| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Performance event support for the System z CPU-measurement Sampling Facility | 
 |  * | 
 |  * Copyright IBM Corp. 2013, 2018 | 
 |  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> | 
 |  */ | 
 | #define KMSG_COMPONENT	"cpum_sf" | 
 | #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/pid.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/export.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <asm/cpu_mf.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/debug.h> | 
 | #include <asm/timex.h> | 
 | #include <linux/io.h> | 
 |  | 
 | /* Perf PMU definitions for the sampling facility */ | 
 | #define PERF_CPUM_SF_MAX_CTR		2 | 
 | #define PERF_EVENT_CPUM_SF		0xB0000UL /* Event: Basic-sampling */ | 
 | #define PERF_EVENT_CPUM_SF_DIAG		0xBD000UL /* Event: Combined-sampling */ | 
 | #define PERF_CPUM_SF_BASIC_MODE		0x0001	  /* Basic-sampling flag */ | 
 | #define PERF_CPUM_SF_DIAG_MODE		0x0002	  /* Diagnostic-sampling flag */ | 
 | #define PERF_CPUM_SF_FREQ_MODE		0x0008	  /* Sampling with frequency */ | 
 |  | 
 | #define OVERFLOW_REG(hwc)	((hwc)->extra_reg.config) | 
 | #define SFB_ALLOC_REG(hwc)	((hwc)->extra_reg.alloc) | 
 | #define TEAR_REG(hwc)		((hwc)->last_tag) | 
 | #define SAMPL_RATE(hwc)		((hwc)->event_base) | 
 | #define SAMPL_FLAGS(hwc)	((hwc)->config_base) | 
 | #define SAMPL_DIAG_MODE(hwc)	(SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE) | 
 | #define SAMPL_FREQ_MODE(hwc)	(SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE) | 
 |  | 
 | /* Minimum number of sample-data-block-tables: | 
 |  * At least one table is required for the sampling buffer structure. | 
 |  * A single table contains up to 511 pointers to sample-data-blocks. | 
 |  */ | 
 | #define CPUM_SF_MIN_SDBT	1 | 
 |  | 
 | /* Number of sample-data-blocks per sample-data-block-table (SDBT): | 
 |  * A table contains SDB pointers (8 bytes) and one table-link entry | 
 |  * that points to the origin of the next SDBT. | 
 |  */ | 
 | #define CPUM_SF_SDB_PER_TABLE	((PAGE_SIZE - 8) / 8) | 
 |  | 
 | /* Maximum page offset for an SDBT table-link entry: | 
 |  * If this page offset is reached, a table-link entry to the next SDBT | 
 |  * must be added. | 
 |  */ | 
 | #define CPUM_SF_SDBT_TL_OFFSET	(CPUM_SF_SDB_PER_TABLE * 8) | 
 | static inline int require_table_link(const void *sdbt) | 
 | { | 
 | 	return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET; | 
 | } | 
 |  | 
 | /* Minimum and maximum sampling buffer sizes: | 
 |  * | 
 |  * This number represents the maximum size of the sampling buffer taking | 
 |  * the number of sample-data-block-tables into account.  Note that these | 
 |  * numbers apply to the basic-sampling function only. | 
 |  * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if | 
 |  * the diagnostic-sampling function is active. | 
 |  * | 
 |  * Sampling buffer size		Buffer characteristics | 
 |  * --------------------------------------------------- | 
 |  *	 64KB		    ==	  16 pages (4KB per page) | 
 |  *				   1 page  for SDB-tables | 
 |  *				  15 pages for SDBs | 
 |  * | 
 |  *  32MB		    ==	8192 pages (4KB per page) | 
 |  *				  16 pages for SDB-tables | 
 |  *				8176 pages for SDBs | 
 |  */ | 
 | static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15; | 
 | static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176; | 
 | static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1; | 
 |  | 
 | struct sf_buffer { | 
 | 	unsigned long	 *sdbt;	    /* Sample-data-block-table origin */ | 
 | 	/* buffer characteristics (required for buffer increments) */ | 
 | 	unsigned long  num_sdb;	    /* Number of sample-data-blocks */ | 
 | 	unsigned long num_sdbt;	    /* Number of sample-data-block-tables */ | 
 | 	unsigned long	 *tail;	    /* last sample-data-block-table */ | 
 | }; | 
 |  | 
 | struct aux_buffer { | 
 | 	struct sf_buffer sfb; | 
 | 	unsigned long head;	   /* index of SDB of buffer head */ | 
 | 	unsigned long alert_mark;  /* index of SDB of alert request position */ | 
 | 	unsigned long empty_mark;  /* mark of SDB not marked full */ | 
 | 	unsigned long *sdb_index;  /* SDB address for fast lookup */ | 
 | 	unsigned long *sdbt_index; /* SDBT address for fast lookup */ | 
 | }; | 
 |  | 
 | struct cpu_hw_sf { | 
 | 	/* CPU-measurement sampling information block */ | 
 | 	struct hws_qsi_info_block qsi; | 
 | 	/* CPU-measurement sampling control block */ | 
 | 	struct hws_lsctl_request_block lsctl; | 
 | 	struct sf_buffer sfb;	    /* Sampling buffer */ | 
 | 	unsigned int flags;	    /* Status flags */ | 
 | 	struct perf_event *event;   /* Scheduled perf event */ | 
 | 	struct perf_output_handle handle; /* AUX buffer output handle */ | 
 | }; | 
 | static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf); | 
 |  | 
 | /* Debug feature */ | 
 | static debug_info_t *sfdbg; | 
 |  | 
 | /* Sampling control helper functions */ | 
 | static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi, | 
 | 						unsigned long freq) | 
 | { | 
 | 	return (USEC_PER_SEC / freq) * qsi->cpu_speed; | 
 | } | 
 |  | 
 | static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi, | 
 | 						unsigned long rate) | 
 | { | 
 | 	return USEC_PER_SEC * qsi->cpu_speed / rate; | 
 | } | 
 |  | 
 | /* Return pointer to trailer entry of an sample data block */ | 
 | static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v) | 
 | { | 
 | 	void *ret; | 
 |  | 
 | 	ret = (void *)v; | 
 | 	ret += PAGE_SIZE; | 
 | 	ret -= sizeof(struct hws_trailer_entry); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Return true if the entry in the sample data block table (sdbt) | 
 |  * is a link to the next sdbt | 
 |  */ | 
 | static inline int is_link_entry(unsigned long *s) | 
 | { | 
 | 	return *s & 0x1UL ? 1 : 0; | 
 | } | 
 |  | 
 | /* Return pointer to the linked sdbt */ | 
 | static inline unsigned long *get_next_sdbt(unsigned long *s) | 
 | { | 
 | 	return phys_to_virt(*s & ~0x1UL); | 
 | } | 
 |  | 
 | /* | 
 |  * sf_disable() - Switch off sampling facility | 
 |  */ | 
 | static void sf_disable(void) | 
 | { | 
 | 	struct hws_lsctl_request_block sreq; | 
 |  | 
 | 	memset(&sreq, 0, sizeof(sreq)); | 
 | 	lsctl(&sreq); | 
 | } | 
 |  | 
 | /* | 
 |  * sf_buffer_available() - Check for an allocated sampling buffer | 
 |  */ | 
 | static int sf_buffer_available(struct cpu_hw_sf *cpuhw) | 
 | { | 
 | 	return !!cpuhw->sfb.sdbt; | 
 | } | 
 |  | 
 | /* | 
 |  * deallocate sampling facility buffer | 
 |  */ | 
 | static void free_sampling_buffer(struct sf_buffer *sfb) | 
 | { | 
 | 	unsigned long *sdbt, *curr; | 
 |  | 
 | 	if (!sfb->sdbt) | 
 | 		return; | 
 |  | 
 | 	sdbt = sfb->sdbt; | 
 | 	curr = sdbt; | 
 |  | 
 | 	/* Free the SDBT after all SDBs are processed... */ | 
 | 	while (1) { | 
 | 		if (!*curr || !sdbt) | 
 | 			break; | 
 |  | 
 | 		/* Process table-link entries */ | 
 | 		if (is_link_entry(curr)) { | 
 | 			curr = get_next_sdbt(curr); | 
 | 			if (sdbt) | 
 | 				free_page((unsigned long)sdbt); | 
 |  | 
 | 			/* If the origin is reached, sampling buffer is freed */ | 
 | 			if (curr == sfb->sdbt) | 
 | 				break; | 
 | 			else | 
 | 				sdbt = curr; | 
 | 		} else { | 
 | 			/* Process SDB pointer */ | 
 | 			if (*curr) { | 
 | 				free_page((unsigned long)phys_to_virt(*curr)); | 
 | 				curr++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	memset(sfb, 0, sizeof(*sfb)); | 
 | } | 
 |  | 
 | static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags) | 
 | { | 
 | 	struct hws_trailer_entry *te; | 
 | 	unsigned long sdb; | 
 |  | 
 | 	/* Allocate and initialize sample-data-block */ | 
 | 	sdb = get_zeroed_page(gfp_flags); | 
 | 	if (!sdb) | 
 | 		return -ENOMEM; | 
 | 	te = trailer_entry_ptr(sdb); | 
 | 	te->header.a = 1; | 
 |  | 
 | 	/* Link SDB into the sample-data-block-table */ | 
 | 	*sdbt = virt_to_phys((void *)sdb); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * realloc_sampling_buffer() - extend sampler memory | 
 |  * | 
 |  * Allocates new sample-data-blocks and adds them to the specified sampling | 
 |  * buffer memory. | 
 |  * | 
 |  * Important: This modifies the sampling buffer and must be called when the | 
 |  *	      sampling facility is disabled. | 
 |  * | 
 |  * Returns zero on success, non-zero otherwise. | 
 |  */ | 
 | static int realloc_sampling_buffer(struct sf_buffer *sfb, | 
 | 				   unsigned long num_sdb, gfp_t gfp_flags) | 
 | { | 
 | 	int i, rc; | 
 | 	unsigned long *new, *tail, *tail_prev = NULL; | 
 |  | 
 | 	if (!sfb->sdbt || !sfb->tail) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!is_link_entry(sfb->tail)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Append to the existing sampling buffer, overwriting the table-link | 
 | 	 * register. | 
 | 	 * The tail variables always points to the "tail" (last and table-link) | 
 | 	 * entry in an SDB-table. | 
 | 	 */ | 
 | 	tail = sfb->tail; | 
 |  | 
 | 	/* Do a sanity check whether the table-link entry points to | 
 | 	 * the sampling buffer origin. | 
 | 	 */ | 
 | 	if (sfb->sdbt != get_next_sdbt(tail)) { | 
 | 		debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n", | 
 | 				    __func__, (unsigned long)sfb->sdbt, | 
 | 				    (unsigned long)tail); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Allocate remaining SDBs */ | 
 | 	rc = 0; | 
 | 	for (i = 0; i < num_sdb; i++) { | 
 | 		/* Allocate a new SDB-table if it is full. */ | 
 | 		if (require_table_link(tail)) { | 
 | 			new = (unsigned long *)get_zeroed_page(gfp_flags); | 
 | 			if (!new) { | 
 | 				rc = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 | 			sfb->num_sdbt++; | 
 | 			/* Link current page to tail of chain */ | 
 | 			*tail = virt_to_phys((void *)new) + 1; | 
 | 			tail_prev = tail; | 
 | 			tail = new; | 
 | 		} | 
 |  | 
 | 		/* Allocate a new sample-data-block. | 
 | 		 * If there is not enough memory, stop the realloc process | 
 | 		 * and simply use what was allocated.  If this is a temporary | 
 | 		 * issue, a new realloc call (if required) might succeed. | 
 | 		 */ | 
 | 		rc = alloc_sample_data_block(tail, gfp_flags); | 
 | 		if (rc) { | 
 | 			/* Undo last SDBT. An SDBT with no SDB at its first | 
 | 			 * entry but with an SDBT entry instead can not be | 
 | 			 * handled by the interrupt handler code. | 
 | 			 * Avoid this situation. | 
 | 			 */ | 
 | 			if (tail_prev) { | 
 | 				sfb->num_sdbt--; | 
 | 				free_page((unsigned long)new); | 
 | 				tail = tail_prev; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		sfb->num_sdb++; | 
 | 		tail++; | 
 | 		tail_prev = new = NULL;	/* Allocated at least one SBD */ | 
 | 	} | 
 |  | 
 | 	/* Link sampling buffer to its origin */ | 
 | 	*tail = virt_to_phys(sfb->sdbt) + 1; | 
 | 	sfb->tail = tail; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * allocate_sampling_buffer() - allocate sampler memory | 
 |  * | 
 |  * Allocates and initializes a sampling buffer structure using the | 
 |  * specified number of sample-data-blocks (SDB).  For each allocation, | 
 |  * a 4K page is used.  The number of sample-data-block-tables (SDBT) | 
 |  * are calculated from SDBs. | 
 |  * Also set the ALERT_REQ mask in each SDBs trailer. | 
 |  * | 
 |  * Returns zero on success, non-zero otherwise. | 
 |  */ | 
 | static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	if (sfb->sdbt) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Allocate the sample-data-block-table origin */ | 
 | 	sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); | 
 | 	if (!sfb->sdbt) | 
 | 		return -ENOMEM; | 
 | 	sfb->num_sdb = 0; | 
 | 	sfb->num_sdbt = 1; | 
 |  | 
 | 	/* Link the table origin to point to itself to prepare for | 
 | 	 * realloc_sampling_buffer() invocation. | 
 | 	 */ | 
 | 	sfb->tail = sfb->sdbt; | 
 | 	*sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1; | 
 |  | 
 | 	/* Allocate requested number of sample-data-blocks */ | 
 | 	rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL); | 
 | 	if (rc) | 
 | 		free_sampling_buffer(sfb); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void sfb_set_limits(unsigned long min, unsigned long max) | 
 | { | 
 | 	struct hws_qsi_info_block si; | 
 |  | 
 | 	CPUM_SF_MIN_SDB = min; | 
 | 	CPUM_SF_MAX_SDB = max; | 
 |  | 
 | 	memset(&si, 0, sizeof(si)); | 
 | 	qsi(&si); | 
 | 	CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes); | 
 | } | 
 |  | 
 | static unsigned long sfb_max_limit(struct hw_perf_event *hwc) | 
 | { | 
 | 	return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR | 
 | 				    : CPUM_SF_MAX_SDB; | 
 | } | 
 |  | 
 | static unsigned long sfb_pending_allocs(struct sf_buffer *sfb, | 
 | 					struct hw_perf_event *hwc) | 
 | { | 
 | 	if (!sfb->sdbt) | 
 | 		return SFB_ALLOC_REG(hwc); | 
 | 	if (SFB_ALLOC_REG(hwc) > sfb->num_sdb) | 
 | 		return SFB_ALLOC_REG(hwc) - sfb->num_sdb; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc) | 
 | { | 
 | 	/* Limit the number of SDBs to not exceed the maximum */ | 
 | 	num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc)); | 
 | 	if (num) | 
 | 		SFB_ALLOC_REG(hwc) += num; | 
 | } | 
 |  | 
 | static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc) | 
 | { | 
 | 	SFB_ALLOC_REG(hwc) = 0; | 
 | 	sfb_account_allocs(num, hwc); | 
 | } | 
 |  | 
 | static void deallocate_buffers(struct cpu_hw_sf *cpuhw) | 
 | { | 
 | 	if (cpuhw->sfb.sdbt) | 
 | 		free_sampling_buffer(&cpuhw->sfb); | 
 | } | 
 |  | 
 | static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc) | 
 | { | 
 | 	unsigned long n_sdb, freq; | 
 |  | 
 | 	/* Calculate sampling buffers using 4K pages | 
 | 	 * | 
 | 	 *    1. The sampling size is 32 bytes for basic sampling. This size | 
 | 	 *	 is the same for all machine types. Diagnostic | 
 | 	 *	 sampling uses auxlilary data buffer setup which provides the | 
 | 	 *	 memory for SDBs using linux common code auxiliary trace | 
 | 	 *	 setup. | 
 | 	 * | 
 | 	 *    2. Function alloc_sampling_buffer() sets the Alert Request | 
 | 	 *	 Control indicator to trigger a measurement-alert to harvest | 
 | 	 *	 sample-data-blocks (SDB). This is done per SDB. This | 
 | 	 *	 measurement alert interrupt fires quick enough to handle | 
 | 	 *	 one SDB, on very high frequency and work loads there might | 
 | 	 *	 be 2 to 3 SBDs available for sample processing. | 
 | 	 *	 Currently there is no need for setup alert request on every | 
 | 	 *	 n-th page. This is counterproductive as one IRQ triggers | 
 | 	 *	 a very high number of samples to be processed at one IRQ. | 
 | 	 * | 
 | 	 *    3. Use the sampling frequency as input. | 
 | 	 *	 Compute the number of SDBs and ensure a minimum | 
 | 	 *	 of CPUM_SF_MIN_SDB.  Depending on frequency add some more | 
 | 	 *	 SDBs to handle a higher sampling rate. | 
 | 	 *	 Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples | 
 | 	 *	 (one SDB) for every 10000 HZ frequency increment. | 
 | 	 * | 
 | 	 *    4. Compute the number of sample-data-block-tables (SDBT) and | 
 | 	 *	 ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up | 
 | 	 *	 to 511 SDBs). | 
 | 	 */ | 
 | 	freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)); | 
 | 	n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000); | 
 |  | 
 | 	/* If there is already a sampling buffer allocated, it is very likely | 
 | 	 * that the sampling facility is enabled too.  If the event to be | 
 | 	 * initialized requires a greater sampling buffer, the allocation must | 
 | 	 * be postponed.  Changing the sampling buffer requires the sampling | 
 | 	 * facility to be in the disabled state.  So, account the number of | 
 | 	 * required SDBs and let cpumsf_pmu_enable() resize the buffer just | 
 | 	 * before the event is started. | 
 | 	 */ | 
 | 	sfb_init_allocs(n_sdb, hwc); | 
 | 	if (sf_buffer_available(cpuhw)) | 
 | 		return 0; | 
 |  | 
 | 	return alloc_sampling_buffer(&cpuhw->sfb, | 
 | 				     sfb_pending_allocs(&cpuhw->sfb, hwc)); | 
 | } | 
 |  | 
 | static unsigned long min_percent(unsigned int percent, unsigned long base, | 
 | 				 unsigned long min) | 
 | { | 
 | 	return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100)); | 
 | } | 
 |  | 
 | static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base) | 
 | { | 
 | 	/* Use a percentage-based approach to extend the sampling facility | 
 | 	 * buffer.  Accept up to 5% sample data loss. | 
 | 	 * Vary the extents between 1% to 5% of the current number of | 
 | 	 * sample-data-blocks. | 
 | 	 */ | 
 | 	if (ratio <= 5) | 
 | 		return 0; | 
 | 	if (ratio <= 25) | 
 | 		return min_percent(1, base, 1); | 
 | 	if (ratio <= 50) | 
 | 		return min_percent(1, base, 1); | 
 | 	if (ratio <= 75) | 
 | 		return min_percent(2, base, 2); | 
 | 	if (ratio <= 100) | 
 | 		return min_percent(3, base, 3); | 
 | 	if (ratio <= 250) | 
 | 		return min_percent(4, base, 4); | 
 |  | 
 | 	return min_percent(5, base, 8); | 
 | } | 
 |  | 
 | static void sfb_account_overflows(struct cpu_hw_sf *cpuhw, | 
 | 				  struct hw_perf_event *hwc) | 
 | { | 
 | 	unsigned long ratio, num; | 
 |  | 
 | 	if (!OVERFLOW_REG(hwc)) | 
 | 		return; | 
 |  | 
 | 	/* The sample_overflow contains the average number of sample data | 
 | 	 * that has been lost because sample-data-blocks were full. | 
 | 	 * | 
 | 	 * Calculate the total number of sample data entries that has been | 
 | 	 * discarded.  Then calculate the ratio of lost samples to total samples | 
 | 	 * per second in percent. | 
 | 	 */ | 
 | 	ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb, | 
 | 			     sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc))); | 
 |  | 
 | 	/* Compute number of sample-data-blocks */ | 
 | 	num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb); | 
 | 	if (num) | 
 | 		sfb_account_allocs(num, hwc); | 
 |  | 
 | 	OVERFLOW_REG(hwc) = 0; | 
 | } | 
 |  | 
 | /* extend_sampling_buffer() - Extend sampling buffer | 
 |  * @sfb:	Sampling buffer structure (for local CPU) | 
 |  * @hwc:	Perf event hardware structure | 
 |  * | 
 |  * Use this function to extend the sampling buffer based on the overflow counter | 
 |  * and postponed allocation extents stored in the specified Perf event hardware. | 
 |  * | 
 |  * Important: This function disables the sampling facility in order to safely | 
 |  *	      change the sampling buffer structure.  Do not call this function | 
 |  *	      when the PMU is active. | 
 |  */ | 
 | static void extend_sampling_buffer(struct sf_buffer *sfb, | 
 | 				   struct hw_perf_event *hwc) | 
 | { | 
 | 	unsigned long num; | 
 |  | 
 | 	num = sfb_pending_allocs(sfb, hwc); | 
 | 	if (!num) | 
 | 		return; | 
 |  | 
 | 	/* Disable the sampling facility to reset any states and also | 
 | 	 * clear pending measurement alerts. | 
 | 	 */ | 
 | 	sf_disable(); | 
 |  | 
 | 	/* Extend the sampling buffer. | 
 | 	 * This memory allocation typically happens in an atomic context when | 
 | 	 * called by perf.  Because this is a reallocation, it is fine if the | 
 | 	 * new SDB-request cannot be satisfied immediately. | 
 | 	 */ | 
 | 	realloc_sampling_buffer(sfb, num, GFP_ATOMIC); | 
 | } | 
 |  | 
 | /* Number of perf events counting hardware events */ | 
 | static refcount_t num_events; | 
 | /* Used to avoid races in calling reserve/release_cpumf_hardware */ | 
 | static DEFINE_MUTEX(pmc_reserve_mutex); | 
 |  | 
 | #define PMC_INIT      0 | 
 | #define PMC_RELEASE   1 | 
 | static void setup_pmc_cpu(void *flags) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); | 
 |  | 
 | 	switch (*((int *)flags)) { | 
 | 	case PMC_INIT: | 
 | 		memset(cpuhw, 0, sizeof(*cpuhw)); | 
 | 		qsi(&cpuhw->qsi); | 
 | 		cpuhw->flags |= PMU_F_RESERVED; | 
 | 		sf_disable(); | 
 | 		break; | 
 | 	case PMC_RELEASE: | 
 | 		cpuhw->flags &= ~PMU_F_RESERVED; | 
 | 		sf_disable(); | 
 | 		deallocate_buffers(cpuhw); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void release_pmc_hardware(void) | 
 | { | 
 | 	int flags = PMC_RELEASE; | 
 |  | 
 | 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); | 
 | 	on_each_cpu(setup_pmc_cpu, &flags, 1); | 
 | } | 
 |  | 
 | static void reserve_pmc_hardware(void) | 
 | { | 
 | 	int flags = PMC_INIT; | 
 |  | 
 | 	on_each_cpu(setup_pmc_cpu, &flags, 1); | 
 | 	irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); | 
 | } | 
 |  | 
 | static void hw_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	/* Release PMC if this is the last perf event */ | 
 | 	if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) { | 
 | 		release_pmc_hardware(); | 
 | 		mutex_unlock(&pmc_reserve_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | static void hw_init_period(struct hw_perf_event *hwc, u64 period) | 
 | { | 
 | 	hwc->sample_period = period; | 
 | 	hwc->last_period = hwc->sample_period; | 
 | 	local64_set(&hwc->period_left, hwc->sample_period); | 
 | } | 
 |  | 
 | static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si, | 
 | 				   unsigned long rate) | 
 | { | 
 | 	return clamp_t(unsigned long, rate, | 
 | 		       si->min_sampl_rate, si->max_sampl_rate); | 
 | } | 
 |  | 
 | static u32 cpumsf_pid_type(struct perf_event *event, | 
 | 			   u32 pid, enum pid_type type) | 
 | { | 
 | 	struct task_struct *tsk; | 
 |  | 
 | 	/* Idle process */ | 
 | 	if (!pid) | 
 | 		goto out; | 
 |  | 
 | 	tsk = find_task_by_pid_ns(pid, &init_pid_ns); | 
 | 	pid = -1; | 
 | 	if (tsk) { | 
 | 		/* | 
 | 		 * Only top level events contain the pid namespace in which | 
 | 		 * they are created. | 
 | 		 */ | 
 | 		if (event->parent) | 
 | 			event = event->parent; | 
 | 		pid = __task_pid_nr_ns(tsk, type, event->ns); | 
 | 		/* | 
 | 		 * See also 1d953111b648 | 
 | 		 * "perf/core: Don't report zero PIDs for exiting tasks". | 
 | 		 */ | 
 | 		if (!pid && !pid_alive(tsk)) | 
 | 			pid = -1; | 
 | 	} | 
 | out: | 
 | 	return pid; | 
 | } | 
 |  | 
 | static void cpumsf_output_event_pid(struct perf_event *event, | 
 | 				    struct perf_sample_data *data, | 
 | 				    struct pt_regs *regs) | 
 | { | 
 | 	u32 pid; | 
 | 	struct perf_event_header header; | 
 | 	struct perf_output_handle handle; | 
 |  | 
 | 	/* | 
 | 	 * Obtain the PID from the basic-sampling data entry and | 
 | 	 * correct the data->tid_entry.pid value. | 
 | 	 */ | 
 | 	pid = data->tid_entry.pid; | 
 |  | 
 | 	/* Protect callchain buffers, tasks */ | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	perf_prepare_sample(data, event, regs); | 
 | 	perf_prepare_header(&header, data, event, regs); | 
 | 	if (perf_output_begin(&handle, data, event, header.size)) | 
 | 		goto out; | 
 |  | 
 | 	/* Update the process ID (see also kernel/events/core.c) */ | 
 | 	data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID); | 
 | 	data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID); | 
 |  | 
 | 	perf_output_sample(&handle, &header, data, event); | 
 | 	perf_output_end(&handle); | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static unsigned long getrate(bool freq, unsigned long sample, | 
 | 			     struct hws_qsi_info_block *si) | 
 | { | 
 | 	unsigned long rate; | 
 |  | 
 | 	if (freq) { | 
 | 		rate = freq_to_sample_rate(si, sample); | 
 | 		rate = hw_limit_rate(si, rate); | 
 | 	} else { | 
 | 		/* The min/max sampling rates specifies the valid range | 
 | 		 * of sample periods.  If the specified sample period is | 
 | 		 * out of range, limit the period to the range boundary. | 
 | 		 */ | 
 | 		rate = hw_limit_rate(si, sample); | 
 |  | 
 | 		/* The perf core maintains a maximum sample rate that is | 
 | 		 * configurable through the sysctl interface.  Ensure the | 
 | 		 * sampling rate does not exceed this value.  This also helps | 
 | 		 * to avoid throttling when pushing samples with | 
 | 		 * perf_event_overflow(). | 
 | 		 */ | 
 | 		if (sample_rate_to_freq(si, rate) > | 
 | 		    sysctl_perf_event_sample_rate) { | 
 | 			rate = 0; | 
 | 		} | 
 | 	} | 
 | 	return rate; | 
 | } | 
 |  | 
 | /* The sampling information (si) contains information about the | 
 |  * min/max sampling intervals and the CPU speed.  So calculate the | 
 |  * correct sampling interval and avoid the whole period adjust | 
 |  * feedback loop. | 
 |  * | 
 |  * Since the CPU Measurement sampling facility can not handle frequency | 
 |  * calculate the sampling interval when frequency is specified using | 
 |  * this formula: | 
 |  *	interval := cpu_speed * 1000000 / sample_freq | 
 |  * | 
 |  * Returns errno on bad input and zero on success with parameter interval | 
 |  * set to the correct sampling rate. | 
 |  * | 
 |  * Note: This function turns off freq bit to avoid calling function | 
 |  * perf_adjust_period(). This causes frequency adjustment in the common | 
 |  * code part which causes tremendous variations in the counter values. | 
 |  */ | 
 | static int __hw_perf_event_init_rate(struct perf_event *event, | 
 | 				     struct hws_qsi_info_block *si) | 
 | { | 
 | 	struct perf_event_attr *attr = &event->attr; | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	unsigned long rate; | 
 |  | 
 | 	if (attr->freq) { | 
 | 		if (!attr->sample_freq) | 
 | 			return -EINVAL; | 
 | 		rate = getrate(attr->freq, attr->sample_freq, si); | 
 | 		attr->freq = 0;		/* Don't call  perf_adjust_period() */ | 
 | 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE; | 
 | 	} else { | 
 | 		rate = getrate(attr->freq, attr->sample_period, si); | 
 | 		if (!rate) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	attr->sample_period = rate; | 
 | 	SAMPL_RATE(hwc) = rate; | 
 | 	hw_init_period(hwc, SAMPL_RATE(hwc)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __hw_perf_event_init(struct perf_event *event) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw; | 
 | 	struct hws_qsi_info_block si; | 
 | 	struct perf_event_attr *attr = &event->attr; | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int cpu, err = 0; | 
 |  | 
 | 	/* Reserve CPU-measurement sampling facility */ | 
 | 	mutex_lock(&pmc_reserve_mutex); | 
 | 	if (!refcount_inc_not_zero(&num_events)) { | 
 | 		reserve_pmc_hardware(); | 
 | 		refcount_set(&num_events, 1); | 
 | 	} | 
 | 	mutex_unlock(&pmc_reserve_mutex); | 
 | 	event->destroy = hw_perf_event_destroy; | 
 |  | 
 | 	/* Access per-CPU sampling information (query sampling info) */ | 
 | 	/* | 
 | 	 * The event->cpu value can be -1 to count on every CPU, for example, | 
 | 	 * when attaching to a task.  If this is specified, use the query | 
 | 	 * sampling info from the current CPU, otherwise use event->cpu to | 
 | 	 * retrieve the per-CPU information. | 
 | 	 * Later, cpuhw indicates whether to allocate sampling buffers for a | 
 | 	 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL). | 
 | 	 */ | 
 | 	memset(&si, 0, sizeof(si)); | 
 | 	cpuhw = NULL; | 
 | 	if (event->cpu == -1) { | 
 | 		qsi(&si); | 
 | 	} else { | 
 | 		/* Event is pinned to a particular CPU, retrieve the per-CPU | 
 | 		 * sampling structure for accessing the CPU-specific QSI. | 
 | 		 */ | 
 | 		cpuhw = &per_cpu(cpu_hw_sf, event->cpu); | 
 | 		si = cpuhw->qsi; | 
 | 	} | 
 |  | 
 | 	/* Check sampling facility authorization and, if not authorized, | 
 | 	 * fall back to other PMUs.  It is safe to check any CPU because | 
 | 	 * the authorization is identical for all configured CPUs. | 
 | 	 */ | 
 | 	if (!si.as) { | 
 | 		err = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (si.ribm & CPU_MF_SF_RIBM_NOTAV) { | 
 | 		pr_warn("CPU Measurement Facility sampling is temporarily not available\n"); | 
 | 		err = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Always enable basic sampling */ | 
 | 	SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE; | 
 |  | 
 | 	/* Check if diagnostic sampling is requested.  Deny if the required | 
 | 	 * sampling authorization is missing. | 
 | 	 */ | 
 | 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) { | 
 | 		if (!si.ad) { | 
 | 			err = -EPERM; | 
 | 			goto out; | 
 | 		} | 
 | 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE; | 
 | 	} | 
 |  | 
 | 	err =  __hw_perf_event_init_rate(event, &si); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Use AUX buffer. No need to allocate it by ourself */ | 
 | 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) | 
 | 		return 0; | 
 |  | 
 | 	/* Allocate the per-CPU sampling buffer using the CPU information | 
 | 	 * from the event.  If the event is not pinned to a particular | 
 | 	 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling | 
 | 	 * buffers for each online CPU. | 
 | 	 */ | 
 | 	if (cpuhw) | 
 | 		/* Event is pinned to a particular CPU */ | 
 | 		err = allocate_buffers(cpuhw, hwc); | 
 | 	else { | 
 | 		/* Event is not pinned, allocate sampling buffer on | 
 | 		 * each online CPU | 
 | 		 */ | 
 | 		for_each_online_cpu(cpu) { | 
 | 			cpuhw = &per_cpu(cpu_hw_sf, cpu); | 
 | 			err = allocate_buffers(cpuhw, hwc); | 
 | 			if (err) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If PID/TID sampling is active, replace the default overflow | 
 | 	 * handler to extract and resolve the PIDs from the basic-sampling | 
 | 	 * data entries. | 
 | 	 */ | 
 | 	if (event->attr.sample_type & PERF_SAMPLE_TID) | 
 | 		if (is_default_overflow_handler(event)) | 
 | 			event->overflow_handler = cpumsf_output_event_pid; | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool is_callchain_event(struct perf_event *event) | 
 | { | 
 | 	u64 sample_type = event->attr.sample_type; | 
 |  | 
 | 	return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | | 
 | 			      PERF_SAMPLE_STACK_USER); | 
 | } | 
 |  | 
 | static int cpumsf_pmu_event_init(struct perf_event *event) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* No support for taken branch sampling */ | 
 | 	/* No support for callchain, stacks and registers */ | 
 | 	if (has_branch_stack(event) || is_callchain_event(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	switch (event->attr.type) { | 
 | 	case PERF_TYPE_RAW: | 
 | 		if ((event->attr.config != PERF_EVENT_CPUM_SF) && | 
 | 		    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG)) | 
 | 			return -ENOENT; | 
 | 		break; | 
 | 	case PERF_TYPE_HARDWARE: | 
 | 		/* Support sampling of CPU cycles in addition to the | 
 | 		 * counter facility.  However, the counter facility | 
 | 		 * is more precise and, hence, restrict this PMU to | 
 | 		 * sampling events only. | 
 | 		 */ | 
 | 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES) | 
 | 			return -ENOENT; | 
 | 		if (!is_sampling_event(event)) | 
 | 			return -ENOENT; | 
 | 		break; | 
 | 	default: | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	/* Force reset of idle/hv excludes regardless of what the | 
 | 	 * user requested. | 
 | 	 */ | 
 | 	if (event->attr.exclude_hv) | 
 | 		event->attr.exclude_hv = 0; | 
 | 	if (event->attr.exclude_idle) | 
 | 		event->attr.exclude_idle = 0; | 
 |  | 
 | 	err = __hw_perf_event_init(event); | 
 | 	if (unlikely(err)) | 
 | 		if (event->destroy) | 
 | 			event->destroy(event); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void cpumsf_pmu_enable(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); | 
 | 	struct hw_perf_event *hwc; | 
 | 	int err; | 
 |  | 
 | 	if (cpuhw->flags & PMU_F_ENABLED) | 
 | 		return; | 
 |  | 
 | 	if (cpuhw->flags & PMU_F_ERR_MASK) | 
 | 		return; | 
 |  | 
 | 	/* Check whether to extent the sampling buffer. | 
 | 	 * | 
 | 	 * Two conditions trigger an increase of the sampling buffer for a | 
 | 	 * perf event: | 
 | 	 *    1. Postponed buffer allocations from the event initialization. | 
 | 	 *    2. Sampling overflows that contribute to pending allocations. | 
 | 	 * | 
 | 	 * Note that the extend_sampling_buffer() function disables the sampling | 
 | 	 * facility, but it can be fully re-enabled using sampling controls that | 
 | 	 * have been saved in cpumsf_pmu_disable(). | 
 | 	 */ | 
 | 	if (cpuhw->event) { | 
 | 		hwc = &cpuhw->event->hw; | 
 | 		if (!(SAMPL_DIAG_MODE(hwc))) { | 
 | 			/* | 
 | 			 * Account number of overflow-designated | 
 | 			 * buffer extents | 
 | 			 */ | 
 | 			sfb_account_overflows(cpuhw, hwc); | 
 | 			extend_sampling_buffer(&cpuhw->sfb, hwc); | 
 | 		} | 
 | 		/* Rate may be adjusted with ioctl() */ | 
 | 		cpuhw->lsctl.interval = SAMPL_RATE(hwc); | 
 | 	} | 
 |  | 
 | 	/* (Re)enable the PMU and sampling facility */ | 
 | 	cpuhw->flags |= PMU_F_ENABLED; | 
 | 	barrier(); | 
 |  | 
 | 	err = lsctl(&cpuhw->lsctl); | 
 | 	if (err) { | 
 | 		cpuhw->flags &= ~PMU_F_ENABLED; | 
 | 		pr_err("Loading sampling controls failed: op 1 err %i\n", err); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Load current program parameter */ | 
 | 	lpp(&get_lowcore()->lpp); | 
 | } | 
 |  | 
 | static void cpumsf_pmu_disable(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); | 
 | 	struct hws_lsctl_request_block inactive; | 
 | 	struct hws_qsi_info_block si; | 
 | 	int err; | 
 |  | 
 | 	if (!(cpuhw->flags & PMU_F_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (cpuhw->flags & PMU_F_ERR_MASK) | 
 | 		return; | 
 |  | 
 | 	/* Switch off sampling activation control */ | 
 | 	inactive = cpuhw->lsctl; | 
 | 	inactive.cs = 0; | 
 | 	inactive.cd = 0; | 
 |  | 
 | 	err = lsctl(&inactive); | 
 | 	if (err) { | 
 | 		pr_err("Loading sampling controls failed: op 2 err %i\n", err); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save state of TEAR and DEAR register contents. | 
 | 	 * TEAR/DEAR values are valid only if the sampling facility is | 
 | 	 * enabled.  Note that cpumsf_pmu_disable() might be called even | 
 | 	 * for a disabled sampling facility because cpumsf_pmu_enable() | 
 | 	 * controls the enable/disable state. | 
 | 	 */ | 
 | 	qsi(&si); | 
 | 	if (si.es) { | 
 | 		cpuhw->lsctl.tear = si.tear; | 
 | 		cpuhw->lsctl.dear = si.dear; | 
 | 	} | 
 |  | 
 | 	cpuhw->flags &= ~PMU_F_ENABLED; | 
 | } | 
 |  | 
 | /* perf_exclude_event() - Filter event | 
 |  * @event:	The perf event | 
 |  * @regs:	pt_regs structure | 
 |  * @sde_regs:	Sample-data-entry (sde) regs structure | 
 |  * | 
 |  * Filter perf events according to their exclude specification. | 
 |  * | 
 |  * Return non-zero if the event shall be excluded. | 
 |  */ | 
 | static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs, | 
 | 			      struct perf_sf_sde_regs *sde_regs) | 
 | { | 
 | 	if (event->attr.exclude_user && user_mode(regs)) | 
 | 		return 1; | 
 | 	if (event->attr.exclude_kernel && !user_mode(regs)) | 
 | 		return 1; | 
 | 	if (event->attr.exclude_guest && sde_regs->in_guest) | 
 | 		return 1; | 
 | 	if (event->attr.exclude_host && !sde_regs->in_guest) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* perf_push_sample() - Push samples to perf | 
 |  * @event:	The perf event | 
 |  * @sample:	Hardware sample data | 
 |  * | 
 |  * Use the hardware sample data to create perf event sample.  The sample | 
 |  * is the pushed to the event subsystem and the function checks for | 
 |  * possible event overflows.  If an event overflow occurs, the PMU is | 
 |  * stopped. | 
 |  * | 
 |  * Return non-zero if an event overflow occurred. | 
 |  */ | 
 | static int perf_push_sample(struct perf_event *event, | 
 | 			    struct hws_basic_entry *basic) | 
 | { | 
 | 	int overflow; | 
 | 	struct pt_regs regs; | 
 | 	struct perf_sf_sde_regs *sde_regs; | 
 | 	struct perf_sample_data data; | 
 |  | 
 | 	/* Setup perf sample */ | 
 | 	perf_sample_data_init(&data, 0, event->hw.last_period); | 
 |  | 
 | 	/* Setup pt_regs to look like an CPU-measurement external interrupt | 
 | 	 * using the Program Request Alert code.  The regs.int_parm_long | 
 | 	 * field which is unused contains additional sample-data-entry related | 
 | 	 * indicators. | 
 | 	 */ | 
 | 	memset(®s, 0, sizeof(regs)); | 
 | 	regs.int_code = 0x1407; | 
 | 	regs.int_parm = CPU_MF_INT_SF_PRA; | 
 | 	sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long; | 
 |  | 
 | 	psw_bits(regs.psw).ia	= basic->ia; | 
 | 	psw_bits(regs.psw).dat	= basic->T; | 
 | 	psw_bits(regs.psw).wait = basic->W; | 
 | 	psw_bits(regs.psw).pstate = basic->P; | 
 | 	psw_bits(regs.psw).as	= basic->AS; | 
 |  | 
 | 	/* | 
 | 	 * Use the hardware provided configuration level to decide if the | 
 | 	 * sample belongs to a guest or host. If that is not available, | 
 | 	 * fall back to the following heuristics: | 
 | 	 * A non-zero guest program parameter always indicates a guest | 
 | 	 * sample. Some early samples or samples from guests without | 
 | 	 * lpp usage would be misaccounted to the host. We use the asn | 
 | 	 * value as an addon heuristic to detect most of these guest samples. | 
 | 	 * If the value differs from 0xffff (the host value), we assume to | 
 | 	 * be a KVM guest. | 
 | 	 */ | 
 | 	switch (basic->CL) { | 
 | 	case 1: /* logical partition */ | 
 | 		sde_regs->in_guest = 0; | 
 | 		break; | 
 | 	case 2: /* virtual machine */ | 
 | 		sde_regs->in_guest = 1; | 
 | 		break; | 
 | 	default: /* old machine, use heuristics */ | 
 | 		if (basic->gpp || basic->prim_asn != 0xffff) | 
 | 			sde_regs->in_guest = 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Store the PID value from the sample-data-entry to be | 
 | 	 * processed and resolved by cpumsf_output_event_pid(). | 
 | 	 */ | 
 | 	data.tid_entry.pid = basic->hpp & LPP_PID_MASK; | 
 |  | 
 | 	overflow = 0; | 
 | 	if (perf_exclude_event(event, ®s, sde_regs)) | 
 | 		goto out; | 
 | 	if (perf_event_overflow(event, &data, ®s)) { | 
 | 		overflow = 1; | 
 | 		event->pmu->stop(event, 0); | 
 | 	} | 
 | 	perf_event_update_userpage(event); | 
 | out: | 
 | 	return overflow; | 
 | } | 
 |  | 
 | static void perf_event_count_update(struct perf_event *event, u64 count) | 
 | { | 
 | 	local64_add(count, &event->count); | 
 | } | 
 |  | 
 | /* hw_collect_samples() - Walk through a sample-data-block and collect samples | 
 |  * @event:	The perf event | 
 |  * @sdbt:	Sample-data-block table | 
 |  * @overflow:	Event overflow counter | 
 |  * | 
 |  * Walks through a sample-data-block and collects sampling data entries that are | 
 |  * then pushed to the perf event subsystem.  Depending on the sampling function, | 
 |  * there can be either basic-sampling or combined-sampling data entries.  A | 
 |  * combined-sampling data entry consists of a basic- and a diagnostic-sampling | 
 |  * data entry.	The sampling function is determined by the flags in the perf | 
 |  * event hardware structure.  The function always works with a combined-sampling | 
 |  * data entry but ignores the the diagnostic portion if it is not available. | 
 |  * | 
 |  * Note that the implementation focuses on basic-sampling data entries and, if | 
 |  * such an entry is not valid, the entire combined-sampling data entry is | 
 |  * ignored. | 
 |  * | 
 |  * The overflow variables counts the number of samples that has been discarded | 
 |  * due to a perf event overflow. | 
 |  */ | 
 | static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt, | 
 | 			       unsigned long long *overflow) | 
 | { | 
 | 	struct hws_trailer_entry *te; | 
 | 	struct hws_basic_entry *sample; | 
 |  | 
 | 	te = trailer_entry_ptr((unsigned long)sdbt); | 
 | 	sample = (struct hws_basic_entry *)sdbt; | 
 | 	while ((unsigned long *)sample < (unsigned long *)te) { | 
 | 		/* Check for an empty sample */ | 
 | 		if (!sample->def || sample->LS) | 
 | 			break; | 
 |  | 
 | 		/* Update perf event period */ | 
 | 		perf_event_count_update(event, SAMPL_RATE(&event->hw)); | 
 |  | 
 | 		/* Check whether sample is valid */ | 
 | 		if (sample->def == 0x0001) { | 
 | 			/* If an event overflow occurred, the PMU is stopped to | 
 | 			 * throttle event delivery.  Remaining sample data is | 
 | 			 * discarded. | 
 | 			 */ | 
 | 			if (!*overflow) { | 
 | 				/* Check whether sample is consistent */ | 
 | 				if (sample->I == 0 && sample->W == 0) { | 
 | 					/* Deliver sample data to perf */ | 
 | 					*overflow = perf_push_sample(event, | 
 | 								     sample); | 
 | 				} | 
 | 			} else | 
 | 				/* Count discarded samples */ | 
 | 				*overflow += 1; | 
 | 		} else { | 
 | 			/* Sample slot is not yet written or other record. | 
 | 			 * | 
 | 			 * This condition can occur if the buffer was reused | 
 | 			 * from a combined basic- and diagnostic-sampling. | 
 | 			 * If only basic-sampling is then active, entries are | 
 | 			 * written into the larger diagnostic entries. | 
 | 			 * This is typically the case for sample-data-blocks | 
 | 			 * that are not full.  Stop processing if the first | 
 | 			 * invalid format was detected. | 
 | 			 */ | 
 | 			if (!te->header.f) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* Reset sample slot and advance to next sample */ | 
 | 		sample->def = 0; | 
 | 		sample++; | 
 | 	} | 
 | } | 
 |  | 
 | /* hw_perf_event_update() - Process sampling buffer | 
 |  * @event:	The perf event | 
 |  * @flush_all:	Flag to also flush partially filled sample-data-blocks | 
 |  * | 
 |  * Processes the sampling buffer and create perf event samples. | 
 |  * The sampling buffer position are retrieved and saved in the TEAR_REG | 
 |  * register of the specified perf event. | 
 |  * | 
 |  * Only full sample-data-blocks are processed.	Specify the flush_all flag | 
 |  * to also walk through partially filled sample-data-blocks. | 
 |  */ | 
 | static void hw_perf_event_update(struct perf_event *event, int flush_all) | 
 | { | 
 | 	unsigned long long event_overflow, sampl_overflow, num_sdb; | 
 | 	union hws_trailer_header old, prev, new; | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	struct hws_trailer_entry *te; | 
 | 	unsigned long *sdbt, sdb; | 
 | 	int done; | 
 |  | 
 | 	/* | 
 | 	 * AUX buffer is used when in diagnostic sampling mode. | 
 | 	 * No perf events/samples are created. | 
 | 	 */ | 
 | 	if (SAMPL_DIAG_MODE(hwc)) | 
 | 		return; | 
 |  | 
 | 	sdbt = (unsigned long *)TEAR_REG(hwc); | 
 | 	done = event_overflow = sampl_overflow = num_sdb = 0; | 
 | 	while (!done) { | 
 | 		/* Get the trailer entry of the sample-data-block */ | 
 | 		sdb = (unsigned long)phys_to_virt(*sdbt); | 
 | 		te = trailer_entry_ptr(sdb); | 
 |  | 
 | 		/* Leave loop if no more work to do (block full indicator) */ | 
 | 		if (!te->header.f) { | 
 | 			done = 1; | 
 | 			if (!flush_all) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* Check the sample overflow count */ | 
 | 		if (te->header.overflow) | 
 | 			/* Account sample overflows and, if a particular limit | 
 | 			 * is reached, extend the sampling buffer. | 
 | 			 * For details, see sfb_account_overflows(). | 
 | 			 */ | 
 | 			sampl_overflow += te->header.overflow; | 
 |  | 
 | 		/* Collect all samples from a single sample-data-block and | 
 | 		 * flag if an (perf) event overflow happened.  If so, the PMU | 
 | 		 * is stopped and remaining samples will be discarded. | 
 | 		 */ | 
 | 		hw_collect_samples(event, (unsigned long *)sdb, &event_overflow); | 
 | 		num_sdb++; | 
 |  | 
 | 		/* Reset trailer (using compare-double-and-swap) */ | 
 | 		prev.val = READ_ONCE_ALIGNED_128(te->header.val); | 
 | 		do { | 
 | 			old.val = prev.val; | 
 | 			new.val = prev.val; | 
 | 			new.f = 0; | 
 | 			new.a = 1; | 
 | 			new.overflow = 0; | 
 | 			prev.val = cmpxchg128(&te->header.val, old.val, new.val); | 
 | 		} while (prev.val != old.val); | 
 |  | 
 | 		/* Advance to next sample-data-block */ | 
 | 		sdbt++; | 
 | 		if (is_link_entry(sdbt)) | 
 | 			sdbt = get_next_sdbt(sdbt); | 
 |  | 
 | 		/* Update event hardware registers */ | 
 | 		TEAR_REG(hwc) = (unsigned long)sdbt; | 
 |  | 
 | 		/* Stop processing sample-data if all samples of the current | 
 | 		 * sample-data-block were flushed even if it was not full. | 
 | 		 */ | 
 | 		if (flush_all && done) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Account sample overflows in the event hardware structure */ | 
 | 	if (sampl_overflow) | 
 | 		OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) + | 
 | 						 sampl_overflow, 1 + num_sdb); | 
 |  | 
 | 	/* Perf_event_overflow() and perf_event_account_interrupt() limit | 
 | 	 * the interrupt rate to an upper limit. Roughly 1000 samples per | 
 | 	 * task tick. | 
 | 	 * Hitting this limit results in a large number | 
 | 	 * of throttled REF_REPORT_THROTTLE entries and the samples | 
 | 	 * are dropped. | 
 | 	 * Slightly increase the interval to avoid hitting this limit. | 
 | 	 */ | 
 | 	if (event_overflow) | 
 | 		SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10); | 
 | } | 
 |  | 
 | static inline unsigned long aux_sdb_index(struct aux_buffer *aux, | 
 | 					  unsigned long i) | 
 | { | 
 | 	return i % aux->sfb.num_sdb; | 
 | } | 
 |  | 
 | static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end) | 
 | { | 
 | 	return end >= start ? end - start + 1 : 0; | 
 | } | 
 |  | 
 | static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux) | 
 | { | 
 | 	return aux_sdb_num(aux->head, aux->alert_mark); | 
 | } | 
 |  | 
 | static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux) | 
 | { | 
 | 	return aux_sdb_num(aux->head, aux->empty_mark); | 
 | } | 
 |  | 
 | /* | 
 |  * Get trailer entry by index of SDB. | 
 |  */ | 
 | static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux, | 
 | 						 unsigned long index) | 
 | { | 
 | 	unsigned long sdb; | 
 |  | 
 | 	index = aux_sdb_index(aux, index); | 
 | 	sdb = aux->sdb_index[index]; | 
 | 	return trailer_entry_ptr(sdb); | 
 | } | 
 |  | 
 | /* | 
 |  * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu | 
 |  * disabled. Collect the full SDBs in AUX buffer which have not reached | 
 |  * the point of alert indicator. And ignore the SDBs which are not | 
 |  * full. | 
 |  * | 
 |  * 1. Scan SDBs to see how much data is there and consume them. | 
 |  * 2. Remove alert indicator in the buffer. | 
 |  */ | 
 | static void aux_output_end(struct perf_output_handle *handle) | 
 | { | 
 | 	unsigned long i, range_scan, idx; | 
 | 	struct aux_buffer *aux; | 
 | 	struct hws_trailer_entry *te; | 
 |  | 
 | 	aux = perf_get_aux(handle); | 
 | 	if (!aux) | 
 | 		return; | 
 |  | 
 | 	range_scan = aux_sdb_num_alert(aux); | 
 | 	for (i = 0, idx = aux->head; i < range_scan; i++, idx++) { | 
 | 		te = aux_sdb_trailer(aux, idx); | 
 | 		if (!te->header.f) | 
 | 			break; | 
 | 	} | 
 | 	/* i is num of SDBs which are full */ | 
 | 	perf_aux_output_end(handle, i << PAGE_SHIFT); | 
 |  | 
 | 	/* Remove alert indicators in the buffer */ | 
 | 	te = aux_sdb_trailer(aux, aux->alert_mark); | 
 | 	te->header.a = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event | 
 |  * is first added to the CPU or rescheduled again to the CPU. It is called | 
 |  * with pmu disabled. | 
 |  * | 
 |  * 1. Reset the trailer of SDBs to get ready for new data. | 
 |  * 2. Tell the hardware where to put the data by reset the SDBs buffer | 
 |  *    head(tear/dear). | 
 |  */ | 
 | static int aux_output_begin(struct perf_output_handle *handle, | 
 | 			    struct aux_buffer *aux, | 
 | 			    struct cpu_hw_sf *cpuhw) | 
 | { | 
 | 	unsigned long range, i, range_scan, idx, head, base, offset; | 
 | 	struct hws_trailer_entry *te; | 
 |  | 
 | 	if (handle->head & ~PAGE_MASK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	aux->head = handle->head >> PAGE_SHIFT; | 
 | 	range = (handle->size + 1) >> PAGE_SHIFT; | 
 | 	if (range <= 1) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * SDBs between aux->head and aux->empty_mark are already ready | 
 | 	 * for new data. range_scan is num of SDBs not within them. | 
 | 	 */ | 
 | 	if (range > aux_sdb_num_empty(aux)) { | 
 | 		range_scan = range - aux_sdb_num_empty(aux); | 
 | 		idx = aux->empty_mark + 1; | 
 | 		for (i = 0; i < range_scan; i++, idx++) { | 
 | 			te = aux_sdb_trailer(aux, idx); | 
 | 			te->header.f = 0; | 
 | 			te->header.a = 0; | 
 | 			te->header.overflow = 0; | 
 | 		} | 
 | 		/* Save the position of empty SDBs */ | 
 | 		aux->empty_mark = aux->head + range - 1; | 
 | 	} | 
 |  | 
 | 	/* Set alert indicator */ | 
 | 	aux->alert_mark = aux->head + range/2 - 1; | 
 | 	te = aux_sdb_trailer(aux, aux->alert_mark); | 
 | 	te->header.a = 1; | 
 |  | 
 | 	/* Reset hardware buffer head */ | 
 | 	head = aux_sdb_index(aux, aux->head); | 
 | 	base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE]; | 
 | 	offset = head % CPUM_SF_SDB_PER_TABLE; | 
 | 	cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long); | 
 | 	cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set alert indicator on SDB at index @alert_index while sampler is running. | 
 |  * | 
 |  * Return true if successfully. | 
 |  * Return false if full indicator is already set by hardware sampler. | 
 |  */ | 
 | static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index, | 
 | 			  unsigned long long *overflow) | 
 | { | 
 | 	union hws_trailer_header old, prev, new; | 
 | 	struct hws_trailer_entry *te; | 
 |  | 
 | 	te = aux_sdb_trailer(aux, alert_index); | 
 | 	prev.val = READ_ONCE_ALIGNED_128(te->header.val); | 
 | 	do { | 
 | 		old.val = prev.val; | 
 | 		new.val = prev.val; | 
 | 		*overflow = old.overflow; | 
 | 		if (old.f) { | 
 | 			/* | 
 | 			 * SDB is already set by hardware. | 
 | 			 * Abort and try to set somewhere | 
 | 			 * behind. | 
 | 			 */ | 
 | 			return false; | 
 | 		} | 
 | 		new.a = 1; | 
 | 		new.overflow = 0; | 
 | 		prev.val = cmpxchg128(&te->header.val, old.val, new.val); | 
 | 	} while (prev.val != old.val); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * aux_reset_buffer() - Scan and setup SDBs for new samples | 
 |  * @aux:	The AUX buffer to set | 
 |  * @range:	The range of SDBs to scan started from aux->head | 
 |  * @overflow:	Set to overflow count | 
 |  * | 
 |  * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is | 
 |  * marked as empty, check if it is already set full by the hardware sampler. | 
 |  * If yes, that means new data is already there before we can set an alert | 
 |  * indicator. Caller should try to set alert indicator to some position behind. | 
 |  * | 
 |  * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used | 
 |  * previously and have already been consumed by user space. Reset these SDBs | 
 |  * (clear full indicator and alert indicator) for new data. | 
 |  * If aux->alert_mark fall in this area, just set it. Overflow count is | 
 |  * recorded while scanning. | 
 |  * | 
 |  * SDBs between aux->head and aux->empty_mark are already reset at last time. | 
 |  * and ready for new samples. So scanning on this area could be skipped. | 
 |  * | 
 |  * Return true if alert indicator is set successfully and false if not. | 
 |  */ | 
 | static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range, | 
 | 			     unsigned long long *overflow) | 
 | { | 
 | 	union hws_trailer_header old, prev, new; | 
 | 	unsigned long i, range_scan, idx; | 
 | 	unsigned long long orig_overflow; | 
 | 	struct hws_trailer_entry *te; | 
 |  | 
 | 	if (range <= aux_sdb_num_empty(aux)) | 
 | 		/* | 
 | 		 * No need to scan. All SDBs in range are marked as empty. | 
 | 		 * Just set alert indicator. Should check race with hardware | 
 | 		 * sampler. | 
 | 		 */ | 
 | 		return aux_set_alert(aux, aux->alert_mark, overflow); | 
 |  | 
 | 	if (aux->alert_mark <= aux->empty_mark) | 
 | 		/* | 
 | 		 * Set alert indicator on empty SDB. Should check race | 
 | 		 * with hardware sampler. | 
 | 		 */ | 
 | 		if (!aux_set_alert(aux, aux->alert_mark, overflow)) | 
 | 			return false; | 
 |  | 
 | 	/* | 
 | 	 * Scan the SDBs to clear full and alert indicator used previously. | 
 | 	 * Start scanning from one SDB behind empty_mark. If the new alert | 
 | 	 * indicator fall into this range, set it. | 
 | 	 */ | 
 | 	range_scan = range - aux_sdb_num_empty(aux); | 
 | 	idx = aux->empty_mark + 1; | 
 | 	for (i = 0; i < range_scan; i++, idx++) { | 
 | 		te = aux_sdb_trailer(aux, idx); | 
 | 		prev.val = READ_ONCE_ALIGNED_128(te->header.val); | 
 | 		do { | 
 | 			old.val = prev.val; | 
 | 			new.val = prev.val; | 
 | 			orig_overflow = old.overflow; | 
 | 			new.f = 0; | 
 | 			new.overflow = 0; | 
 | 			if (idx == aux->alert_mark) | 
 | 				new.a = 1; | 
 | 			else | 
 | 				new.a = 0; | 
 | 			prev.val = cmpxchg128(&te->header.val, old.val, new.val); | 
 | 		} while (prev.val != old.val); | 
 | 		*overflow += orig_overflow; | 
 | 	} | 
 |  | 
 | 	/* Update empty_mark to new position */ | 
 | 	aux->empty_mark = aux->head + range - 1; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Measurement alert handler for diagnostic mode sampling. | 
 |  */ | 
 | static void hw_collect_aux(struct cpu_hw_sf *cpuhw) | 
 | { | 
 | 	struct aux_buffer *aux; | 
 | 	int done = 0; | 
 | 	unsigned long range = 0, size; | 
 | 	unsigned long long overflow = 0; | 
 | 	struct perf_output_handle *handle = &cpuhw->handle; | 
 | 	unsigned long num_sdb; | 
 |  | 
 | 	aux = perf_get_aux(handle); | 
 | 	if (!aux) | 
 | 		return; | 
 |  | 
 | 	/* Inform user space new data arrived */ | 
 | 	size = aux_sdb_num_alert(aux) << PAGE_SHIFT; | 
 | 	debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__, | 
 | 			    size >> PAGE_SHIFT); | 
 | 	perf_aux_output_end(handle, size); | 
 |  | 
 | 	num_sdb = aux->sfb.num_sdb; | 
 | 	while (!done) { | 
 | 		/* Get an output handle */ | 
 | 		aux = perf_aux_output_begin(handle, cpuhw->event); | 
 | 		if (handle->size == 0) { | 
 | 			pr_err("The AUX buffer with %lu pages for the " | 
 | 			       "diagnostic-sampling mode is full\n", | 
 | 				num_sdb); | 
 | 			break; | 
 | 		} | 
 | 		if (!aux) | 
 | 			return; | 
 |  | 
 | 		/* Update head and alert_mark to new position */ | 
 | 		aux->head = handle->head >> PAGE_SHIFT; | 
 | 		range = (handle->size + 1) >> PAGE_SHIFT; | 
 | 		if (range == 1) | 
 | 			aux->alert_mark = aux->head; | 
 | 		else | 
 | 			aux->alert_mark = aux->head + range/2 - 1; | 
 |  | 
 | 		if (aux_reset_buffer(aux, range, &overflow)) { | 
 | 			if (!overflow) { | 
 | 				done = 1; | 
 | 				break; | 
 | 			} | 
 | 			size = range << PAGE_SHIFT; | 
 | 			perf_aux_output_end(&cpuhw->handle, size); | 
 | 			pr_err("Sample data caused the AUX buffer with %lu " | 
 | 			       "pages to overflow\n", aux->sfb.num_sdb); | 
 | 		} else { | 
 | 			size = aux_sdb_num_alert(aux) << PAGE_SHIFT; | 
 | 			perf_aux_output_end(&cpuhw->handle, size); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Callback when freeing AUX buffers. | 
 |  */ | 
 | static void aux_buffer_free(void *data) | 
 | { | 
 | 	struct aux_buffer *aux = data; | 
 | 	unsigned long i, num_sdbt; | 
 |  | 
 | 	if (!aux) | 
 | 		return; | 
 |  | 
 | 	/* Free SDBT. SDB is freed by the caller */ | 
 | 	num_sdbt = aux->sfb.num_sdbt; | 
 | 	for (i = 0; i < num_sdbt; i++) | 
 | 		free_page(aux->sdbt_index[i]); | 
 |  | 
 | 	kfree(aux->sdbt_index); | 
 | 	kfree(aux->sdb_index); | 
 | 	kfree(aux); | 
 | } | 
 |  | 
 | static void aux_sdb_init(unsigned long sdb) | 
 | { | 
 | 	struct hws_trailer_entry *te; | 
 |  | 
 | 	te = trailer_entry_ptr(sdb); | 
 |  | 
 | 	/* Save clock base */ | 
 | 	te->clock_base = 1; | 
 | 	te->progusage2 = tod_clock_base.tod; | 
 | } | 
 |  | 
 | /* | 
 |  * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling | 
 |  * @event:	Event the buffer is setup for, event->cpu == -1 means current | 
 |  * @pages:	Array of pointers to buffer pages passed from perf core | 
 |  * @nr_pages:	Total pages | 
 |  * @snapshot:	Flag for snapshot mode | 
 |  * | 
 |  * This is the callback when setup an event using AUX buffer. Perf tool can | 
 |  * trigger this by an additional mmap() call on the event. Unlike the buffer | 
 |  * for basic samples, AUX buffer belongs to the event. It is scheduled with | 
 |  * the task among online cpus when it is a per-thread event. | 
 |  * | 
 |  * Return the private AUX buffer structure if success or NULL if fails. | 
 |  */ | 
 | static void *aux_buffer_setup(struct perf_event *event, void **pages, | 
 | 			      int nr_pages, bool snapshot) | 
 | { | 
 | 	struct sf_buffer *sfb; | 
 | 	struct aux_buffer *aux; | 
 | 	unsigned long *new, *tail; | 
 | 	int i, n_sdbt; | 
 |  | 
 | 	if (!nr_pages || !pages) | 
 | 		return NULL; | 
 |  | 
 | 	if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) { | 
 | 		pr_err("AUX buffer size (%i pages) is larger than the " | 
 | 		       "maximum sampling buffer limit\n", | 
 | 		       nr_pages); | 
 | 		return NULL; | 
 | 	} else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) { | 
 | 		pr_err("AUX buffer size (%i pages) is less than the " | 
 | 		       "minimum sampling buffer limit\n", | 
 | 		       nr_pages); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Allocate aux_buffer struct for the event */ | 
 | 	aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL); | 
 | 	if (!aux) | 
 | 		goto no_aux; | 
 | 	sfb = &aux->sfb; | 
 |  | 
 | 	/* Allocate sdbt_index for fast reference */ | 
 | 	n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE); | 
 | 	aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL); | 
 | 	if (!aux->sdbt_index) | 
 | 		goto no_sdbt_index; | 
 |  | 
 | 	/* Allocate sdb_index for fast reference */ | 
 | 	aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); | 
 | 	if (!aux->sdb_index) | 
 | 		goto no_sdb_index; | 
 |  | 
 | 	/* Allocate the first SDBT */ | 
 | 	sfb->num_sdbt = 0; | 
 | 	sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL); | 
 | 	if (!sfb->sdbt) | 
 | 		goto no_sdbt; | 
 | 	aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt; | 
 | 	tail = sfb->tail = sfb->sdbt; | 
 |  | 
 | 	/* | 
 | 	 * Link the provided pages of AUX buffer to SDBT. | 
 | 	 * Allocate SDBT if needed. | 
 | 	 */ | 
 | 	for (i = 0; i < nr_pages; i++, tail++) { | 
 | 		if (require_table_link(tail)) { | 
 | 			new = (unsigned long *)get_zeroed_page(GFP_KERNEL); | 
 | 			if (!new) | 
 | 				goto no_sdbt; | 
 | 			aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new; | 
 | 			/* Link current page to tail of chain */ | 
 | 			*tail = virt_to_phys(new) + 1; | 
 | 			tail = new; | 
 | 		} | 
 | 		/* Tail is the entry in a SDBT */ | 
 | 		*tail = virt_to_phys(pages[i]); | 
 | 		aux->sdb_index[i] = (unsigned long)pages[i]; | 
 | 		aux_sdb_init((unsigned long)pages[i]); | 
 | 	} | 
 | 	sfb->num_sdb = nr_pages; | 
 |  | 
 | 	/* Link the last entry in the SDBT to the first SDBT */ | 
 | 	*tail = virt_to_phys(sfb->sdbt) + 1; | 
 | 	sfb->tail = tail; | 
 |  | 
 | 	/* | 
 | 	 * Initial all SDBs are zeroed. Mark it as empty. | 
 | 	 * So there is no need to clear the full indicator | 
 | 	 * when this event is first added. | 
 | 	 */ | 
 | 	aux->empty_mark = sfb->num_sdb - 1; | 
 |  | 
 | 	return aux; | 
 |  | 
 | no_sdbt: | 
 | 	/* SDBs (AUX buffer pages) are freed by caller */ | 
 | 	for (i = 0; i < sfb->num_sdbt; i++) | 
 | 		free_page(aux->sdbt_index[i]); | 
 | 	kfree(aux->sdb_index); | 
 | no_sdb_index: | 
 | 	kfree(aux->sdbt_index); | 
 | no_sdbt_index: | 
 | 	kfree(aux); | 
 | no_aux: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void cpumsf_pmu_read(struct perf_event *event) | 
 | { | 
 | 	/* Nothing to do ... updates are interrupt-driven */ | 
 | } | 
 |  | 
 | /* Check if the new sampling period/frequency is appropriate. | 
 |  * | 
 |  * Return non-zero on error and zero on passed checks. | 
 |  */ | 
 | static int cpumsf_pmu_check_period(struct perf_event *event, u64 value) | 
 | { | 
 | 	struct hws_qsi_info_block si; | 
 | 	unsigned long rate; | 
 | 	bool do_freq; | 
 |  | 
 | 	memset(&si, 0, sizeof(si)); | 
 | 	if (event->cpu == -1) { | 
 | 		qsi(&si); | 
 | 	} else { | 
 | 		/* Event is pinned to a particular CPU, retrieve the per-CPU | 
 | 		 * sampling structure for accessing the CPU-specific QSI. | 
 | 		 */ | 
 | 		struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu); | 
 |  | 
 | 		si = cpuhw->qsi; | 
 | 	} | 
 |  | 
 | 	do_freq = !!SAMPL_FREQ_MODE(&event->hw); | 
 | 	rate = getrate(do_freq, value, &si); | 
 | 	if (!rate) | 
 | 		return -EINVAL; | 
 |  | 
 | 	event->attr.sample_period = rate; | 
 | 	SAMPL_RATE(&event->hw) = rate; | 
 | 	hw_init_period(&event->hw, SAMPL_RATE(&event->hw)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Activate sampling control. | 
 |  * Next call of pmu_enable() starts sampling. | 
 |  */ | 
 | static void cpumsf_pmu_start(struct perf_event *event, int flags) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); | 
 |  | 
 | 	if (!(event->hw.state & PERF_HES_STOPPED)) | 
 | 		return; | 
 | 	perf_pmu_disable(event->pmu); | 
 | 	event->hw.state = 0; | 
 | 	cpuhw->lsctl.cs = 1; | 
 | 	if (SAMPL_DIAG_MODE(&event->hw)) | 
 | 		cpuhw->lsctl.cd = 1; | 
 | 	perf_pmu_enable(event->pmu); | 
 | } | 
 |  | 
 | /* Deactivate sampling control. | 
 |  * Next call of pmu_enable() stops sampling. | 
 |  */ | 
 | static void cpumsf_pmu_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); | 
 |  | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_disable(event->pmu); | 
 | 	cpuhw->lsctl.cs = 0; | 
 | 	cpuhw->lsctl.cd = 0; | 
 | 	event->hw.state |= PERF_HES_STOPPED; | 
 |  | 
 | 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { | 
 | 		hw_perf_event_update(event, 1); | 
 | 		event->hw.state |= PERF_HES_UPTODATE; | 
 | 	} | 
 | 	perf_pmu_enable(event->pmu); | 
 | } | 
 |  | 
 | static int cpumsf_pmu_add(struct perf_event *event, int flags) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); | 
 | 	struct aux_buffer *aux; | 
 | 	int err = 0; | 
 |  | 
 | 	if (cpuhw->flags & PMU_F_IN_USE) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt) | 
 | 		return -EINVAL; | 
 |  | 
 | 	perf_pmu_disable(event->pmu); | 
 |  | 
 | 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; | 
 |  | 
 | 	/* Set up sampling controls.  Always program the sampling register | 
 | 	 * using the SDB-table start.  Reset TEAR_REG event hardware register | 
 | 	 * that is used by hw_perf_event_update() to store the sampling buffer | 
 | 	 * position after samples have been flushed. | 
 | 	 */ | 
 | 	cpuhw->lsctl.s = 0; | 
 | 	cpuhw->lsctl.h = 1; | 
 | 	cpuhw->lsctl.interval = SAMPL_RATE(&event->hw); | 
 | 	if (!SAMPL_DIAG_MODE(&event->hw)) { | 
 | 		cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt); | 
 | 		cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt; | 
 | 		TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt; | 
 | 	} | 
 |  | 
 | 	/* Ensure sampling functions are in the disabled state.  If disabled, | 
 | 	 * switch on sampling enable control. */ | 
 | 	if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) { | 
 | 		err = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 | 	if (SAMPL_DIAG_MODE(&event->hw)) { | 
 | 		aux = perf_aux_output_begin(&cpuhw->handle, event); | 
 | 		if (!aux) { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 		err = aux_output_begin(&cpuhw->handle, aux, cpuhw); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		cpuhw->lsctl.ed = 1; | 
 | 	} | 
 | 	cpuhw->lsctl.es = 1; | 
 |  | 
 | 	/* Set in_use flag and store event */ | 
 | 	cpuhw->event = event; | 
 | 	cpuhw->flags |= PMU_F_IN_USE; | 
 |  | 
 | 	if (flags & PERF_EF_START) | 
 | 		cpumsf_pmu_start(event, PERF_EF_RELOAD); | 
 | out: | 
 | 	perf_event_update_userpage(event); | 
 | 	perf_pmu_enable(event->pmu); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void cpumsf_pmu_del(struct perf_event *event, int flags) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf); | 
 |  | 
 | 	perf_pmu_disable(event->pmu); | 
 | 	cpumsf_pmu_stop(event, PERF_EF_UPDATE); | 
 |  | 
 | 	cpuhw->lsctl.es = 0; | 
 | 	cpuhw->lsctl.ed = 0; | 
 | 	cpuhw->flags &= ~PMU_F_IN_USE; | 
 | 	cpuhw->event = NULL; | 
 |  | 
 | 	if (SAMPL_DIAG_MODE(&event->hw)) | 
 | 		aux_output_end(&cpuhw->handle); | 
 | 	perf_event_update_userpage(event); | 
 | 	perf_pmu_enable(event->pmu); | 
 | } | 
 |  | 
 | CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF); | 
 | CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG); | 
 |  | 
 | /* Attribute list for CPU_SF. | 
 |  * | 
 |  * The availablitiy depends on the CPU_MF sampling facility authorization | 
 |  * for basic + diagnositic samples. This is determined at initialization | 
 |  * time by the sampling facility device driver. | 
 |  * If the authorization for basic samples is turned off, it should be | 
 |  * also turned off for diagnostic sampling. | 
 |  * | 
 |  * During initialization of the device driver, check the authorization | 
 |  * level for diagnostic sampling and installs the attribute | 
 |  * file for diagnostic sampling if necessary. | 
 |  * | 
 |  * For now install a placeholder to reference all possible attributes: | 
 |  * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG. | 
 |  * Add another entry for the final NULL pointer. | 
 |  */ | 
 | enum { | 
 | 	SF_CYCLES_BASIC_ATTR_IDX = 0, | 
 | 	SF_CYCLES_BASIC_DIAG_ATTR_IDX, | 
 | 	SF_CYCLES_ATTR_MAX | 
 | }; | 
 |  | 
 | static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = { | 
 | 	[SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC) | 
 | }; | 
 |  | 
 | PMU_FORMAT_ATTR(event, "config:0-63"); | 
 |  | 
 | static struct attribute *cpumsf_pmu_format_attr[] = { | 
 | 	&format_attr_event.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group cpumsf_pmu_events_group = { | 
 | 	.name = "events", | 
 | 	.attrs = cpumsf_pmu_events_attr, | 
 | }; | 
 |  | 
 | static struct attribute_group cpumsf_pmu_format_group = { | 
 | 	.name = "format", | 
 | 	.attrs = cpumsf_pmu_format_attr, | 
 | }; | 
 |  | 
 | static const struct attribute_group *cpumsf_pmu_attr_groups[] = { | 
 | 	&cpumsf_pmu_events_group, | 
 | 	&cpumsf_pmu_format_group, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct pmu cpumf_sampling = { | 
 | 	.pmu_enable   = cpumsf_pmu_enable, | 
 | 	.pmu_disable  = cpumsf_pmu_disable, | 
 |  | 
 | 	.event_init   = cpumsf_pmu_event_init, | 
 | 	.add	      = cpumsf_pmu_add, | 
 | 	.del	      = cpumsf_pmu_del, | 
 |  | 
 | 	.start	      = cpumsf_pmu_start, | 
 | 	.stop	      = cpumsf_pmu_stop, | 
 | 	.read	      = cpumsf_pmu_read, | 
 |  | 
 | 	.attr_groups  = cpumsf_pmu_attr_groups, | 
 |  | 
 | 	.setup_aux    = aux_buffer_setup, | 
 | 	.free_aux     = aux_buffer_free, | 
 |  | 
 | 	.check_period = cpumsf_pmu_check_period, | 
 | }; | 
 |  | 
 | static void cpumf_measurement_alert(struct ext_code ext_code, | 
 | 				    unsigned int alert, unsigned long unused) | 
 | { | 
 | 	struct cpu_hw_sf *cpuhw; | 
 |  | 
 | 	if (!(alert & CPU_MF_INT_SF_MASK)) | 
 | 		return; | 
 | 	inc_irq_stat(IRQEXT_CMS); | 
 | 	cpuhw = this_cpu_ptr(&cpu_hw_sf); | 
 |  | 
 | 	/* Measurement alerts are shared and might happen when the PMU | 
 | 	 * is not reserved.  Ignore these alerts in this case. */ | 
 | 	if (!(cpuhw->flags & PMU_F_RESERVED)) | 
 | 		return; | 
 |  | 
 | 	/* The processing below must take care of multiple alert events that | 
 | 	 * might be indicated concurrently. */ | 
 |  | 
 | 	/* Program alert request */ | 
 | 	if (alert & CPU_MF_INT_SF_PRA) { | 
 | 		if (cpuhw->flags & PMU_F_IN_USE) | 
 | 			if (SAMPL_DIAG_MODE(&cpuhw->event->hw)) | 
 | 				hw_collect_aux(cpuhw); | 
 | 			else | 
 | 				hw_perf_event_update(cpuhw->event, 0); | 
 | 		else | 
 | 			WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE)); | 
 | 	} | 
 |  | 
 | 	/* Report measurement alerts only for non-PRA codes */ | 
 | 	if (alert != CPU_MF_INT_SF_PRA) | 
 | 		debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__, | 
 | 				    alert); | 
 |  | 
 | 	/* Sampling authorization change request */ | 
 | 	if (alert & CPU_MF_INT_SF_SACA) | 
 | 		qsi(&cpuhw->qsi); | 
 |  | 
 | 	/* Loss of sample data due to high-priority machine activities */ | 
 | 	if (alert & CPU_MF_INT_SF_LSDA) { | 
 | 		pr_err("Sample data was lost\n"); | 
 | 		cpuhw->flags |= PMU_F_ERR_LSDA; | 
 | 		sf_disable(); | 
 | 	} | 
 |  | 
 | 	/* Invalid sampling buffer entry */ | 
 | 	if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) { | 
 | 		pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n", | 
 | 		       alert); | 
 | 		cpuhw->flags |= PMU_F_ERR_IBE; | 
 | 		sf_disable(); | 
 | 	} | 
 | } | 
 |  | 
 | static int cpusf_pmu_setup(unsigned int cpu, int flags) | 
 | { | 
 | 	/* Ignore the notification if no events are scheduled on the PMU. | 
 | 	 * This might be racy... | 
 | 	 */ | 
 | 	if (!refcount_read(&num_events)) | 
 | 		return 0; | 
 |  | 
 | 	local_irq_disable(); | 
 | 	setup_pmc_cpu(&flags); | 
 | 	local_irq_enable(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int s390_pmu_sf_online_cpu(unsigned int cpu) | 
 | { | 
 | 	return cpusf_pmu_setup(cpu, PMC_INIT); | 
 | } | 
 |  | 
 | static int s390_pmu_sf_offline_cpu(unsigned int cpu) | 
 | { | 
 | 	return cpusf_pmu_setup(cpu, PMC_RELEASE); | 
 | } | 
 |  | 
 | static int param_get_sfb_size(char *buffer, const struct kernel_param *kp) | 
 | { | 
 | 	if (!cpum_sf_avail()) | 
 | 		return -ENODEV; | 
 | 	return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); | 
 | } | 
 |  | 
 | static int param_set_sfb_size(const char *val, const struct kernel_param *kp) | 
 | { | 
 | 	int rc; | 
 | 	unsigned long min, max; | 
 |  | 
 | 	if (!cpum_sf_avail()) | 
 | 		return -ENODEV; | 
 | 	if (!val || !strlen(val)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Valid parameter values: "min,max" or "max" */ | 
 | 	min = CPUM_SF_MIN_SDB; | 
 | 	max = CPUM_SF_MAX_SDB; | 
 | 	if (strchr(val, ',')) | 
 | 		rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL; | 
 | 	else | 
 | 		rc = kstrtoul(val, 10, &max); | 
 |  | 
 | 	if (min < 2 || min >= max || max > get_num_physpages()) | 
 | 		rc = -EINVAL; | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	sfb_set_limits(min, max); | 
 | 	pr_info("The sampling buffer limits have changed to: " | 
 | 		"min %lu max %lu (diag %lu)\n", | 
 | 		CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define param_check_sfb_size(name, p) __param_check(name, p, void) | 
 | static const struct kernel_param_ops param_ops_sfb_size = { | 
 | 	.set = param_set_sfb_size, | 
 | 	.get = param_get_sfb_size, | 
 | }; | 
 |  | 
 | enum { | 
 | 	RS_INIT_FAILURE_BSDES	= 2,	/* Bad basic sampling size */ | 
 | 	RS_INIT_FAILURE_ALRT	= 3,	/* IRQ registration failure */ | 
 | 	RS_INIT_FAILURE_PERF	= 4	/* PMU registration failure */ | 
 | }; | 
 |  | 
 | static void __init pr_cpumsf_err(unsigned int reason) | 
 | { | 
 | 	pr_err("Sampling facility support for perf is not available: " | 
 | 	       "reason %#x\n", reason); | 
 | } | 
 |  | 
 | static int __init init_cpum_sampling_pmu(void) | 
 | { | 
 | 	struct hws_qsi_info_block si; | 
 | 	int err; | 
 |  | 
 | 	if (!cpum_sf_avail()) | 
 | 		return -ENODEV; | 
 |  | 
 | 	memset(&si, 0, sizeof(si)); | 
 | 	qsi(&si); | 
 | 	if (!si.as && !si.ad) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (si.bsdes != sizeof(struct hws_basic_entry)) { | 
 | 		pr_cpumsf_err(RS_INIT_FAILURE_BSDES); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (si.ad) { | 
 | 		sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB); | 
 | 		/* Sampling of diagnostic data authorized, | 
 | 		 * install event into attribute list of PMU device. | 
 | 		 */ | 
 | 		cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] = | 
 | 			CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG); | 
 | 	} | 
 |  | 
 | 	sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80); | 
 | 	if (!sfdbg) { | 
 | 		pr_err("Registering for s390dbf failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	debug_register_view(sfdbg, &debug_sprintf_view); | 
 |  | 
 | 	err = register_external_irq(EXT_IRQ_MEASURE_ALERT, | 
 | 				    cpumf_measurement_alert); | 
 | 	if (err) { | 
 | 		pr_cpumsf_err(RS_INIT_FAILURE_ALRT); | 
 | 		debug_unregister(sfdbg); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW); | 
 | 	if (err) { | 
 | 		pr_cpumsf_err(RS_INIT_FAILURE_PERF); | 
 | 		unregister_external_irq(EXT_IRQ_MEASURE_ALERT, | 
 | 					cpumf_measurement_alert); | 
 | 		debug_unregister(sfdbg); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online", | 
 | 			  s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | arch_initcall(init_cpum_sampling_pmu); | 
 | core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644); |