|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Primary bucket allocation code | 
|  | * | 
|  | * Copyright 2012 Google, Inc. | 
|  | * | 
|  | * Allocation in bcache is done in terms of buckets: | 
|  | * | 
|  | * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in | 
|  | * btree pointers - they must match for the pointer to be considered valid. | 
|  | * | 
|  | * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a | 
|  | * bucket simply by incrementing its gen. | 
|  | * | 
|  | * The gens (along with the priorities; it's really the gens are important but | 
|  | * the code is named as if it's the priorities) are written in an arbitrary list | 
|  | * of buckets on disk, with a pointer to them in the journal header. | 
|  | * | 
|  | * When we invalidate a bucket, we have to write its new gen to disk and wait | 
|  | * for that write to complete before we use it - otherwise after a crash we | 
|  | * could have pointers that appeared to be good but pointed to data that had | 
|  | * been overwritten. | 
|  | * | 
|  | * Since the gens and priorities are all stored contiguously on disk, we can | 
|  | * batch this up: We fill up the free_inc list with freshly invalidated buckets, | 
|  | * call prio_write(), and when prio_write() finishes we pull buckets off the | 
|  | * free_inc list and optionally discard them. | 
|  | * | 
|  | * free_inc isn't the only freelist - if it was, we'd often to sleep while | 
|  | * priorities and gens were being written before we could allocate. c->free is a | 
|  | * smaller freelist, and buckets on that list are always ready to be used. | 
|  | * | 
|  | * If we've got discards enabled, that happens when a bucket moves from the | 
|  | * free_inc list to the free list. | 
|  | * | 
|  | * There is another freelist, because sometimes we have buckets that we know | 
|  | * have nothing pointing into them - these we can reuse without waiting for | 
|  | * priorities to be rewritten. These come from freed btree nodes and buckets | 
|  | * that garbage collection discovered no longer had valid keys pointing into | 
|  | * them (because they were overwritten). That's the unused list - buckets on the | 
|  | * unused list move to the free list, optionally being discarded in the process. | 
|  | * | 
|  | * It's also important to ensure that gens don't wrap around - with respect to | 
|  | * either the oldest gen in the btree or the gen on disk. This is quite | 
|  | * difficult to do in practice, but we explicitly guard against it anyways - if | 
|  | * a bucket is in danger of wrapping around we simply skip invalidating it that | 
|  | * time around, and we garbage collect or rewrite the priorities sooner than we | 
|  | * would have otherwise. | 
|  | * | 
|  | * bch_bucket_alloc() allocates a single bucket from a specific cache. | 
|  | * | 
|  | * bch_bucket_alloc_set() allocates one  bucket from different caches | 
|  | * out of a cache set. | 
|  | * | 
|  | * free_some_buckets() drives all the processes described above. It's called | 
|  | * from bch_bucket_alloc() and a few other places that need to make sure free | 
|  | * buckets are ready. | 
|  | * | 
|  | * invalidate_buckets_(lru|fifo)() find buckets that are available to be | 
|  | * invalidated, and then invalidate them and stick them on the free_inc list - | 
|  | * in either lru or fifo order. | 
|  | */ | 
|  |  | 
|  | #include "bcache.h" | 
|  | #include "btree.h" | 
|  |  | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/random.h> | 
|  | #include <trace/events/bcache.h> | 
|  |  | 
|  | #define MAX_OPEN_BUCKETS 128 | 
|  |  | 
|  | /* Bucket heap / gen */ | 
|  |  | 
|  | uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) | 
|  | { | 
|  | uint8_t ret = ++b->gen; | 
|  |  | 
|  | ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); | 
|  | WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void bch_rescale_priorities(struct cache_set *c, int sectors) | 
|  | { | 
|  | struct cache *ca; | 
|  | struct bucket *b; | 
|  | unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024; | 
|  | int r; | 
|  |  | 
|  | atomic_sub(sectors, &c->rescale); | 
|  |  | 
|  | do { | 
|  | r = atomic_read(&c->rescale); | 
|  |  | 
|  | if (r >= 0) | 
|  | return; | 
|  | } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); | 
|  |  | 
|  | mutex_lock(&c->bucket_lock); | 
|  |  | 
|  | c->min_prio = USHRT_MAX; | 
|  |  | 
|  | ca = c->cache; | 
|  | for_each_bucket(b, ca) | 
|  | if (b->prio && | 
|  | b->prio != BTREE_PRIO && | 
|  | !atomic_read(&b->pin)) { | 
|  | b->prio--; | 
|  | c->min_prio = min(c->min_prio, b->prio); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&c->bucket_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Background allocation thread: scans for buckets to be invalidated, | 
|  | * invalidates them, rewrites prios/gens (marking them as invalidated on disk), | 
|  | * then optionally issues discard commands to the newly free buckets, then puts | 
|  | * them on the various freelists. | 
|  | */ | 
|  |  | 
|  | static inline bool can_inc_bucket_gen(struct bucket *b) | 
|  | { | 
|  | return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; | 
|  | } | 
|  |  | 
|  | bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) | 
|  | { | 
|  | return (ca->set->gc_mark_valid || b->reclaimable_in_gc) && | 
|  | ((!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) && | 
|  | !atomic_read(&b->pin) && can_inc_bucket_gen(b)); | 
|  | } | 
|  |  | 
|  | void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) | 
|  | { | 
|  | lockdep_assert_held(&ca->set->bucket_lock); | 
|  | BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); | 
|  |  | 
|  | if (GC_SECTORS_USED(b)) | 
|  | trace_bcache_invalidate(ca, b - ca->buckets); | 
|  |  | 
|  | bch_inc_gen(ca, b); | 
|  | b->prio = INITIAL_PRIO; | 
|  | atomic_inc(&b->pin); | 
|  | b->reclaimable_in_gc = 0; | 
|  | } | 
|  |  | 
|  | static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) | 
|  | { | 
|  | __bch_invalidate_one_bucket(ca, b); | 
|  |  | 
|  | fifo_push(&ca->free_inc, b - ca->buckets); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determines what order we're going to reuse buckets, smallest bucket_prio() | 
|  | * first: we also take into account the number of sectors of live data in that | 
|  | * bucket, and in order for that multiply to make sense we have to scale bucket | 
|  | * | 
|  | * Thus, we scale the bucket priorities so that the bucket with the smallest | 
|  | * prio is worth 1/8th of what INITIAL_PRIO is worth. | 
|  | */ | 
|  |  | 
|  | static inline unsigned int new_bucket_prio(struct cache *ca, struct bucket *b) | 
|  | { | 
|  | unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; | 
|  |  | 
|  | return (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); | 
|  | } | 
|  |  | 
|  | static inline bool new_bucket_max_cmp(const void *l, const void *r, void *args) | 
|  | { | 
|  | struct bucket **lhs = (struct bucket **)l; | 
|  | struct bucket **rhs = (struct bucket **)r; | 
|  | struct cache *ca = args; | 
|  |  | 
|  | return new_bucket_prio(ca, *lhs) > new_bucket_prio(ca, *rhs); | 
|  | } | 
|  |  | 
|  | static inline bool new_bucket_min_cmp(const void *l, const void *r, void *args) | 
|  | { | 
|  | struct bucket **lhs = (struct bucket **)l; | 
|  | struct bucket **rhs = (struct bucket **)r; | 
|  | struct cache *ca = args; | 
|  |  | 
|  | return new_bucket_prio(ca, *lhs) < new_bucket_prio(ca, *rhs); | 
|  | } | 
|  |  | 
|  | static inline void new_bucket_swap(void *l, void *r, void __always_unused *args) | 
|  | { | 
|  | struct bucket **lhs = l, **rhs = r; | 
|  |  | 
|  | swap(*lhs, *rhs); | 
|  | } | 
|  |  | 
|  | static void invalidate_buckets_lru(struct cache *ca) | 
|  | { | 
|  | struct bucket *b; | 
|  | const struct min_heap_callbacks bucket_max_cmp_callback = { | 
|  | .less = new_bucket_max_cmp, | 
|  | .swp = new_bucket_swap, | 
|  | }; | 
|  | const struct min_heap_callbacks bucket_min_cmp_callback = { | 
|  | .less = new_bucket_min_cmp, | 
|  | .swp = new_bucket_swap, | 
|  | }; | 
|  |  | 
|  | ca->heap.nr = 0; | 
|  |  | 
|  | for_each_bucket(b, ca) { | 
|  | if (!bch_can_invalidate_bucket(ca, b)) | 
|  | continue; | 
|  |  | 
|  | if (!min_heap_full(&ca->heap)) | 
|  | min_heap_push(&ca->heap, &b, &bucket_max_cmp_callback, ca); | 
|  | else if (!new_bucket_max_cmp(&b, min_heap_peek(&ca->heap), ca)) { | 
|  | ca->heap.data[0] = b; | 
|  | min_heap_sift_down(&ca->heap, 0, &bucket_max_cmp_callback, ca); | 
|  | } | 
|  | } | 
|  |  | 
|  | min_heapify_all(&ca->heap, &bucket_min_cmp_callback, ca); | 
|  |  | 
|  | while (!fifo_full(&ca->free_inc)) { | 
|  | if (!ca->heap.nr) { | 
|  | /* | 
|  | * We don't want to be calling invalidate_buckets() | 
|  | * multiple times when it can't do anything | 
|  | */ | 
|  | ca->invalidate_needs_gc = 1; | 
|  | wake_up_gc(ca->set); | 
|  | return; | 
|  | } | 
|  | b = min_heap_peek(&ca->heap)[0]; | 
|  | min_heap_pop(&ca->heap, &bucket_min_cmp_callback, ca); | 
|  |  | 
|  | bch_invalidate_one_bucket(ca, b); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void invalidate_buckets_fifo(struct cache *ca) | 
|  | { | 
|  | struct bucket *b; | 
|  | size_t checked = 0; | 
|  |  | 
|  | while (!fifo_full(&ca->free_inc)) { | 
|  | if (ca->fifo_last_bucket <  ca->sb.first_bucket || | 
|  | ca->fifo_last_bucket >= ca->sb.nbuckets) | 
|  | ca->fifo_last_bucket = ca->sb.first_bucket; | 
|  |  | 
|  | b = ca->buckets + ca->fifo_last_bucket++; | 
|  |  | 
|  | if (bch_can_invalidate_bucket(ca, b)) | 
|  | bch_invalidate_one_bucket(ca, b); | 
|  |  | 
|  | if (++checked >= ca->sb.nbuckets) { | 
|  | ca->invalidate_needs_gc = 1; | 
|  | wake_up_gc(ca->set); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void invalidate_buckets_random(struct cache *ca) | 
|  | { | 
|  | struct bucket *b; | 
|  | size_t checked = 0; | 
|  |  | 
|  | while (!fifo_full(&ca->free_inc)) { | 
|  | size_t n; | 
|  |  | 
|  | get_random_bytes(&n, sizeof(n)); | 
|  |  | 
|  | n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); | 
|  | n += ca->sb.first_bucket; | 
|  |  | 
|  | b = ca->buckets + n; | 
|  |  | 
|  | if (bch_can_invalidate_bucket(ca, b)) | 
|  | bch_invalidate_one_bucket(ca, b); | 
|  |  | 
|  | if (++checked >= ca->sb.nbuckets / 2) { | 
|  | ca->invalidate_needs_gc = 1; | 
|  | wake_up_gc(ca->set); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void invalidate_buckets(struct cache *ca) | 
|  | { | 
|  | BUG_ON(ca->invalidate_needs_gc); | 
|  |  | 
|  | switch (CACHE_REPLACEMENT(&ca->sb)) { | 
|  | case CACHE_REPLACEMENT_LRU: | 
|  | invalidate_buckets_lru(ca); | 
|  | break; | 
|  | case CACHE_REPLACEMENT_FIFO: | 
|  | invalidate_buckets_fifo(ca); | 
|  | break; | 
|  | case CACHE_REPLACEMENT_RANDOM: | 
|  | invalidate_buckets_random(ca); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define allocator_wait(ca, cond)					\ | 
|  | do {									\ | 
|  | while (1) {							\ | 
|  | set_current_state(TASK_INTERRUPTIBLE);			\ | 
|  | if (cond)						\ | 
|  | break;						\ | 
|  | \ | 
|  | mutex_unlock(&(ca)->set->bucket_lock);			\ | 
|  | if (kthread_should_stop() ||				\ | 
|  | test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\ | 
|  | set_current_state(TASK_RUNNING);		\ | 
|  | goto out;					\ | 
|  | }							\ | 
|  | \ | 
|  | schedule();						\ | 
|  | mutex_lock(&(ca)->set->bucket_lock);			\ | 
|  | }								\ | 
|  | __set_current_state(TASK_RUNNING);				\ | 
|  | } while (0) | 
|  |  | 
|  | static int bch_allocator_push(struct cache *ca, long bucket) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* Prios/gens are actually the most important reserve */ | 
|  | if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < RESERVE_NR; i++) | 
|  | if (fifo_push(&ca->free[i], bucket)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int bch_allocator_thread(void *arg) | 
|  | { | 
|  | struct cache *ca = arg; | 
|  |  | 
|  | mutex_lock(&ca->set->bucket_lock); | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * First, we pull buckets off of the unused and free_inc lists, | 
|  | * possibly issue discards to them, then we add the bucket to | 
|  | * the free list: | 
|  | */ | 
|  | while (1) { | 
|  | long bucket; | 
|  |  | 
|  | if (!fifo_pop(&ca->free_inc, bucket)) | 
|  | break; | 
|  |  | 
|  | if (ca->discard) { | 
|  | mutex_unlock(&ca->set->bucket_lock); | 
|  | blkdev_issue_discard(ca->bdev, | 
|  | bucket_to_sector(ca->set, bucket), | 
|  | ca->sb.bucket_size, GFP_KERNEL); | 
|  | mutex_lock(&ca->set->bucket_lock); | 
|  | } | 
|  |  | 
|  | allocator_wait(ca, bch_allocator_push(ca, bucket)); | 
|  | wake_up(&ca->set->btree_cache_wait); | 
|  | wake_up(&ca->set->bucket_wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've run out of free buckets, we need to find some buckets | 
|  | * we can invalidate. First, invalidate them in memory and add | 
|  | * them to the free_inc list: | 
|  | */ | 
|  |  | 
|  | retry_invalidate: | 
|  | allocator_wait(ca, !ca->invalidate_needs_gc); | 
|  | invalidate_buckets(ca); | 
|  |  | 
|  | /* | 
|  | * Now, we write their new gens to disk so we can start writing | 
|  | * new stuff to them: | 
|  | */ | 
|  | allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); | 
|  | if (CACHE_SYNC(&ca->sb)) { | 
|  | /* | 
|  | * This could deadlock if an allocation with a btree | 
|  | * node locked ever blocked - having the btree node | 
|  | * locked would block garbage collection, but here we're | 
|  | * waiting on garbage collection before we invalidate | 
|  | * and free anything. | 
|  | * | 
|  | * But this should be safe since the btree code always | 
|  | * uses btree_check_reserve() before allocating now, and | 
|  | * if it fails it blocks without btree nodes locked. | 
|  | */ | 
|  | if (!fifo_full(&ca->free_inc)) | 
|  | goto retry_invalidate; | 
|  |  | 
|  | if (bch_prio_write(ca, false) < 0) { | 
|  | ca->invalidate_needs_gc = 1; | 
|  | wake_up_gc(ca->set); | 
|  | } | 
|  | } | 
|  | } | 
|  | out: | 
|  | wait_for_kthread_stop(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocation */ | 
|  |  | 
|  | long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait) | 
|  | { | 
|  | DEFINE_WAIT(w); | 
|  | struct bucket *b; | 
|  | long r; | 
|  |  | 
|  |  | 
|  | /* No allocation if CACHE_SET_IO_DISABLE bit is set */ | 
|  | if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags))) | 
|  | return -1; | 
|  |  | 
|  | /* fastpath */ | 
|  | if (fifo_pop(&ca->free[RESERVE_NONE], r) || | 
|  | fifo_pop(&ca->free[reserve], r)) | 
|  | goto out; | 
|  |  | 
|  | if (!wait) { | 
|  | trace_bcache_alloc_fail(ca, reserve); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(&ca->set->bucket_wait, &w, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  |  | 
|  | mutex_unlock(&ca->set->bucket_lock); | 
|  | schedule(); | 
|  | mutex_lock(&ca->set->bucket_lock); | 
|  | } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && | 
|  | !fifo_pop(&ca->free[reserve], r)); | 
|  |  | 
|  | finish_wait(&ca->set->bucket_wait, &w); | 
|  | out: | 
|  | if (ca->alloc_thread) | 
|  | wake_up_process(ca->alloc_thread); | 
|  |  | 
|  | trace_bcache_alloc(ca, reserve); | 
|  |  | 
|  | if (expensive_debug_checks(ca->set)) { | 
|  | size_t iter; | 
|  | long i; | 
|  | unsigned int j; | 
|  |  | 
|  | for (iter = 0; iter < prio_buckets(ca) * 2; iter++) | 
|  | BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); | 
|  |  | 
|  | for (j = 0; j < RESERVE_NR; j++) | 
|  | fifo_for_each(i, &ca->free[j], iter) | 
|  | BUG_ON(i == r); | 
|  | fifo_for_each(i, &ca->free_inc, iter) | 
|  | BUG_ON(i == r); | 
|  | } | 
|  |  | 
|  | b = ca->buckets + r; | 
|  |  | 
|  | BUG_ON(atomic_read(&b->pin) != 1); | 
|  |  | 
|  | SET_GC_SECTORS_USED(b, ca->sb.bucket_size); | 
|  |  | 
|  | if (reserve <= RESERVE_PRIO) { | 
|  | SET_GC_MARK(b, GC_MARK_METADATA); | 
|  | SET_GC_MOVE(b, 0); | 
|  | b->prio = BTREE_PRIO; | 
|  | } else { | 
|  | SET_GC_MARK(b, GC_MARK_RECLAIMABLE); | 
|  | SET_GC_MOVE(b, 0); | 
|  | b->prio = INITIAL_PRIO; | 
|  | } | 
|  |  | 
|  | if (ca->set->avail_nbuckets > 0) { | 
|  | ca->set->avail_nbuckets--; | 
|  | bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void __bch_bucket_free(struct cache *ca, struct bucket *b) | 
|  | { | 
|  | SET_GC_MARK(b, 0); | 
|  | SET_GC_SECTORS_USED(b, 0); | 
|  |  | 
|  | if (ca->set->avail_nbuckets < ca->set->nbuckets) { | 
|  | ca->set->avail_nbuckets++; | 
|  | bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bch_bucket_free(struct cache_set *c, struct bkey *k) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | __bch_bucket_free(c->cache, PTR_BUCKET(c, k, i)); | 
|  | } | 
|  |  | 
|  | int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, | 
|  | struct bkey *k, bool wait) | 
|  | { | 
|  | struct cache *ca; | 
|  | long b; | 
|  |  | 
|  | /* No allocation if CACHE_SET_IO_DISABLE bit is set */ | 
|  | if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) | 
|  | return -1; | 
|  |  | 
|  | lockdep_assert_held(&c->bucket_lock); | 
|  |  | 
|  | bkey_init(k); | 
|  |  | 
|  | ca = c->cache; | 
|  | b = bch_bucket_alloc(ca, reserve, wait); | 
|  | if (b < 0) | 
|  | return -1; | 
|  |  | 
|  | k->ptr[0] = MAKE_PTR(ca->buckets[b].gen, | 
|  | bucket_to_sector(c, b), | 
|  | ca->sb.nr_this_dev); | 
|  |  | 
|  | SET_KEY_PTRS(k, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, | 
|  | struct bkey *k, bool wait) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&c->bucket_lock); | 
|  | ret = __bch_bucket_alloc_set(c, reserve, k, wait); | 
|  | mutex_unlock(&c->bucket_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Sector allocator */ | 
|  |  | 
|  | struct open_bucket { | 
|  | struct list_head	list; | 
|  | unsigned int		last_write_point; | 
|  | unsigned int		sectors_free; | 
|  | BKEY_PADDED(key); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * We keep multiple buckets open for writes, and try to segregate different | 
|  | * write streams for better cache utilization: first we try to segregate flash | 
|  | * only volume write streams from cached devices, secondly we look for a bucket | 
|  | * where the last write to it was sequential with the current write, and | 
|  | * failing that we look for a bucket that was last used by the same task. | 
|  | * | 
|  | * The ideas is if you've got multiple tasks pulling data into the cache at the | 
|  | * same time, you'll get better cache utilization if you try to segregate their | 
|  | * data and preserve locality. | 
|  | * | 
|  | * For example, dirty sectors of flash only volume is not reclaimable, if their | 
|  | * dirty sectors mixed with dirty sectors of cached device, such buckets will | 
|  | * be marked as dirty and won't be reclaimed, though the dirty data of cached | 
|  | * device have been written back to backend device. | 
|  | * | 
|  | * And say you've starting Firefox at the same time you're copying a | 
|  | * bunch of files. Firefox will likely end up being fairly hot and stay in the | 
|  | * cache awhile, but the data you copied might not be; if you wrote all that | 
|  | * data to the same buckets it'd get invalidated at the same time. | 
|  | * | 
|  | * Both of those tasks will be doing fairly random IO so we can't rely on | 
|  | * detecting sequential IO to segregate their data, but going off of the task | 
|  | * should be a sane heuristic. | 
|  | */ | 
|  | static struct open_bucket *pick_data_bucket(struct cache_set *c, | 
|  | const struct bkey *search, | 
|  | unsigned int write_point, | 
|  | struct bkey *alloc) | 
|  | { | 
|  | struct open_bucket *ret, *ret_task = NULL; | 
|  |  | 
|  | list_for_each_entry_reverse(ret, &c->data_buckets, list) | 
|  | if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) != | 
|  | UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)])) | 
|  | continue; | 
|  | else if (!bkey_cmp(&ret->key, search)) | 
|  | goto found; | 
|  | else if (ret->last_write_point == write_point) | 
|  | ret_task = ret; | 
|  |  | 
|  | ret = ret_task ?: list_first_entry(&c->data_buckets, | 
|  | struct open_bucket, list); | 
|  | found: | 
|  | if (!ret->sectors_free && KEY_PTRS(alloc)) { | 
|  | ret->sectors_free = c->cache->sb.bucket_size; | 
|  | bkey_copy(&ret->key, alloc); | 
|  | bkey_init(alloc); | 
|  | } | 
|  |  | 
|  | if (!ret->sectors_free) | 
|  | ret = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates some space in the cache to write to, and k to point to the newly | 
|  | * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the | 
|  | * end of the newly allocated space). | 
|  | * | 
|  | * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many | 
|  | * sectors were actually allocated. | 
|  | * | 
|  | * If s->writeback is true, will not fail. | 
|  | */ | 
|  | bool bch_alloc_sectors(struct cache_set *c, | 
|  | struct bkey *k, | 
|  | unsigned int sectors, | 
|  | unsigned int write_point, | 
|  | unsigned int write_prio, | 
|  | bool wait) | 
|  | { | 
|  | struct open_bucket *b; | 
|  | BKEY_PADDED(key) alloc; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * We might have to allocate a new bucket, which we can't do with a | 
|  | * spinlock held. So if we have to allocate, we drop the lock, allocate | 
|  | * and then retry. KEY_PTRS() indicates whether alloc points to | 
|  | * allocated bucket(s). | 
|  | */ | 
|  |  | 
|  | bkey_init(&alloc.key); | 
|  | spin_lock(&c->data_bucket_lock); | 
|  |  | 
|  | while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { | 
|  | unsigned int watermark = write_prio | 
|  | ? RESERVE_MOVINGGC | 
|  | : RESERVE_NONE; | 
|  |  | 
|  | spin_unlock(&c->data_bucket_lock); | 
|  |  | 
|  | if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait)) | 
|  | return false; | 
|  |  | 
|  | spin_lock(&c->data_bucket_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we had to allocate, we might race and not need to allocate the | 
|  | * second time we call pick_data_bucket(). If we allocated a bucket but | 
|  | * didn't use it, drop the refcount bch_bucket_alloc_set() took: | 
|  | */ | 
|  | if (KEY_PTRS(&alloc.key)) | 
|  | bkey_put(c, &alloc.key); | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(&b->key); i++) | 
|  | EBUG_ON(ptr_stale(c, &b->key, i)); | 
|  |  | 
|  | /* Set up the pointer to the space we're allocating: */ | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(&b->key); i++) | 
|  | k->ptr[i] = b->key.ptr[i]; | 
|  |  | 
|  | sectors = min(sectors, b->sectors_free); | 
|  |  | 
|  | SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); | 
|  | SET_KEY_SIZE(k, sectors); | 
|  | SET_KEY_PTRS(k, KEY_PTRS(&b->key)); | 
|  |  | 
|  | /* | 
|  | * Move b to the end of the lru, and keep track of what this bucket was | 
|  | * last used for: | 
|  | */ | 
|  | list_move_tail(&b->list, &c->data_buckets); | 
|  | bkey_copy_key(&b->key, k); | 
|  | b->last_write_point = write_point; | 
|  |  | 
|  | b->sectors_free	-= sectors; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(&b->key); i++) { | 
|  | SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); | 
|  |  | 
|  | atomic_long_add(sectors, | 
|  | &c->cache->sectors_written); | 
|  | } | 
|  |  | 
|  | if (b->sectors_free < c->cache->sb.block_size) | 
|  | b->sectors_free = 0; | 
|  |  | 
|  | /* | 
|  | * k takes refcounts on the buckets it points to until it's inserted | 
|  | * into the btree, but if we're done with this bucket we just transfer | 
|  | * get_data_bucket()'s refcount. | 
|  | */ | 
|  | if (b->sectors_free) | 
|  | for (i = 0; i < KEY_PTRS(&b->key); i++) | 
|  | atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); | 
|  |  | 
|  | spin_unlock(&c->data_bucket_lock); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Init */ | 
|  |  | 
|  | void bch_open_buckets_free(struct cache_set *c) | 
|  | { | 
|  | struct open_bucket *b; | 
|  |  | 
|  | while (!list_empty(&c->data_buckets)) { | 
|  | b = list_first_entry(&c->data_buckets, | 
|  | struct open_bucket, list); | 
|  | list_del(&b->list); | 
|  | kfree(b); | 
|  | } | 
|  | } | 
|  |  | 
|  | int bch_open_buckets_alloc(struct cache_set *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | spin_lock_init(&c->data_bucket_lock); | 
|  |  | 
|  | for (i = 0; i < MAX_OPEN_BUCKETS; i++) { | 
|  | struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); | 
|  |  | 
|  | if (!b) | 
|  | return -ENOMEM; | 
|  |  | 
|  | list_add(&b->list, &c->data_buckets); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bch_cache_allocator_start(struct cache *ca) | 
|  | { | 
|  | struct task_struct *k = kthread_run(bch_allocator_thread, | 
|  | ca, "bcache_allocator"); | 
|  | if (IS_ERR(k)) | 
|  | return PTR_ERR(k); | 
|  |  | 
|  | ca->alloc_thread = k; | 
|  | return 0; | 
|  | } |