| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  *  PowerPC version | 
 |  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
 |  * | 
 |  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) | 
 |  *  and Cort Dougan (PReP) (cort@cs.nmt.edu) | 
 |  *    Copyright (C) 1996 Paul Mackerras | 
 |  * | 
 |  *  Derived from "arch/i386/mm/init.c" | 
 |  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  * | 
 |  *  Dave Engebretsen <engebret@us.ibm.com> | 
 |  *      Rework for PPC64 port. | 
 |  */ | 
 |  | 
 | #undef DEBUG | 
 |  | 
 | #include <linux/signal.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/string.h> | 
 | #include <linux/types.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/module.h> | 
 | #include <linux/poison.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/of_fdt.h> | 
 | #include <linux/libfdt.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/memory.h> | 
 |  | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/page.h> | 
 | #include <asm/prom.h> | 
 | #include <asm/rtas.h> | 
 | #include <asm/io.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/mmu.h> | 
 | #include <linux/uaccess.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/eeh.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/mmzone.h> | 
 | #include <asm/cputable.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/iommu.h> | 
 | #include <asm/vdso.h> | 
 | #include <asm/hugetlb.h> | 
 |  | 
 | #include <mm/mmu_decl.h> | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | /* | 
 |  * Given an address within the vmemmap, determine the page that | 
 |  * represents the start of the subsection it is within.  Note that we have to | 
 |  * do this by hand as the proffered address may not be correctly aligned. | 
 |  * Subtraction of non-aligned pointers produces undefined results. | 
 |  */ | 
 | static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr) | 
 | { | 
 | 	unsigned long start_pfn; | 
 | 	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap)); | 
 |  | 
 | 	/* Return the pfn of the start of the section. */ | 
 | 	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK; | 
 | 	return pfn_to_page(start_pfn); | 
 | } | 
 |  | 
 | /* | 
 |  * Since memory is added in sub-section chunks, before creating a new vmemmap | 
 |  * mapping, the kernel should check whether there is an existing memmap mapping | 
 |  * covering the new subsection added. This is needed because kernel can map | 
 |  * vmemmap area using 16MB pages which will cover a memory range of 16G. Such | 
 |  * a range covers multiple subsections (2M) | 
 |  * | 
 |  * If any subsection in the 16G range mapped by vmemmap is valid we consider the | 
 |  * vmemmap populated (There is a page table entry already present). We can't do | 
 |  * a page table lookup here because with the hash translation we don't keep | 
 |  * vmemmap details in linux page table. | 
 |  */ | 
 | int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size) | 
 | { | 
 | 	struct page *start; | 
 | 	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size; | 
 | 	start = vmemmap_subsection_start(vmemmap_addr); | 
 |  | 
 | 	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION) | 
 | 		/* | 
 | 		 * pfn valid check here is intended to really check | 
 | 		 * whether we have any subsection already initialized | 
 | 		 * in this range. | 
 | 		 */ | 
 | 		if (pfn_valid(page_to_pfn(start))) | 
 | 			return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * vmemmap virtual address space management does not have a traditional page | 
 |  * table to track which virtual struct pages are backed by physical mapping. | 
 |  * The virtual to physical mappings are tracked in a simple linked list | 
 |  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at | 
 |  * all times where as the 'next' list maintains the available | 
 |  * vmemmap_backing structures which have been deleted from the | 
 |  * 'vmemmap_global' list during system runtime (memory hotplug remove | 
 |  * operation). The freed 'vmemmap_backing' structures are reused later when | 
 |  * new requests come in without allocating fresh memory. This pointer also | 
 |  * tracks the allocated 'vmemmap_backing' structures as we allocate one | 
 |  * full page memory at a time when we dont have any. | 
 |  */ | 
 | struct vmemmap_backing *vmemmap_list; | 
 | static struct vmemmap_backing *next; | 
 |  | 
 | /* | 
 |  * The same pointer 'next' tracks individual chunks inside the allocated | 
 |  * full page during the boot time and again tracks the freed nodes during | 
 |  * runtime. It is racy but it does not happen as they are separated by the | 
 |  * boot process. Will create problem if some how we have memory hotplug | 
 |  * operation during boot !! | 
 |  */ | 
 | static int num_left; | 
 | static int num_freed; | 
 |  | 
 | static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) | 
 | { | 
 | 	struct vmemmap_backing *vmem_back; | 
 | 	/* get from freed entries first */ | 
 | 	if (num_freed) { | 
 | 		num_freed--; | 
 | 		vmem_back = next; | 
 | 		next = next->list; | 
 |  | 
 | 		return vmem_back; | 
 | 	} | 
 |  | 
 | 	/* allocate a page when required and hand out chunks */ | 
 | 	if (!num_left) { | 
 | 		next = vmemmap_alloc_block(PAGE_SIZE, node); | 
 | 		if (unlikely(!next)) { | 
 | 			WARN_ON(1); | 
 | 			return NULL; | 
 | 		} | 
 | 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); | 
 | 	} | 
 |  | 
 | 	num_left--; | 
 |  | 
 | 	return next++; | 
 | } | 
 |  | 
 | static __meminit int vmemmap_list_populate(unsigned long phys, | 
 | 					   unsigned long start, | 
 | 					   int node) | 
 | { | 
 | 	struct vmemmap_backing *vmem_back; | 
 |  | 
 | 	vmem_back = vmemmap_list_alloc(node); | 
 | 	if (unlikely(!vmem_back)) { | 
 | 		pr_debug("vmemap list allocation failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	vmem_back->phys = phys; | 
 | 	vmem_back->virt_addr = start; | 
 | 	vmem_back->list = vmemmap_list; | 
 |  | 
 | 	vmemmap_list = vmem_back; | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start, | 
 | 			   unsigned long page_size) | 
 | { | 
 | 	unsigned long nr_pfn = page_size / sizeof(struct page); | 
 | 	unsigned long start_pfn = page_to_pfn((struct page *)start); | 
 |  | 
 | 	if ((start_pfn + nr_pfn - 1) > altmap->end_pfn) | 
 | 		return true; | 
 |  | 
 | 	if (start_pfn < altmap->base_pfn) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int __meminit __vmemmap_populate(unsigned long start, unsigned long end, int node, | 
 | 					struct vmem_altmap *altmap) | 
 | { | 
 | 	bool altmap_alloc; | 
 | 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; | 
 |  | 
 | 	/* Align to the page size of the linear mapping. */ | 
 | 	start = ALIGN_DOWN(start, page_size); | 
 |  | 
 | 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node); | 
 |  | 
 | 	for (; start < end; start += page_size) { | 
 | 		void *p = NULL; | 
 | 		int rc; | 
 |  | 
 | 		/* | 
 | 		 * This vmemmap range is backing different subsections. If any | 
 | 		 * of that subsection is marked valid, that means we already | 
 | 		 * have initialized a page table covering this range and hence | 
 | 		 * the vmemmap range is populated. | 
 | 		 */ | 
 | 		if (vmemmap_populated(start, page_size)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Allocate from the altmap first if we have one. This may | 
 | 		 * fail due to alignment issues when using 16MB hugepages, so | 
 | 		 * fall back to system memory if the altmap allocation fail. | 
 | 		 */ | 
 | 		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) { | 
 | 			p = vmemmap_alloc_block_buf(page_size, node, altmap); | 
 | 			if (!p) | 
 | 				pr_debug("altmap block allocation failed, falling back to system memory"); | 
 | 			else | 
 | 				altmap_alloc = true; | 
 | 		} | 
 | 		if (!p) { | 
 | 			p = vmemmap_alloc_block_buf(page_size, node, NULL); | 
 | 			altmap_alloc = false; | 
 | 		} | 
 | 		if (!p) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if (vmemmap_list_populate(__pa(p), start, node)) { | 
 | 			/* | 
 | 			 * If we don't populate vmemap list, we don't have | 
 | 			 * the ability to free the allocated vmemmap | 
 | 			 * pages in section_deactivate. Hence free them | 
 | 			 * here. | 
 | 			 */ | 
 | 			int nr_pfns = page_size >> PAGE_SHIFT; | 
 | 			unsigned long page_order = get_order(page_size); | 
 |  | 
 | 			if (altmap_alloc) | 
 | 				vmem_altmap_free(altmap, nr_pfns); | 
 | 			else | 
 | 				free_pages((unsigned long)p, page_order); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		pr_debug("      * %016lx..%016lx allocated at %p\n", | 
 | 			 start, start + page_size, p); | 
 |  | 
 | 		rc = vmemmap_create_mapping(start, page_size, __pa(p)); | 
 | 		if (rc < 0) { | 
 | 			pr_warn("%s: Unable to create vmemmap mapping: %d\n", | 
 | 				__func__, rc); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, | 
 | 			       struct vmem_altmap *altmap) | 
 | { | 
 |  | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | 	if (radix_enabled()) | 
 | 		return radix__vmemmap_populate(start, end, node, altmap); | 
 | #endif | 
 |  | 
 | 	return __vmemmap_populate(start, end, node, altmap); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | static unsigned long vmemmap_list_free(unsigned long start) | 
 | { | 
 | 	struct vmemmap_backing *vmem_back, *vmem_back_prev; | 
 |  | 
 | 	vmem_back_prev = vmem_back = vmemmap_list; | 
 |  | 
 | 	/* look for it with prev pointer recorded */ | 
 | 	for (; vmem_back; vmem_back = vmem_back->list) { | 
 | 		if (vmem_back->virt_addr == start) | 
 | 			break; | 
 | 		vmem_back_prev = vmem_back; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!vmem_back)) | 
 | 		return 0; | 
 |  | 
 | 	/* remove it from vmemmap_list */ | 
 | 	if (vmem_back == vmemmap_list) /* remove head */ | 
 | 		vmemmap_list = vmem_back->list; | 
 | 	else | 
 | 		vmem_back_prev->list = vmem_back->list; | 
 |  | 
 | 	/* next point to this freed entry */ | 
 | 	vmem_back->list = next; | 
 | 	next = vmem_back; | 
 | 	num_freed++; | 
 |  | 
 | 	return vmem_back->phys; | 
 | } | 
 |  | 
 | static void __ref __vmemmap_free(unsigned long start, unsigned long end, | 
 | 				 struct vmem_altmap *altmap) | 
 | { | 
 | 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; | 
 | 	unsigned long page_order = get_order(page_size); | 
 | 	unsigned long alt_start = ~0, alt_end = ~0; | 
 | 	unsigned long base_pfn; | 
 |  | 
 | 	start = ALIGN_DOWN(start, page_size); | 
 | 	if (altmap) { | 
 | 		alt_start = altmap->base_pfn; | 
 | 		alt_end = altmap->base_pfn + altmap->reserve + altmap->free; | 
 | 	} | 
 |  | 
 | 	pr_debug("vmemmap_free %lx...%lx\n", start, end); | 
 |  | 
 | 	for (; start < end; start += page_size) { | 
 | 		unsigned long nr_pages, addr; | 
 | 		struct page *page; | 
 |  | 
 | 		/* | 
 | 		 * We have already marked the subsection we are trying to remove | 
 | 		 * invalid. So if we want to remove the vmemmap range, we | 
 | 		 * need to make sure there is no subsection marked valid | 
 | 		 * in this range. | 
 | 		 */ | 
 | 		if (vmemmap_populated(start, page_size)) | 
 | 			continue; | 
 |  | 
 | 		addr = vmemmap_list_free(start); | 
 | 		if (!addr) | 
 | 			continue; | 
 |  | 
 | 		page = pfn_to_page(addr >> PAGE_SHIFT); | 
 | 		nr_pages = 1 << page_order; | 
 | 		base_pfn = PHYS_PFN(addr); | 
 |  | 
 | 		if (base_pfn >= alt_start && base_pfn < alt_end) { | 
 | 			vmem_altmap_free(altmap, nr_pages); | 
 | 		} else if (PageReserved(page)) { | 
 | 			/* allocated from bootmem */ | 
 | 			if (page_size < PAGE_SIZE) { | 
 | 				/* | 
 | 				 * this shouldn't happen, but if it is | 
 | 				 * the case, leave the memory there | 
 | 				 */ | 
 | 				WARN_ON_ONCE(1); | 
 | 			} else { | 
 | 				while (nr_pages--) | 
 | 					free_reserved_page(page++); | 
 | 			} | 
 | 		} else { | 
 | 			free_pages((unsigned long)(__va(addr)), page_order); | 
 | 		} | 
 |  | 
 | 		vmemmap_remove_mapping(start, page_size); | 
 | 	} | 
 | } | 
 |  | 
 | void __ref vmemmap_free(unsigned long start, unsigned long end, | 
 | 			struct vmem_altmap *altmap) | 
 | { | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | 	if (radix_enabled()) | 
 | 		return radix__vmemmap_free(start, end, altmap); | 
 | #endif | 
 | 	return __vmemmap_free(start, end, altmap); | 
 | } | 
 |  | 
 | #endif | 
 | void register_page_bootmem_memmap(unsigned long section_nr, | 
 | 				  struct page *start_page, unsigned long size) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ | 
 |  | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | unsigned int mmu_lpid_bits; | 
 | #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE | 
 | EXPORT_SYMBOL_GPL(mmu_lpid_bits); | 
 | #endif | 
 | unsigned int mmu_pid_bits; | 
 |  | 
 | static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); | 
 |  | 
 | static int __init parse_disable_radix(char *p) | 
 | { | 
 | 	bool val; | 
 |  | 
 | 	if (!p) | 
 | 		val = true; | 
 | 	else if (kstrtobool(p, &val)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	disable_radix = val; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("disable_radix", parse_disable_radix); | 
 |  | 
 | /* | 
 |  * If we're running under a hypervisor, we need to check the contents of | 
 |  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do | 
 |  * radix.  If not, we clear the radix feature bit so we fall back to hash. | 
 |  */ | 
 | static void __init early_check_vec5(void) | 
 | { | 
 | 	unsigned long root, chosen; | 
 | 	int size; | 
 | 	const u8 *vec5; | 
 | 	u8 mmu_supported; | 
 |  | 
 | 	root = of_get_flat_dt_root(); | 
 | 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen"); | 
 | 	if (chosen == -FDT_ERR_NOTFOUND) { | 
 | 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
 | 		return; | 
 | 	} | 
 | 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size); | 
 | 	if (!vec5) { | 
 | 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
 | 		return; | 
 | 	} | 
 | 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) { | 
 | 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Check for supported configuration */ | 
 | 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] & | 
 | 			OV5_FEAT(OV5_MMU_SUPPORT); | 
 | 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) { | 
 | 		/* Hypervisor only supports radix - check enabled && GTSE */ | 
 | 		if (!early_radix_enabled()) { | 
 | 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); | 
 | 		} | 
 | 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] & | 
 | 						OV5_FEAT(OV5_RADIX_GTSE))) { | 
 | 			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE; | 
 | 		} else | 
 | 			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE; | 
 | 		/* Do radix anyway - the hypervisor said we had to */ | 
 | 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX; | 
 | 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) { | 
 | 		/* Hypervisor only supports hash - disable radix */ | 
 | 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
 | 		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE; | 
 | 	} | 
 | } | 
 |  | 
 | static int __init dt_scan_mmu_pid_width(unsigned long node, | 
 | 					   const char *uname, int depth, | 
 | 					   void *data) | 
 | { | 
 | 	int size = 0; | 
 | 	const __be32 *prop; | 
 | 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
 |  | 
 | 	/* We are scanning "cpu" nodes only */ | 
 | 	if (type == NULL || strcmp(type, "cpu") != 0) | 
 | 		return 0; | 
 |  | 
 | 	/* Find MMU LPID, PID register size */ | 
 | 	prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size); | 
 | 	if (prop && size == 4) | 
 | 		mmu_lpid_bits = be32_to_cpup(prop); | 
 |  | 
 | 	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size); | 
 | 	if (prop && size == 4) | 
 | 		mmu_pid_bits = be32_to_cpup(prop); | 
 |  | 
 | 	if (!mmu_pid_bits && !mmu_lpid_bits) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Outside hotplug the kernel uses this value to map the kernel direct map | 
 |  * with radix. To be compatible with older kernels, let's keep this value | 
 |  * as 16M which is also SECTION_SIZE with SPARSEMEM. We can ideally map | 
 |  * things with 1GB size in the case where we don't support hotplug. | 
 |  */ | 
 | #ifndef CONFIG_MEMORY_HOTPLUG | 
 | #define DEFAULT_MEMORY_BLOCK_SIZE	SZ_16M | 
 | #else | 
 | #define DEFAULT_MEMORY_BLOCK_SIZE	MIN_MEMORY_BLOCK_SIZE | 
 | #endif | 
 |  | 
 | static void update_memory_block_size(unsigned long *block_size, unsigned long mem_size) | 
 | { | 
 | 	unsigned long min_memory_block_size = DEFAULT_MEMORY_BLOCK_SIZE; | 
 |  | 
 | 	for (; *block_size > min_memory_block_size; *block_size >>= 2) { | 
 | 		if ((mem_size & *block_size) == 0) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | static int __init probe_memory_block_size(unsigned long node, const char *uname, int | 
 | 					  depth, void *data) | 
 | { | 
 | 	const char *type; | 
 | 	unsigned long *block_size = (unsigned long *)data; | 
 | 	const __be32 *reg, *endp; | 
 | 	int l; | 
 |  | 
 | 	if (depth != 1) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * If we have dynamic-reconfiguration-memory node, use the | 
 | 	 * lmb value. | 
 | 	 */ | 
 | 	if (strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) { | 
 |  | 
 | 		const __be32 *prop; | 
 |  | 
 | 		prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); | 
 |  | 
 | 		if (!prop || l < dt_root_size_cells * sizeof(__be32)) | 
 | 			/* | 
 | 			 * Nothing in the device tree | 
 | 			 */ | 
 | 			*block_size = DEFAULT_MEMORY_BLOCK_SIZE; | 
 | 		else | 
 | 			*block_size = of_read_number(prop, dt_root_size_cells); | 
 | 		/* | 
 | 		 * We have found the final value. Don't probe further. | 
 | 		 */ | 
 | 		return 1; | 
 | 	} | 
 | 	/* | 
 | 	 * Find all the device tree nodes of memory type and make sure | 
 | 	 * the area can be mapped using the memory block size value | 
 | 	 * we end up using. We start with 1G value and keep reducing | 
 | 	 * it such that we can map the entire area using memory_block_size. | 
 | 	 * This will be used on powernv and older pseries that don't | 
 | 	 * have ibm,lmb-size node. | 
 | 	 * For ex: with P5 we can end up with | 
 | 	 * memory@0 -> 128MB | 
 | 	 * memory@128M -> 64M | 
 | 	 * This will end up using 64MB  memory block size value. | 
 | 	 */ | 
 | 	type = of_get_flat_dt_prop(node, "device_type", NULL); | 
 | 	if (type == NULL || strcmp(type, "memory") != 0) | 
 | 		return 0; | 
 |  | 
 | 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); | 
 | 	if (!reg) | 
 | 		reg = of_get_flat_dt_prop(node, "reg", &l); | 
 | 	if (!reg) | 
 | 		return 0; | 
 |  | 
 | 	endp = reg + (l / sizeof(__be32)); | 
 | 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { | 
 | 		const char *compatible; | 
 | 		u64 size; | 
 |  | 
 | 		dt_mem_next_cell(dt_root_addr_cells, ®); | 
 | 		size = dt_mem_next_cell(dt_root_size_cells, ®); | 
 |  | 
 | 		if (size) { | 
 | 			update_memory_block_size(block_size, size); | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * ibm,coherent-device-memory with linux,usable-memory = 0 | 
 | 		 * Force 256MiB block size. Work around for GPUs on P9 PowerNV | 
 | 		 * linux,usable-memory == 0 implies driver managed memory and | 
 | 		 * we can't use large memory block size due to hotplug/unplug | 
 | 		 * limitations. | 
 | 		 */ | 
 | 		compatible = of_get_flat_dt_prop(node, "compatible", NULL); | 
 | 		if (compatible && !strcmp(compatible, "ibm,coherent-device-memory")) { | 
 | 			if (*block_size > SZ_256M) | 
 | 				*block_size = SZ_256M; | 
 | 			/* | 
 | 			 * We keep 256M as the upper limit with GPU present. | 
 | 			 */ | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	/* continue looking for other memory device types */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * start with 1G memory block size. Early init will | 
 |  * fix this with correct value. | 
 |  */ | 
 | unsigned long memory_block_size __ro_after_init = 1UL << 30; | 
 | static void __init early_init_memory_block_size(void) | 
 | { | 
 | 	/* | 
 | 	 * We need to do memory_block_size probe early so that | 
 | 	 * radix__early_init_mmu() can use this as limit for | 
 | 	 * mapping page size. | 
 | 	 */ | 
 | 	of_scan_flat_dt(probe_memory_block_size, &memory_block_size); | 
 | } | 
 |  | 
 | void __init mmu_early_init_devtree(void) | 
 | { | 
 | 	bool hvmode = !!(mfmsr() & MSR_HV); | 
 |  | 
 | 	/* Disable radix mode based on kernel command line. */ | 
 | 	if (disable_radix) { | 
 | 		if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) | 
 | 			cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; | 
 | 		else | 
 | 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); | 
 | 	} | 
 |  | 
 | 	of_scan_flat_dt(dt_scan_mmu_pid_width, NULL); | 
 | 	if (hvmode && !mmu_lpid_bits) { | 
 | 		if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) | 
 | 			mmu_lpid_bits = 12; /* POWER8-10 */ | 
 | 		else | 
 | 			mmu_lpid_bits = 10; /* POWER7 */ | 
 | 	} | 
 | 	if (!mmu_pid_bits) { | 
 | 		if (early_cpu_has_feature(CPU_FTR_ARCH_300)) | 
 | 			mmu_pid_bits = 20; /* POWER9-10 */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest. | 
 | 	 * When running bare-metal, we can use radix if we like | 
 | 	 * even though the ibm,architecture-vec-5 property created by | 
 | 	 * skiboot doesn't have the necessary bits set. | 
 | 	 */ | 
 | 	if (!hvmode) | 
 | 		early_check_vec5(); | 
 |  | 
 | 	early_init_memory_block_size(); | 
 |  | 
 | 	if (early_radix_enabled()) { | 
 | 		radix__early_init_devtree(); | 
 |  | 
 | 		/* | 
 | 		 * We have finalized the translation we are going to use by now. | 
 | 		 * Radix mode is not limited by RMA / VRMA addressing. | 
 | 		 * Hence don't limit memblock allocations. | 
 | 		 */ | 
 | 		ppc64_rma_size = ULONG_MAX; | 
 | 		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); | 
 | 	} else | 
 | 		hash__early_init_devtree(); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE)) | 
 | 		hugetlbpage_init_defaultsize(); | 
 |  | 
 | 	if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) && | 
 | 	    !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX)) | 
 | 		panic("kernel does not support any MMU type offered by platform"); | 
 | } | 
 | #endif /* CONFIG_PPC_BOOK3S_64 */ |