | 
|  | #else | 
|  | .prot_sect = PMD_TYPE_SECT, | 
|  | #endif | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_ROM] = { | 
|  | .prot_sect = PMD_TYPE_SECT, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RWX_NONCACHED] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_MT_BUFFERABLE, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RW_DTCM] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_XN, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RWX_ITCM] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RW_SO] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_MT_UNCACHED | L_PTE_XN, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | | 
|  | PMD_SECT_UNCACHED | PMD_SECT_XN, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_DMA_READY] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_XN, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | const struct mem_type *get_mem_type(unsigned int type) | 
|  | { | 
|  | return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(get_mem_type); | 
|  |  | 
|  | static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); | 
|  |  | 
|  | static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] | 
|  | __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; | 
|  |  | 
|  | static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) | 
|  | { | 
|  | return &bm_pte[pte_index(addr)]; | 
|  | } | 
|  |  | 
|  | static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) | 
|  | { | 
|  | return pte_offset_kernel(dir, addr); | 
|  | } | 
|  |  | 
|  | static inline pmd_t * __init fixmap_pmd(unsigned long addr) | 
|  | { | 
|  | return pmd_off_k(addr); | 
|  | } | 
|  |  | 
|  | void __init early_fixmap_init(void) | 
|  | { | 
|  | pmd_t *pmd; | 
|  |  | 
|  | /* | 
|  | * The early fixmap range spans multiple pmds, for which | 
|  | * we are not prepared: | 
|  | */ | 
|  | BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) | 
|  | != FIXADDR_TOP >> PMD_SHIFT); | 
|  |  | 
|  | pmd = fixmap_pmd(FIXADDR_TOP); | 
|  | pmd_populate_kernel(&init_mm, pmd, bm_pte); | 
|  |  | 
|  | pte_offset_fixmap = pte_offset_early_fixmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). | 
|  | * As a result, this can only be called with preemption disabled, as under | 
|  | * stop_machine(). | 
|  | */ | 
|  | void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) | 
|  | { | 
|  | unsigned long vaddr = __fix_to_virt(idx); | 
|  | pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); | 
|  |  | 
|  | /* Make sure fixmap region does not exceed available allocation. */ | 
|  | BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START); | 
|  | BUG_ON(idx >= __end_of_fixed_addresses); | 
|  |  | 
|  | /* We support only device mappings before pgprot_kernel is set. */ | 
|  | if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && | 
|  | pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0)) | 
|  | return; | 
|  |  | 
|  | if (pgprot_val(prot)) | 
|  | set_pte_at(NULL, vaddr, pte, | 
|  | pfn_pte(phys >> PAGE_SHIFT, prot)); | 
|  | else | 
|  | pte_clear(NULL, vaddr, pte); | 
|  | local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static pgprot_t protection_map[16] __ro_after_init = { | 
|  | [VM_NONE]					= __PAGE_NONE, | 
|  | [VM_READ]					= __PAGE_READONLY, | 
|  | [VM_WRITE]					= __PAGE_COPY, | 
|  | [VM_WRITE | VM_READ]				= __PAGE_COPY, | 
|  | [VM_EXEC]					= __PAGE_READONLY_EXEC, | 
|  | [VM_EXEC | VM_READ]				= __PAGE_READONLY_EXEC, | 
|  | [VM_EXEC | VM_WRITE]				= __PAGE_COPY_EXEC, | 
|  | [VM_EXEC | VM_WRITE | VM_READ]			= __PAGE_COPY_EXEC, | 
|  | [VM_SHARED]					= __PAGE_NONE, | 
|  | [VM_SHARED | VM_READ]				= __PAGE_READONLY, | 
|  | [VM_SHARED | VM_WRITE]				= __PAGE_SHARED, | 
|  | [VM_SHARED | VM_WRITE | VM_READ]		= __PAGE_SHARED, | 
|  | [VM_SHARED | VM_EXEC]				= __PAGE_READONLY_EXEC, | 
|  | [VM_SHARED | VM_EXEC | VM_READ]			= __PAGE_READONLY_EXEC, | 
|  | [VM_SHARED | VM_EXEC | VM_WRITE]		= __PAGE_SHARED_EXEC, | 
|  | [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __PAGE_SHARED_EXEC | 
|  | }; | 
|  | DECLARE_VM_GET_PAGE_PROT | 
|  |  | 
|  | /* | 
|  | * Adjust the PMD section entries according to the CPU in use. | 
|  | */ | 
|  | static void __init build_mem_type_table(void) | 
|  | { | 
|  | struct cachepolicy *cp; | 
|  | unsigned int cr = get_cr(); | 
|  | pteval_t user_pgprot, kern_pgprot, vecs_pgprot; | 
|  | int cpu_arch = cpu_architecture(); | 
|  | int i; | 
|  |  | 
|  | if (cpu_arch < CPU_ARCH_ARMv6) { | 
|  | #if defined(CONFIG_CPU_DCACHE_DISABLE) | 
|  | if (cachepolicy > CPOLICY_BUFFERED) | 
|  | cachepolicy = CPOLICY_BUFFERED; | 
|  | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) | 
|  | if (cachepolicy > CPOLICY_WRITETHROUGH) | 
|  | cachepolicy = CPOLICY_WRITETHROUGH; | 
|  | #endif | 
|  | } | 
|  | if (cpu_arch < CPU_ARCH_ARMv5) { | 
|  | if (cachepolicy >= CPOLICY_WRITEALLOC) | 
|  | cachepolicy = CPOLICY_WRITEBACK; | 
|  | ecc_mask = 0; | 
|  | } | 
|  |  | 
|  | if (is_smp()) { | 
|  | if (cachepolicy != CPOLICY_WRITEALLOC) { | 
|  | pr_warn("Forcing write-allocate cache policy for SMP\n"); | 
|  | cachepolicy = CPOLICY_WRITEALLOC; | 
|  | } | 
|  | if (!(initial_pmd_value & PMD_SECT_S)) { | 
|  | pr_warn("Forcing shared mappings for SMP\n"); | 
|  | initial_pmd_value |= PMD_SECT_S; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Strip out features not present on earlier architectures. | 
|  | * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those | 
|  | * without extended page tables don't have the 'Shared' bit. | 
|  | */ | 
|  | if (cpu_arch < CPU_ARCH_ARMv5) | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
|  | mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); | 
|  | if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
|  | mem_types[i].prot_sect &= ~PMD_SECT_S; | 
|  |  | 
|  | /* | 
|  | * ARMv5 and lower, bit 4 must be set for page tables (was: cache | 
|  | * "update-able on write" bit on ARM610).  However, Xscale and | 
|  | * Xscale3 require this bit to be cleared. | 
|  | */ | 
|  | if (cpu_is_xscale_family()) { | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | mem_types[i].prot_sect &= ~PMD_BIT4; | 
|  | mem_types[i].prot_l1 &= ~PMD_BIT4; | 
|  | } | 
|  | } else if (cpu_arch < CPU_ARCH_ARMv6) { | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | if (mem_types[i].prot_l1) | 
|  | mem_types[i].prot_l1 |= PMD_BIT4; | 
|  | if (mem_types[i].prot_sect) | 
|  | mem_types[i].prot_sect |= PMD_BIT4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the device areas according to the CPU/architecture. | 
|  | */ | 
|  | if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { | 
|  | if (!cpu_is_xsc3()) { | 
|  | /* | 
|  | * Mark device regions on ARMv6+ as execute-never | 
|  | * to prevent speculative instruction fetches. | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; | 
|  |  | 
|  | /* Also setup NX memory mapping */ | 
|  | mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN; | 
|  | } | 
|  | if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
|  | /* | 
|  | * For ARMv7 with TEX remapping, | 
|  | * - shared device is SXCB=1100 | 
|  | * - nonshared device is SXCB=0100 | 
|  | * - write combine device mem is SXCB=0001 | 
|  | * (Uncached Normal memory) | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } else if (cpu_is_xsc3()) { | 
|  | /* | 
|  | * For Xscale3, | 
|  | * - shared device is TEXCB=00101 | 
|  | * - nonshared device is TEXCB=01000 | 
|  | * - write combine device mem is TEXCB=00100 | 
|  | * (Inner/Outer Uncacheable in xsc3 parlance) | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
|  | } else { | 
|  | /* | 
|  | * For ARMv6 and ARMv7 without TEX remapping, | 
|  | * - shared device is TEXCB=00001 | 
|  | * - nonshared device is TEXCB=01000 | 
|  | * - write combine device mem is TEXCB=00100 | 
|  | * (Uncached Normal in ARMv6 parlance). | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * On others, write combining is "Uncached/Buffered" | 
|  | */ | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now deal with the memory-type mappings | 
|  | */ | 
|  | cp = &cache_policies[cachepolicy]; | 
|  | vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * We don't use domains on ARMv6 (since this causes problems with | 
|  | * v6/v7 kernels), so we must use a separate memory type for user | 
|  | * r/o, kernel r/w to map the vectors page. | 
|  | */ | 
|  | if (cpu_arch == CPU_ARCH_ARMv6) | 
|  | vecs_pgprot |= L_PTE_MT_VECTORS; | 
|  |  | 
|  | /* | 
|  | * Check is it with support for the PXN bit | 
|  | * in the Short-descriptor translation table format descriptors. | 
|  | */ | 
|  | if (cpu_arch == CPU_ARCH_ARMv7 && | 
|  | (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { | 
|  | user_pmd_table |= PMD_PXNTABLE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * ARMv6 and above have extended page tables. | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * Mark cache clean areas and XIP ROM read only | 
|  | * from SVC mode and no access from userspace. | 
|  | */ | 
|  | mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If the initial page tables were created with the S bit | 
|  | * set, then we need to do the same here for the same | 
|  | * reasons given in early_cachepolicy(). | 
|  | */ | 
|  | if (initial_pmd_value & PMD_SECT_S) { | 
|  | user_pgprot |= L_PTE_SHARED; | 
|  | kern_pgprot |= L_PTE_SHARED; | 
|  | vecs_pgprot |= L_PTE_SHARED; | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-cacheable Normal - intended for memory areas that must | 
|  | * not cause dirty cache line writebacks when used | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6) { | 
|  | if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
|  | /* Non-cacheable Normal is XCB = 001 */ | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= | 
|  | PMD_SECT_BUFFERED; | 
|  | } else { | 
|  | /* For both ARMv6 and non-TEX-remapping ARMv7 */ | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= | 
|  | PMD_SECT_TEX(1); | 
|  | } | 
|  | } else { | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * Do not generate access flag faults for the kernel mappings. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | mem_types[i].prot_pte |= PTE_EXT_AF; | 
|  | if (mem_types[i].prot_sect) | 
|  | mem_types[i].prot_sect |= PMD_SECT_AF; | 
|  | } | 
|  | kern_pgprot |= PTE_EXT_AF; | 
|  | vecs_pgprot |= PTE_EXT_AF; | 
|  |  | 
|  | /* | 
|  | * Set PXN for user mappings | 
|  | */ | 
|  | user_pgprot |= PTE_EXT_PXN; | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | pteval_t v = pgprot_val(protection_map[i]); | 
|  | protection_map[i] = __pgprot(v | user_pgprot); | 
|  | } | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; | 
|  | mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; | 
|  |  | 
|  | pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); | 
|  | pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | | 
|  | L_PTE_DIRTY | kern_pgprot); | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; | 
|  | mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; | 
|  | mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; | 
|  | mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; | 
|  | mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd; | 
|  | mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot; | 
|  | mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; | 
|  | mem_types[MT_ROM].prot_sect |= cp->pmd; | 
|  |  | 
|  | switch (cp->pmd) { | 
|  | case PMD_SECT_WT: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; | 
|  | break; | 
|  | case PMD_SECT_WB: | 
|  | case PMD_SECT_WBWA: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; | 
|  | break; | 
|  | } | 
|  | pr_info("Memory policy: %sData cache %s\n", | 
|  | ecc_mask ? "ECC enabled, " : "", cp->policy); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | struct mem_type *t = &mem_types[i]; | 
|  | if (t->prot_l1) | 
|  | t->prot_l1 |= PMD_DOMAIN(t->domain); | 
|  | if (t->prot_sect) | 
|  | t->prot_sect |= PMD_DOMAIN(t->domain); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE | 
|  | pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
|  | unsigned long size, pgprot_t vma_prot) | 
|  | { | 
|  | if (!pfn_valid(pfn)) | 
|  | return pgprot_noncached(vma_prot); | 
|  | else if (file->f_flags & O_SYNC) | 
|  | return pgprot_writecombine(vma_prot); | 
|  | return vma_prot; | 
|  | } | 
|  | EXPORT_SYMBOL(phys_mem_access_prot); | 
|  | #endif | 
|  |  | 
|  | #define vectors_base()	(vectors_high() ? 0xffff0000 : 0) | 
|  |  | 
|  | static void __init *early_alloc(unsigned long sz) | 
|  | { | 
|  | void *ptr = memblock_alloc(sz, sz); | 
|  |  | 
|  | if (!ptr) | 
|  | panic("%s: Failed to allocate %lu bytes align=0x%lx\n", | 
|  | __func__, sz, sz); | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static void *__init late_alloc(unsigned long sz) | 
|  | { | 
|  | void *ptdesc = pagetable_alloc(GFP_PGTABLE_KERNEL & ~__GFP_HIGHMEM, | 
|  | get_order(sz)); | 
|  |  | 
|  | if (!ptdesc || !pagetable_pte_ctor(ptdesc)) | 
|  | BUG(); | 
|  | return ptdesc_to_virt(ptdesc); | 
|  | } | 
|  |  | 
|  | static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long prot, | 
|  | void *(*alloc)(unsigned long sz)) | 
|  | { | 
|  | if (pmd_none(*pmd)) { | 
|  | pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); | 
|  | __pmd_populate(pmd, __pa(pte), prot); | 
|  | } | 
|  | BUG_ON(pmd_bad(*pmd)); | 
|  | return pte_offset_kernel(pmd, addr); | 
|  | } | 
|  |  | 
|  | static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long prot) | 
|  | { | 
|  | return arm_pte_alloc(pmd, addr, prot, early_alloc); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, unsigned long pfn, | 
|  | const struct mem_type *type, | 
|  | void *(*alloc)(unsigned long sz), | 
|  | bool ng) | 
|  | { | 
|  | pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); | 
|  | do { | 
|  | set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), | 
|  | ng ? PTE_EXT_NG : 0); | 
|  | pfn++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  |  | 
|  | static void __init __map_init_section(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, phys_addr_t phys, | 
|  | const struct mem_type *type, bool ng) | 
|  | { | 
|  | pmd_t *p = pmd; | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * In classic MMU format, puds and pmds are folded in to | 
|  | * the pgds. pmd_offset gives the PGD entry. PGDs refer to a | 
|  | * group of L1 entries making up one logical pointer to | 
|  | * an L2 table (2MB), where as PMDs refer to the individual | 
|  | * L1 entries (1MB). Hence increment to get the correct | 
|  | * offset for odd 1MB sections. | 
|  | * (See arch/arm/include/asm/pgtable-2level.h) | 
|  | */ | 
|  | if (addr & SECTION_SIZE) | 
|  | pmd++; | 
|  | #endif | 
|  | do { | 
|  | *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); | 
|  | phys += SECTION_SIZE; | 
|  | } while (pmd++, addr += SECTION_SIZE, addr != end); | 
|  |  | 
|  | flush_pmd_entry(p); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, | 
|  | unsigned long end, phys_addr_t phys, | 
|  | const struct mem_type *type, | 
|  | void *(*alloc)(unsigned long sz), bool ng) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | unsigned long next; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * With LPAE, we must loop over to map | 
|  | * all the pmds for the given range. | 
|  | */ | 
|  | next = pmd_addr_end(addr, end); | 
|  |  | 
|  | /* | 
|  | * Try a section mapping - addr, next and phys must all be | 
|  | * aligned to a section boundary. | 
|  | */ | 
|  | if (type->prot_sect && | 
|  | ((addr | next | phys) & ~SECTION_MASK) == 0) { | 
|  | __map_init_section(pmd, addr, next, phys, type, ng); | 
|  | } else { | 
|  | alloc_init_pte(pmd, addr, next, | 
|  | __phys_to_pfn(phys), type, alloc, ng); | 
|  | } | 
|  |  | 
|  | phys += next - addr; | 
|  |  | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr, | 
|  | unsigned long end, phys_addr_t phys, | 
|  | const struct mem_type *type, | 
|  | void *(*alloc)(unsigned long sz), bool ng) | 
|  | { | 
|  | pud_t *pud = pud_offset(p4d, addr); | 
|  | unsigned long next; | 
|  |  | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); | 
|  | phys += next - addr; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr, | 
|  | unsigned long end, phys_addr_t phys, | 
|  | const struct mem_type *type, | 
|  | void *(*alloc)(unsigned long sz), bool ng) | 
|  | { | 
|  | p4d_t *p4d = p4d_offset(pgd, addr); | 
|  | unsigned long next; | 
|  |  | 
|  | do { | 
|  | next = p4d_addr_end(addr, end); | 
|  | alloc_init_pud(p4d, addr, next, phys, type, alloc, ng); | 
|  | phys += next - addr; | 
|  | } while (p4d++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | static void __init create_36bit_mapping(struct mm_struct *mm, | 
|  | struct map_desc *md, | 
|  | const struct mem_type *type, | 
|  | bool ng) | 
|  | { | 
|  | unsigned long addr, length, end; | 
|  | phys_addr_t phys; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | addr = md->virtual; | 
|  | phys = __pfn_to_phys(md->pfn); | 
|  | length = PAGE_ALIGN(md->length); | 
|  |  | 
|  | if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { | 
|  | pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* N.B.	ARMv6 supersections are only defined to work with domain 0. | 
|  | *	Since domain assignments can in fact be arbitrary, the | 
|  | *	'domain == 0' check below is required to insure that ARMv6 | 
|  | *	supersections are only allocated for domain 0 regardless | 
|  | *	of the actual domain assignments in use. | 
|  | */ | 
|  | if (type->domain) { | 
|  | pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { | 
|  | pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shift bits [35:32] of address into bits [23:20] of PMD | 
|  | * (See ARMv6 spec). | 
|  | */ | 
|  | phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | end = addr + length; | 
|  | do { | 
|  | p4d_t *p4d = p4d_offset(pgd, addr); | 
|  | pud_t *pud = pud_offset(p4d, addr); | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 16; i++) | 
|  | *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | | 
|  | (ng ? PMD_SECT_nG : 0)); | 
|  |  | 
|  | addr += SUPERSECTION_SIZE; | 
|  | phys += SUPERSECTION_SIZE; | 
|  | pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; | 
|  | } while (addr != end); | 
|  | } | 
|  | #endif	/* !CONFIG_ARM_LPAE */ | 
|  |  | 
|  | static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, | 
|  | void *(*alloc)(unsigned long sz), | 
|  | bool ng) | 
|  | { | 
|  | unsigned long addr, length, end; | 
|  | phys_addr_t phys; | 
|  | const struct mem_type *type; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | type = &mem_types[md->type]; | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * Catch 36-bit addresses | 
|  | */ | 
|  | if (md->pfn >= 0x100000) { | 
|  | create_36bit_mapping(mm, md, type, ng); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | addr = md->virtual & PAGE_MASK; | 
|  | phys = __pfn_to_phys(md->pfn); | 
|  | length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
|  |  | 
|  | if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { | 
|  | pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", | 
|  | (long long)__pfn_to_phys(md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | end = addr + length; | 
|  | do { | 
|  | unsigned long next = pgd_addr_end(addr, end); | 
|  |  | 
|  | alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng); | 
|  |  | 
|  | phys += next - addr; | 
|  | addr = next; | 
|  | } while (pgd++, addr != end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the page directory entries and any necessary | 
|  | * page tables for the mapping specified by `md'.  We | 
|  | * are able to cope here with varying sizes and address | 
|  | * offsets, and we take full advantage of sections and | 
|  | * supersections. | 
|  | */ | 
|  | static void __init create_mapping(struct map_desc *md) | 
|  | { | 
|  | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { | 
|  | pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (md->type == MT_DEVICE && | 
|  | md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && | 
|  | (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { | 
|  | pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | } | 
|  |  | 
|  | __create_mapping(&init_mm, md, early_alloc, false); | 
|  | } | 
|  |  | 
|  | void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, | 
|  | bool ng) | 
|  | { | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  |  | 
|  | p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); | 
|  | if (WARN_ON(!p4d)) | 
|  | return; | 
|  | pud = pud_alloc(mm, p4d, md->virtual); | 
|  | if (WARN_ON(!pud)) | 
|  | return; | 
|  | pmd_alloc(mm, pud, 0); | 
|  | #endif | 
|  | __create_mapping(mm, md, late_alloc, ng); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the architecture specific mappings | 
|  | */ | 
|  | void __init iotable_init(struct map_desc *io_desc, int nr) | 
|  | { | 
|  | struct map_desc *md; | 
|  | struct vm_struct *vm; | 
|  | struct static_vm *svm; | 
|  |  | 
|  | if (!nr) | 
|  | return; | 
|  |  | 
|  | svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm)); | 
|  | if (!svm) | 
|  | panic("%s: Failed to allocate %zu bytes align=0x%zx\n", | 
|  | __func__, sizeof(*svm) * nr, __alignof__(*svm)); | 
|  |  | 
|  | for (md = io_desc; nr; md++, nr--) { | 
|  | create_mapping(md); | 
|  |  | 
|  | vm = &svm->vm; | 
|  | vm->addr = (void *)(md->virtual & PAGE_MASK); | 
|  | vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
|  | vm->phys_addr = __pfn_to_phys(md->pfn); | 
|  | vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; | 
|  | vm->flags |= VM_ARM_MTYPE(md->type); | 
|  | vm->caller = iotable_init; | 
|  | add_static_vm_early(svm++); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init vm_reserve_area_early(unsigned long addr, unsigned long size, | 
|  | void *caller) | 
|  | { | 
|  | struct vm_struct *vm; | 
|  | struct static_vm *svm; | 
|  |  | 
|  | svm = memblock_alloc(sizeof(*svm), __alignof__(*svm)); | 
|  | if (!svm) | 
|  | panic("%s: Failed to allocate %zu bytes align=0x%zx\n", | 
|  | __func__, sizeof(*svm), __alignof__(*svm)); | 
|  |  | 
|  | vm = &svm->vm; | 
|  | vm->addr = (void *)addr; | 
|  | vm->size = size; | 
|  | vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; | 
|  | vm->caller = caller; | 
|  | add_static_vm_early(svm); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  |  | 
|  | /* | 
|  | * The Linux PMD is made of two consecutive section entries covering 2MB | 
|  | * (see definition in include/asm/pgtable-2level.h).  However a call to | 
|  | * create_mapping() may optimize static mappings by using individual | 
|  | * 1MB section mappings.  This leaves the actual PMD potentially half | 
|  | * initialized if the top or bottom section entry isn't used, leaving it | 
|  | * open to problems if a subsequent ioremap() or vmalloc() tries to use | 
|  | * the virtual space left free by that unused section entry. | 
|  | * | 
|  | * Let's avoid the issue by inserting dummy vm entries covering the unused | 
|  | * PMD halves once the static mappings are in place. | 
|  | */ | 
|  |  | 
|  | static void __init pmd_empty_section_gap(unsigned long addr) | 
|  | { | 
|  | vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); | 
|  | } | 
|  |  | 
|  | static void __init fill_pmd_gaps(void) | 
|  | { | 
|  | struct static_vm *svm; | 
|  | struct vm_struct *vm; | 
|  | unsigned long addr, next = 0; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | list_for_each_entry(svm, &static_vmlist, list) { | 
|  | vm = &svm->vm; | 
|  | addr = (unsigned long)vm->addr; | 
|  | if (addr < next) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Check if this vm starts on an odd section boundary. | 
|  | * If so and the first section entry for this PMD is free | 
|  | * then we block the corresponding virtual address. | 
|  | */ | 
|  | if ((addr & ~PMD_MASK) == SECTION_SIZE) { | 
|  | pmd = pmd_off_k(addr); | 
|  | if (pmd_none(*pmd)) | 
|  | pmd_empty_section_gap(addr & PMD_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Then check if this vm ends on an odd section boundary. | 
|  | * If so and the second section entry for this PMD is empty | 
|  | * then we block the corresponding virtual address. | 
|  | */ | 
|  | addr += vm->size; | 
|  | if ((addr & ~PMD_MASK) == SECTION_SIZE) { | 
|  | pmd = pmd_off_k(addr) + 1; | 
|  | if (pmd_none(*pmd)) | 
|  | pmd_empty_section_gap(addr); | 
|  | } | 
|  |  | 
|  | /* no need to look at any vm entry until we hit the next PMD */ | 
|  | next = (addr + PMD_SIZE - 1) & PMD_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define fill_pmd_gaps() do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) | 
|  | static void __init pci_reserve_io(void) | 
|  | { | 
|  | struct static_vm *svm; | 
|  |  | 
|  | svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); | 
|  | if (svm) | 
|  | return; | 
|  |  | 
|  | vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); | 
|  | } | 
|  | #else | 
|  | #define pci_reserve_io() do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LL | 
|  | void __init debug_ll_io_init(void) | 
|  | { | 
|  | struct map_desc map; | 
|  |  | 
|  | debug_ll_addr(&map.pfn, &map.virtual); | 
|  | if (!map.pfn || !map.virtual) | 
|  | return; | 
|  | map.pfn = __phys_to_pfn(map.pfn); | 
|  | map.virtual &= PAGE_MASK; | 
|  | map.length = PAGE_SIZE; | 
|  | map.type = MT_DEVICE; | 
|  | iotable_init(&map, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned long __initdata vmalloc_size = 240 * SZ_1M; | 
|  |  | 
|  | /* | 
|  | * vmalloc=size forces the vmalloc area to be exactly 'size' | 
|  | * bytes. This can be used to increase (or decrease) the vmalloc | 
|  | * area - the default is 240MiB. | 
|  | */ | 
|  | static int __init early_vmalloc(char *arg) | 
|  | { | 
|  | unsigned long vmalloc_reserve = memparse(arg, NULL); | 
|  | unsigned long vmalloc_max; | 
|  |  | 
|  | if (vmalloc_reserve < SZ_16M) { | 
|  | vmalloc_reserve = SZ_16M; | 
|  | pr_warn("vmalloc area is too small, limiting to %luMiB\n", | 
|  | vmalloc_reserve >> 20); | 
|  | } | 
|  |  | 
|  | vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET); | 
|  | if (vmalloc_reserve > vmalloc_max) { | 
|  | vmalloc_reserve = vmalloc_max; | 
|  | pr_warn("vmalloc area is too big, limiting to %luMiB\n", | 
|  | vmalloc_reserve >> 20); | 
|  | } | 
|  |  | 
|  | vmalloc_size = vmalloc_reserve; | 
|  | return 0; | 
|  | } | 
|  | early_param("vmalloc", early_vmalloc); | 
|  |  | 
|  | phys_addr_t arm_lowmem_limit __initdata = 0; | 
|  |  | 
|  | void __init adjust_lowmem_bounds(void) | 
|  | { | 
|  | phys_addr_t block_start, block_end, memblock_limit = 0; | 
|  | u64 vmalloc_limit, i; | 
|  | phys_addr_t lowmem_limit = 0; | 
|  |  | 
|  | /* | 
|  | * Let's use our own (unoptimized) equivalent of __pa() that is | 
|  | * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. | 
|  | * The result is used as the upper bound on physical memory address | 
|  | * and may itself be outside the valid range for which phys_addr_t | 
|  | * and therefore __pa() is defined. | 
|  | */ | 
|  | vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET - | 
|  | PAGE_OFFSET + PHYS_OFFSET; | 
|  |  | 
|  | /* | 
|  | * The first usable region must be PMD aligned. Mark its start | 
|  | * as MEMBLOCK_NOMAP if it isn't | 
|  | */ | 
|  | for_each_mem_range(i, &block_start, &block_end) { | 
|  | if (!IS_ALIGNED(block_start, PMD_SIZE)) { | 
|  | phys_addr_t len; | 
|  |  | 
|  | len = round_up(block_start, PMD_SIZE) - block_start; | 
|  | memblock_mark_nomap(block_start, len); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | for_each_mem_range(i, &block_start, &block_end) { | 
|  | if (block_start < vmalloc_limit) { | 
|  | if (block_end > lowmem_limit) | 
|  | /* | 
|  | * Compare as u64 to ensure vmalloc_limit does | 
|  | * not get truncated. block_end should always | 
|  | * fit in phys_addr_t so there should be no | 
|  | * issue with assignment. | 
|  | */ | 
|  | lowmem_limit = min_t(u64, | 
|  | vmalloc_limit, | 
|  | block_end); | 
|  |  | 
|  | /* | 
|  | * Find the first non-pmd-aligned page, and point | 
|  | * memblock_limit at it. This relies on rounding the | 
|  | * limit down to be pmd-aligned, which happens at the | 
|  | * end of this function. | 
|  | * | 
|  | * With this algorithm, the start or end of almost any | 
|  | * bank can be non-pmd-aligned. The only exception is | 
|  | * that the start of the bank 0 must be section- | 
|  | * aligned, since otherwise memory would need to be | 
|  | * allocated when mapping the start of bank 0, which | 
|  | * occurs before any free memory is mapped. | 
|  | */ | 
|  | if (!memblock_limit) { | 
|  | if (!IS_ALIGNED(block_start, PMD_SIZE)) | 
|  | memblock_limit = block_start; | 
|  | else if (!IS_ALIGNED(block_end, PMD_SIZE)) | 
|  | memblock_limit = lowmem_limit; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | arm_lowmem_limit = lowmem_limit; | 
|  |  | 
|  | high_memory = __va(arm_lowmem_limit - 1) + 1; | 
|  |  | 
|  | if (!memblock_limit) | 
|  | memblock_limit = arm_lowmem_limit; | 
|  |  | 
|  | /* | 
|  | * Round the memblock limit down to a pmd size.  This | 
|  | * helps to ensure that we will allocate memory from the | 
|  | * last full pmd, which should be mapped. | 
|  | */ | 
|  | memblock_limit = round_down(memblock_limit, PMD_SIZE); | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { | 
|  | if (memblock_end_of_DRAM() > arm_lowmem_limit) { | 
|  | phys_addr_t end = memblock_end_of_DRAM(); | 
|  |  | 
|  | pr_notice("Ignoring RAM at %pa-%pa\n", | 
|  | &memblock_limit, &end); | 
|  | pr_notice("Consider using a HIGHMEM enabled kernel.\n"); | 
|  |  | 
|  | memblock_remove(memblock_limit, end - memblock_limit); | 
|  | } | 
|  | } | 
|  |  | 
|  | memblock_set_current_limit(memblock_limit); | 
|  | } | 
|  |  | 
|  | static __init void prepare_page_table(void) | 
|  | { | 
|  | unsigned long addr; | 
|  | phys_addr_t end; | 
|  |  | 
|  | /* | 
|  | * Clear out all the mappings below the kernel image. | 
|  | */ | 
|  | #ifdef CONFIG_KASAN | 
|  | /* | 
|  | * KASan's shadow memory inserts itself between the TASK_SIZE | 
|  | * and MODULES_VADDR. Do not clear the KASan shadow memory mappings. | 
|  | */ | 
|  | for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  | /* | 
|  | * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes | 
|  | * equal to MODULES_VADDR and then we exit the pmd clearing. If we | 
|  | * are using a thumb-compiled kernel, there there will be 8MB more | 
|  | * to clear as KASan always offset to 16 MB below MODULES_VADDR. | 
|  | */ | 
|  | for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  | #else | 
|  | for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_XIP_KERNEL | 
|  | /* The XIP kernel is mapped in the module area -- skip over it */ | 
|  | addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; | 
|  | #endif | 
|  | for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | /* | 
|  | * Find the end of the first block of lowmem. | 
|  | */ | 
|  | end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; | 
|  | if (end >= arm_lowmem_limit) | 
|  | end = arm_lowmem_limit; | 
|  |  | 
|  | /* | 
|  | * Clear out all the kernel space mappings, except for the first | 
|  | * memory bank, up to the vmalloc region. | 
|  | */ | 
|  | for (addr = __phys_to_virt(end); | 
|  | addr < VMALLOC_START; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | /* the first page is reserved for pgd */ | 
|  | #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \ | 
|  | PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) | 
|  | #else | 
|  | #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Reserve the special regions of memory | 
|  | */ | 
|  | void __init arm_mm_memblock_reserve(void) | 
|  | { | 
|  | /* | 
|  | * Reserve the page tables.  These are already in use, | 
|  | * and can only be in node 0. | 
|  | */ | 
|  | memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_SA1111 | 
|  | /* | 
|  | * Because of the SA1111 DMA bug, we want to preserve our | 
|  | * precious DMA-able memory... | 
|  | */ | 
|  | memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the device mappings.  Since we clear out the page tables for all | 
|  | * mappings above VMALLOC_START, except early fixmap, we might remove debug | 
|  | * device mappings.  This means earlycon can be used to debug this function | 
|  | * Any other function or debugging method which may touch any device _will_ | 
|  | * crash the kernel. | 
|  | */ | 
|  | static void __init devicemaps_init(const struct machine_desc *mdesc) | 
|  | { | 
|  | struct map_desc map; | 
|  | unsigned long addr; | 
|  | void *vectors; | 
|  |  | 
|  | /* | 
|  | * Allocate the vector page early. | 
|  | */ | 
|  | vectors = early_alloc(PAGE_SIZE * 2); | 
|  |  | 
|  | early_trap_init(vectors); | 
|  |  | 
|  | /* | 
|  | * Clear page table except top pmd used by early fixmaps | 
|  | */ | 
|  | for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | if (__atags_pointer) { | 
|  | /* create a read-only mapping of the device tree */ | 
|  | map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK); | 
|  | map.virtual = FDT_FIXED_BASE; | 
|  | map.length = FDT_FIXED_SIZE; | 
|  | map.type = MT_MEMORY_RO; | 
|  | create_mapping(&map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map the kernel if it is XIP. | 
|  | * It is always first in the modulearea. | 
|  | */ | 
|  | #ifdef CONFIG_XIP_KERNEL | 
|  | map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); | 
|  | map.virtual = MODULES_VADDR; | 
|  | map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; | 
|  | map.type = MT_ROM; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Map the cache flushing regions. | 
|  | */ | 
|  | #ifdef FLUSH_BASE | 
|  | map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); | 
|  | map.virtual = FLUSH_BASE; | 
|  | map.length = SZ_1M; | 
|  | map.type = MT_CACHECLEAN; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  | #ifdef FLUSH_BASE_MINICACHE | 
|  | map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); | 
|  | map.virtual = FLUSH_BASE_MINICACHE; | 
|  | map.length = SZ_1M; | 
|  | map.type = MT_MINICLEAN; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Create a mapping for the machine vectors at the high-vectors | 
|  | * location (0xffff0000).  If we aren't using high-vectors, also | 
|  | * create a mapping at the low-vectors virtual address. | 
|  | */ | 
|  | map.pfn = __phys_to_pfn(virt_to_phys(vectors)); | 
|  | map.virtual = 0xffff0000; | 
|  | map.length = PAGE_SIZE; | 
|  | #ifdef CONFIG_KUSER_HELPERS | 
|  | map.type = MT_HIGH_VECTORS; | 
|  | #else | 
|  | map.type = MT_LOW_VECTORS; | 
|  | #endif | 
|  | create_mapping(&map); | 
|  |  | 
|  | if (!vectors_high()) { | 
|  | map.virtual = 0; | 
|  | map.length = PAGE_SIZE * 2; | 
|  | map.type = MT_LOW_VECTORS; | 
|  | create_mapping(&map); | 
|  | } | 
|  |  | 
|  | /* Now create a kernel read-only mapping */ | 
|  | map.pfn += 1; | 
|  | map.virtual = 0xffff0000 + PAGE_SIZE; | 
|  | map.length = PAGE_SIZE; | 
|  | map.type = MT_LOW_VECTORS; | 
|  | create_mapping(&map); | 
|  |  | 
|  | /* | 
|  | * Ask the machine support to map in the statically mapped devices. | 
|  | */ | 
|  | if (mdesc->map_io) | 
|  | mdesc->map_io(); | 
|  | else | 
|  | debug_ll_io_init(); | 
|  | fill_pmd_gaps(); | 
|  |  | 
|  | /* Reserve fixed i/o space in VMALLOC region */ | 
|  | pci_reserve_io(); | 
|  |  | 
|  | /* | 
|  | * Finally flush the caches and tlb to ensure that we're in a | 
|  | * consistent state wrt the writebuffer.  This also ensures that | 
|  | * any write-allocated cache lines in the vector page are written | 
|  | * back.  After this point, we can start to touch devices again. | 
|  | */ | 
|  | local_flush_tlb_all(); | 
|  | flush_cache_all(); | 
|  |  | 
|  | /* Enable asynchronous aborts */ | 
|  | early_abt_enable(); | 
|  | } | 
|  |  | 
|  | static void __init kmap_init(void) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), | 
|  | PKMAP_BASE, _PAGE_KERNEL_TABLE); | 
|  | #endif | 
|  |  | 
|  | early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, | 
|  | _PAGE_KERNEL_TABLE); | 
|  | } | 
|  |  | 
|  | static void __init map_lowmem(void) | 
|  | { | 
|  | phys_addr_t start, end; | 
|  | u64 i; | 
|  |  | 
|  | /* Map all the lowmem memory banks. */ | 
|  | for_each_mem_range(i, &start, &end) { | 
|  | struct map_desc map; | 
|  |  | 
|  | pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n", | 
|  | (long long)start, (long long)end); | 
|  | if (end > arm_lowmem_limit) | 
|  | end = arm_lowmem_limit; | 
|  | if (start >= end) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If our kernel image is in the VMALLOC area we need to remove | 
|  | * the kernel physical memory from lowmem since the kernel will | 
|  | * be mapped separately. | 
|  | * | 
|  | * The kernel will typically be at the very start of lowmem, | 
|  | * but any placement relative to memory ranges is possible. | 
|  | * | 
|  | * If the memblock contains the kernel, we have to chisel out | 
|  | * the kernel memory from it and map each part separately. We | 
|  | * get 6 different theoretical cases: | 
|  | * | 
|  | *                            +--------+ +--------+ | 
|  | *  +-- start --+  +--------+ | Kernel | | Kernel | | 
|  | *  |           |  | Kernel | | case 2 | | case 5 | | 
|  | *  |           |  | case 1 | +--------+ |        | +--------+ | 
|  | *  |  Memory   |  +--------+            |        | | Kernel | | 
|  | *  |  range    |  +--------+            |        | | case 6 | | 
|  | *  |           |  | Kernel | +--------+ |        | +--------+ | 
|  | *  |           |  | case 3 | | Kernel | |        | | 
|  | *  +-- end ----+  +--------+ | case 4 | |        | | 
|  | *                            +--------+ +--------+ | 
|  | */ | 
|  |  | 
|  | /* Case 5: kernel covers range, don't map anything, should be rare */ | 
|  | if ((start > kernel_sec_start) && (end < kernel_sec_end)) | 
|  | break; | 
|  |  | 
|  | /* Cases where the kernel is starting inside the range */ | 
|  | if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) { | 
|  | /* Case 6: kernel is embedded in the range, we need two mappings */ | 
|  | if ((start < kernel_sec_start) && (end > kernel_sec_end)) { | 
|  | /* Map memory below the kernel */ | 
|  | map.pfn = __phys_to_pfn(start); | 
|  | map.virtual = __phys_to_virt(start); | 
|  | map.length = kernel_sec_start - start; | 
|  | map.type = MT_MEMORY_RW; | 
|  | create_mapping(&map); | 
|  | /* Map memory above the kernel */ | 
|  | map.pfn = __phys_to_pfn(kernel_sec_end); | 
|  | map.virtual = __phys_to_virt(kernel_sec_end); | 
|  | map.length = end - kernel_sec_end; | 
|  | map.type = MT_MEMORY_RW; | 
|  | create_mapping(&map); | 
|  | break; | 
|  | } | 
|  | /* Case 1: kernel and range start at the same address, should be common */ | 
|  | if (kernel_sec_start == start) | 
|  | start = kernel_sec_end; | 
|  | /* Case 3: kernel and range end at the same address, should be rare */ | 
|  | if (kernel_sec_end == end) | 
|  | end = kernel_sec_start; | 
|  | } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) { | 
|  | /* Case 2: kernel ends inside range, starts below it */ | 
|  | start = kernel_sec_end; | 
|  | } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) { | 
|  | /* Case 4: kernel starts inside range, ends above it */ | 
|  | end = kernel_sec_start; | 
|  | } | 
|  | map.pfn = __phys_to_pfn(start); | 
|  | map.virtual = __phys_to_virt(start); | 
|  | map.length = end - start; | 
|  | map.type = MT_MEMORY_RW; | 
|  | create_mapping(&map); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init map_kernel(void) | 
|  | { | 
|  | /* | 
|  | * We use the well known kernel section start and end and split the area in the | 
|  | * middle like this: | 
|  | *  .                . | 
|  | *  | RW memory      | | 
|  | *  +----------------+ kernel_x_start | 
|  | *  | Executable     | | 
|  | *  | kernel memory  | | 
|  | *  +----------------+ kernel_x_end / kernel_nx_start | 
|  | *  | Non-executable | | 
|  | *  | kernel memory  | | 
|  | *  +----------------+ kernel_nx_end | 
|  | *  | RW memory      | | 
|  | *  .                . | 
|  | * | 
|  | * Notice that we are dealing with section sized mappings here so all of this | 
|  | * will be bumped to the closest section boundary. This means that some of the | 
|  | * non-executable part of the kernel memory is actually mapped as executable. | 
|  | * This will only persist until we turn on proper memory management later on | 
|  | * and we remap the whole kernel with page granularity. | 
|  | */ | 
|  | phys_addr_t kernel_x_start = kernel_sec_start; | 
|  | phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); | 
|  | phys_addr_t kernel_nx_start = kernel_x_end; | 
|  | phys_addr_t kernel_nx_end = kernel_sec_end; | 
|  | struct map_desc map; | 
|  |  | 
|  | map.pfn = __phys_to_pfn(kernel_x_start); | 
|  | map.virtual = __phys_to_virt(kernel_x_start); | 
|  | map.length = kernel_x_end - kernel_x_start; | 
|  | map.type = MT_MEMORY_RWX; | 
|  | create_mapping(&map); | 
|  |  | 
|  | /* If the nx part is small it may end up covered by the tail of the RWX section */ | 
|  | if (kernel_x_end == kernel_nx_end) | 
|  | return; | 
|  |  | 
|  | map.pfn = __phys_to_pfn(kernel_nx_start); | 
|  | map.virtual = __phys_to_virt(kernel_nx_start); | 
|  | map.length = kernel_nx_end - kernel_nx_start; | 
|  | map.type = MT_MEMORY_RW; | 
|  | create_mapping(&map); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_PV_FIXUP | 
|  | typedef void pgtables_remap(long long offset, unsigned long pgd); | 
|  | pgtables_remap lpae_pgtables_remap_asm; | 
|  |  | 
|  | /* | 
|  | * early_paging_init() recreates boot time page table setup, allowing machines | 
|  | * to switch over to a high (>4G) address space on LPAE systems | 
|  | */ | 
|  | static void __init early_paging_init(const struct machine_desc *mdesc) | 
|  | { | 
|  | pgtables_remap *lpae_pgtables_remap; | 
|  | unsigned long pa_pgd; | 
|  | u32 cr, ttbcr, tmp; | 
|  | long long offset; | 
|  |  | 
|  | if (!mdesc->pv_fixup) | 
|  | return; | 
|  |  | 
|  | offset = mdesc->pv_fixup(); | 
|  | if (offset == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Offset the kernel section physical offsets so that the kernel | 
|  | * mapping will work out later on. | 
|  | */ | 
|  | kernel_sec_start += offset; | 
|  | kernel_sec_end += offset; | 
|  |  | 
|  | /* | 
|  | * Get the address of the remap function in the 1:1 identity | 
|  | * mapping setup by the early page table assembly code.  We | 
|  | * must get this prior to the pv update.  The following barrier | 
|  | * ensures that this is complete before we fixup any P:V offsets. | 
|  | */ | 
|  | lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); | 
|  | pa_pgd = __pa(swapper_pg_dir); | 
|  | barrier(); | 
|  |  | 
|  | pr_info("Switching physical address space to 0x%08llx\n", | 
|  | (u64)PHYS_OFFSET + offset); | 
|  |  | 
|  | /* Re-set the phys pfn offset, and the pv offset */ | 
|  | __pv_offset += offset; | 
|  | __pv_phys_pfn_offset += PFN_DOWN(offset); | 
|  |  | 
|  | /* Run the patch stub to update the constants */ | 
|  | fixup_pv_table(&__pv_table_begin, | 
|  | (&__pv_table_end - &__pv_table_begin) << 2); | 
|  |  | 
|  | /* | 
|  | * We changing not only the virtual to physical mapping, but also | 
|  | * the physical addresses used to access memory.  We need to flush | 
|  | * all levels of cache in the system with caching disabled to | 
|  | * ensure that all data is written back, and nothing is prefetched | 
|  | * into the caches.  We also need to prevent the TLB walkers | 
|  | * allocating into the caches too.  Note that this is ARMv7 LPAE | 
|  | * specific. | 
|  | */ | 
|  | cr = get_cr(); | 
|  | set_cr(cr & ~(CR_I | CR_C)); | 
|  | ttbcr = cpu_get_ttbcr(); | 
|  | /* Disable all kind of caching of the translation table */ | 
|  | tmp = ttbcr & ~(TTBCR_ORGN0_MASK | TTBCR_IRGN0_MASK); | 
|  | cpu_set_ttbcr(tmp); | 
|  | flush_cache_all(); | 
|  |  | 
|  | /* | 
|  | * Fixup the page tables - this must be in the idmap region as | 
|  | * we need to disable the MMU to do this safely, and hence it | 
|  | * needs to be assembly.  It's fairly simple, as we're using the | 
|  | * temporary tables setup by the initial assembly code. | 
|  | */ | 
|  | lpae_pgtables_remap(offset, pa_pgd); | 
|  |  | 
|  | /* Re-enable the caches and cacheable TLB walks */ | 
|  | cpu_set_ttbcr(ttbcr); | 
|  | set_cr(cr); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void __init early_paging_init(const struct machine_desc *mdesc) | 
|  | { | 
|  | long long offset; | 
|  |  | 
|  | if (!mdesc->pv_fixup) | 
|  | return; | 
|  |  | 
|  | offset = mdesc->pv_fixup(); | 
|  | if (offset == 0) | 
|  | return; | 
|  |  | 
|  | pr_crit("Physical address space modification is only to support Keystone2.\n"); | 
|  | pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); | 
|  | pr_crit("feature. Your kernel may crash now, have a good day.\n"); | 
|  | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void __init early_fixmap_shutdown(void) | 
|  | { | 
|  | int i; | 
|  | unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); | 
|  |  | 
|  | pte_offset_fixmap = pte_offset_late_fixmap; | 
|  | pmd_clear(fixmap_pmd(va)); | 
|  | local_flush_tlb_kernel_page(va); | 
|  |  | 
|  | for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { | 
|  | pte_t *pte; | 
|  | struct map_desc map; | 
|  |  | 
|  | map.virtual = fix_to_virt(i); | 
|  | pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); | 
|  |  | 
|  | /* Only i/o device mappings are supported ATM */ | 
|  | if (pte_none(*pte) || | 
|  | (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) | 
|  | continue; | 
|  |  | 
|  | map.pfn = pte_pfn(*pte); | 
|  | map.type = MT_DEVICE; | 
|  | map.length = PAGE_SIZE; | 
|  |  | 
|  | create_mapping(&map); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * paging_init() sets up the page tables, initialises the zone memory | 
|  | * maps, and sets up the zero page, bad page and bad page tables. | 
|  | */ | 
|  | void __init paging_init(const struct machine_desc *mdesc) | 
|  | { | 
|  | void *zero_page; | 
|  |  | 
|  | pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n", | 
|  | kernel_sec_start, kernel_sec_end); | 
|  |  | 
|  | prepare_page_table(); | 
|  | map_lowmem(); | 
|  | memblock_set_current_limit(arm_lowmem_limit); | 
|  | pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit); | 
|  | /* | 
|  | * After this point early_alloc(), i.e. the memblock allocator, can | 
|  | * be used | 
|  | */ | 
|  | map_kernel(); | 
|  | dma_contiguous_remap(); | 
|  | early_fixmap_shutdown(); | 
|  | devicemaps_init(mdesc); | 
|  | kmap_init(); | 
|  | tcm_init(); | 
|  |  | 
|  | top_pmd = pmd_off_k(0xffff0000); | 
|  |  | 
|  | /* allocate the zero page. */ | 
|  | zero_page = early_alloc(PAGE_SIZE); | 
|  |  | 
|  | bootmem_init(); | 
|  |  | 
|  | empty_zero_page = virt_to_page(zero_page); | 
|  | __flush_dcache_folio(NULL, page_folio(empty_zero_page)); | 
|  | } | 
|  |  | 
|  | void __init early_mm_init(const struct machine_desc *mdesc) | 
|  | { | 
|  | build_mem_type_table(); | 
|  | early_paging_init(mdesc); | 
|  | } | 
|  |  | 
|  | void set_ptes(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep, pte_t pteval, unsigned int nr) | 
|  | { | 
|  | unsigned long ext = 0; | 
|  |  | 
|  | if (addr < TASK_SIZE && pte_valid_user(pteval)) { | 
|  | if (!pte_special(pteval)) | 
|  | __sync_icache_dcache(pteval); | 
|  | ext |= PTE_EXT_NG; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | set_pte_ext(ptep, pteval, ext); | 
|  | if (--nr == 0) | 
|  | break; | 
|  | ptep++; | 
|  | pteval = pte_next_pfn(pteval); | 
|  | } | 
|  | } |