|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | // | 
|  | // core.c  --  Voltage/Current Regulator framework. | 
|  | // | 
|  | // Copyright 2007, 2008 Wolfson Microelectronics PLC. | 
|  | // Copyright 2008 SlimLogic Ltd. | 
|  | // | 
|  | // Author: Liam Girdwood <lrg@slimlogic.co.uk> | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/async.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/gpio/consumer.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <linux/regulator/of_regulator.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <linux/regulator/coupler.h> | 
|  | #include <linux/regulator/driver.h> | 
|  | #include <linux/regulator/machine.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/regulator.h> | 
|  |  | 
|  | #include "dummy.h" | 
|  | #include "internal.h" | 
|  | #include "regnl.h" | 
|  |  | 
|  | static DEFINE_WW_CLASS(regulator_ww_class); | 
|  | static DEFINE_MUTEX(regulator_nesting_mutex); | 
|  | static DEFINE_MUTEX(regulator_list_mutex); | 
|  | static LIST_HEAD(regulator_map_list); | 
|  | static LIST_HEAD(regulator_ena_gpio_list); | 
|  | static LIST_HEAD(regulator_supply_alias_list); | 
|  | static LIST_HEAD(regulator_coupler_list); | 
|  | static bool has_full_constraints; | 
|  |  | 
|  | static struct dentry *debugfs_root; | 
|  |  | 
|  | /* | 
|  | * struct regulator_map | 
|  | * | 
|  | * Used to provide symbolic supply names to devices. | 
|  | */ | 
|  | struct regulator_map { | 
|  | struct list_head list; | 
|  | const char *dev_name;   /* The dev_name() for the consumer */ | 
|  | const char *supply; | 
|  | struct regulator_dev *regulator; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct regulator_enable_gpio | 
|  | * | 
|  | * Management for shared enable GPIO pin | 
|  | */ | 
|  | struct regulator_enable_gpio { | 
|  | struct list_head list; | 
|  | struct gpio_desc *gpiod; | 
|  | u32 enable_count;	/* a number of enabled shared GPIO */ | 
|  | u32 request_count;	/* a number of requested shared GPIO */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct regulator_supply_alias | 
|  | * | 
|  | * Used to map lookups for a supply onto an alternative device. | 
|  | */ | 
|  | struct regulator_supply_alias { | 
|  | struct list_head list; | 
|  | struct device *src_dev; | 
|  | const char *src_supply; | 
|  | struct device *alias_dev; | 
|  | const char *alias_supply; | 
|  | }; | 
|  |  | 
|  | static int _regulator_is_enabled(struct regulator_dev *rdev); | 
|  | static int _regulator_disable(struct regulator *regulator); | 
|  | static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); | 
|  | static int _regulator_get_current_limit(struct regulator_dev *rdev); | 
|  | static unsigned int _regulator_get_mode(struct regulator_dev *rdev); | 
|  | static int _notifier_call_chain(struct regulator_dev *rdev, | 
|  | unsigned long event, void *data); | 
|  | static int _regulator_do_set_voltage(struct regulator_dev *rdev, | 
|  | int min_uV, int max_uV); | 
|  | static int regulator_balance_voltage(struct regulator_dev *rdev, | 
|  | suspend_state_t state); | 
|  | static struct regulator *create_regulator(struct regulator_dev *rdev, | 
|  | struct device *dev, | 
|  | const char *supply_name); | 
|  | static void destroy_regulator(struct regulator *regulator); | 
|  | static void _regulator_put(struct regulator *regulator); | 
|  |  | 
|  | const char *rdev_get_name(struct regulator_dev *rdev) | 
|  | { | 
|  | if (rdev->constraints && rdev->constraints->name) | 
|  | return rdev->constraints->name; | 
|  | else if (rdev->desc->name) | 
|  | return rdev->desc->name; | 
|  | else | 
|  | return ""; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rdev_get_name); | 
|  |  | 
|  | static bool have_full_constraints(void) | 
|  | { | 
|  | return has_full_constraints || of_have_populated_dt(); | 
|  | } | 
|  |  | 
|  | static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) | 
|  | { | 
|  | if (!rdev->constraints) { | 
|  | rdev_err(rdev, "no constraints\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->valid_ops_mask & ops) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_lock_nested - lock a single regulator | 
|  | * @rdev:		regulator source | 
|  | * @ww_ctx:		w/w mutex acquire context | 
|  | * | 
|  | * This function can be called many times by one task on | 
|  | * a single regulator and its mutex will be locked only | 
|  | * once. If a task, which is calling this function is other | 
|  | * than the one, which initially locked the mutex, it will | 
|  | * wait on mutex. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | static inline int regulator_lock_nested(struct regulator_dev *rdev, | 
|  | struct ww_acquire_ctx *ww_ctx) | 
|  | { | 
|  | bool lock = false; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(®ulator_nesting_mutex); | 
|  |  | 
|  | if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { | 
|  | if (rdev->mutex_owner == current) | 
|  | rdev->ref_cnt++; | 
|  | else | 
|  | lock = true; | 
|  |  | 
|  | if (lock) { | 
|  | mutex_unlock(®ulator_nesting_mutex); | 
|  | ret = ww_mutex_lock(&rdev->mutex, ww_ctx); | 
|  | mutex_lock(®ulator_nesting_mutex); | 
|  | } | 
|  | } else { | 
|  | lock = true; | 
|  | } | 
|  |  | 
|  | if (lock && ret != -EDEADLK) { | 
|  | rdev->ref_cnt++; | 
|  | rdev->mutex_owner = current; | 
|  | } | 
|  |  | 
|  | mutex_unlock(®ulator_nesting_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_lock - lock a single regulator | 
|  | * @rdev:		regulator source | 
|  | * | 
|  | * This function can be called many times by one task on | 
|  | * a single regulator and its mutex will be locked only | 
|  | * once. If a task, which is calling this function is other | 
|  | * than the one, which initially locked the mutex, it will | 
|  | * wait on mutex. | 
|  | */ | 
|  | static void regulator_lock(struct regulator_dev *rdev) | 
|  | { | 
|  | regulator_lock_nested(rdev, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_unlock - unlock a single regulator | 
|  | * @rdev:		regulator_source | 
|  | * | 
|  | * This function unlocks the mutex when the | 
|  | * reference counter reaches 0. | 
|  | */ | 
|  | static void regulator_unlock(struct regulator_dev *rdev) | 
|  | { | 
|  | mutex_lock(®ulator_nesting_mutex); | 
|  |  | 
|  | if (--rdev->ref_cnt == 0) { | 
|  | rdev->mutex_owner = NULL; | 
|  | ww_mutex_unlock(&rdev->mutex); | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(rdev->ref_cnt < 0); | 
|  |  | 
|  | mutex_unlock(®ulator_nesting_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_lock_two - lock two regulators | 
|  | * @rdev1:		first regulator | 
|  | * @rdev2:		second regulator | 
|  | * @ww_ctx:		w/w mutex acquire context | 
|  | * | 
|  | * Locks both rdevs using the regulator_ww_class. | 
|  | */ | 
|  | static void regulator_lock_two(struct regulator_dev *rdev1, | 
|  | struct regulator_dev *rdev2, | 
|  | struct ww_acquire_ctx *ww_ctx) | 
|  | { | 
|  | struct regulator_dev *held, *contended; | 
|  | int ret; | 
|  |  | 
|  | ww_acquire_init(ww_ctx, ®ulator_ww_class); | 
|  |  | 
|  | /* Try to just grab both of them */ | 
|  | ret = regulator_lock_nested(rdev1, ww_ctx); | 
|  | WARN_ON(ret); | 
|  | ret = regulator_lock_nested(rdev2, ww_ctx); | 
|  | if (ret != -EDEADLOCK) { | 
|  | WARN_ON(ret); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | held = rdev1; | 
|  | contended = rdev2; | 
|  | while (true) { | 
|  | regulator_unlock(held); | 
|  |  | 
|  | ww_mutex_lock_slow(&contended->mutex, ww_ctx); | 
|  | contended->ref_cnt++; | 
|  | contended->mutex_owner = current; | 
|  | swap(held, contended); | 
|  | ret = regulator_lock_nested(contended, ww_ctx); | 
|  |  | 
|  | if (ret != -EDEADLOCK) { | 
|  | WARN_ON(ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | exit: | 
|  | ww_acquire_done(ww_ctx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_unlock_two - unlock two regulators | 
|  | * @rdev1:		first regulator | 
|  | * @rdev2:		second regulator | 
|  | * @ww_ctx:		w/w mutex acquire context | 
|  | * | 
|  | * The inverse of regulator_lock_two(). | 
|  | */ | 
|  |  | 
|  | static void regulator_unlock_two(struct regulator_dev *rdev1, | 
|  | struct regulator_dev *rdev2, | 
|  | struct ww_acquire_ctx *ww_ctx) | 
|  | { | 
|  | regulator_unlock(rdev2); | 
|  | regulator_unlock(rdev1); | 
|  | ww_acquire_fini(ww_ctx); | 
|  | } | 
|  |  | 
|  | static bool regulator_supply_is_couple(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_dev *c_rdev; | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { | 
|  | c_rdev = rdev->coupling_desc.coupled_rdevs[i]; | 
|  |  | 
|  | if (rdev->supply->rdev == c_rdev) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void regulator_unlock_recursive(struct regulator_dev *rdev, | 
|  | unsigned int n_coupled) | 
|  | { | 
|  | struct regulator_dev *c_rdev, *supply_rdev; | 
|  | int i, supply_n_coupled; | 
|  |  | 
|  | for (i = n_coupled; i > 0; i--) { | 
|  | c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; | 
|  |  | 
|  | if (!c_rdev) | 
|  | continue; | 
|  |  | 
|  | if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { | 
|  | supply_rdev = c_rdev->supply->rdev; | 
|  | supply_n_coupled = supply_rdev->coupling_desc.n_coupled; | 
|  |  | 
|  | regulator_unlock_recursive(supply_rdev, | 
|  | supply_n_coupled); | 
|  | } | 
|  |  | 
|  | regulator_unlock(c_rdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int regulator_lock_recursive(struct regulator_dev *rdev, | 
|  | struct regulator_dev **new_contended_rdev, | 
|  | struct regulator_dev **old_contended_rdev, | 
|  | struct ww_acquire_ctx *ww_ctx) | 
|  | { | 
|  | struct regulator_dev *c_rdev; | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { | 
|  | c_rdev = rdev->coupling_desc.coupled_rdevs[i]; | 
|  |  | 
|  | if (!c_rdev) | 
|  | continue; | 
|  |  | 
|  | if (c_rdev != *old_contended_rdev) { | 
|  | err = regulator_lock_nested(c_rdev, ww_ctx); | 
|  | if (err) { | 
|  | if (err == -EDEADLK) { | 
|  | *new_contended_rdev = c_rdev; | 
|  | goto err_unlock; | 
|  | } | 
|  |  | 
|  | /* shouldn't happen */ | 
|  | WARN_ON_ONCE(err != -EALREADY); | 
|  | } | 
|  | } else { | 
|  | *old_contended_rdev = NULL; | 
|  | } | 
|  |  | 
|  | if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { | 
|  | err = regulator_lock_recursive(c_rdev->supply->rdev, | 
|  | new_contended_rdev, | 
|  | old_contended_rdev, | 
|  | ww_ctx); | 
|  | if (err) { | 
|  | regulator_unlock(c_rdev); | 
|  | goto err_unlock; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unlock: | 
|  | regulator_unlock_recursive(rdev, i); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_unlock_dependent - unlock regulator's suppliers and coupled | 
|  | *				regulators | 
|  | * @rdev:			regulator source | 
|  | * @ww_ctx:			w/w mutex acquire context | 
|  | * | 
|  | * Unlock all regulators related with rdev by coupling or supplying. | 
|  | */ | 
|  | static void regulator_unlock_dependent(struct regulator_dev *rdev, | 
|  | struct ww_acquire_ctx *ww_ctx) | 
|  | { | 
|  | regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); | 
|  | ww_acquire_fini(ww_ctx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_lock_dependent - lock regulator's suppliers and coupled regulators | 
|  | * @rdev:			regulator source | 
|  | * @ww_ctx:			w/w mutex acquire context | 
|  | * | 
|  | * This function as a wrapper on regulator_lock_recursive(), which locks | 
|  | * all regulators related with rdev by coupling or supplying. | 
|  | */ | 
|  | static void regulator_lock_dependent(struct regulator_dev *rdev, | 
|  | struct ww_acquire_ctx *ww_ctx) | 
|  | { | 
|  | struct regulator_dev *new_contended_rdev = NULL; | 
|  | struct regulator_dev *old_contended_rdev = NULL; | 
|  | int err; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  |  | 
|  | ww_acquire_init(ww_ctx, ®ulator_ww_class); | 
|  |  | 
|  | do { | 
|  | if (new_contended_rdev) { | 
|  | ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); | 
|  | old_contended_rdev = new_contended_rdev; | 
|  | old_contended_rdev->ref_cnt++; | 
|  | old_contended_rdev->mutex_owner = current; | 
|  | } | 
|  |  | 
|  | err = regulator_lock_recursive(rdev, | 
|  | &new_contended_rdev, | 
|  | &old_contended_rdev, | 
|  | ww_ctx); | 
|  |  | 
|  | if (old_contended_rdev) | 
|  | regulator_unlock(old_contended_rdev); | 
|  |  | 
|  | } while (err == -EDEADLK); | 
|  |  | 
|  | ww_acquire_done(ww_ctx); | 
|  |  | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | } | 
|  |  | 
|  | /* Platform voltage constraint check */ | 
|  | int regulator_check_voltage(struct regulator_dev *rdev, | 
|  | int *min_uV, int *max_uV) | 
|  | { | 
|  | BUG_ON(*min_uV > *max_uV); | 
|  |  | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { | 
|  | rdev_err(rdev, "voltage operation not allowed\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (*max_uV > rdev->constraints->max_uV) | 
|  | *max_uV = rdev->constraints->max_uV; | 
|  | if (*min_uV < rdev->constraints->min_uV) | 
|  | *min_uV = rdev->constraints->min_uV; | 
|  |  | 
|  | if (*min_uV > *max_uV) { | 
|  | rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", | 
|  | *min_uV, *max_uV); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* return 0 if the state is valid */ | 
|  | static int regulator_check_states(suspend_state_t state) | 
|  | { | 
|  | return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); | 
|  | } | 
|  |  | 
|  | /* Make sure we select a voltage that suits the needs of all | 
|  | * regulator consumers | 
|  | */ | 
|  | int regulator_check_consumers(struct regulator_dev *rdev, | 
|  | int *min_uV, int *max_uV, | 
|  | suspend_state_t state) | 
|  | { | 
|  | struct regulator *regulator; | 
|  | struct regulator_voltage *voltage; | 
|  |  | 
|  | list_for_each_entry(regulator, &rdev->consumer_list, list) { | 
|  | voltage = ®ulator->voltage[state]; | 
|  | /* | 
|  | * Assume consumers that didn't say anything are OK | 
|  | * with anything in the constraint range. | 
|  | */ | 
|  | if (!voltage->min_uV && !voltage->max_uV) | 
|  | continue; | 
|  |  | 
|  | if (*max_uV > voltage->max_uV) | 
|  | *max_uV = voltage->max_uV; | 
|  | if (*min_uV < voltage->min_uV) | 
|  | *min_uV = voltage->min_uV; | 
|  | } | 
|  |  | 
|  | if (*min_uV > *max_uV) { | 
|  | rdev_err(rdev, "Restricting voltage, %u-%uuV\n", | 
|  | *min_uV, *max_uV); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* current constraint check */ | 
|  | static int regulator_check_current_limit(struct regulator_dev *rdev, | 
|  | int *min_uA, int *max_uA) | 
|  | { | 
|  | BUG_ON(*min_uA > *max_uA); | 
|  |  | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { | 
|  | rdev_err(rdev, "current operation not allowed\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (*max_uA > rdev->constraints->max_uA) | 
|  | *max_uA = rdev->constraints->max_uA; | 
|  | if (*min_uA < rdev->constraints->min_uA) | 
|  | *min_uA = rdev->constraints->min_uA; | 
|  |  | 
|  | if (*min_uA > *max_uA) { | 
|  | rdev_err(rdev, "unsupportable current range: %d-%duA\n", | 
|  | *min_uA, *max_uA); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* operating mode constraint check */ | 
|  | static int regulator_mode_constrain(struct regulator_dev *rdev, | 
|  | unsigned int *mode) | 
|  | { | 
|  | switch (*mode) { | 
|  | case REGULATOR_MODE_FAST: | 
|  | case REGULATOR_MODE_NORMAL: | 
|  | case REGULATOR_MODE_IDLE: | 
|  | case REGULATOR_MODE_STANDBY: | 
|  | break; | 
|  | default: | 
|  | rdev_err(rdev, "invalid mode %x specified\n", *mode); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { | 
|  | rdev_err(rdev, "mode operation not allowed\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* The modes are bitmasks, the most power hungry modes having | 
|  | * the lowest values. If the requested mode isn't supported | 
|  | * try higher modes. | 
|  | */ | 
|  | while (*mode) { | 
|  | if (rdev->constraints->valid_modes_mask & *mode) | 
|  | return 0; | 
|  | *mode /= 2; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static inline struct regulator_state * | 
|  | regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) | 
|  | { | 
|  | if (rdev->constraints == NULL) | 
|  | return NULL; | 
|  |  | 
|  | switch (state) { | 
|  | case PM_SUSPEND_STANDBY: | 
|  | return &rdev->constraints->state_standby; | 
|  | case PM_SUSPEND_MEM: | 
|  | return &rdev->constraints->state_mem; | 
|  | case PM_SUSPEND_MAX: | 
|  | return &rdev->constraints->state_disk; | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct regulator_state * | 
|  | regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) | 
|  | { | 
|  | const struct regulator_state *rstate; | 
|  |  | 
|  | rstate = regulator_get_suspend_state(rdev, state); | 
|  | if (rstate == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* If we have no suspend mode configuration don't set anything; | 
|  | * only warn if the driver implements set_suspend_voltage or | 
|  | * set_suspend_mode callback. | 
|  | */ | 
|  | if (rstate->enabled != ENABLE_IN_SUSPEND && | 
|  | rstate->enabled != DISABLE_IN_SUSPEND) { | 
|  | if (rdev->desc->ops->set_suspend_voltage || | 
|  | rdev->desc->ops->set_suspend_mode) | 
|  | rdev_warn(rdev, "No configuration\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rstate; | 
|  | } | 
|  |  | 
|  | static ssize_t microvolts_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | int uV; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | uV = regulator_get_voltage_rdev(rdev); | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | if (uV < 0) | 
|  | return uV; | 
|  | return sprintf(buf, "%d\n", uV); | 
|  | } | 
|  | static DEVICE_ATTR_RO(microvolts); | 
|  |  | 
|  | static ssize_t microamps_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); | 
|  | } | 
|  | static DEVICE_ATTR_RO(microamps); | 
|  |  | 
|  | static ssize_t name_show(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%s\n", rdev_get_name(rdev)); | 
|  | } | 
|  | static DEVICE_ATTR_RO(name); | 
|  |  | 
|  | static const char *regulator_opmode_to_str(int mode) | 
|  | { | 
|  | switch (mode) { | 
|  | case REGULATOR_MODE_FAST: | 
|  | return "fast"; | 
|  | case REGULATOR_MODE_NORMAL: | 
|  | return "normal"; | 
|  | case REGULATOR_MODE_IDLE: | 
|  | return "idle"; | 
|  | case REGULATOR_MODE_STANDBY: | 
|  | return "standby"; | 
|  | } | 
|  | return "unknown"; | 
|  | } | 
|  |  | 
|  | static ssize_t regulator_print_opmode(char *buf, int mode) | 
|  | { | 
|  | return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); | 
|  | } | 
|  |  | 
|  | static ssize_t opmode_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_opmode(buf, _regulator_get_mode(rdev)); | 
|  | } | 
|  | static DEVICE_ATTR_RO(opmode); | 
|  |  | 
|  | static ssize_t regulator_print_state(char *buf, int state) | 
|  | { | 
|  | if (state > 0) | 
|  | return sprintf(buf, "enabled\n"); | 
|  | else if (state == 0) | 
|  | return sprintf(buf, "disabled\n"); | 
|  | else | 
|  | return sprintf(buf, "unknown\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t state_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | ssize_t ret; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | static DEVICE_ATTR_RO(state); | 
|  |  | 
|  | static ssize_t status_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | int status; | 
|  | char *label; | 
|  |  | 
|  | status = rdev->desc->ops->get_status(rdev); | 
|  | if (status < 0) | 
|  | return status; | 
|  |  | 
|  | switch (status) { | 
|  | case REGULATOR_STATUS_OFF: | 
|  | label = "off"; | 
|  | break; | 
|  | case REGULATOR_STATUS_ON: | 
|  | label = "on"; | 
|  | break; | 
|  | case REGULATOR_STATUS_ERROR: | 
|  | label = "error"; | 
|  | break; | 
|  | case REGULATOR_STATUS_FAST: | 
|  | label = "fast"; | 
|  | break; | 
|  | case REGULATOR_STATUS_NORMAL: | 
|  | label = "normal"; | 
|  | break; | 
|  | case REGULATOR_STATUS_IDLE: | 
|  | label = "idle"; | 
|  | break; | 
|  | case REGULATOR_STATUS_STANDBY: | 
|  | label = "standby"; | 
|  | break; | 
|  | case REGULATOR_STATUS_BYPASS: | 
|  | label = "bypass"; | 
|  | break; | 
|  | case REGULATOR_STATUS_UNDEFINED: | 
|  | label = "undefined"; | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | return sprintf(buf, "%s\n", label); | 
|  | } | 
|  | static DEVICE_ATTR_RO(status); | 
|  |  | 
|  | static ssize_t min_microamps_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (!rdev->constraints) | 
|  | return sprintf(buf, "constraint not defined\n"); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->min_uA); | 
|  | } | 
|  | static DEVICE_ATTR_RO(min_microamps); | 
|  |  | 
|  | static ssize_t max_microamps_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (!rdev->constraints) | 
|  | return sprintf(buf, "constraint not defined\n"); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->max_uA); | 
|  | } | 
|  | static DEVICE_ATTR_RO(max_microamps); | 
|  |  | 
|  | static ssize_t min_microvolts_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (!rdev->constraints) | 
|  | return sprintf(buf, "constraint not defined\n"); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->min_uV); | 
|  | } | 
|  | static DEVICE_ATTR_RO(min_microvolts); | 
|  |  | 
|  | static ssize_t max_microvolts_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | if (!rdev->constraints) | 
|  | return sprintf(buf, "constraint not defined\n"); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->max_uV); | 
|  | } | 
|  | static DEVICE_ATTR_RO(max_microvolts); | 
|  |  | 
|  | static ssize_t requested_microamps_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | struct regulator *regulator; | 
|  | int uA = 0; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | list_for_each_entry(regulator, &rdev->consumer_list, list) { | 
|  | if (regulator->enable_count) | 
|  | uA += regulator->uA_load; | 
|  | } | 
|  | regulator_unlock(rdev); | 
|  | return sprintf(buf, "%d\n", uA); | 
|  | } | 
|  | static DEVICE_ATTR_RO(requested_microamps); | 
|  |  | 
|  | static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | return sprintf(buf, "%d\n", rdev->use_count); | 
|  | } | 
|  | static DEVICE_ATTR_RO(num_users); | 
|  |  | 
|  | static ssize_t type_show(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | switch (rdev->desc->type) { | 
|  | case REGULATOR_VOLTAGE: | 
|  | return sprintf(buf, "voltage\n"); | 
|  | case REGULATOR_CURRENT: | 
|  | return sprintf(buf, "current\n"); | 
|  | } | 
|  | return sprintf(buf, "unknown\n"); | 
|  | } | 
|  | static DEVICE_ATTR_RO(type); | 
|  |  | 
|  | static ssize_t suspend_mem_microvolts_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_mem_microvolts); | 
|  |  | 
|  | static ssize_t suspend_disk_microvolts_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_disk_microvolts); | 
|  |  | 
|  | static ssize_t suspend_standby_microvolts_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_standby_microvolts); | 
|  |  | 
|  | static ssize_t suspend_mem_mode_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_opmode(buf, | 
|  | rdev->constraints->state_mem.mode); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_mem_mode); | 
|  |  | 
|  | static ssize_t suspend_disk_mode_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_opmode(buf, | 
|  | rdev->constraints->state_disk.mode); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_disk_mode); | 
|  |  | 
|  | static ssize_t suspend_standby_mode_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_opmode(buf, | 
|  | rdev->constraints->state_standby.mode); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_standby_mode); | 
|  |  | 
|  | static ssize_t suspend_mem_state_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_state(buf, | 
|  | rdev->constraints->state_mem.enabled); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_mem_state); | 
|  |  | 
|  | static ssize_t suspend_disk_state_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_state(buf, | 
|  | rdev->constraints->state_disk.enabled); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_disk_state); | 
|  |  | 
|  | static ssize_t suspend_standby_state_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | return regulator_print_state(buf, | 
|  | rdev->constraints->state_standby.enabled); | 
|  | } | 
|  | static DEVICE_ATTR_RO(suspend_standby_state); | 
|  |  | 
|  | static ssize_t bypass_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  | const char *report; | 
|  | bool bypass; | 
|  | int ret; | 
|  |  | 
|  | ret = rdev->desc->ops->get_bypass(rdev, &bypass); | 
|  |  | 
|  | if (ret != 0) | 
|  | report = "unknown"; | 
|  | else if (bypass) | 
|  | report = "enabled"; | 
|  | else | 
|  | report = "disabled"; | 
|  |  | 
|  | return sprintf(buf, "%s\n", report); | 
|  | } | 
|  | static DEVICE_ATTR_RO(bypass); | 
|  |  | 
|  | #define REGULATOR_ERROR_ATTR(name, bit)							\ | 
|  | static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\ | 
|  | char *buf)						\ | 
|  | {										\ | 
|  | int ret;								\ | 
|  | unsigned int flags;							\ | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev);			\ | 
|  | ret = _regulator_get_error_flags(rdev, &flags);				\ | 
|  | if (ret)								\ | 
|  | return ret;							\ | 
|  | return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\ | 
|  | }										\ | 
|  | static DEVICE_ATTR_RO(name) | 
|  |  | 
|  | REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); | 
|  | REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); | 
|  | REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); | 
|  | REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); | 
|  | REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); | 
|  | REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); | 
|  | REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); | 
|  | REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); | 
|  | REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); | 
|  |  | 
|  | /* Calculate the new optimum regulator operating mode based on the new total | 
|  | * consumer load. All locks held by caller | 
|  | */ | 
|  | static int drms_uA_update(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator *sibling; | 
|  | int current_uA = 0, output_uV, input_uV, err; | 
|  | unsigned int mode; | 
|  |  | 
|  | /* | 
|  | * first check to see if we can set modes at all, otherwise just | 
|  | * tell the consumer everything is OK. | 
|  | */ | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { | 
|  | rdev_dbg(rdev, "DRMS operation not allowed\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!rdev->desc->ops->get_optimum_mode && | 
|  | !rdev->desc->ops->set_load) | 
|  | return 0; | 
|  |  | 
|  | if (!rdev->desc->ops->set_mode && | 
|  | !rdev->desc->ops->set_load) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* calc total requested load */ | 
|  | list_for_each_entry(sibling, &rdev->consumer_list, list) { | 
|  | if (sibling->enable_count) | 
|  | current_uA += sibling->uA_load; | 
|  | } | 
|  |  | 
|  | current_uA += rdev->constraints->system_load; | 
|  |  | 
|  | if (rdev->desc->ops->set_load) { | 
|  | /* set the optimum mode for our new total regulator load */ | 
|  | err = rdev->desc->ops->set_load(rdev, current_uA); | 
|  | if (err < 0) | 
|  | rdev_err(rdev, "failed to set load %d: %pe\n", | 
|  | current_uA, ERR_PTR(err)); | 
|  | } else { | 
|  | /* | 
|  | * Unfortunately in some cases the constraints->valid_ops has | 
|  | * REGULATOR_CHANGE_DRMS but there are no valid modes listed. | 
|  | * That's not really legit but we won't consider it a fatal | 
|  | * error here. We'll treat it as if REGULATOR_CHANGE_DRMS | 
|  | * wasn't set. | 
|  | */ | 
|  | if (!rdev->constraints->valid_modes_mask) { | 
|  | rdev_dbg(rdev, "Can change modes; but no valid mode\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* get output voltage */ | 
|  | output_uV = regulator_get_voltage_rdev(rdev); | 
|  |  | 
|  | /* | 
|  | * Don't return an error; if regulator driver cares about | 
|  | * output_uV then it's up to the driver to validate. | 
|  | */ | 
|  | if (output_uV <= 0) | 
|  | rdev_dbg(rdev, "invalid output voltage found\n"); | 
|  |  | 
|  | /* get input voltage */ | 
|  | input_uV = 0; | 
|  | if (rdev->supply) | 
|  | input_uV = regulator_get_voltage_rdev(rdev->supply->rdev); | 
|  | if (input_uV <= 0) | 
|  | input_uV = rdev->constraints->input_uV; | 
|  |  | 
|  | /* | 
|  | * Don't return an error; if regulator driver cares about | 
|  | * input_uV then it's up to the driver to validate. | 
|  | */ | 
|  | if (input_uV <= 0) | 
|  | rdev_dbg(rdev, "invalid input voltage found\n"); | 
|  |  | 
|  | /* now get the optimum mode for our new total regulator load */ | 
|  | mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, | 
|  | output_uV, current_uA); | 
|  |  | 
|  | /* check the new mode is allowed */ | 
|  | err = regulator_mode_constrain(rdev, &mode); | 
|  | if (err < 0) { | 
|  | rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", | 
|  | current_uA, input_uV, output_uV, ERR_PTR(err)); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = rdev->desc->ops->set_mode(rdev, mode); | 
|  | if (err < 0) | 
|  | rdev_err(rdev, "failed to set optimum mode %x: %pe\n", | 
|  | mode, ERR_PTR(err)); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __suspend_set_state(struct regulator_dev *rdev, | 
|  | const struct regulator_state *rstate) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (rstate->enabled == ENABLE_IN_SUSPEND && | 
|  | rdev->desc->ops->set_suspend_enable) | 
|  | ret = rdev->desc->ops->set_suspend_enable(rdev); | 
|  | else if (rstate->enabled == DISABLE_IN_SUSPEND && | 
|  | rdev->desc->ops->set_suspend_disable) | 
|  | ret = rdev->desc->ops->set_suspend_disable(rdev); | 
|  | else /* OK if set_suspend_enable or set_suspend_disable is NULL */ | 
|  | ret = 0; | 
|  |  | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { | 
|  | ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { | 
|  | ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int suspend_set_initial_state(struct regulator_dev *rdev) | 
|  | { | 
|  | const struct regulator_state *rstate; | 
|  |  | 
|  | rstate = regulator_get_suspend_state_check(rdev, | 
|  | rdev->constraints->initial_state); | 
|  | if (!rstate) | 
|  | return 0; | 
|  |  | 
|  | return __suspend_set_state(rdev, rstate); | 
|  | } | 
|  |  | 
|  | #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) | 
|  | static void print_constraints_debug(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulation_constraints *constraints = rdev->constraints; | 
|  | char buf[160] = ""; | 
|  | size_t len = sizeof(buf) - 1; | 
|  | int count = 0; | 
|  | int ret; | 
|  |  | 
|  | if (constraints->min_uV && constraints->max_uV) { | 
|  | if (constraints->min_uV == constraints->max_uV) | 
|  | count += scnprintf(buf + count, len - count, "%d mV ", | 
|  | constraints->min_uV / 1000); | 
|  | else | 
|  | count += scnprintf(buf + count, len - count, | 
|  | "%d <--> %d mV ", | 
|  | constraints->min_uV / 1000, | 
|  | constraints->max_uV / 1000); | 
|  | } | 
|  |  | 
|  | if (!constraints->min_uV || | 
|  | constraints->min_uV != constraints->max_uV) { | 
|  | ret = regulator_get_voltage_rdev(rdev); | 
|  | if (ret > 0) | 
|  | count += scnprintf(buf + count, len - count, | 
|  | "at %d mV ", ret / 1000); | 
|  | } | 
|  |  | 
|  | if (constraints->uV_offset) | 
|  | count += scnprintf(buf + count, len - count, "%dmV offset ", | 
|  | constraints->uV_offset / 1000); | 
|  |  | 
|  | if (constraints->min_uA && constraints->max_uA) { | 
|  | if (constraints->min_uA == constraints->max_uA) | 
|  | count += scnprintf(buf + count, len - count, "%d mA ", | 
|  | constraints->min_uA / 1000); | 
|  | else | 
|  | count += scnprintf(buf + count, len - count, | 
|  | "%d <--> %d mA ", | 
|  | constraints->min_uA / 1000, | 
|  | constraints->max_uA / 1000); | 
|  | } | 
|  |  | 
|  | if (!constraints->min_uA || | 
|  | constraints->min_uA != constraints->max_uA) { | 
|  | ret = _regulator_get_current_limit(rdev); | 
|  | if (ret > 0) | 
|  | count += scnprintf(buf + count, len - count, | 
|  | "at %d mA ", ret / 1000); | 
|  | } | 
|  |  | 
|  | if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) | 
|  | count += scnprintf(buf + count, len - count, "fast "); | 
|  | if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) | 
|  | count += scnprintf(buf + count, len - count, "normal "); | 
|  | if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) | 
|  | count += scnprintf(buf + count, len - count, "idle "); | 
|  | if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) | 
|  | count += scnprintf(buf + count, len - count, "standby "); | 
|  |  | 
|  | if (!count) | 
|  | count = scnprintf(buf, len, "no parameters"); | 
|  | else | 
|  | --count; | 
|  |  | 
|  | count += scnprintf(buf + count, len - count, ", %s", | 
|  | _regulator_is_enabled(rdev) ? "enabled" : "disabled"); | 
|  |  | 
|  | rdev_dbg(rdev, "%s\n", buf); | 
|  | } | 
|  | #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ | 
|  | static inline void print_constraints_debug(struct regulator_dev *rdev) {} | 
|  | #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ | 
|  |  | 
|  | static void print_constraints(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulation_constraints *constraints = rdev->constraints; | 
|  |  | 
|  | print_constraints_debug(rdev); | 
|  |  | 
|  | if ((constraints->min_uV != constraints->max_uV) && | 
|  | !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) | 
|  | rdev_warn(rdev, | 
|  | "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); | 
|  | } | 
|  |  | 
|  | static int machine_constraints_voltage(struct regulator_dev *rdev, | 
|  | struct regulation_constraints *constraints) | 
|  | { | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  | int ret; | 
|  |  | 
|  | /* do we need to apply the constraint voltage */ | 
|  | if (rdev->constraints->apply_uV && | 
|  | rdev->constraints->min_uV && rdev->constraints->max_uV) { | 
|  | int target_min, target_max; | 
|  | int current_uV = regulator_get_voltage_rdev(rdev); | 
|  |  | 
|  | if (current_uV == -ENOTRECOVERABLE) { | 
|  | /* This regulator can't be read and must be initialized */ | 
|  | rdev_info(rdev, "Setting %d-%duV\n", | 
|  | rdev->constraints->min_uV, | 
|  | rdev->constraints->max_uV); | 
|  | _regulator_do_set_voltage(rdev, | 
|  | rdev->constraints->min_uV, | 
|  | rdev->constraints->max_uV); | 
|  | current_uV = regulator_get_voltage_rdev(rdev); | 
|  | } | 
|  |  | 
|  | if (current_uV < 0) { | 
|  | if (current_uV != -EPROBE_DEFER) | 
|  | rdev_err(rdev, | 
|  | "failed to get the current voltage: %pe\n", | 
|  | ERR_PTR(current_uV)); | 
|  | return current_uV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're below the minimum voltage move up to the | 
|  | * minimum voltage, if we're above the maximum voltage | 
|  | * then move down to the maximum. | 
|  | */ | 
|  | target_min = current_uV; | 
|  | target_max = current_uV; | 
|  |  | 
|  | if (current_uV < rdev->constraints->min_uV) { | 
|  | target_min = rdev->constraints->min_uV; | 
|  | target_max = rdev->constraints->min_uV; | 
|  | } | 
|  |  | 
|  | if (current_uV > rdev->constraints->max_uV) { | 
|  | target_min = rdev->constraints->max_uV; | 
|  | target_max = rdev->constraints->max_uV; | 
|  | } | 
|  |  | 
|  | if (target_min != current_uV || target_max != current_uV) { | 
|  | rdev_info(rdev, "Bringing %duV into %d-%duV\n", | 
|  | current_uV, target_min, target_max); | 
|  | ret = _regulator_do_set_voltage( | 
|  | rdev, target_min, target_max); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, | 
|  | "failed to apply %d-%duV constraint: %pe\n", | 
|  | target_min, target_max, ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* constrain machine-level voltage specs to fit | 
|  | * the actual range supported by this regulator. | 
|  | */ | 
|  | if (ops->list_voltage && rdev->desc->n_voltages) { | 
|  | int	count = rdev->desc->n_voltages; | 
|  | int	i; | 
|  | int	min_uV = INT_MAX; | 
|  | int	max_uV = INT_MIN; | 
|  | int	cmin = constraints->min_uV; | 
|  | int	cmax = constraints->max_uV; | 
|  |  | 
|  | /* it's safe to autoconfigure fixed-voltage supplies | 
|  | * and the constraints are used by list_voltage. | 
|  | */ | 
|  | if (count == 1 && !cmin) { | 
|  | cmin = 1; | 
|  | cmax = INT_MAX; | 
|  | constraints->min_uV = cmin; | 
|  | constraints->max_uV = cmax; | 
|  | } | 
|  |  | 
|  | /* voltage constraints are optional */ | 
|  | if ((cmin == 0) && (cmax == 0)) | 
|  | return 0; | 
|  |  | 
|  | /* else require explicit machine-level constraints */ | 
|  | if (cmin <= 0 || cmax <= 0 || cmax < cmin) { | 
|  | rdev_err(rdev, "invalid voltage constraints\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* no need to loop voltages if range is continuous */ | 
|  | if (rdev->desc->continuous_voltage_range) | 
|  | return 0; | 
|  |  | 
|  | /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ | 
|  | for (i = 0; i < count; i++) { | 
|  | int	value; | 
|  |  | 
|  | value = ops->list_voltage(rdev, i); | 
|  | if (value <= 0) | 
|  | continue; | 
|  |  | 
|  | /* maybe adjust [min_uV..max_uV] */ | 
|  | if (value >= cmin && value < min_uV) | 
|  | min_uV = value; | 
|  | if (value <= cmax && value > max_uV) | 
|  | max_uV = value; | 
|  | } | 
|  |  | 
|  | /* final: [min_uV..max_uV] valid iff constraints valid */ | 
|  | if (max_uV < min_uV) { | 
|  | rdev_err(rdev, | 
|  | "unsupportable voltage constraints %u-%uuV\n", | 
|  | min_uV, max_uV); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* use regulator's subset of machine constraints */ | 
|  | if (constraints->min_uV < min_uV) { | 
|  | rdev_dbg(rdev, "override min_uV, %d -> %d\n", | 
|  | constraints->min_uV, min_uV); | 
|  | constraints->min_uV = min_uV; | 
|  | } | 
|  | if (constraints->max_uV > max_uV) { | 
|  | rdev_dbg(rdev, "override max_uV, %d -> %d\n", | 
|  | constraints->max_uV, max_uV); | 
|  | constraints->max_uV = max_uV; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int machine_constraints_current(struct regulator_dev *rdev, | 
|  | struct regulation_constraints *constraints) | 
|  | { | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  | int ret; | 
|  |  | 
|  | if (!constraints->min_uA && !constraints->max_uA) | 
|  | return 0; | 
|  |  | 
|  | if (constraints->min_uA > constraints->max_uA) { | 
|  | rdev_err(rdev, "Invalid current constraints\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!ops->set_current_limit || !ops->get_current_limit) { | 
|  | rdev_warn(rdev, "Operation of current configuration missing\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set regulator current in constraints range */ | 
|  | ret = ops->set_current_limit(rdev, constraints->min_uA, | 
|  | constraints->max_uA); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "Failed to set current constraint, %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int _regulator_do_enable(struct regulator_dev *rdev); | 
|  |  | 
|  | static int notif_set_limit(struct regulator_dev *rdev, | 
|  | int (*set)(struct regulator_dev *, int, int, bool), | 
|  | int limit, int severity) | 
|  | { | 
|  | bool enable; | 
|  |  | 
|  | if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { | 
|  | enable = false; | 
|  | limit = 0; | 
|  | } else { | 
|  | enable = true; | 
|  | } | 
|  |  | 
|  | if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) | 
|  | limit = 0; | 
|  |  | 
|  | return set(rdev, limit, severity, enable); | 
|  | } | 
|  |  | 
|  | static int handle_notify_limits(struct regulator_dev *rdev, | 
|  | int (*set)(struct regulator_dev *, int, int, bool), | 
|  | struct notification_limit *limits) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!set) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (limits->prot) | 
|  | ret = notif_set_limit(rdev, set, limits->prot, | 
|  | REGULATOR_SEVERITY_PROT); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (limits->err) | 
|  | ret = notif_set_limit(rdev, set, limits->err, | 
|  | REGULATOR_SEVERITY_ERR); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (limits->warn) | 
|  | ret = notif_set_limit(rdev, set, limits->warn, | 
|  | REGULATOR_SEVERITY_WARN); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | /** | 
|  | * set_machine_constraints - sets regulator constraints | 
|  | * @rdev: regulator source | 
|  | * | 
|  | * Allows platform initialisation code to define and constrain | 
|  | * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE: | 
|  | * Constraints *must* be set by platform code in order for some | 
|  | * regulator operations to proceed i.e. set_voltage, set_current_limit, | 
|  | * set_mode. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | static int set_machine_constraints(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret = 0; | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  |  | 
|  | ret = machine_constraints_voltage(rdev, rdev->constraints); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | ret = machine_constraints_current(rdev, rdev->constraints); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { | 
|  | ret = ops->set_input_current_limit(rdev, | 
|  | rdev->constraints->ilim_uA); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* do we need to setup our suspend state */ | 
|  | if (rdev->constraints->initial_state) { | 
|  | ret = suspend_set_initial_state(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->initial_mode) { | 
|  | if (!ops->set_mode) { | 
|  | rdev_err(rdev, "no set_mode operation\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = ops->set_mode(rdev, rdev->constraints->initial_mode); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } else if (rdev->constraints->system_load) { | 
|  | /* | 
|  | * We'll only apply the initial system load if an | 
|  | * initial mode wasn't specified. | 
|  | */ | 
|  | drms_uA_update(rdev); | 
|  | } | 
|  |  | 
|  | if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) | 
|  | && ops->set_ramp_delay) { | 
|  | ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->pull_down && ops->set_pull_down) { | 
|  | ret = ops->set_pull_down(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->soft_start && ops->set_soft_start) { | 
|  | ret = ops->set_soft_start(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Existing logic does not warn if over_current_protection is given as | 
|  | * a constraint but driver does not support that. I think we should | 
|  | * warn about this type of issues as it is possible someone changes | 
|  | * PMIC on board to another type - and the another PMIC's driver does | 
|  | * not support setting protection. Board composer may happily believe | 
|  | * the DT limits are respected - especially if the new PMIC HW also | 
|  | * supports protection but the driver does not. I won't change the logic | 
|  | * without hearing more experienced opinion on this though. | 
|  | * | 
|  | * If warning is seen as a good idea then we can merge handling the | 
|  | * over-curret protection and detection and get rid of this special | 
|  | * handling. | 
|  | */ | 
|  | if (rdev->constraints->over_current_protection | 
|  | && ops->set_over_current_protection) { | 
|  | int lim = rdev->constraints->over_curr_limits.prot; | 
|  |  | 
|  | ret = ops->set_over_current_protection(rdev, lim, | 
|  | REGULATOR_SEVERITY_PROT, | 
|  | true); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set over current protection: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->over_current_detection) | 
|  | ret = handle_notify_limits(rdev, | 
|  | ops->set_over_current_protection, | 
|  | &rdev->constraints->over_curr_limits); | 
|  | if (ret) { | 
|  | if (ret != -EOPNOTSUPP) { | 
|  | rdev_err(rdev, "failed to set over current limits: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | rdev_warn(rdev, | 
|  | "IC does not support requested over-current limits\n"); | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->over_voltage_detection) | 
|  | ret = handle_notify_limits(rdev, | 
|  | ops->set_over_voltage_protection, | 
|  | &rdev->constraints->over_voltage_limits); | 
|  | if (ret) { | 
|  | if (ret != -EOPNOTSUPP) { | 
|  | rdev_err(rdev, "failed to set over voltage limits %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | rdev_warn(rdev, | 
|  | "IC does not support requested over voltage limits\n"); | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->under_voltage_detection) | 
|  | ret = handle_notify_limits(rdev, | 
|  | ops->set_under_voltage_protection, | 
|  | &rdev->constraints->under_voltage_limits); | 
|  | if (ret) { | 
|  | if (ret != -EOPNOTSUPP) { | 
|  | rdev_err(rdev, "failed to set under voltage limits %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | rdev_warn(rdev, | 
|  | "IC does not support requested under voltage limits\n"); | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->over_temp_detection) | 
|  | ret = handle_notify_limits(rdev, | 
|  | ops->set_thermal_protection, | 
|  | &rdev->constraints->temp_limits); | 
|  | if (ret) { | 
|  | if (ret != -EOPNOTSUPP) { | 
|  | rdev_err(rdev, "failed to set temperature limits %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | rdev_warn(rdev, | 
|  | "IC does not support requested temperature limits\n"); | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->active_discharge && ops->set_active_discharge) { | 
|  | bool ad_state = (rdev->constraints->active_discharge == | 
|  | REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; | 
|  |  | 
|  | ret = ops->set_active_discharge(rdev, ad_state); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is no mechanism for controlling the regulator then | 
|  | * flag it as always_on so we don't end up duplicating checks | 
|  | * for this so much.  Note that we could control the state of | 
|  | * a supply to control the output on a regulator that has no | 
|  | * direct control. | 
|  | */ | 
|  | if (!rdev->ena_pin && !ops->enable) { | 
|  | if (rdev->supply_name && !rdev->supply) | 
|  | return -EPROBE_DEFER; | 
|  |  | 
|  | if (rdev->supply) | 
|  | rdev->constraints->always_on = | 
|  | rdev->supply->rdev->constraints->always_on; | 
|  | else | 
|  | rdev->constraints->always_on = true; | 
|  | } | 
|  |  | 
|  | /* If the constraints say the regulator should be on at this point | 
|  | * and we have control then make sure it is enabled. | 
|  | */ | 
|  | if (rdev->constraints->always_on || rdev->constraints->boot_on) { | 
|  | /* If we want to enable this regulator, make sure that we know | 
|  | * the supplying regulator. | 
|  | */ | 
|  | if (rdev->supply_name && !rdev->supply) | 
|  | return -EPROBE_DEFER; | 
|  |  | 
|  | /* If supplying regulator has already been enabled, | 
|  | * it's not intended to have use_count increment | 
|  | * when rdev is only boot-on. | 
|  | */ | 
|  | if (rdev->supply && | 
|  | (rdev->constraints->always_on || | 
|  | !regulator_is_enabled(rdev->supply))) { | 
|  | ret = regulator_enable(rdev->supply); | 
|  | if (ret < 0) { | 
|  | _regulator_put(rdev->supply); | 
|  | rdev->supply = NULL; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = _regulator_do_enable(rdev); | 
|  | if (ret < 0 && ret != -EINVAL) { | 
|  | rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (rdev->constraints->always_on) | 
|  | rdev->use_count++; | 
|  | } else if (rdev->desc->off_on_delay) { | 
|  | rdev->last_off = ktime_get(); | 
|  | } | 
|  |  | 
|  | print_constraints(rdev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_supply - set regulator supply regulator | 
|  | * @rdev: regulator (locked) | 
|  | * @supply_rdev: supply regulator (locked)) | 
|  | * | 
|  | * Called by platform initialisation code to set the supply regulator for this | 
|  | * regulator. This ensures that a regulators supply will also be enabled by the | 
|  | * core if it's child is enabled. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | static int set_supply(struct regulator_dev *rdev, | 
|  | struct regulator_dev *supply_rdev) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); | 
|  |  | 
|  | if (!try_module_get(supply_rdev->owner)) | 
|  | return -ENODEV; | 
|  |  | 
|  | rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); | 
|  | if (rdev->supply == NULL) { | 
|  | module_put(supply_rdev->owner); | 
|  | err = -ENOMEM; | 
|  | return err; | 
|  | } | 
|  | supply_rdev->open_count++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_consumer_device_supply - Bind a regulator to a symbolic supply | 
|  | * @rdev:         regulator source | 
|  | * @consumer_dev_name: dev_name() string for device supply applies to | 
|  | * @supply:       symbolic name for supply | 
|  | * | 
|  | * Allows platform initialisation code to map physical regulator | 
|  | * sources to symbolic names for supplies for use by devices.  Devices | 
|  | * should use these symbolic names to request regulators, avoiding the | 
|  | * need to provide board-specific regulator names as platform data. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | static int set_consumer_device_supply(struct regulator_dev *rdev, | 
|  | const char *consumer_dev_name, | 
|  | const char *supply) | 
|  | { | 
|  | struct regulator_map *node, *new_node; | 
|  | int has_dev; | 
|  |  | 
|  | if (supply == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (consumer_dev_name != NULL) | 
|  | has_dev = 1; | 
|  | else | 
|  | has_dev = 0; | 
|  |  | 
|  | new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); | 
|  | if (new_node == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | new_node->regulator = rdev; | 
|  | new_node->supply = supply; | 
|  |  | 
|  | if (has_dev) { | 
|  | new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); | 
|  | if (new_node->dev_name == NULL) { | 
|  | kfree(new_node); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | list_for_each_entry(node, ®ulator_map_list, list) { | 
|  | if (node->dev_name && consumer_dev_name) { | 
|  | if (strcmp(node->dev_name, consumer_dev_name) != 0) | 
|  | continue; | 
|  | } else if (node->dev_name || consumer_dev_name) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (strcmp(node->supply, supply) != 0) | 
|  | continue; | 
|  |  | 
|  | pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", | 
|  | consumer_dev_name, | 
|  | dev_name(&node->regulator->dev), | 
|  | node->regulator->desc->name, | 
|  | supply, | 
|  | dev_name(&rdev->dev), rdev_get_name(rdev)); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | list_add(&new_node->list, ®ulator_map_list); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | kfree(new_node->dev_name); | 
|  | kfree(new_node); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static void unset_regulator_supplies(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_map *node, *n; | 
|  |  | 
|  | list_for_each_entry_safe(node, n, ®ulator_map_list, list) { | 
|  | if (rdev == node->regulator) { | 
|  | list_del(&node->list); | 
|  | kfree(node->dev_name); | 
|  | kfree(node); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static ssize_t constraint_flags_read_file(struct file *file, | 
|  | char __user *user_buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | const struct regulator *regulator = file->private_data; | 
|  | const struct regulation_constraints *c = regulator->rdev->constraints; | 
|  | char *buf; | 
|  | ssize_t ret; | 
|  |  | 
|  | if (!c) | 
|  | return 0; | 
|  |  | 
|  | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = snprintf(buf, PAGE_SIZE, | 
|  | "always_on: %u\n" | 
|  | "boot_on: %u\n" | 
|  | "apply_uV: %u\n" | 
|  | "ramp_disable: %u\n" | 
|  | "soft_start: %u\n" | 
|  | "pull_down: %u\n" | 
|  | "over_current_protection: %u\n", | 
|  | c->always_on, | 
|  | c->boot_on, | 
|  | c->apply_uV, | 
|  | c->ramp_disable, | 
|  | c->soft_start, | 
|  | c->pull_down, | 
|  | c->over_current_protection); | 
|  |  | 
|  | ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); | 
|  | kfree(buf); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static const struct file_operations constraint_flags_fops = { | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | .open = simple_open, | 
|  | .read = constraint_flags_read_file, | 
|  | .llseek = default_llseek, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #define REG_STR_SIZE	64 | 
|  |  | 
|  | static struct regulator *create_regulator(struct regulator_dev *rdev, | 
|  | struct device *dev, | 
|  | const char *supply_name) | 
|  | { | 
|  | struct regulator *regulator; | 
|  | int err = 0; | 
|  |  | 
|  | lockdep_assert_held_once(&rdev->mutex.base); | 
|  |  | 
|  | if (dev) { | 
|  | char buf[REG_STR_SIZE]; | 
|  | int size; | 
|  |  | 
|  | size = snprintf(buf, REG_STR_SIZE, "%s-%s", | 
|  | dev->kobj.name, supply_name); | 
|  | if (size >= REG_STR_SIZE) | 
|  | return NULL; | 
|  |  | 
|  | supply_name = kstrdup(buf, GFP_KERNEL); | 
|  | if (supply_name == NULL) | 
|  | return NULL; | 
|  | } else { | 
|  | supply_name = kstrdup_const(supply_name, GFP_KERNEL); | 
|  | if (supply_name == NULL) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); | 
|  | if (regulator == NULL) { | 
|  | kfree_const(supply_name); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | regulator->rdev = rdev; | 
|  | regulator->supply_name = supply_name; | 
|  |  | 
|  | list_add(®ulator->list, &rdev->consumer_list); | 
|  |  | 
|  | if (dev) { | 
|  | regulator->dev = dev; | 
|  |  | 
|  | /* Add a link to the device sysfs entry */ | 
|  | err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, | 
|  | supply_name); | 
|  | if (err) { | 
|  | rdev_dbg(rdev, "could not add device link %s: %pe\n", | 
|  | dev->kobj.name, ERR_PTR(err)); | 
|  | /* non-fatal */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (err != -EEXIST) { | 
|  | regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); | 
|  | if (IS_ERR(regulator->debugfs)) { | 
|  | rdev_dbg(rdev, "Failed to create debugfs directory\n"); | 
|  | regulator->debugfs = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (regulator->debugfs) { | 
|  | debugfs_create_u32("uA_load", 0444, regulator->debugfs, | 
|  | ®ulator->uA_load); | 
|  | debugfs_create_u32("min_uV", 0444, regulator->debugfs, | 
|  | ®ulator->voltage[PM_SUSPEND_ON].min_uV); | 
|  | debugfs_create_u32("max_uV", 0444, regulator->debugfs, | 
|  | ®ulator->voltage[PM_SUSPEND_ON].max_uV); | 
|  | debugfs_create_file("constraint_flags", 0444, regulator->debugfs, | 
|  | regulator, &constraint_flags_fops); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check now if the regulator is an always on regulator - if | 
|  | * it is then we don't need to do nearly so much work for | 
|  | * enable/disable calls. | 
|  | */ | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && | 
|  | _regulator_is_enabled(rdev)) | 
|  | regulator->always_on = true; | 
|  |  | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | static int _regulator_get_enable_time(struct regulator_dev *rdev) | 
|  | { | 
|  | if (rdev->constraints && rdev->constraints->enable_time) | 
|  | return rdev->constraints->enable_time; | 
|  | if (rdev->desc->ops->enable_time) | 
|  | return rdev->desc->ops->enable_time(rdev); | 
|  | return rdev->desc->enable_time; | 
|  | } | 
|  |  | 
|  | static struct regulator_supply_alias *regulator_find_supply_alias( | 
|  | struct device *dev, const char *supply) | 
|  | { | 
|  | struct regulator_supply_alias *map; | 
|  |  | 
|  | list_for_each_entry(map, ®ulator_supply_alias_list, list) | 
|  | if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) | 
|  | return map; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void regulator_supply_alias(struct device **dev, const char **supply) | 
|  | { | 
|  | struct regulator_supply_alias *map; | 
|  |  | 
|  | map = regulator_find_supply_alias(*dev, *supply); | 
|  | if (map) { | 
|  | dev_dbg(*dev, "Mapping supply %s to %s,%s\n", | 
|  | *supply, map->alias_supply, | 
|  | dev_name(map->alias_dev)); | 
|  | *dev = map->alias_dev; | 
|  | *supply = map->alias_supply; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int regulator_match(struct device *dev, const void *data) | 
|  | { | 
|  | struct regulator_dev *r = dev_to_rdev(dev); | 
|  |  | 
|  | return strcmp(rdev_get_name(r), data) == 0; | 
|  | } | 
|  |  | 
|  | static struct regulator_dev *regulator_lookup_by_name(const char *name) | 
|  | { | 
|  | struct device *dev; | 
|  |  | 
|  | dev = class_find_device(®ulator_class, NULL, name, regulator_match); | 
|  |  | 
|  | return dev ? dev_to_rdev(dev) : NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_dev_lookup - lookup a regulator device. | 
|  | * @dev: device for regulator "consumer". | 
|  | * @supply: Supply name or regulator ID. | 
|  | * | 
|  | * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number. | 
|  | * | 
|  | * If successful, returns a struct regulator_dev that corresponds to the name | 
|  | * @supply and with the embedded struct device refcount incremented by one. | 
|  | * The refcount must be dropped by calling put_device(). | 
|  | * On failure one of the following ERR_PTR() encoded values is returned: | 
|  | * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed | 
|  | * in the future. | 
|  | */ | 
|  | static struct regulator_dev *regulator_dev_lookup(struct device *dev, | 
|  | const char *supply) | 
|  | { | 
|  | struct regulator_dev *r = NULL; | 
|  | struct regulator_map *map; | 
|  | const char *devname = NULL; | 
|  |  | 
|  | regulator_supply_alias(&dev, &supply); | 
|  |  | 
|  | /* first do a dt based lookup */ | 
|  | if (dev && dev->of_node) { | 
|  | r = of_regulator_dev_lookup(dev, supply); | 
|  | if (!IS_ERR(r)) | 
|  | return r; | 
|  | if (PTR_ERR(r) == -EPROBE_DEFER) | 
|  | return r; | 
|  |  | 
|  | if (PTR_ERR(r) == -ENODEV) | 
|  | r = NULL; | 
|  | } | 
|  |  | 
|  | /* if not found, try doing it non-dt way */ | 
|  | if (dev) | 
|  | devname = dev_name(dev); | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | list_for_each_entry(map, ®ulator_map_list, list) { | 
|  | /* If the mapping has a device set up it must match */ | 
|  | if (map->dev_name && | 
|  | (!devname || strcmp(map->dev_name, devname))) | 
|  | continue; | 
|  |  | 
|  | if (strcmp(map->supply, supply) == 0 && | 
|  | get_device(&map->regulator->dev)) { | 
|  | r = map->regulator; | 
|  | break; | 
|  | } | 
|  | } | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  |  | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = regulator_lookup_by_name(supply); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | return ERR_PTR(-ENODEV); | 
|  | } | 
|  |  | 
|  | static int regulator_resolve_supply(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_dev *r; | 
|  | struct device *dev = rdev->dev.parent; | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  | int ret = 0; | 
|  |  | 
|  | /* No supply to resolve? */ | 
|  | if (!rdev->supply_name) | 
|  | return 0; | 
|  |  | 
|  | /* Supply already resolved? (fast-path without locking contention) */ | 
|  | if (rdev->supply) | 
|  | return 0; | 
|  |  | 
|  | r = regulator_dev_lookup(dev, rdev->supply_name); | 
|  | if (IS_ERR(r)) { | 
|  | ret = PTR_ERR(r); | 
|  |  | 
|  | /* Did the lookup explicitly defer for us? */ | 
|  | if (ret == -EPROBE_DEFER) | 
|  | goto out; | 
|  |  | 
|  | if (have_full_constraints()) { | 
|  | r = dummy_regulator_rdev; | 
|  | get_device(&r->dev); | 
|  | } else { | 
|  | dev_err(dev, "Failed to resolve %s-supply for %s\n", | 
|  | rdev->supply_name, rdev->desc->name); | 
|  | ret = -EPROBE_DEFER; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (r == rdev) { | 
|  | dev_err(dev, "Supply for %s (%s) resolved to itself\n", | 
|  | rdev->desc->name, rdev->supply_name); | 
|  | if (!have_full_constraints()) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | r = dummy_regulator_rdev; | 
|  | get_device(&r->dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the supply's parent device is not the same as the | 
|  | * regulator's parent device, then ensure the parent device | 
|  | * is bound before we resolve the supply, in case the parent | 
|  | * device get probe deferred and unregisters the supply. | 
|  | */ | 
|  | if (r->dev.parent && r->dev.parent != rdev->dev.parent) { | 
|  | if (!device_is_bound(r->dev.parent)) { | 
|  | put_device(&r->dev); | 
|  | ret = -EPROBE_DEFER; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Recursively resolve the supply of the supply */ | 
|  | ret = regulator_resolve_supply(r); | 
|  | if (ret < 0) { | 
|  | put_device(&r->dev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recheck rdev->supply with rdev->mutex lock held to avoid a race | 
|  | * between rdev->supply null check and setting rdev->supply in | 
|  | * set_supply() from concurrent tasks. | 
|  | */ | 
|  | regulator_lock_two(rdev, r, &ww_ctx); | 
|  |  | 
|  | /* Supply just resolved by a concurrent task? */ | 
|  | if (rdev->supply) { | 
|  | regulator_unlock_two(rdev, r, &ww_ctx); | 
|  | put_device(&r->dev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = set_supply(rdev, r); | 
|  | if (ret < 0) { | 
|  | regulator_unlock_two(rdev, r, &ww_ctx); | 
|  | put_device(&r->dev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | regulator_unlock_two(rdev, r, &ww_ctx); | 
|  |  | 
|  | /* | 
|  | * In set_machine_constraints() we may have turned this regulator on | 
|  | * but we couldn't propagate to the supply if it hadn't been resolved | 
|  | * yet.  Do it now. | 
|  | */ | 
|  | if (rdev->use_count) { | 
|  | ret = regulator_enable(rdev->supply); | 
|  | if (ret < 0) { | 
|  | _regulator_put(rdev->supply); | 
|  | rdev->supply = NULL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* common pre-checks for regulator requests */ | 
|  | int _regulator_get_common_check(struct device *dev, const char *id, | 
|  | enum regulator_get_type get_type) | 
|  | { | 
|  | if (get_type >= MAX_GET_TYPE) { | 
|  | dev_err(dev, "invalid type %d in %s\n", get_type, __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (id == NULL) { | 
|  | dev_err(dev, "regulator request with no identifier\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _regulator_get_common - Common code for regulator requests | 
|  | * @rdev: regulator device pointer as returned by *regulator_dev_lookup() | 
|  | *       Its reference count is expected to have been incremented. | 
|  | * @dev: device used for dev_printk messages | 
|  | * @id: Supply name or regulator ID | 
|  | * @get_type: enum regulator_get_type value corresponding to type of request | 
|  | * | 
|  | * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR() | 
|  | *	    encoded error. | 
|  | * | 
|  | * This function should be chained with *regulator_dev_lookup() functions. | 
|  | */ | 
|  | struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev, | 
|  | const char *id, enum regulator_get_type get_type) | 
|  | { | 
|  | struct regulator *regulator; | 
|  | struct device_link *link; | 
|  | int ret; | 
|  |  | 
|  | if (IS_ERR(rdev)) { | 
|  | ret = PTR_ERR(rdev); | 
|  |  | 
|  | /* | 
|  | * If regulator_dev_lookup() fails with error other | 
|  | * than -ENODEV our job here is done, we simply return it. | 
|  | */ | 
|  | if (ret != -ENODEV) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | if (!have_full_constraints()) { | 
|  | dev_warn(dev, | 
|  | "incomplete constraints, dummy supplies not allowed (id=%s)\n", id); | 
|  | return ERR_PTR(-ENODEV); | 
|  | } | 
|  |  | 
|  | switch (get_type) { | 
|  | case NORMAL_GET: | 
|  | /* | 
|  | * Assume that a regulator is physically present and | 
|  | * enabled, even if it isn't hooked up, and just | 
|  | * provide a dummy. | 
|  | */ | 
|  | dev_warn(dev, "supply %s not found, using dummy regulator\n", id); | 
|  | rdev = dummy_regulator_rdev; | 
|  | get_device(&rdev->dev); | 
|  | break; | 
|  |  | 
|  | case EXCLUSIVE_GET: | 
|  | dev_warn(dev, | 
|  | "dummy supplies not allowed for exclusive requests (id=%s)\n", id); | 
|  | fallthrough; | 
|  |  | 
|  | default: | 
|  | return ERR_PTR(-ENODEV); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev->exclusive) { | 
|  | regulator = ERR_PTR(-EPERM); | 
|  | put_device(&rdev->dev); | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | if (get_type == EXCLUSIVE_GET && rdev->open_count) { | 
|  | regulator = ERR_PTR(-EBUSY); | 
|  | put_device(&rdev->dev); | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  |  | 
|  | if (ret != 0) { | 
|  | regulator = ERR_PTR(-EPROBE_DEFER); | 
|  | put_device(&rdev->dev); | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | ret = regulator_resolve_supply(rdev); | 
|  | if (ret < 0) { | 
|  | regulator = ERR_PTR(ret); | 
|  | put_device(&rdev->dev); | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | if (!try_module_get(rdev->owner)) { | 
|  | regulator = ERR_PTR(-EPROBE_DEFER); | 
|  | put_device(&rdev->dev); | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | regulator = create_regulator(rdev, dev, id); | 
|  | regulator_unlock(rdev); | 
|  | if (regulator == NULL) { | 
|  | regulator = ERR_PTR(-ENOMEM); | 
|  | module_put(rdev->owner); | 
|  | put_device(&rdev->dev); | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | rdev->open_count++; | 
|  | if (get_type == EXCLUSIVE_GET) { | 
|  | rdev->exclusive = 1; | 
|  |  | 
|  | ret = _regulator_is_enabled(rdev); | 
|  | if (ret > 0) { | 
|  | rdev->use_count = 1; | 
|  | regulator->enable_count = 1; | 
|  |  | 
|  | /* Propagate the regulator state to its supply */ | 
|  | if (rdev->supply) { | 
|  | ret = regulator_enable(rdev->supply); | 
|  | if (ret < 0) { | 
|  | destroy_regulator(regulator); | 
|  | module_put(rdev->owner); | 
|  | put_device(&rdev->dev); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | rdev->use_count = 0; | 
|  | regulator->enable_count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); | 
|  | if (!IS_ERR_OR_NULL(link)) | 
|  | regulator->device_link = true; | 
|  |  | 
|  | return regulator; | 
|  | } | 
|  |  | 
|  | /* Internal regulator request function */ | 
|  | struct regulator *_regulator_get(struct device *dev, const char *id, | 
|  | enum regulator_get_type get_type) | 
|  | { | 
|  | struct regulator_dev *rdev; | 
|  | int ret; | 
|  |  | 
|  | ret = _regulator_get_common_check(dev, id, get_type); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | rdev = regulator_dev_lookup(dev, id); | 
|  | return _regulator_get_common(rdev, dev, id, get_type); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_get - lookup and obtain a reference to a regulator. | 
|  | * @dev: device for regulator "consumer" | 
|  | * @id: Supply name or regulator ID. | 
|  | * | 
|  | * Use of supply names configured via set_consumer_device_supply() is | 
|  | * strongly encouraged.  It is recommended that the supply name used | 
|  | * should match the name used for the supply and/or the relevant | 
|  | * device pins in the datasheet. | 
|  | * | 
|  | * Return: Pointer to a &struct regulator corresponding to the regulator | 
|  | *	   producer, or an ERR_PTR() encoded negative error number. | 
|  | */ | 
|  | struct regulator *regulator_get(struct device *dev, const char *id) | 
|  | { | 
|  | return _regulator_get(dev, id, NORMAL_GET); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get); | 
|  |  | 
|  | /** | 
|  | * regulator_get_exclusive - obtain exclusive access to a regulator. | 
|  | * @dev: device for regulator "consumer" | 
|  | * @id: Supply name or regulator ID. | 
|  | * | 
|  | * Other consumers will be unable to obtain this regulator while this | 
|  | * reference is held and the use count for the regulator will be | 
|  | * initialised to reflect the current state of the regulator. | 
|  | * | 
|  | * This is intended for use by consumers which cannot tolerate shared | 
|  | * use of the regulator such as those which need to force the | 
|  | * regulator off for correct operation of the hardware they are | 
|  | * controlling. | 
|  | * | 
|  | * Use of supply names configured via set_consumer_device_supply() is | 
|  | * strongly encouraged.  It is recommended that the supply name used | 
|  | * should match the name used for the supply and/or the relevant | 
|  | * device pins in the datasheet. | 
|  | * | 
|  | * Return: Pointer to a &struct regulator corresponding to the regulator | 
|  | *	   producer, or an ERR_PTR() encoded negative error number. | 
|  | */ | 
|  | struct regulator *regulator_get_exclusive(struct device *dev, const char *id) | 
|  | { | 
|  | return _regulator_get(dev, id, EXCLUSIVE_GET); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_exclusive); | 
|  |  | 
|  | /** | 
|  | * regulator_get_optional - obtain optional access to a regulator. | 
|  | * @dev: device for regulator "consumer" | 
|  | * @id: Supply name or regulator ID. | 
|  | * | 
|  | * This is intended for use by consumers for devices which can have | 
|  | * some supplies unconnected in normal use, such as some MMC devices. | 
|  | * It can allow the regulator core to provide stub supplies for other | 
|  | * supplies requested using normal regulator_get() calls without | 
|  | * disrupting the operation of drivers that can handle absent | 
|  | * supplies. | 
|  | * | 
|  | * Use of supply names configured via set_consumer_device_supply() is | 
|  | * strongly encouraged.  It is recommended that the supply name used | 
|  | * should match the name used for the supply and/or the relevant | 
|  | * device pins in the datasheet. | 
|  | * | 
|  | * Return: Pointer to a &struct regulator corresponding to the regulator | 
|  | *	   producer, or an ERR_PTR() encoded negative error number. | 
|  | */ | 
|  | struct regulator *regulator_get_optional(struct device *dev, const char *id) | 
|  | { | 
|  | return _regulator_get(dev, id, OPTIONAL_GET); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_optional); | 
|  |  | 
|  | static void destroy_regulator(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  |  | 
|  | debugfs_remove_recursive(regulator->debugfs); | 
|  |  | 
|  | if (regulator->dev) { | 
|  | if (regulator->device_link) | 
|  | device_link_remove(regulator->dev, &rdev->dev); | 
|  |  | 
|  | /* remove any sysfs entries */ | 
|  | sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); | 
|  | } | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | list_del(®ulator->list); | 
|  |  | 
|  | rdev->open_count--; | 
|  | rdev->exclusive = 0; | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | kfree_const(regulator->supply_name); | 
|  | kfree(regulator); | 
|  | } | 
|  |  | 
|  | /* regulator_list_mutex lock held by regulator_put() */ | 
|  | static void _regulator_put(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev; | 
|  |  | 
|  | if (IS_ERR_OR_NULL(regulator)) | 
|  | return; | 
|  |  | 
|  | lockdep_assert_held_once(®ulator_list_mutex); | 
|  |  | 
|  | /* Docs say you must disable before calling regulator_put() */ | 
|  | WARN_ON(regulator->enable_count); | 
|  |  | 
|  | rdev = regulator->rdev; | 
|  |  | 
|  | destroy_regulator(regulator); | 
|  |  | 
|  | module_put(rdev->owner); | 
|  | put_device(&rdev->dev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_put - "free" the regulator source | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Note: drivers must ensure that all regulator_enable calls made on this | 
|  | * regulator source are balanced by regulator_disable calls prior to calling | 
|  | * this function. | 
|  | */ | 
|  | void regulator_put(struct regulator *regulator) | 
|  | { | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | _regulator_put(regulator); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_put); | 
|  |  | 
|  | /** | 
|  | * regulator_register_supply_alias - Provide device alias for supply lookup | 
|  | * | 
|  | * @dev: device that will be given as the regulator "consumer" | 
|  | * @id: Supply name or regulator ID | 
|  | * @alias_dev: device that should be used to lookup the supply | 
|  | * @alias_id: Supply name or regulator ID that should be used to lookup the | 
|  | * supply | 
|  | * | 
|  | * All lookups for id on dev will instead be conducted for alias_id on | 
|  | * alias_dev. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_register_supply_alias(struct device *dev, const char *id, | 
|  | struct device *alias_dev, | 
|  | const char *alias_id) | 
|  | { | 
|  | struct regulator_supply_alias *map; | 
|  |  | 
|  | map = regulator_find_supply_alias(dev, id); | 
|  | if (map) | 
|  | return -EEXIST; | 
|  |  | 
|  | map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); | 
|  | if (!map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | map->src_dev = dev; | 
|  | map->src_supply = id; | 
|  | map->alias_dev = alias_dev; | 
|  | map->alias_supply = alias_id; | 
|  |  | 
|  | list_add(&map->list, ®ulator_supply_alias_list); | 
|  |  | 
|  | pr_info("Adding alias for supply %s,%s -> %s,%s\n", | 
|  | id, dev_name(dev), alias_id, dev_name(alias_dev)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_register_supply_alias); | 
|  |  | 
|  | /** | 
|  | * regulator_unregister_supply_alias - Remove device alias | 
|  | * | 
|  | * @dev: device that will be given as the regulator "consumer" | 
|  | * @id: Supply name or regulator ID | 
|  | * | 
|  | * Remove a lookup alias if one exists for id on dev. | 
|  | */ | 
|  | void regulator_unregister_supply_alias(struct device *dev, const char *id) | 
|  | { | 
|  | struct regulator_supply_alias *map; | 
|  |  | 
|  | map = regulator_find_supply_alias(dev, id); | 
|  | if (map) { | 
|  | list_del(&map->list); | 
|  | kfree(map); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_register_supply_alias - register multiple aliases | 
|  | * | 
|  | * @dev: device that will be given as the regulator "consumer" | 
|  | * @id: List of supply names or regulator IDs | 
|  | * @alias_dev: device that should be used to lookup the supply | 
|  | * @alias_id: List of supply names or regulator IDs that should be used to | 
|  | * lookup the supply | 
|  | * @num_id: Number of aliases to register | 
|  | * | 
|  | * This helper function allows drivers to register several supply | 
|  | * aliases in one operation.  If any of the aliases cannot be | 
|  | * registered any aliases that were registered will be removed | 
|  | * before returning to the caller. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_bulk_register_supply_alias(struct device *dev, | 
|  | const char *const *id, | 
|  | struct device *alias_dev, | 
|  | const char *const *alias_id, | 
|  | int num_id) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < num_id; ++i) { | 
|  | ret = regulator_register_supply_alias(dev, id[i], alias_dev, | 
|  | alias_id[i]); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | dev_err(dev, | 
|  | "Failed to create supply alias %s,%s -> %s,%s\n", | 
|  | id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); | 
|  |  | 
|  | while (--i >= 0) | 
|  | regulator_unregister_supply_alias(dev, id[i]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_unregister_supply_alias - unregister multiple aliases | 
|  | * | 
|  | * @dev: device that will be given as the regulator "consumer" | 
|  | * @id: List of supply names or regulator IDs | 
|  | * @num_id: Number of aliases to unregister | 
|  | * | 
|  | * This helper function allows drivers to unregister several supply | 
|  | * aliases in one operation. | 
|  | */ | 
|  | void regulator_bulk_unregister_supply_alias(struct device *dev, | 
|  | const char *const *id, | 
|  | int num_id) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_id; ++i) | 
|  | regulator_unregister_supply_alias(dev, id[i]); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); | 
|  |  | 
|  |  | 
|  | /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ | 
|  | static int regulator_ena_gpio_request(struct regulator_dev *rdev, | 
|  | const struct regulator_config *config) | 
|  | { | 
|  | struct regulator_enable_gpio *pin, *new_pin; | 
|  | struct gpio_desc *gpiod; | 
|  |  | 
|  | gpiod = config->ena_gpiod; | 
|  | new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  |  | 
|  | list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { | 
|  | if (pin->gpiod == gpiod) { | 
|  | rdev_dbg(rdev, "GPIO is already used\n"); | 
|  | goto update_ena_gpio_to_rdev; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (new_pin == NULL) { | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pin = new_pin; | 
|  | new_pin = NULL; | 
|  |  | 
|  | pin->gpiod = gpiod; | 
|  | list_add(&pin->list, ®ulator_ena_gpio_list); | 
|  |  | 
|  | update_ena_gpio_to_rdev: | 
|  | pin->request_count++; | 
|  | rdev->ena_pin = pin; | 
|  |  | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | kfree(new_pin); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void regulator_ena_gpio_free(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_enable_gpio *pin, *n; | 
|  |  | 
|  | if (!rdev->ena_pin) | 
|  | return; | 
|  |  | 
|  | /* Free the GPIO only in case of no use */ | 
|  | list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { | 
|  | if (pin != rdev->ena_pin) | 
|  | continue; | 
|  |  | 
|  | if (--pin->request_count) | 
|  | break; | 
|  |  | 
|  | gpiod_put(pin->gpiod); | 
|  | list_del(&pin->list); | 
|  | kfree(pin); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rdev->ena_pin = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control | 
|  | * @rdev: regulator_dev structure | 
|  | * @enable: enable GPIO at initial use? | 
|  | * | 
|  | * GPIO is enabled in case of initial use. (enable_count is 0) | 
|  | * GPIO is disabled when it is not shared any more. (enable_count <= 1) | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) | 
|  | { | 
|  | struct regulator_enable_gpio *pin = rdev->ena_pin; | 
|  |  | 
|  | if (!pin) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (enable) { | 
|  | /* Enable GPIO at initial use */ | 
|  | if (pin->enable_count == 0) | 
|  | gpiod_set_value_cansleep(pin->gpiod, 1); | 
|  |  | 
|  | pin->enable_count++; | 
|  | } else { | 
|  | if (pin->enable_count > 1) { | 
|  | pin->enable_count--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Disable GPIO if not used */ | 
|  | if (pin->enable_count <= 1) { | 
|  | gpiod_set_value_cansleep(pin->gpiod, 0); | 
|  | pin->enable_count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _regulator_delay_helper - a delay helper function | 
|  | * @delay: time to delay in microseconds | 
|  | * | 
|  | * Delay for the requested amount of time as per the guidelines in: | 
|  | * | 
|  | *     Documentation/timers/timers-howto.rst | 
|  | * | 
|  | * The assumption here is that these regulator operations will never used in | 
|  | * atomic context and therefore sleeping functions can be used. | 
|  | */ | 
|  | static void _regulator_delay_helper(unsigned int delay) | 
|  | { | 
|  | unsigned int ms = delay / 1000; | 
|  | unsigned int us = delay % 1000; | 
|  |  | 
|  | if (ms > 0) { | 
|  | /* | 
|  | * For small enough values, handle super-millisecond | 
|  | * delays in the usleep_range() call below. | 
|  | */ | 
|  | if (ms < 20) | 
|  | us += ms * 1000; | 
|  | else | 
|  | msleep(ms); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Give the scheduler some room to coalesce with any other | 
|  | * wakeup sources. For delays shorter than 10 us, don't even | 
|  | * bother setting up high-resolution timers and just busy- | 
|  | * loop. | 
|  | */ | 
|  | if (us >= 10) | 
|  | usleep_range(us, us + 100); | 
|  | else | 
|  | udelay(us); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _regulator_check_status_enabled - check if regulator status can be | 
|  | *				     interpreted as "regulator is enabled" | 
|  | * @rdev: the regulator device to check | 
|  | * | 
|  | * Return: | 
|  | * * 1			- if status shows regulator is in enabled state | 
|  | * * 0			- if not enabled state | 
|  | * * Error Value	- as received from ops->get_status() | 
|  | */ | 
|  | static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret = rdev->desc->ops->get_status(rdev); | 
|  |  | 
|  | if (ret < 0) { | 
|  | rdev_info(rdev, "get_status returned error: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | switch (ret) { | 
|  | case REGULATOR_STATUS_OFF: | 
|  | case REGULATOR_STATUS_ERROR: | 
|  | case REGULATOR_STATUS_UNDEFINED: | 
|  | return 0; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int _regulator_do_enable(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret, delay; | 
|  |  | 
|  | /* Query before enabling in case configuration dependent.  */ | 
|  | ret = _regulator_get_enable_time(rdev); | 
|  | if (ret >= 0) { | 
|  | delay = ret; | 
|  | } else { | 
|  | rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); | 
|  | delay = 0; | 
|  | } | 
|  |  | 
|  | trace_regulator_enable(rdev_get_name(rdev)); | 
|  |  | 
|  | if (rdev->desc->off_on_delay) { | 
|  | /* if needed, keep a distance of off_on_delay from last time | 
|  | * this regulator was disabled. | 
|  | */ | 
|  | ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); | 
|  | s64 remaining = ktime_us_delta(end, ktime_get_boottime()); | 
|  |  | 
|  | if (remaining > 0) | 
|  | _regulator_delay_helper(remaining); | 
|  | } | 
|  |  | 
|  | if (rdev->ena_pin) { | 
|  | if (!rdev->ena_gpio_state) { | 
|  | ret = regulator_ena_gpio_ctrl(rdev, true); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | rdev->ena_gpio_state = 1; | 
|  | } | 
|  | } else if (rdev->desc->ops->enable) { | 
|  | ret = rdev->desc->ops->enable(rdev); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Allow the regulator to ramp; it would be useful to extend | 
|  | * this for bulk operations so that the regulators can ramp | 
|  | * together. | 
|  | */ | 
|  | trace_regulator_enable_delay(rdev_get_name(rdev)); | 
|  |  | 
|  | /* If poll_enabled_time is set, poll upto the delay calculated | 
|  | * above, delaying poll_enabled_time uS to check if the regulator | 
|  | * actually got enabled. | 
|  | * If the regulator isn't enabled after our delay helper has expired, | 
|  | * return -ETIMEDOUT. | 
|  | */ | 
|  | if (rdev->desc->poll_enabled_time) { | 
|  | int time_remaining = delay; | 
|  |  | 
|  | while (time_remaining > 0) { | 
|  | _regulator_delay_helper(rdev->desc->poll_enabled_time); | 
|  |  | 
|  | if (rdev->desc->ops->get_status) { | 
|  | ret = _regulator_check_status_enabled(rdev); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | else if (ret) | 
|  | break; | 
|  | } else if (rdev->desc->ops->is_enabled(rdev)) | 
|  | break; | 
|  |  | 
|  | time_remaining -= rdev->desc->poll_enabled_time; | 
|  | } | 
|  |  | 
|  | if (time_remaining <= 0) { | 
|  | rdev_err(rdev, "Enabled check timed out\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | } else { | 
|  | _regulator_delay_helper(delay); | 
|  | } | 
|  |  | 
|  | trace_regulator_enable_complete(rdev_get_name(rdev)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _regulator_handle_consumer_enable - handle that a consumer enabled | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Some things on a regulator consumer (like the contribution towards total | 
|  | * load on the regulator) only have an effect when the consumer wants the | 
|  | * regulator enabled.  Explained in example with two consumers of the same | 
|  | * regulator: | 
|  | *   consumer A: set_load(100);       => total load = 0 | 
|  | *   consumer A: regulator_enable();  => total load = 100 | 
|  | *   consumer B: set_load(1000);      => total load = 100 | 
|  | *   consumer B: regulator_enable();  => total load = 1100 | 
|  | *   consumer A: regulator_disable(); => total_load = 1000 | 
|  | * | 
|  | * This function (together with _regulator_handle_consumer_disable) is | 
|  | * responsible for keeping track of the refcount for a given regulator consumer | 
|  | * and applying / unapplying these things. | 
|  | * | 
|  | * Return: 0 on success or negative error number on failure. | 
|  | */ | 
|  | static int _regulator_handle_consumer_enable(struct regulator *regulator) | 
|  | { | 
|  | int ret; | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  |  | 
|  | lockdep_assert_held_once(&rdev->mutex.base); | 
|  |  | 
|  | regulator->enable_count++; | 
|  | if (regulator->uA_load && regulator->enable_count == 1) { | 
|  | ret = drms_uA_update(rdev); | 
|  | if (ret) | 
|  | regulator->enable_count--; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _regulator_handle_consumer_disable - handle that a consumer disabled | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * The opposite of _regulator_handle_consumer_enable(). | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | static int _regulator_handle_consumer_disable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  |  | 
|  | lockdep_assert_held_once(&rdev->mutex.base); | 
|  |  | 
|  | if (!regulator->enable_count) { | 
|  | rdev_err(rdev, "Underflow of regulator enable count\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | regulator->enable_count--; | 
|  | if (regulator->uA_load && regulator->enable_count == 0) | 
|  | return drms_uA_update(rdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* locks held by regulator_enable() */ | 
|  | static int _regulator_enable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held_once(&rdev->mutex.base); | 
|  |  | 
|  | if (rdev->use_count == 0 && rdev->supply) { | 
|  | ret = _regulator_enable(rdev->supply); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* balance only if there are regulators coupled */ | 
|  | if (rdev->coupling_desc.n_coupled > 1) { | 
|  | ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); | 
|  | if (ret < 0) | 
|  | goto err_disable_supply; | 
|  | } | 
|  |  | 
|  | ret = _regulator_handle_consumer_enable(regulator); | 
|  | if (ret < 0) | 
|  | goto err_disable_supply; | 
|  |  | 
|  | if (rdev->use_count == 0) { | 
|  | /* | 
|  | * The regulator may already be enabled if it's not switchable | 
|  | * or was left on | 
|  | */ | 
|  | ret = _regulator_is_enabled(rdev); | 
|  | if (ret == -EINVAL || ret == 0) { | 
|  | if (!regulator_ops_is_valid(rdev, | 
|  | REGULATOR_CHANGE_STATUS)) { | 
|  | ret = -EPERM; | 
|  | goto err_consumer_disable; | 
|  | } | 
|  |  | 
|  | ret = _regulator_do_enable(rdev); | 
|  | if (ret < 0) | 
|  | goto err_consumer_disable; | 
|  |  | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, | 
|  | NULL); | 
|  | } else if (ret < 0) { | 
|  | rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); | 
|  | goto err_consumer_disable; | 
|  | } | 
|  | /* Fallthrough on positive return values - already enabled */ | 
|  | } | 
|  |  | 
|  | if (regulator->enable_count == 1) | 
|  | rdev->use_count++; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_consumer_disable: | 
|  | _regulator_handle_consumer_disable(regulator); | 
|  |  | 
|  | err_disable_supply: | 
|  | if (rdev->use_count == 0 && rdev->supply) | 
|  | _regulator_disable(rdev->supply); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_enable - enable regulator output | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Request that the regulator be enabled with the regulator output at | 
|  | * the predefined voltage or current value.  Calls to regulator_enable() | 
|  | * must be balanced with calls to regulator_disable(). | 
|  | * | 
|  | * NOTE: the output value can be set by other drivers, boot loader or may be | 
|  | * hardwired in the regulator. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_enable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  | int ret; | 
|  |  | 
|  | regulator_lock_dependent(rdev, &ww_ctx); | 
|  | ret = _regulator_enable(regulator); | 
|  | regulator_unlock_dependent(rdev, &ww_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_enable); | 
|  |  | 
|  | static int _regulator_do_disable(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | trace_regulator_disable(rdev_get_name(rdev)); | 
|  |  | 
|  | if (rdev->ena_pin) { | 
|  | if (rdev->ena_gpio_state) { | 
|  | ret = regulator_ena_gpio_ctrl(rdev, false); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | rdev->ena_gpio_state = 0; | 
|  | } | 
|  |  | 
|  | } else if (rdev->desc->ops->disable) { | 
|  | ret = rdev->desc->ops->disable(rdev); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (rdev->desc->off_on_delay) | 
|  | rdev->last_off = ktime_get_boottime(); | 
|  |  | 
|  | trace_regulator_disable_complete(rdev_get_name(rdev)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* locks held by regulator_disable() */ | 
|  | static int _regulator_disable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret = 0; | 
|  |  | 
|  | lockdep_assert_held_once(&rdev->mutex.base); | 
|  |  | 
|  | if (WARN(regulator->enable_count == 0, | 
|  | "unbalanced disables for %s\n", rdev_get_name(rdev))) | 
|  | return -EIO; | 
|  |  | 
|  | if (regulator->enable_count == 1) { | 
|  | /* disabling last enable_count from this regulator */ | 
|  | /* are we the last user and permitted to disable ? */ | 
|  | if (rdev->use_count == 1 && | 
|  | (rdev->constraints && !rdev->constraints->always_on)) { | 
|  |  | 
|  | /* we are last user */ | 
|  | if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { | 
|  | ret = _notifier_call_chain(rdev, | 
|  | REGULATOR_EVENT_PRE_DISABLE, | 
|  | NULL); | 
|  | if (ret & NOTIFY_STOP_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = _regulator_do_disable(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); | 
|  | _notifier_call_chain(rdev, | 
|  | REGULATOR_EVENT_ABORT_DISABLE, | 
|  | NULL); | 
|  | return ret; | 
|  | } | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | rdev->use_count = 0; | 
|  | } else if (rdev->use_count > 1) { | 
|  | rdev->use_count--; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == 0) | 
|  | ret = _regulator_handle_consumer_disable(regulator); | 
|  |  | 
|  | if (ret == 0 && rdev->coupling_desc.n_coupled > 1) | 
|  | ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); | 
|  |  | 
|  | if (ret == 0 && rdev->use_count == 0 && rdev->supply) | 
|  | ret = _regulator_disable(rdev->supply); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_disable - disable regulator output | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Disable the regulator output voltage or current.  Calls to | 
|  | * regulator_enable() must be balanced with calls to | 
|  | * regulator_disable(). | 
|  | * | 
|  | * NOTE: this will only disable the regulator output if no other consumer | 
|  | * devices have it enabled, the regulator device supports disabling and | 
|  | * machine constraints permit this operation. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_disable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  | int ret; | 
|  |  | 
|  | regulator_lock_dependent(rdev, &ww_ctx); | 
|  | ret = _regulator_disable(regulator); | 
|  | regulator_unlock_dependent(rdev, &ww_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_disable); | 
|  |  | 
|  | /* locks held by regulator_force_disable() */ | 
|  | static int _regulator_force_disable(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | lockdep_assert_held_once(&rdev->mutex.base); | 
|  |  | 
|  | ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | | 
|  | REGULATOR_EVENT_PRE_DISABLE, NULL); | 
|  | if (ret & NOTIFY_STOP_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = _regulator_do_disable(rdev); | 
|  | if (ret < 0) { | 
|  | rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | | 
|  | REGULATOR_EVENT_ABORT_DISABLE, NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | | 
|  | REGULATOR_EVENT_DISABLE, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_force_disable - force disable regulator output | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Forcibly disable the regulator output voltage or current. | 
|  | * NOTE: this *will* disable the regulator output even if other consumer | 
|  | * devices have it enabled. This should be used for situations when device | 
|  | * damage will likely occur if the regulator is not disabled (e.g. over temp). | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_force_disable(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  | int ret; | 
|  |  | 
|  | regulator_lock_dependent(rdev, &ww_ctx); | 
|  |  | 
|  | ret = _regulator_force_disable(regulator->rdev); | 
|  |  | 
|  | if (rdev->coupling_desc.n_coupled > 1) | 
|  | regulator_balance_voltage(rdev, PM_SUSPEND_ON); | 
|  |  | 
|  | if (regulator->uA_load) { | 
|  | regulator->uA_load = 0; | 
|  | ret = drms_uA_update(rdev); | 
|  | } | 
|  |  | 
|  | if (rdev->use_count != 0 && rdev->supply) | 
|  | _regulator_disable(rdev->supply); | 
|  |  | 
|  | regulator_unlock_dependent(rdev, &ww_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_force_disable); | 
|  |  | 
|  | static void regulator_disable_work(struct work_struct *work) | 
|  | { | 
|  | struct regulator_dev *rdev = container_of(work, struct regulator_dev, | 
|  | disable_work.work); | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  | int count, i, ret; | 
|  | struct regulator *regulator; | 
|  | int total_count = 0; | 
|  |  | 
|  | regulator_lock_dependent(rdev, &ww_ctx); | 
|  |  | 
|  | /* | 
|  | * Workqueue functions queue the new work instance while the previous | 
|  | * work instance is being processed. Cancel the queued work instance | 
|  | * as the work instance under processing does the job of the queued | 
|  | * work instance. | 
|  | */ | 
|  | cancel_delayed_work(&rdev->disable_work); | 
|  |  | 
|  | list_for_each_entry(regulator, &rdev->consumer_list, list) { | 
|  | count = regulator->deferred_disables; | 
|  |  | 
|  | if (!count) | 
|  | continue; | 
|  |  | 
|  | total_count += count; | 
|  | regulator->deferred_disables = 0; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | ret = _regulator_disable(regulator); | 
|  | if (ret != 0) | 
|  | rdev_err(rdev, "Deferred disable failed: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | } | 
|  | } | 
|  | WARN_ON(!total_count); | 
|  |  | 
|  | if (rdev->coupling_desc.n_coupled > 1) | 
|  | regulator_balance_voltage(rdev, PM_SUSPEND_ON); | 
|  |  | 
|  | regulator_unlock_dependent(rdev, &ww_ctx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_disable_deferred - disable regulator output with delay | 
|  | * @regulator: regulator source | 
|  | * @ms: milliseconds until the regulator is disabled | 
|  | * | 
|  | * Execute regulator_disable() on the regulator after a delay.  This | 
|  | * is intended for use with devices that require some time to quiesce. | 
|  | * | 
|  | * NOTE: this will only disable the regulator output if no other consumer | 
|  | * devices have it enabled, the regulator device supports disabling and | 
|  | * machine constraints permit this operation. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_disable_deferred(struct regulator *regulator, int ms) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  |  | 
|  | if (!ms) | 
|  | return regulator_disable(regulator); | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | regulator->deferred_disables++; | 
|  | mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, | 
|  | msecs_to_jiffies(ms)); | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_disable_deferred); | 
|  |  | 
|  | static int _regulator_is_enabled(struct regulator_dev *rdev) | 
|  | { | 
|  | /* A GPIO control always takes precedence */ | 
|  | if (rdev->ena_pin) | 
|  | return rdev->ena_gpio_state; | 
|  |  | 
|  | /* If we don't know then assume that the regulator is always on */ | 
|  | if (!rdev->desc->ops->is_enabled) | 
|  | return 1; | 
|  |  | 
|  | return rdev->desc->ops->is_enabled(rdev); | 
|  | } | 
|  |  | 
|  | static int _regulator_list_voltage(struct regulator_dev *rdev, | 
|  | unsigned selector, int lock) | 
|  | { | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  | int ret; | 
|  |  | 
|  | if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) | 
|  | return rdev->desc->fixed_uV; | 
|  |  | 
|  | if (ops->list_voltage) { | 
|  | if (selector >= rdev->desc->n_voltages) | 
|  | return -EINVAL; | 
|  | if (selector < rdev->desc->linear_min_sel) | 
|  | return 0; | 
|  | if (lock) | 
|  | regulator_lock(rdev); | 
|  | ret = ops->list_voltage(rdev, selector); | 
|  | if (lock) | 
|  | regulator_unlock(rdev); | 
|  | } else if (rdev->is_switch && rdev->supply) { | 
|  | ret = _regulator_list_voltage(rdev->supply->rdev, | 
|  | selector, lock); | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ret > 0) { | 
|  | if (ret < rdev->constraints->min_uV) | 
|  | ret = 0; | 
|  | else if (ret > rdev->constraints->max_uV) | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_is_enabled - is the regulator output enabled | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Note that the device backing this regulator handle can have multiple | 
|  | * users, so it might be enabled even if regulator_enable() was never | 
|  | * called for this particular source. | 
|  | * | 
|  | * Return: Positive if the regulator driver backing the source/client | 
|  | *	   has requested that the device be enabled, zero if it hasn't, | 
|  | *	   else a negative error number. | 
|  | */ | 
|  | int regulator_is_enabled(struct regulator *regulator) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (regulator->always_on) | 
|  | return 1; | 
|  |  | 
|  | regulator_lock(regulator->rdev); | 
|  | ret = _regulator_is_enabled(regulator->rdev); | 
|  | regulator_unlock(regulator->rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_is_enabled); | 
|  |  | 
|  | /** | 
|  | * regulator_count_voltages - count regulator_list_voltage() selectors | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Return: Number of selectors for @regulator, or negative error number. | 
|  | * | 
|  | * Selectors are numbered starting at zero, and typically correspond to | 
|  | * bitfields in hardware registers. | 
|  | */ | 
|  | int regulator_count_voltages(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev	*rdev = regulator->rdev; | 
|  |  | 
|  | if (rdev->desc->n_voltages) | 
|  | return rdev->desc->n_voltages; | 
|  |  | 
|  | if (!rdev->is_switch || !rdev->supply) | 
|  | return -EINVAL; | 
|  |  | 
|  | return regulator_count_voltages(rdev->supply); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_count_voltages); | 
|  |  | 
|  | /** | 
|  | * regulator_list_voltage - enumerate supported voltages | 
|  | * @regulator: regulator source | 
|  | * @selector: identify voltage to list | 
|  | * Context: can sleep | 
|  | * | 
|  | * Return: Voltage for @selector that can be passed to regulator_set_voltage(), | 
|  | *	   0 if @selector can't be used on this system, or a negative error | 
|  | *	   number on failure. | 
|  | */ | 
|  | int regulator_list_voltage(struct regulator *regulator, unsigned selector) | 
|  | { | 
|  | return _regulator_list_voltage(regulator->rdev, selector, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_list_voltage); | 
|  |  | 
|  | /** | 
|  | * regulator_get_regmap - get the regulator's register map | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR() | 
|  | *	   encoded -%EOPNOTSUPP if @regulator doesn't use regmap. | 
|  | */ | 
|  | struct regmap *regulator_get_regmap(struct regulator *regulator) | 
|  | { | 
|  | struct regmap *map = regulator->rdev->regmap; | 
|  |  | 
|  | return map ? map : ERR_PTR(-EOPNOTSUPP); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_regmap); | 
|  |  | 
|  | /** | 
|  | * regulator_get_hardware_vsel_register - get the HW voltage selector register | 
|  | * @regulator: regulator source | 
|  | * @vsel_reg: voltage selector register, output parameter | 
|  | * @vsel_mask: mask for voltage selector bitfield, output parameter | 
|  | * | 
|  | * Returns the hardware register offset and bitmask used for setting the | 
|  | * regulator voltage. This might be useful when configuring voltage-scaling | 
|  | * hardware or firmware that can make I2C requests behind the kernel's back, | 
|  | * for example. | 
|  | * | 
|  | * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support | 
|  | *         voltage selectors. | 
|  | * | 
|  | * On success, the output parameters @vsel_reg and @vsel_mask are filled in | 
|  | * and 0 is returned, otherwise a negative error number is returned. | 
|  | */ | 
|  | int regulator_get_hardware_vsel_register(struct regulator *regulator, | 
|  | unsigned *vsel_reg, | 
|  | unsigned *vsel_mask) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  |  | 
|  | if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | *vsel_reg = rdev->desc->vsel_reg; | 
|  | *vsel_mask = rdev->desc->vsel_mask; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); | 
|  |  | 
|  | /** | 
|  | * regulator_list_hardware_vsel - get the HW-specific register value for a selector | 
|  | * @regulator: regulator source | 
|  | * @selector: identify voltage to list | 
|  | * | 
|  | * Converts the selector to a hardware-specific voltage selector that can be | 
|  | * directly written to the regulator registers. The address of the voltage | 
|  | * register can be determined by calling @regulator_get_hardware_vsel_register. | 
|  | * | 
|  | * Return: 0 on success, -%EINVAL if the selector is outside the supported | 
|  | *	   range, or -%EOPNOTSUPP if the regulator does not support voltage | 
|  | *	   selectors. | 
|  | */ | 
|  | int regulator_list_hardware_vsel(struct regulator *regulator, | 
|  | unsigned selector) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  |  | 
|  | if (selector >= rdev->desc->n_voltages) | 
|  | return -EINVAL; | 
|  | if (selector < rdev->desc->linear_min_sel) | 
|  | return 0; | 
|  | if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return selector; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); | 
|  |  | 
|  | /** | 
|  | * regulator_hardware_enable - access the HW for enable/disable regulator | 
|  | * @regulator: regulator source | 
|  | * @enable: true for enable, false for disable | 
|  | * | 
|  | * Request that the regulator be enabled/disabled with the regulator output at | 
|  | * the predefined voltage or current value. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_hardware_enable(struct regulator *regulator, bool enable) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  | int ret = -EOPNOTSUPP; | 
|  |  | 
|  | if (!rdev->exclusive || !ops || !ops->enable || !ops->disable) | 
|  | return ret; | 
|  |  | 
|  | if (enable) | 
|  | ret = ops->enable(rdev); | 
|  | else | 
|  | ret = ops->disable(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_hardware_enable); | 
|  |  | 
|  | /** | 
|  | * regulator_get_linear_step - return the voltage step size between VSEL values | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Return: The voltage step size between VSEL values for linear regulators, | 
|  | *	   or 0 if the regulator isn't a linear regulator. | 
|  | */ | 
|  | unsigned int regulator_get_linear_step(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  |  | 
|  | return rdev->desc->uV_step; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_linear_step); | 
|  |  | 
|  | /** | 
|  | * regulator_is_supported_voltage - check if a voltage range can be supported | 
|  | * | 
|  | * @regulator: Regulator to check. | 
|  | * @min_uV: Minimum required voltage in uV. | 
|  | * @max_uV: Maximum required voltage in uV. | 
|  | * | 
|  | * Return: 1 if the voltage range is supported, 0 if not, or a negative error | 
|  | *	   number if @regulator's voltage can't be changed and voltage readback | 
|  | *	   failed. | 
|  | */ | 
|  | int regulator_is_supported_voltage(struct regulator *regulator, | 
|  | int min_uV, int max_uV) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int i, voltages, ret; | 
|  |  | 
|  | /* If we can't change voltage check the current voltage */ | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { | 
|  | ret = regulator_get_voltage(regulator); | 
|  | if (ret >= 0) | 
|  | return min_uV <= ret && ret <= max_uV; | 
|  | else | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Any voltage within constrains range is fine? */ | 
|  | if (rdev->desc->continuous_voltage_range) | 
|  | return min_uV >= rdev->constraints->min_uV && | 
|  | max_uV <= rdev->constraints->max_uV; | 
|  |  | 
|  | ret = regulator_count_voltages(regulator); | 
|  | if (ret < 0) | 
|  | return 0; | 
|  | voltages = ret; | 
|  |  | 
|  | for (i = 0; i < voltages; i++) { | 
|  | ret = regulator_list_voltage(regulator, i); | 
|  |  | 
|  | if (ret >= min_uV && ret <= max_uV) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); | 
|  |  | 
|  | static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, | 
|  | int max_uV) | 
|  | { | 
|  | const struct regulator_desc *desc = rdev->desc; | 
|  |  | 
|  | if (desc->ops->map_voltage) | 
|  | return desc->ops->map_voltage(rdev, min_uV, max_uV); | 
|  |  | 
|  | if (desc->ops->list_voltage == regulator_list_voltage_linear) | 
|  | return regulator_map_voltage_linear(rdev, min_uV, max_uV); | 
|  |  | 
|  | if (desc->ops->list_voltage == regulator_list_voltage_linear_range) | 
|  | return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); | 
|  |  | 
|  | if (desc->ops->list_voltage == | 
|  | regulator_list_voltage_pickable_linear_range) | 
|  | return regulator_map_voltage_pickable_linear_range(rdev, | 
|  | min_uV, max_uV); | 
|  |  | 
|  | return regulator_map_voltage_iterate(rdev, min_uV, max_uV); | 
|  | } | 
|  |  | 
|  | static int _regulator_call_set_voltage(struct regulator_dev *rdev, | 
|  | int min_uV, int max_uV, | 
|  | unsigned *selector) | 
|  | { | 
|  | struct pre_voltage_change_data data; | 
|  | int ret; | 
|  |  | 
|  | data.old_uV = regulator_get_voltage_rdev(rdev); | 
|  | data.min_uV = min_uV; | 
|  | data.max_uV = max_uV; | 
|  | ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, | 
|  | &data); | 
|  | if (ret & NOTIFY_STOP_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); | 
|  | if (ret >= 0) | 
|  | return ret; | 
|  |  | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, | 
|  | (void *)data.old_uV); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, | 
|  | int uV, unsigned selector) | 
|  | { | 
|  | struct pre_voltage_change_data data; | 
|  | int ret; | 
|  |  | 
|  | data.old_uV = regulator_get_voltage_rdev(rdev); | 
|  | data.min_uV = uV; | 
|  | data.max_uV = uV; | 
|  | ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, | 
|  | &data); | 
|  | if (ret & NOTIFY_STOP_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = rdev->desc->ops->set_voltage_sel(rdev, selector); | 
|  | if (ret >= 0) | 
|  | return ret; | 
|  |  | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, | 
|  | (void *)data.old_uV); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, | 
|  | int uV, int new_selector) | 
|  | { | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  | int diff, old_sel, curr_sel, ret; | 
|  |  | 
|  | /* Stepping is only needed if the regulator is enabled. */ | 
|  | if (!_regulator_is_enabled(rdev)) | 
|  | goto final_set; | 
|  |  | 
|  | if (!ops->get_voltage_sel) | 
|  | return -EINVAL; | 
|  |  | 
|  | old_sel = ops->get_voltage_sel(rdev); | 
|  | if (old_sel < 0) | 
|  | return old_sel; | 
|  |  | 
|  | diff = new_selector - old_sel; | 
|  | if (diff == 0) | 
|  | return 0; /* No change needed. */ | 
|  |  | 
|  | if (diff > 0) { | 
|  | /* Stepping up. */ | 
|  | for (curr_sel = old_sel + rdev->desc->vsel_step; | 
|  | curr_sel < new_selector; | 
|  | curr_sel += rdev->desc->vsel_step) { | 
|  | /* | 
|  | * Call the callback directly instead of using | 
|  | * _regulator_call_set_voltage_sel() as we don't | 
|  | * want to notify anyone yet. Same in the branch | 
|  | * below. | 
|  | */ | 
|  | ret = ops->set_voltage_sel(rdev, curr_sel); | 
|  | if (ret) | 
|  | goto try_revert; | 
|  | } | 
|  | } else { | 
|  | /* Stepping down. */ | 
|  | for (curr_sel = old_sel - rdev->desc->vsel_step; | 
|  | curr_sel > new_selector; | 
|  | curr_sel -= rdev->desc->vsel_step) { | 
|  | ret = ops->set_voltage_sel(rdev, curr_sel); | 
|  | if (ret) | 
|  | goto try_revert; | 
|  | } | 
|  | } | 
|  |  | 
|  | final_set: | 
|  | /* The final selector will trigger the notifiers. */ | 
|  | return _regulator_call_set_voltage_sel(rdev, uV, new_selector); | 
|  |  | 
|  | try_revert: | 
|  | /* | 
|  | * At least try to return to the previous voltage if setting a new | 
|  | * one failed. | 
|  | */ | 
|  | (void)ops->set_voltage_sel(rdev, old_sel); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int _regulator_set_voltage_time(struct regulator_dev *rdev, | 
|  | int old_uV, int new_uV) | 
|  | { | 
|  | unsigned int ramp_delay = 0; | 
|  |  | 
|  | if (rdev->constraints->ramp_delay) | 
|  | ramp_delay = rdev->constraints->ramp_delay; | 
|  | else if (rdev->desc->ramp_delay) | 
|  | ramp_delay = rdev->desc->ramp_delay; | 
|  | else if (rdev->constraints->settling_time) | 
|  | return rdev->constraints->settling_time; | 
|  | else if (rdev->constraints->settling_time_up && | 
|  | (new_uV > old_uV)) | 
|  | return rdev->constraints->settling_time_up; | 
|  | else if (rdev->constraints->settling_time_down && | 
|  | (new_uV < old_uV)) | 
|  | return rdev->constraints->settling_time_down; | 
|  |  | 
|  | if (ramp_delay == 0) | 
|  | return 0; | 
|  |  | 
|  | return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); | 
|  | } | 
|  |  | 
|  | static int _regulator_do_set_voltage(struct regulator_dev *rdev, | 
|  | int min_uV, int max_uV) | 
|  | { | 
|  | int ret; | 
|  | int delay = 0; | 
|  | int best_val = 0; | 
|  | unsigned int selector; | 
|  | int old_selector = -1; | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  | int old_uV = regulator_get_voltage_rdev(rdev); | 
|  |  | 
|  | trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); | 
|  |  | 
|  | min_uV += rdev->constraints->uV_offset; | 
|  | max_uV += rdev->constraints->uV_offset; | 
|  |  | 
|  | /* | 
|  | * If we can't obtain the old selector there is not enough | 
|  | * info to call set_voltage_time_sel(). | 
|  | */ | 
|  | if (_regulator_is_enabled(rdev) && | 
|  | ops->set_voltage_time_sel && ops->get_voltage_sel) { | 
|  | old_selector = ops->get_voltage_sel(rdev); | 
|  | if (old_selector < 0) | 
|  | return old_selector; | 
|  | } | 
|  |  | 
|  | if (ops->set_voltage) { | 
|  | ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, | 
|  | &selector); | 
|  |  | 
|  | if (ret >= 0) { | 
|  | if (ops->list_voltage) | 
|  | best_val = ops->list_voltage(rdev, | 
|  | selector); | 
|  | else | 
|  | best_val = regulator_get_voltage_rdev(rdev); | 
|  | } | 
|  |  | 
|  | } else if (ops->set_voltage_sel) { | 
|  | ret = regulator_map_voltage(rdev, min_uV, max_uV); | 
|  | if (ret >= 0) { | 
|  | best_val = ops->list_voltage(rdev, ret); | 
|  | if (min_uV <= best_val && max_uV >= best_val) { | 
|  | selector = ret; | 
|  | if (old_selector == selector) | 
|  | ret = 0; | 
|  | else if (rdev->desc->vsel_step) | 
|  | ret = _regulator_set_voltage_sel_step( | 
|  | rdev, best_val, selector); | 
|  | else | 
|  | ret = _regulator_call_set_voltage_sel( | 
|  | rdev, best_val, selector); | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (ops->set_voltage_time_sel) { | 
|  | /* | 
|  | * Call set_voltage_time_sel if successfully obtained | 
|  | * old_selector | 
|  | */ | 
|  | if (old_selector >= 0 && old_selector != selector) | 
|  | delay = ops->set_voltage_time_sel(rdev, old_selector, | 
|  | selector); | 
|  | } else { | 
|  | if (old_uV != best_val) { | 
|  | if (ops->set_voltage_time) | 
|  | delay = ops->set_voltage_time(rdev, old_uV, | 
|  | best_val); | 
|  | else | 
|  | delay = _regulator_set_voltage_time(rdev, | 
|  | old_uV, | 
|  | best_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (delay < 0) { | 
|  | rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); | 
|  | delay = 0; | 
|  | } | 
|  |  | 
|  | /* Insert any necessary delays */ | 
|  | _regulator_delay_helper(delay); | 
|  |  | 
|  | if (best_val >= 0) { | 
|  | unsigned long data = best_val; | 
|  |  | 
|  | _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, | 
|  | (void *)data); | 
|  | } | 
|  |  | 
|  | out: | 
|  | trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, | 
|  | int min_uV, int max_uV, suspend_state_t state) | 
|  | { | 
|  | struct regulator_state *rstate; | 
|  | int uV, sel; | 
|  |  | 
|  | rstate = regulator_get_suspend_state(rdev, state); | 
|  | if (rstate == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (min_uV < rstate->min_uV) | 
|  | min_uV = rstate->min_uV; | 
|  | if (max_uV > rstate->max_uV) | 
|  | max_uV = rstate->max_uV; | 
|  |  | 
|  | sel = regulator_map_voltage(rdev, min_uV, max_uV); | 
|  | if (sel < 0) | 
|  | return sel; | 
|  |  | 
|  | uV = rdev->desc->ops->list_voltage(rdev, sel); | 
|  | if (uV >= min_uV && uV <= max_uV) | 
|  | rstate->uV = uV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int regulator_set_voltage_unlocked(struct regulator *regulator, | 
|  | int min_uV, int max_uV, | 
|  | suspend_state_t state) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct regulator_voltage *voltage = ®ulator->voltage[state]; | 
|  | int ret = 0; | 
|  | int old_min_uV, old_max_uV; | 
|  | int current_uV; | 
|  |  | 
|  | /* If we're setting the same range as last time the change | 
|  | * should be a noop (some cpufreq implementations use the same | 
|  | * voltage for multiple frequencies, for example). | 
|  | */ | 
|  | if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) | 
|  | goto out; | 
|  |  | 
|  | /* If we're trying to set a range that overlaps the current voltage, | 
|  | * return successfully even though the regulator does not support | 
|  | * changing the voltage. | 
|  | */ | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { | 
|  | current_uV = regulator_get_voltage_rdev(rdev); | 
|  | if (min_uV <= current_uV && current_uV <= max_uV) { | 
|  | voltage->min_uV = min_uV; | 
|  | voltage->max_uV = max_uV; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->set_voltage && | 
|  | !rdev->desc->ops->set_voltage_sel) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* constraints check */ | 
|  | ret = regulator_check_voltage(rdev, &min_uV, &max_uV); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* restore original values in case of error */ | 
|  | old_min_uV = voltage->min_uV; | 
|  | old_max_uV = voltage->max_uV; | 
|  | voltage->min_uV = min_uV; | 
|  | voltage->max_uV = max_uV; | 
|  |  | 
|  | /* for not coupled regulators this will just set the voltage */ | 
|  | ret = regulator_balance_voltage(rdev, state); | 
|  | if (ret < 0) { | 
|  | voltage->min_uV = old_min_uV; | 
|  | voltage->max_uV = old_max_uV; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, | 
|  | int max_uV, suspend_state_t state) | 
|  | { | 
|  | int best_supply_uV = 0; | 
|  | int supply_change_uV = 0; | 
|  | int ret; | 
|  |  | 
|  | if (rdev->supply && | 
|  | regulator_ops_is_valid(rdev->supply->rdev, | 
|  | REGULATOR_CHANGE_VOLTAGE) && | 
|  | (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || | 
|  | rdev->desc->ops->get_voltage_sel))) { | 
|  | int current_supply_uV; | 
|  | int selector; | 
|  |  | 
|  | selector = regulator_map_voltage(rdev, min_uV, max_uV); | 
|  | if (selector < 0) { | 
|  | ret = selector; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | best_supply_uV = _regulator_list_voltage(rdev, selector, 0); | 
|  | if (best_supply_uV < 0) { | 
|  | ret = best_supply_uV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | best_supply_uV += rdev->desc->min_dropout_uV; | 
|  |  | 
|  | current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); | 
|  | if (current_supply_uV < 0) { | 
|  | ret = current_supply_uV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | supply_change_uV = best_supply_uV - current_supply_uV; | 
|  | } | 
|  |  | 
|  | if (supply_change_uV > 0) { | 
|  | ret = regulator_set_voltage_unlocked(rdev->supply, | 
|  | best_supply_uV, INT_MAX, state); | 
|  | if (ret) { | 
|  | dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (state == PM_SUSPEND_ON) | 
|  | ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); | 
|  | else | 
|  | ret = _regulator_do_set_suspend_voltage(rdev, min_uV, | 
|  | max_uV, state); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (supply_change_uV < 0) { | 
|  | ret = regulator_set_voltage_unlocked(rdev->supply, | 
|  | best_supply_uV, INT_MAX, state); | 
|  | if (ret) | 
|  | dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | /* No need to fail here */ | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); | 
|  |  | 
|  | static int regulator_limit_voltage_step(struct regulator_dev *rdev, | 
|  | int *current_uV, int *min_uV) | 
|  | { | 
|  | struct regulation_constraints *constraints = rdev->constraints; | 
|  |  | 
|  | /* Limit voltage change only if necessary */ | 
|  | if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) | 
|  | return 1; | 
|  |  | 
|  | if (*current_uV < 0) { | 
|  | *current_uV = regulator_get_voltage_rdev(rdev); | 
|  |  | 
|  | if (*current_uV < 0) | 
|  | return *current_uV; | 
|  | } | 
|  |  | 
|  | if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) | 
|  | return 1; | 
|  |  | 
|  | /* Clamp target voltage within the given step */ | 
|  | if (*current_uV < *min_uV) | 
|  | *min_uV = min(*current_uV + constraints->max_uV_step, | 
|  | *min_uV); | 
|  | else | 
|  | *min_uV = max(*current_uV - constraints->max_uV_step, | 
|  | *min_uV); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int regulator_get_optimal_voltage(struct regulator_dev *rdev, | 
|  | int *current_uV, | 
|  | int *min_uV, int *max_uV, | 
|  | suspend_state_t state, | 
|  | int n_coupled) | 
|  | { | 
|  | struct coupling_desc *c_desc = &rdev->coupling_desc; | 
|  | struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; | 
|  | struct regulation_constraints *constraints = rdev->constraints; | 
|  | int desired_min_uV = 0, desired_max_uV = INT_MAX; | 
|  | int max_current_uV = 0, min_current_uV = INT_MAX; | 
|  | int highest_min_uV = 0, target_uV, possible_uV; | 
|  | int i, ret, max_spread; | 
|  | bool done; | 
|  |  | 
|  | *current_uV = -1; | 
|  |  | 
|  | /* | 
|  | * If there are no coupled regulators, simply set the voltage | 
|  | * demanded by consumers. | 
|  | */ | 
|  | if (n_coupled == 1) { | 
|  | /* | 
|  | * If consumers don't provide any demands, set voltage | 
|  | * to min_uV | 
|  | */ | 
|  | desired_min_uV = constraints->min_uV; | 
|  | desired_max_uV = constraints->max_uV; | 
|  |  | 
|  | ret = regulator_check_consumers(rdev, | 
|  | &desired_min_uV, | 
|  | &desired_max_uV, state); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | done = true; | 
|  |  | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* Find highest min desired voltage */ | 
|  | for (i = 0; i < n_coupled; i++) { | 
|  | int tmp_min = 0; | 
|  | int tmp_max = INT_MAX; | 
|  |  | 
|  | lockdep_assert_held_once(&c_rdevs[i]->mutex.base); | 
|  |  | 
|  | ret = regulator_check_consumers(c_rdevs[i], | 
|  | &tmp_min, | 
|  | &tmp_max, state); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | highest_min_uV = max(highest_min_uV, tmp_min); | 
|  |  | 
|  | if (i == 0) { | 
|  | desired_min_uV = tmp_min; | 
|  | desired_max_uV = tmp_max; | 
|  | } | 
|  | } | 
|  |  | 
|  | max_spread = constraints->max_spread[0]; | 
|  |  | 
|  | /* | 
|  | * Let target_uV be equal to the desired one if possible. | 
|  | * If not, set it to minimum voltage, allowed by other coupled | 
|  | * regulators. | 
|  | */ | 
|  | target_uV = max(desired_min_uV, highest_min_uV - max_spread); | 
|  |  | 
|  | /* | 
|  | * Find min and max voltages, which currently aren't violating | 
|  | * max_spread. | 
|  | */ | 
|  | for (i = 1; i < n_coupled; i++) { | 
|  | int tmp_act; | 
|  |  | 
|  | if (!_regulator_is_enabled(c_rdevs[i])) | 
|  | continue; | 
|  |  | 
|  | tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); | 
|  | if (tmp_act < 0) | 
|  | return tmp_act; | 
|  |  | 
|  | min_current_uV = min(tmp_act, min_current_uV); | 
|  | max_current_uV = max(tmp_act, max_current_uV); | 
|  | } | 
|  |  | 
|  | /* There aren't any other regulators enabled */ | 
|  | if (max_current_uV == 0) { | 
|  | possible_uV = target_uV; | 
|  | } else { | 
|  | /* | 
|  | * Correct target voltage, so as it currently isn't | 
|  | * violating max_spread | 
|  | */ | 
|  | possible_uV = max(target_uV, max_current_uV - max_spread); | 
|  | possible_uV = min(possible_uV, min_current_uV + max_spread); | 
|  | } | 
|  |  | 
|  | if (possible_uV > desired_max_uV) | 
|  | return -EINVAL; | 
|  |  | 
|  | done = (possible_uV == target_uV); | 
|  | desired_min_uV = possible_uV; | 
|  |  | 
|  | finish: | 
|  | /* Apply max_uV_step constraint if necessary */ | 
|  | if (state == PM_SUSPEND_ON) { | 
|  | ret = regulator_limit_voltage_step(rdev, current_uV, | 
|  | &desired_min_uV); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0) | 
|  | done = false; | 
|  | } | 
|  |  | 
|  | /* Set current_uV if wasn't done earlier in the code and if necessary */ | 
|  | if (n_coupled > 1 && *current_uV == -1) { | 
|  |  | 
|  | if (_regulator_is_enabled(rdev)) { | 
|  | ret = regulator_get_voltage_rdev(rdev); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | *current_uV = ret; | 
|  | } else { | 
|  | *current_uV = desired_min_uV; | 
|  | } | 
|  | } | 
|  |  | 
|  | *min_uV = desired_min_uV; | 
|  | *max_uV = desired_max_uV; | 
|  |  | 
|  | return done; | 
|  | } | 
|  |  | 
|  | int regulator_do_balance_voltage(struct regulator_dev *rdev, | 
|  | suspend_state_t state, bool skip_coupled) | 
|  | { | 
|  | struct regulator_dev **c_rdevs; | 
|  | struct regulator_dev *best_rdev; | 
|  | struct coupling_desc *c_desc = &rdev->coupling_desc; | 
|  | int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; | 
|  | unsigned int delta, best_delta; | 
|  | unsigned long c_rdev_done = 0; | 
|  | bool best_c_rdev_done; | 
|  |  | 
|  | c_rdevs = c_desc->coupled_rdevs; | 
|  | n_coupled = skip_coupled ? 1 : c_desc->n_coupled; | 
|  |  | 
|  | /* | 
|  | * Find the best possible voltage change on each loop. Leave the loop | 
|  | * if there isn't any possible change. | 
|  | */ | 
|  | do { | 
|  | best_c_rdev_done = false; | 
|  | best_delta = 0; | 
|  | best_min_uV = 0; | 
|  | best_max_uV = 0; | 
|  | best_c_rdev = 0; | 
|  | best_rdev = NULL; | 
|  |  | 
|  | /* | 
|  | * Find highest difference between optimal voltage | 
|  | * and current voltage. | 
|  | */ | 
|  | for (i = 0; i < n_coupled; i++) { | 
|  | /* | 
|  | * optimal_uV is the best voltage that can be set for | 
|  | * i-th regulator at the moment without violating | 
|  | * max_spread constraint in order to balance | 
|  | * the coupled voltages. | 
|  | */ | 
|  | int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; | 
|  |  | 
|  | if (test_bit(i, &c_rdev_done)) | 
|  | continue; | 
|  |  | 
|  | ret = regulator_get_optimal_voltage(c_rdevs[i], | 
|  | ¤t_uV, | 
|  | &optimal_uV, | 
|  | &optimal_max_uV, | 
|  | state, n_coupled); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | delta = abs(optimal_uV - current_uV); | 
|  |  | 
|  | if (delta && best_delta <= delta) { | 
|  | best_c_rdev_done = ret; | 
|  | best_delta = delta; | 
|  | best_rdev = c_rdevs[i]; | 
|  | best_min_uV = optimal_uV; | 
|  | best_max_uV = optimal_max_uV; | 
|  | best_c_rdev = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Nothing to change, return successfully */ | 
|  | if (!best_rdev) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, | 
|  | best_max_uV, state); | 
|  |  | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (best_c_rdev_done) | 
|  | set_bit(best_c_rdev, &c_rdev_done); | 
|  |  | 
|  | } while (n_coupled > 1); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int regulator_balance_voltage(struct regulator_dev *rdev, | 
|  | suspend_state_t state) | 
|  | { | 
|  | struct coupling_desc *c_desc = &rdev->coupling_desc; | 
|  | struct regulator_coupler *coupler = c_desc->coupler; | 
|  | bool skip_coupled = false; | 
|  |  | 
|  | /* | 
|  | * If system is in a state other than PM_SUSPEND_ON, don't check | 
|  | * other coupled regulators. | 
|  | */ | 
|  | if (state != PM_SUSPEND_ON) | 
|  | skip_coupled = true; | 
|  |  | 
|  | if (c_desc->n_resolved < c_desc->n_coupled) { | 
|  | rdev_err(rdev, "Not all coupled regulators registered\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* Invoke custom balancer for customized couplers */ | 
|  | if (coupler && coupler->balance_voltage) | 
|  | return coupler->balance_voltage(coupler, rdev, state); | 
|  |  | 
|  | return regulator_do_balance_voltage(rdev, state, skip_coupled); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_set_voltage - set regulator output voltage | 
|  | * @regulator: regulator source | 
|  | * @min_uV: Minimum required voltage in uV | 
|  | * @max_uV: Maximum acceptable voltage in uV | 
|  | * | 
|  | * Sets a voltage regulator to the desired output voltage. This can be set | 
|  | * during any regulator state. IOW, regulator can be disabled or enabled. | 
|  | * | 
|  | * If the regulator is enabled then the voltage will change to the new value | 
|  | * immediately otherwise if the regulator is disabled the regulator will | 
|  | * output at the new voltage when enabled. | 
|  | * | 
|  | * NOTE: If the regulator is shared between several devices then the lowest | 
|  | * request voltage that meets the system constraints will be used. | 
|  | * Regulator system constraints must be set for this regulator before | 
|  | * calling this function otherwise this call will fail. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) | 
|  | { | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  | int ret; | 
|  |  | 
|  | regulator_lock_dependent(regulator->rdev, &ww_ctx); | 
|  |  | 
|  | ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, | 
|  | PM_SUSPEND_ON); | 
|  |  | 
|  | regulator_unlock_dependent(regulator->rdev, &ww_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_voltage); | 
|  |  | 
|  | static inline int regulator_suspend_toggle(struct regulator_dev *rdev, | 
|  | suspend_state_t state, bool en) | 
|  | { | 
|  | struct regulator_state *rstate; | 
|  |  | 
|  | rstate = regulator_get_suspend_state(rdev, state); | 
|  | if (rstate == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!rstate->changeable) | 
|  | return -EPERM; | 
|  |  | 
|  | rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int regulator_suspend_enable(struct regulator_dev *rdev, | 
|  | suspend_state_t state) | 
|  | { | 
|  | return regulator_suspend_toggle(rdev, state, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_suspend_enable); | 
|  |  | 
|  | int regulator_suspend_disable(struct regulator_dev *rdev, | 
|  | suspend_state_t state) | 
|  | { | 
|  | struct regulator *regulator; | 
|  | struct regulator_voltage *voltage; | 
|  |  | 
|  | /* | 
|  | * if any consumer wants this regulator device keeping on in | 
|  | * suspend states, don't set it as disabled. | 
|  | */ | 
|  | list_for_each_entry(regulator, &rdev->consumer_list, list) { | 
|  | voltage = ®ulator->voltage[state]; | 
|  | if (voltage->min_uV || voltage->max_uV) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return regulator_suspend_toggle(rdev, state, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_suspend_disable); | 
|  |  | 
|  | static int _regulator_set_suspend_voltage(struct regulator *regulator, | 
|  | int min_uV, int max_uV, | 
|  | suspend_state_t state) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct regulator_state *rstate; | 
|  |  | 
|  | rstate = regulator_get_suspend_state(rdev, state); | 
|  | if (rstate == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (rstate->min_uV == rstate->max_uV) { | 
|  | rdev_err(rdev, "The suspend voltage can't be changed!\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); | 
|  | } | 
|  |  | 
|  | int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, | 
|  | int max_uV, suspend_state_t state) | 
|  | { | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  | int ret; | 
|  |  | 
|  | /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ | 
|  | if (regulator_check_states(state) || state == PM_SUSPEND_ON) | 
|  | return -EINVAL; | 
|  |  | 
|  | regulator_lock_dependent(regulator->rdev, &ww_ctx); | 
|  |  | 
|  | ret = _regulator_set_suspend_voltage(regulator, min_uV, | 
|  | max_uV, state); | 
|  |  | 
|  | regulator_unlock_dependent(regulator->rdev, &ww_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); | 
|  |  | 
|  | /** | 
|  | * regulator_set_voltage_time - get raise/fall time | 
|  | * @regulator: regulator source | 
|  | * @old_uV: starting voltage in microvolts | 
|  | * @new_uV: target voltage in microvolts | 
|  | * | 
|  | * Provided with the starting and ending voltage, this function attempts to | 
|  | * calculate the time in microseconds required to rise or fall to this new | 
|  | * voltage. | 
|  | * | 
|  | * Return: ramp time in microseconds, or a negative error number if calculation failed. | 
|  | */ | 
|  | int regulator_set_voltage_time(struct regulator *regulator, | 
|  | int old_uV, int new_uV) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  | int old_sel = -1; | 
|  | int new_sel = -1; | 
|  | int voltage; | 
|  | int i; | 
|  |  | 
|  | if (ops->set_voltage_time) | 
|  | return ops->set_voltage_time(rdev, old_uV, new_uV); | 
|  | else if (!ops->set_voltage_time_sel) | 
|  | return _regulator_set_voltage_time(rdev, old_uV, new_uV); | 
|  |  | 
|  | /* Currently requires operations to do this */ | 
|  | if (!ops->list_voltage || !rdev->desc->n_voltages) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < rdev->desc->n_voltages; i++) { | 
|  | /* We only look for exact voltage matches here */ | 
|  | if (i < rdev->desc->linear_min_sel) | 
|  | continue; | 
|  |  | 
|  | if (old_sel >= 0 && new_sel >= 0) | 
|  | break; | 
|  |  | 
|  | voltage = regulator_list_voltage(regulator, i); | 
|  | if (voltage < 0) | 
|  | return -EINVAL; | 
|  | if (voltage == 0) | 
|  | continue; | 
|  | if (voltage == old_uV) | 
|  | old_sel = i; | 
|  | if (voltage == new_uV) | 
|  | new_sel = i; | 
|  | } | 
|  |  | 
|  | if (old_sel < 0 || new_sel < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return ops->set_voltage_time_sel(rdev, old_sel, new_sel); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_voltage_time); | 
|  |  | 
|  | /** | 
|  | * regulator_set_voltage_time_sel - get raise/fall time | 
|  | * @rdev: regulator source device | 
|  | * @old_selector: selector for starting voltage | 
|  | * @new_selector: selector for target voltage | 
|  | * | 
|  | * Provided with the starting and target voltage selectors, this function | 
|  | * returns time in microseconds required to rise or fall to this new voltage | 
|  | * | 
|  | * Drivers providing ramp_delay in regulation_constraints can use this as their | 
|  | * set_voltage_time_sel() operation. | 
|  | * | 
|  | * Return: ramp time in microseconds, or a negative error number if calculation failed. | 
|  | */ | 
|  | int regulator_set_voltage_time_sel(struct regulator_dev *rdev, | 
|  | unsigned int old_selector, | 
|  | unsigned int new_selector) | 
|  | { | 
|  | int old_volt, new_volt; | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->list_voltage) | 
|  | return -EINVAL; | 
|  |  | 
|  | old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); | 
|  | new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); | 
|  |  | 
|  | if (rdev->desc->ops->set_voltage_time) | 
|  | return rdev->desc->ops->set_voltage_time(rdev, old_volt, | 
|  | new_volt); | 
|  | else | 
|  | return _regulator_set_voltage_time(rdev, old_volt, new_volt); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); | 
|  |  | 
|  | int regulator_sync_voltage_rdev(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  |  | 
|  | if (!rdev->desc->ops->set_voltage && | 
|  | !rdev->desc->ops->set_voltage_sel) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* balance only, if regulator is coupled */ | 
|  | if (rdev->coupling_desc.n_coupled > 1) | 
|  | ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); | 
|  | else | 
|  | ret = -EOPNOTSUPP; | 
|  |  | 
|  | out: | 
|  | regulator_unlock(rdev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_sync_voltage - re-apply last regulator output voltage | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Re-apply the last configured voltage.  This is intended to be used | 
|  | * where some external control source the consumer is cooperating with | 
|  | * has caused the configured voltage to change. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_sync_voltage(struct regulator *regulator) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; | 
|  | int ret, min_uV, max_uV; | 
|  |  | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) | 
|  | return 0; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  |  | 
|  | if (!rdev->desc->ops->set_voltage && | 
|  | !rdev->desc->ops->set_voltage_sel) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* This is only going to work if we've had a voltage configured. */ | 
|  | if (!voltage->min_uV && !voltage->max_uV) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | min_uV = voltage->min_uV; | 
|  | max_uV = voltage->max_uV; | 
|  |  | 
|  | /* This should be a paranoia check... */ | 
|  | ret = regulator_check_voltage(rdev, &min_uV, &max_uV); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* balance only, if regulator is coupled */ | 
|  | if (rdev->coupling_desc.n_coupled > 1) | 
|  | ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); | 
|  | else | 
|  | ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); | 
|  |  | 
|  | out: | 
|  | regulator_unlock(rdev); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_sync_voltage); | 
|  |  | 
|  | int regulator_get_voltage_rdev(struct regulator_dev *rdev) | 
|  | { | 
|  | int sel, ret; | 
|  | bool bypassed; | 
|  |  | 
|  | if (rdev->desc->ops->get_bypass) { | 
|  | ret = rdev->desc->ops->get_bypass(rdev, &bypassed); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (bypassed) { | 
|  | /* if bypassed the regulator must have a supply */ | 
|  | if (!rdev->supply) { | 
|  | rdev_err(rdev, | 
|  | "bypassed regulator has no supply!\n"); | 
|  | return -EPROBE_DEFER; | 
|  | } | 
|  |  | 
|  | return regulator_get_voltage_rdev(rdev->supply->rdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev->desc->ops->get_voltage_sel) { | 
|  | sel = rdev->desc->ops->get_voltage_sel(rdev); | 
|  | if (sel < 0) | 
|  | return sel; | 
|  | ret = rdev->desc->ops->list_voltage(rdev, sel); | 
|  | } else if (rdev->desc->ops->get_voltage) { | 
|  | ret = rdev->desc->ops->get_voltage(rdev); | 
|  | } else if (rdev->desc->ops->list_voltage) { | 
|  | ret = rdev->desc->ops->list_voltage(rdev, 0); | 
|  | } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { | 
|  | ret = rdev->desc->fixed_uV; | 
|  | } else if (rdev->supply) { | 
|  | ret = regulator_get_voltage_rdev(rdev->supply->rdev); | 
|  | } else if (rdev->supply_name) { | 
|  | return -EPROBE_DEFER; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return ret - rdev->constraints->uV_offset; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); | 
|  |  | 
|  | /** | 
|  | * regulator_get_voltage - get regulator output voltage | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Return: Current regulator voltage in uV, or a negative error number on failure. | 
|  | * | 
|  | * NOTE: If the regulator is disabled it will return the voltage value. This | 
|  | * function should not be used to determine regulator state. | 
|  | */ | 
|  | int regulator_get_voltage(struct regulator *regulator) | 
|  | { | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  | int ret; | 
|  |  | 
|  | regulator_lock_dependent(regulator->rdev, &ww_ctx); | 
|  | ret = regulator_get_voltage_rdev(regulator->rdev); | 
|  | regulator_unlock_dependent(regulator->rdev, &ww_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_voltage); | 
|  |  | 
|  | /** | 
|  | * regulator_set_current_limit - set regulator output current limit | 
|  | * @regulator: regulator source | 
|  | * @min_uA: Minimum supported current in uA | 
|  | * @max_uA: Maximum supported current in uA | 
|  | * | 
|  | * Sets current sink to the desired output current. This can be set during | 
|  | * any regulator state. IOW, regulator can be disabled or enabled. | 
|  | * | 
|  | * If the regulator is enabled then the current will change to the new value | 
|  | * immediately otherwise if the regulator is disabled the regulator will | 
|  | * output at the new current when enabled. | 
|  | * | 
|  | * NOTE: Regulator system constraints must be set for this regulator before | 
|  | * calling this function otherwise this call will fail. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_set_current_limit(struct regulator *regulator, | 
|  | int min_uA, int max_uA) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->set_current_limit) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* constraints check */ | 
|  | ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); | 
|  | out: | 
|  | regulator_unlock(rdev); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_current_limit); | 
|  |  | 
|  | static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) | 
|  | { | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->get_current_limit) | 
|  | return -EINVAL; | 
|  |  | 
|  | return rdev->desc->ops->get_current_limit(rdev); | 
|  | } | 
|  |  | 
|  | static int _regulator_get_current_limit(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | ret = _regulator_get_current_limit_unlocked(rdev); | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_get_current_limit - get regulator output current | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Return: Current supplied by the specified current sink in uA, | 
|  | *	   or a negative error number on failure. | 
|  | * | 
|  | * NOTE: If the regulator is disabled it will return the current value. This | 
|  | * function should not be used to determine regulator state. | 
|  | */ | 
|  | int regulator_get_current_limit(struct regulator *regulator) | 
|  | { | 
|  | return _regulator_get_current_limit(regulator->rdev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_current_limit); | 
|  |  | 
|  | /** | 
|  | * regulator_set_mode - set regulator operating mode | 
|  | * @regulator: regulator source | 
|  | * @mode: operating mode - one of the REGULATOR_MODE constants | 
|  | * | 
|  | * Set regulator operating mode to increase regulator efficiency or improve | 
|  | * regulation performance. | 
|  | * | 
|  | * NOTE: Regulator system constraints must be set for this regulator before | 
|  | * calling this function otherwise this call will fail. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_set_mode(struct regulator *regulator, unsigned int mode) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int ret; | 
|  | int regulator_curr_mode; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->set_mode) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* return if the same mode is requested */ | 
|  | if (rdev->desc->ops->get_mode) { | 
|  | regulator_curr_mode = rdev->desc->ops->get_mode(rdev); | 
|  | if (regulator_curr_mode == mode) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* constraints check */ | 
|  | ret = regulator_mode_constrain(rdev, &mode); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = rdev->desc->ops->set_mode(rdev, mode); | 
|  | out: | 
|  | regulator_unlock(rdev); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_mode); | 
|  |  | 
|  | static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) | 
|  | { | 
|  | /* sanity check */ | 
|  | if (!rdev->desc->ops->get_mode) | 
|  | return -EINVAL; | 
|  |  | 
|  | return rdev->desc->ops->get_mode(rdev); | 
|  | } | 
|  |  | 
|  | static unsigned int _regulator_get_mode(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | ret = _regulator_get_mode_unlocked(rdev); | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_get_mode - get regulator operating mode | 
|  | * @regulator: regulator source | 
|  | * | 
|  | * Get the current regulator operating mode. | 
|  | * | 
|  | * Return: Current operating mode as %REGULATOR_MODE_* values, | 
|  | *	   or a negative error number on failure. | 
|  | */ | 
|  | unsigned int regulator_get_mode(struct regulator *regulator) | 
|  | { | 
|  | return _regulator_get_mode(regulator->rdev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_mode); | 
|  |  | 
|  | static int rdev_get_cached_err_flags(struct regulator_dev *rdev) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (rdev->use_cached_err) { | 
|  | spin_lock(&rdev->err_lock); | 
|  | ret = rdev->cached_err; | 
|  | spin_unlock(&rdev->err_lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int _regulator_get_error_flags(struct regulator_dev *rdev, | 
|  | unsigned int *flags) | 
|  | { | 
|  | int cached_flags, ret = 0; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  |  | 
|  | cached_flags = rdev_get_cached_err_flags(rdev); | 
|  |  | 
|  | if (rdev->desc->ops->get_error_flags) | 
|  | ret = rdev->desc->ops->get_error_flags(rdev, flags); | 
|  | else if (!rdev->use_cached_err) | 
|  | ret = -EINVAL; | 
|  |  | 
|  | *flags |= cached_flags; | 
|  |  | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_get_error_flags - get regulator error information | 
|  | * @regulator: regulator source | 
|  | * @flags: pointer to store error flags | 
|  | * | 
|  | * Get the current regulator error information. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_get_error_flags(struct regulator *regulator, | 
|  | unsigned int *flags) | 
|  | { | 
|  | return _regulator_get_error_flags(regulator->rdev, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_error_flags); | 
|  |  | 
|  | /** | 
|  | * regulator_set_load - set regulator load | 
|  | * @regulator: regulator source | 
|  | * @uA_load: load current | 
|  | * | 
|  | * Notifies the regulator core of a new device load. This is then used by | 
|  | * DRMS (if enabled by constraints) to set the most efficient regulator | 
|  | * operating mode for the new regulator loading. | 
|  | * | 
|  | * Consumer devices notify their supply regulator of the maximum power | 
|  | * they will require (can be taken from device datasheet in the power | 
|  | * consumption tables) when they change operational status and hence power | 
|  | * state. Examples of operational state changes that can affect power | 
|  | * consumption are :- | 
|  | * | 
|  | *    o Device is opened / closed. | 
|  | *    o Device I/O is about to begin or has just finished. | 
|  | *    o Device is idling in between work. | 
|  | * | 
|  | * This information is also exported via sysfs to userspace. | 
|  | * | 
|  | * DRMS will sum the total requested load on the regulator and change | 
|  | * to the most efficient operating mode if platform constraints allow. | 
|  | * | 
|  | * NOTE: when a regulator consumer requests to have a regulator | 
|  | * disabled then any load that consumer requested no longer counts | 
|  | * toward the total requested load.  If the regulator is re-enabled | 
|  | * then the previously requested load will start counting again. | 
|  | * | 
|  | * If a regulator is an always-on regulator then an individual consumer's | 
|  | * load will still be removed if that consumer is fully disabled. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_set_load(struct regulator *regulator, int uA_load) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | int old_uA_load; | 
|  | int ret = 0; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | old_uA_load = regulator->uA_load; | 
|  | regulator->uA_load = uA_load; | 
|  | if (regulator->enable_count && old_uA_load != uA_load) { | 
|  | ret = drms_uA_update(rdev); | 
|  | if (ret < 0) | 
|  | regulator->uA_load = old_uA_load; | 
|  | } | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_load); | 
|  |  | 
|  | /** | 
|  | * regulator_allow_bypass - allow the regulator to go into bypass mode | 
|  | * | 
|  | * @regulator: Regulator to configure | 
|  | * @enable: enable or disable bypass mode | 
|  | * | 
|  | * Allow the regulator to go into bypass mode if all other consumers | 
|  | * for the regulator also enable bypass mode and the machine | 
|  | * constraints allow this.  Bypass mode means that the regulator is | 
|  | * simply passing the input directly to the output with no regulation. | 
|  | * | 
|  | * Return: 0 on success or if changing bypass is not possible, or | 
|  | *	   a negative error number on failure. | 
|  | */ | 
|  | int regulator_allow_bypass(struct regulator *regulator, bool enable) | 
|  | { | 
|  | struct regulator_dev *rdev = regulator->rdev; | 
|  | const char *name = rdev_get_name(rdev); | 
|  | int ret = 0; | 
|  |  | 
|  | if (!rdev->desc->ops->set_bypass) | 
|  | return 0; | 
|  |  | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) | 
|  | return 0; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  |  | 
|  | if (enable && !regulator->bypass) { | 
|  | rdev->bypass_count++; | 
|  |  | 
|  | if (rdev->bypass_count == rdev->open_count) { | 
|  | trace_regulator_bypass_enable(name); | 
|  |  | 
|  | ret = rdev->desc->ops->set_bypass(rdev, enable); | 
|  | if (ret != 0) | 
|  | rdev->bypass_count--; | 
|  | else | 
|  | trace_regulator_bypass_enable_complete(name); | 
|  | } | 
|  |  | 
|  | } else if (!enable && regulator->bypass) { | 
|  | rdev->bypass_count--; | 
|  |  | 
|  | if (rdev->bypass_count != rdev->open_count) { | 
|  | trace_regulator_bypass_disable(name); | 
|  |  | 
|  | ret = rdev->desc->ops->set_bypass(rdev, enable); | 
|  | if (ret != 0) | 
|  | rdev->bypass_count++; | 
|  | else | 
|  | trace_regulator_bypass_disable_complete(name); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == 0) | 
|  | regulator->bypass = enable; | 
|  |  | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_allow_bypass); | 
|  |  | 
|  | /** | 
|  | * regulator_register_notifier - register regulator event notifier | 
|  | * @regulator: regulator source | 
|  | * @nb: notifier block | 
|  | * | 
|  | * Register notifier block to receive regulator events. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_register_notifier(struct regulator *regulator, | 
|  | struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(®ulator->rdev->notifier, | 
|  | nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_register_notifier); | 
|  |  | 
|  | /** | 
|  | * regulator_unregister_notifier - unregister regulator event notifier | 
|  | * @regulator: regulator source | 
|  | * @nb: notifier block | 
|  | * | 
|  | * Unregister regulator event notifier block. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_unregister_notifier(struct regulator *regulator, | 
|  | struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(®ulator->rdev->notifier, | 
|  | nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_unregister_notifier); | 
|  |  | 
|  | /* notify regulator consumers and downstream regulator consumers. | 
|  | * Note mutex must be held by caller. | 
|  | */ | 
|  | static int _notifier_call_chain(struct regulator_dev *rdev, | 
|  | unsigned long event, void *data) | 
|  | { | 
|  | /* call rdev chain first */ | 
|  | int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data); | 
|  |  | 
|  | if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) { | 
|  | struct device *parent = rdev->dev.parent; | 
|  | const char *rname = rdev_get_name(rdev); | 
|  | char name[32]; | 
|  |  | 
|  | /* Avoid duplicate debugfs directory names */ | 
|  | if (parent && rname == rdev->desc->name) { | 
|  | snprintf(name, sizeof(name), "%s-%s", dev_name(parent), | 
|  | rname); | 
|  | rname = name; | 
|  | } | 
|  | reg_generate_netlink_event(rname, event); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int _regulator_bulk_get(struct device *dev, int num_consumers, | 
|  | struct regulator_bulk_data *consumers, enum regulator_get_type get_type) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) | 
|  | consumers[i].consumer = NULL; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | consumers[i].consumer = _regulator_get(dev, | 
|  | consumers[i].supply, get_type); | 
|  | if (IS_ERR(consumers[i].consumer)) { | 
|  | ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), | 
|  | "Failed to get supply '%s'", | 
|  | consumers[i].supply); | 
|  | consumers[i].consumer = NULL; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (consumers[i].init_load_uA > 0) { | 
|  | ret = regulator_set_load(consumers[i].consumer, | 
|  | consumers[i].init_load_uA); | 
|  | if (ret) { | 
|  | i++; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | while (--i >= 0) | 
|  | regulator_put(consumers[i].consumer); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_get - get multiple regulator consumers | 
|  | * | 
|  | * @dev:           Device to supply | 
|  | * @num_consumers: Number of consumers to register | 
|  | * @consumers:     Configuration of consumers; clients are stored here. | 
|  | * | 
|  | * This helper function allows drivers to get several regulator | 
|  | * consumers in one operation.  If any of the regulators cannot be | 
|  | * acquired then any regulators that were allocated will be freed | 
|  | * before returning to the caller. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_bulk_get(struct device *dev, int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_get); | 
|  |  | 
|  | static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) | 
|  | { | 
|  | struct regulator_bulk_data *bulk = data; | 
|  |  | 
|  | bulk->ret = regulator_enable(bulk->consumer); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_enable - enable multiple regulator consumers | 
|  | * | 
|  | * @num_consumers: Number of consumers | 
|  | * @consumers:     Consumer data; clients are stored here. | 
|  | * | 
|  | * This convenience API allows consumers to enable multiple regulator | 
|  | * clients in a single API call.  If any consumers cannot be enabled | 
|  | * then any others that were enabled will be disabled again prior to | 
|  | * return. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_bulk_enable(int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | ASYNC_DOMAIN_EXCLUSIVE(async_domain); | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | async_schedule_domain(regulator_bulk_enable_async, | 
|  | &consumers[i], &async_domain); | 
|  | } | 
|  |  | 
|  | async_synchronize_full_domain(&async_domain); | 
|  |  | 
|  | /* If any consumer failed we need to unwind any that succeeded */ | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | if (consumers[i].ret != 0) { | 
|  | ret = consumers[i].ret; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | if (consumers[i].ret < 0) | 
|  | pr_err("Failed to enable %s: %pe\n", consumers[i].supply, | 
|  | ERR_PTR(consumers[i].ret)); | 
|  | else | 
|  | regulator_disable(consumers[i].consumer); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_enable); | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_disable - disable multiple regulator consumers | 
|  | * | 
|  | * @num_consumers: Number of consumers | 
|  | * @consumers:     Consumer data; clients are stored here. | 
|  | * | 
|  | * This convenience API allows consumers to disable multiple regulator | 
|  | * clients in a single API call.  If any consumers cannot be disabled | 
|  | * then any others that were disabled will be enabled again prior to | 
|  | * return. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_bulk_disable(int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | int i; | 
|  | int ret, r; | 
|  |  | 
|  | for (i = num_consumers - 1; i >= 0; --i) { | 
|  | ret = regulator_disable(consumers[i].consumer); | 
|  | if (ret != 0) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); | 
|  | for (++i; i < num_consumers; ++i) { | 
|  | r = regulator_enable(consumers[i].consumer); | 
|  | if (r != 0) | 
|  | pr_err("Failed to re-enable %s: %pe\n", | 
|  | consumers[i].supply, ERR_PTR(r)); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_disable); | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_force_disable - force disable multiple regulator consumers | 
|  | * | 
|  | * @num_consumers: Number of consumers | 
|  | * @consumers:     Consumer data; clients are stored here. | 
|  | * | 
|  | * This convenience API allows consumers to forcibly disable multiple regulator | 
|  | * clients in a single API call. | 
|  | * NOTE: This should be used for situations when device damage will | 
|  | * likely occur if the regulators are not disabled (e.g. over temp). | 
|  | * Although regulator_force_disable function call for some consumers can | 
|  | * return error numbers, the function is called for all consumers. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | int regulator_bulk_force_disable(int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | consumers[i].ret = | 
|  | regulator_force_disable(consumers[i].consumer); | 
|  |  | 
|  | /* Store first error for reporting */ | 
|  | if (consumers[i].ret && !ret) | 
|  | ret = consumers[i].ret; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); | 
|  |  | 
|  | /** | 
|  | * regulator_bulk_free - free multiple regulator consumers | 
|  | * | 
|  | * @num_consumers: Number of consumers | 
|  | * @consumers:     Consumer data; clients are stored here. | 
|  | * | 
|  | * This convenience API allows consumers to free multiple regulator | 
|  | * clients in a single API call. | 
|  | */ | 
|  | void regulator_bulk_free(int num_consumers, | 
|  | struct regulator_bulk_data *consumers) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_consumers; i++) { | 
|  | regulator_put(consumers[i].consumer); | 
|  | consumers[i].consumer = NULL; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_bulk_free); | 
|  |  | 
|  | /** | 
|  | * regulator_handle_critical - Handle events for system-critical regulators. | 
|  | * @rdev: The regulator device. | 
|  | * @event: The event being handled. | 
|  | * | 
|  | * This function handles critical events such as under-voltage, over-current, | 
|  | * and unknown errors for regulators deemed system-critical. On detecting such | 
|  | * events, it triggers a hardware protection shutdown with a defined timeout. | 
|  | */ | 
|  | static void regulator_handle_critical(struct regulator_dev *rdev, | 
|  | unsigned long event) | 
|  | { | 
|  | const char *reason = NULL; | 
|  |  | 
|  | if (!rdev->constraints->system_critical) | 
|  | return; | 
|  |  | 
|  | switch (event) { | 
|  | case REGULATOR_EVENT_UNDER_VOLTAGE: | 
|  | reason = "System critical regulator: voltage drop detected"; | 
|  | break; | 
|  | case REGULATOR_EVENT_OVER_CURRENT: | 
|  | reason = "System critical regulator: over-current detected"; | 
|  | break; | 
|  | case REGULATOR_EVENT_FAIL: | 
|  | reason = "System critical regulator: unknown error"; | 
|  | } | 
|  |  | 
|  | if (!reason) | 
|  | return; | 
|  |  | 
|  | hw_protection_shutdown(reason, | 
|  | rdev->constraints->uv_less_critical_window_ms); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regulator_notifier_call_chain - call regulator event notifier | 
|  | * @rdev: regulator source | 
|  | * @event: notifier block | 
|  | * @data: callback-specific data. | 
|  | * | 
|  | * Called by regulator drivers to notify clients a regulator event has | 
|  | * occurred. | 
|  | * | 
|  | * Return: %NOTIFY_DONE. | 
|  | */ | 
|  | int regulator_notifier_call_chain(struct regulator_dev *rdev, | 
|  | unsigned long event, void *data) | 
|  | { | 
|  | regulator_handle_critical(rdev, event); | 
|  |  | 
|  | _notifier_call_chain(rdev, event, data); | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); | 
|  |  | 
|  | /** | 
|  | * regulator_mode_to_status - convert a regulator mode into a status | 
|  | * | 
|  | * @mode: Mode to convert | 
|  | * | 
|  | * Convert a regulator mode into a status. | 
|  | * | 
|  | * Return: %REGULATOR_STATUS_* value corresponding to given mode. | 
|  | */ | 
|  | int regulator_mode_to_status(unsigned int mode) | 
|  | { | 
|  | switch (mode) { | 
|  | case REGULATOR_MODE_FAST: | 
|  | return REGULATOR_STATUS_FAST; | 
|  | case REGULATOR_MODE_NORMAL: | 
|  | return REGULATOR_STATUS_NORMAL; | 
|  | case REGULATOR_MODE_IDLE: | 
|  | return REGULATOR_STATUS_IDLE; | 
|  | case REGULATOR_MODE_STANDBY: | 
|  | return REGULATOR_STATUS_STANDBY; | 
|  | default: | 
|  | return REGULATOR_STATUS_UNDEFINED; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_mode_to_status); | 
|  |  | 
|  | static struct attribute *regulator_dev_attrs[] = { | 
|  | &dev_attr_name.attr, | 
|  | &dev_attr_num_users.attr, | 
|  | &dev_attr_type.attr, | 
|  | &dev_attr_microvolts.attr, | 
|  | &dev_attr_microamps.attr, | 
|  | &dev_attr_opmode.attr, | 
|  | &dev_attr_state.attr, | 
|  | &dev_attr_status.attr, | 
|  | &dev_attr_bypass.attr, | 
|  | &dev_attr_requested_microamps.attr, | 
|  | &dev_attr_min_microvolts.attr, | 
|  | &dev_attr_max_microvolts.attr, | 
|  | &dev_attr_min_microamps.attr, | 
|  | &dev_attr_max_microamps.attr, | 
|  | &dev_attr_under_voltage.attr, | 
|  | &dev_attr_over_current.attr, | 
|  | &dev_attr_regulation_out.attr, | 
|  | &dev_attr_fail.attr, | 
|  | &dev_attr_over_temp.attr, | 
|  | &dev_attr_under_voltage_warn.attr, | 
|  | &dev_attr_over_current_warn.attr, | 
|  | &dev_attr_over_voltage_warn.attr, | 
|  | &dev_attr_over_temp_warn.attr, | 
|  | &dev_attr_suspend_standby_state.attr, | 
|  | &dev_attr_suspend_mem_state.attr, | 
|  | &dev_attr_suspend_disk_state.attr, | 
|  | &dev_attr_suspend_standby_microvolts.attr, | 
|  | &dev_attr_suspend_mem_microvolts.attr, | 
|  | &dev_attr_suspend_disk_microvolts.attr, | 
|  | &dev_attr_suspend_standby_mode.attr, | 
|  | &dev_attr_suspend_mem_mode.attr, | 
|  | &dev_attr_suspend_disk_mode.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * To avoid cluttering sysfs (and memory) with useless state, only | 
|  | * create attributes that can be meaningfully displayed. | 
|  | */ | 
|  | static umode_t regulator_attr_is_visible(struct kobject *kobj, | 
|  | struct attribute *attr, int idx) | 
|  | { | 
|  | struct device *dev = kobj_to_dev(kobj); | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  | const struct regulator_ops *ops = rdev->desc->ops; | 
|  | umode_t mode = attr->mode; | 
|  |  | 
|  | /* these three are always present */ | 
|  | if (attr == &dev_attr_name.attr || | 
|  | attr == &dev_attr_num_users.attr || | 
|  | attr == &dev_attr_type.attr) | 
|  | return mode; | 
|  |  | 
|  | /* some attributes need specific methods to be displayed */ | 
|  | if (attr == &dev_attr_microvolts.attr) { | 
|  | if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || | 
|  | (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || | 
|  | (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || | 
|  | (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) | 
|  | return mode; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (attr == &dev_attr_microamps.attr) | 
|  | return ops->get_current_limit ? mode : 0; | 
|  |  | 
|  | if (attr == &dev_attr_opmode.attr) | 
|  | return ops->get_mode ? mode : 0; | 
|  |  | 
|  | if (attr == &dev_attr_state.attr) | 
|  | return (rdev->ena_pin || ops->is_enabled) ? mode : 0; | 
|  |  | 
|  | if (attr == &dev_attr_status.attr) | 
|  | return ops->get_status ? mode : 0; | 
|  |  | 
|  | if (attr == &dev_attr_bypass.attr) | 
|  | return ops->get_bypass ? mode : 0; | 
|  |  | 
|  | if (attr == &dev_attr_under_voltage.attr || | 
|  | attr == &dev_attr_over_current.attr || | 
|  | attr == &dev_attr_regulation_out.attr || | 
|  | attr == &dev_attr_fail.attr || | 
|  | attr == &dev_attr_over_temp.attr || | 
|  | attr == &dev_attr_under_voltage_warn.attr || | 
|  | attr == &dev_attr_over_current_warn.attr || | 
|  | attr == &dev_attr_over_voltage_warn.attr || | 
|  | attr == &dev_attr_over_temp_warn.attr) | 
|  | return ops->get_error_flags ? mode : 0; | 
|  |  | 
|  | /* constraints need specific supporting methods */ | 
|  | if (attr == &dev_attr_min_microvolts.attr || | 
|  | attr == &dev_attr_max_microvolts.attr) | 
|  | return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; | 
|  |  | 
|  | if (attr == &dev_attr_min_microamps.attr || | 
|  | attr == &dev_attr_max_microamps.attr) | 
|  | return ops->set_current_limit ? mode : 0; | 
|  |  | 
|  | if (attr == &dev_attr_suspend_standby_state.attr || | 
|  | attr == &dev_attr_suspend_mem_state.attr || | 
|  | attr == &dev_attr_suspend_disk_state.attr) | 
|  | return mode; | 
|  |  | 
|  | if (attr == &dev_attr_suspend_standby_microvolts.attr || | 
|  | attr == &dev_attr_suspend_mem_microvolts.attr || | 
|  | attr == &dev_attr_suspend_disk_microvolts.attr) | 
|  | return ops->set_suspend_voltage ? mode : 0; | 
|  |  | 
|  | if (attr == &dev_attr_suspend_standby_mode.attr || | 
|  | attr == &dev_attr_suspend_mem_mode.attr || | 
|  | attr == &dev_attr_suspend_disk_mode.attr) | 
|  | return ops->set_suspend_mode ? mode : 0; | 
|  |  | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | static const struct attribute_group regulator_dev_group = { | 
|  | .attrs = regulator_dev_attrs, | 
|  | .is_visible = regulator_attr_is_visible, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *regulator_dev_groups[] = { | 
|  | ®ulator_dev_group, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static void regulator_dev_release(struct device *dev) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_get_drvdata(dev); | 
|  |  | 
|  | debugfs_remove_recursive(rdev->debugfs); | 
|  | kfree(rdev->constraints); | 
|  | of_node_put(rdev->dev.of_node); | 
|  | kfree(rdev); | 
|  | } | 
|  |  | 
|  | static void rdev_init_debugfs(struct regulator_dev *rdev) | 
|  | { | 
|  | struct device *parent = rdev->dev.parent; | 
|  | const char *rname = rdev_get_name(rdev); | 
|  | char name[NAME_MAX]; | 
|  |  | 
|  | /* Avoid duplicate debugfs directory names */ | 
|  | if (parent && rname == rdev->desc->name) { | 
|  | snprintf(name, sizeof(name), "%s-%s", dev_name(parent), | 
|  | rname); | 
|  | rname = name; | 
|  | } | 
|  |  | 
|  | rdev->debugfs = debugfs_create_dir(rname, debugfs_root); | 
|  | if (IS_ERR(rdev->debugfs)) | 
|  | rdev_dbg(rdev, "Failed to create debugfs directory\n"); | 
|  |  | 
|  | debugfs_create_u32("use_count", 0444, rdev->debugfs, | 
|  | &rdev->use_count); | 
|  | debugfs_create_u32("open_count", 0444, rdev->debugfs, | 
|  | &rdev->open_count); | 
|  | debugfs_create_u32("bypass_count", 0444, rdev->debugfs, | 
|  | &rdev->bypass_count); | 
|  | } | 
|  |  | 
|  | static int regulator_register_resolve_supply(struct device *dev, void *data) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  |  | 
|  | if (regulator_resolve_supply(rdev)) | 
|  | rdev_dbg(rdev, "unable to resolve supply\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int regulator_coupler_register(struct regulator_coupler *coupler) | 
|  | { | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | list_add_tail(&coupler->list, ®ulator_coupler_list); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct regulator_coupler * | 
|  | regulator_find_coupler(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_coupler *coupler; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Note that regulators are appended to the list and the generic | 
|  | * coupler is registered first, hence it will be attached at last | 
|  | * if nobody cared. | 
|  | */ | 
|  | list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { | 
|  | err = coupler->attach_regulator(coupler, rdev); | 
|  | if (!err) { | 
|  | if (!coupler->balance_voltage && | 
|  | rdev->coupling_desc.n_coupled > 2) | 
|  | goto err_unsupported; | 
|  |  | 
|  | return coupler; | 
|  | } | 
|  |  | 
|  | if (err < 0) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | if (err == 1) | 
|  | continue; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | err_unsupported: | 
|  | if (coupler->detach_regulator) | 
|  | coupler->detach_regulator(coupler, rdev); | 
|  |  | 
|  | rdev_err(rdev, | 
|  | "Voltage balancing for multiple regulator couples is unimplemented\n"); | 
|  |  | 
|  | return ERR_PTR(-EPERM); | 
|  | } | 
|  |  | 
|  | static void regulator_resolve_coupling(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_coupler *coupler = rdev->coupling_desc.coupler; | 
|  | struct coupling_desc *c_desc = &rdev->coupling_desc; | 
|  | int n_coupled = c_desc->n_coupled; | 
|  | struct regulator_dev *c_rdev; | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i < n_coupled; i++) { | 
|  | /* already resolved */ | 
|  | if (c_desc->coupled_rdevs[i]) | 
|  | continue; | 
|  |  | 
|  | c_rdev = of_parse_coupled_regulator(rdev, i - 1); | 
|  |  | 
|  | if (!c_rdev) | 
|  | continue; | 
|  |  | 
|  | if (c_rdev->coupling_desc.coupler != coupler) { | 
|  | rdev_err(rdev, "coupler mismatch with %s\n", | 
|  | rdev_get_name(c_rdev)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | c_desc->coupled_rdevs[i] = c_rdev; | 
|  | c_desc->n_resolved++; | 
|  |  | 
|  | regulator_resolve_coupling(c_rdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void regulator_remove_coupling(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_coupler *coupler = rdev->coupling_desc.coupler; | 
|  | struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; | 
|  | struct regulator_dev *__c_rdev, *c_rdev; | 
|  | unsigned int __n_coupled, n_coupled; | 
|  | int i, k; | 
|  | int err; | 
|  |  | 
|  | n_coupled = c_desc->n_coupled; | 
|  |  | 
|  | for (i = 1; i < n_coupled; i++) { | 
|  | c_rdev = c_desc->coupled_rdevs[i]; | 
|  |  | 
|  | if (!c_rdev) | 
|  | continue; | 
|  |  | 
|  | regulator_lock(c_rdev); | 
|  |  | 
|  | __c_desc = &c_rdev->coupling_desc; | 
|  | __n_coupled = __c_desc->n_coupled; | 
|  |  | 
|  | for (k = 1; k < __n_coupled; k++) { | 
|  | __c_rdev = __c_desc->coupled_rdevs[k]; | 
|  |  | 
|  | if (__c_rdev == rdev) { | 
|  | __c_desc->coupled_rdevs[k] = NULL; | 
|  | __c_desc->n_resolved--; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | regulator_unlock(c_rdev); | 
|  |  | 
|  | c_desc->coupled_rdevs[i] = NULL; | 
|  | c_desc->n_resolved--; | 
|  | } | 
|  |  | 
|  | if (coupler && coupler->detach_regulator) { | 
|  | err = coupler->detach_regulator(coupler, rdev); | 
|  | if (err) | 
|  | rdev_err(rdev, "failed to detach from coupler: %pe\n", | 
|  | ERR_PTR(err)); | 
|  | } | 
|  |  | 
|  | kfree(rdev->coupling_desc.coupled_rdevs); | 
|  | rdev->coupling_desc.coupled_rdevs = NULL; | 
|  | } | 
|  |  | 
|  | static int regulator_init_coupling(struct regulator_dev *rdev) | 
|  | { | 
|  | struct regulator_dev **coupled; | 
|  | int err, n_phandles; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_OF)) | 
|  | n_phandles = 0; | 
|  | else | 
|  | n_phandles = of_get_n_coupled(rdev); | 
|  |  | 
|  | coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); | 
|  | if (!coupled) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rdev->coupling_desc.coupled_rdevs = coupled; | 
|  |  | 
|  | /* | 
|  | * Every regulator should always have coupling descriptor filled with | 
|  | * at least pointer to itself. | 
|  | */ | 
|  | rdev->coupling_desc.coupled_rdevs[0] = rdev; | 
|  | rdev->coupling_desc.n_coupled = n_phandles + 1; | 
|  | rdev->coupling_desc.n_resolved++; | 
|  |  | 
|  | /* regulator isn't coupled */ | 
|  | if (n_phandles == 0) | 
|  | return 0; | 
|  |  | 
|  | if (!of_check_coupling_data(rdev)) | 
|  | return -EPERM; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | rdev->coupling_desc.coupler = regulator_find_coupler(rdev); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  |  | 
|  | if (IS_ERR(rdev->coupling_desc.coupler)) { | 
|  | err = PTR_ERR(rdev->coupling_desc.coupler); | 
|  | rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int generic_coupler_attach(struct regulator_coupler *coupler, | 
|  | struct regulator_dev *rdev) | 
|  | { | 
|  | if (rdev->coupling_desc.n_coupled > 2) { | 
|  | rdev_err(rdev, | 
|  | "Voltage balancing for multiple regulator couples is unimplemented\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (!rdev->constraints->always_on) { | 
|  | rdev_err(rdev, | 
|  | "Coupling of a non always-on regulator is unimplemented\n"); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct regulator_coupler generic_regulator_coupler = { | 
|  | .attach_regulator = generic_coupler_attach, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * regulator_register - register regulator | 
|  | * @dev: the device that drive the regulator | 
|  | * @regulator_desc: regulator to register | 
|  | * @cfg: runtime configuration for regulator | 
|  | * | 
|  | * Called by regulator drivers to register a regulator. | 
|  | * | 
|  | * Return: Pointer to a valid &struct regulator_dev on success or | 
|  | *	   an ERR_PTR() encoded negative error number on failure. | 
|  | */ | 
|  | struct regulator_dev * | 
|  | regulator_register(struct device *dev, | 
|  | const struct regulator_desc *regulator_desc, | 
|  | const struct regulator_config *cfg) | 
|  | { | 
|  | const struct regulator_init_data *init_data; | 
|  | struct regulator_config *config = NULL; | 
|  | static atomic_t regulator_no = ATOMIC_INIT(-1); | 
|  | struct regulator_dev *rdev; | 
|  | bool dangling_cfg_gpiod = false; | 
|  | bool dangling_of_gpiod = false; | 
|  | int ret, i; | 
|  | bool resolved_early = false; | 
|  |  | 
|  | if (cfg == NULL) | 
|  | return ERR_PTR(-EINVAL); | 
|  | if (cfg->ena_gpiod) | 
|  | dangling_cfg_gpiod = true; | 
|  | if (regulator_desc == NULL) { | 
|  | ret = -EINVAL; | 
|  | goto rinse; | 
|  | } | 
|  |  | 
|  | WARN_ON(!dev || !cfg->dev); | 
|  |  | 
|  | if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { | 
|  | ret = -EINVAL; | 
|  | goto rinse; | 
|  | } | 
|  |  | 
|  | if (regulator_desc->type != REGULATOR_VOLTAGE && | 
|  | regulator_desc->type != REGULATOR_CURRENT) { | 
|  | ret = -EINVAL; | 
|  | goto rinse; | 
|  | } | 
|  |  | 
|  | /* Only one of each should be implemented */ | 
|  | WARN_ON(regulator_desc->ops->get_voltage && | 
|  | regulator_desc->ops->get_voltage_sel); | 
|  | WARN_ON(regulator_desc->ops->set_voltage && | 
|  | regulator_desc->ops->set_voltage_sel); | 
|  |  | 
|  | /* If we're using selectors we must implement list_voltage. */ | 
|  | if (regulator_desc->ops->get_voltage_sel && | 
|  | !regulator_desc->ops->list_voltage) { | 
|  | ret = -EINVAL; | 
|  | goto rinse; | 
|  | } | 
|  | if (regulator_desc->ops->set_voltage_sel && | 
|  | !regulator_desc->ops->list_voltage) { | 
|  | ret = -EINVAL; | 
|  | goto rinse; | 
|  | } | 
|  |  | 
|  | rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); | 
|  | if (rdev == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto rinse; | 
|  | } | 
|  | device_initialize(&rdev->dev); | 
|  | dev_set_drvdata(&rdev->dev, rdev); | 
|  | rdev->dev.class = ®ulator_class; | 
|  | spin_lock_init(&rdev->err_lock); | 
|  |  | 
|  | /* | 
|  | * Duplicate the config so the driver could override it after | 
|  | * parsing init data. | 
|  | */ | 
|  | config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); | 
|  | if (config == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto clean; | 
|  | } | 
|  |  | 
|  | init_data = regulator_of_get_init_data(dev, regulator_desc, config, | 
|  | &rdev->dev.of_node); | 
|  |  | 
|  | /* | 
|  | * Sometimes not all resources are probed already so we need to take | 
|  | * that into account. This happens most the time if the ena_gpiod comes | 
|  | * from a gpio extender or something else. | 
|  | */ | 
|  | if (PTR_ERR(init_data) == -EPROBE_DEFER) { | 
|  | ret = -EPROBE_DEFER; | 
|  | goto clean; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to keep track of any GPIO descriptor coming from the | 
|  | * device tree until we have handled it over to the core. If the | 
|  | * config that was passed in to this function DOES NOT contain | 
|  | * a descriptor, and the config after this call DOES contain | 
|  | * a descriptor, we definitely got one from parsing the device | 
|  | * tree. | 
|  | */ | 
|  | if (!cfg->ena_gpiod && config->ena_gpiod) | 
|  | dangling_of_gpiod = true; | 
|  | if (!init_data) { | 
|  | init_data = config->init_data; | 
|  | rdev->dev.of_node = of_node_get(config->of_node); | 
|  | } | 
|  |  | 
|  | ww_mutex_init(&rdev->mutex, ®ulator_ww_class); | 
|  | rdev->reg_data = config->driver_data; | 
|  | rdev->owner = regulator_desc->owner; | 
|  | rdev->desc = regulator_desc; | 
|  | if (config->regmap) | 
|  | rdev->regmap = config->regmap; | 
|  | else if (dev_get_regmap(dev, NULL)) | 
|  | rdev->regmap = dev_get_regmap(dev, NULL); | 
|  | else if (dev->parent) | 
|  | rdev->regmap = dev_get_regmap(dev->parent, NULL); | 
|  | INIT_LIST_HEAD(&rdev->consumer_list); | 
|  | INIT_LIST_HEAD(&rdev->list); | 
|  | BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); | 
|  | INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); | 
|  |  | 
|  | if (init_data && init_data->supply_regulator) | 
|  | rdev->supply_name = init_data->supply_regulator; | 
|  | else if (regulator_desc->supply_name) | 
|  | rdev->supply_name = regulator_desc->supply_name; | 
|  |  | 
|  | /* register with sysfs */ | 
|  | rdev->dev.parent = config->dev; | 
|  | dev_set_name(&rdev->dev, "regulator.%lu", | 
|  | (unsigned long) atomic_inc_return(®ulator_no)); | 
|  |  | 
|  | /* set regulator constraints */ | 
|  | if (init_data) | 
|  | rdev->constraints = kmemdup(&init_data->constraints, | 
|  | sizeof(*rdev->constraints), | 
|  | GFP_KERNEL); | 
|  | else | 
|  | rdev->constraints = kzalloc(sizeof(*rdev->constraints), | 
|  | GFP_KERNEL); | 
|  | if (!rdev->constraints) { | 
|  | ret = -ENOMEM; | 
|  | goto wash; | 
|  | } | 
|  |  | 
|  | if ((rdev->supply_name && !rdev->supply) && | 
|  | (rdev->constraints->always_on || | 
|  | rdev->constraints->boot_on)) { | 
|  | ret = regulator_resolve_supply(rdev); | 
|  | if (ret) | 
|  | rdev_dbg(rdev, "unable to resolve supply early: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  |  | 
|  | resolved_early = true; | 
|  | } | 
|  |  | 
|  | /* perform any regulator specific init */ | 
|  | if (init_data && init_data->regulator_init) { | 
|  | ret = init_data->regulator_init(rdev->reg_data); | 
|  | if (ret < 0) | 
|  | goto wash; | 
|  | } | 
|  |  | 
|  | if (config->ena_gpiod) { | 
|  | ret = regulator_ena_gpio_request(rdev, config); | 
|  | if (ret != 0) { | 
|  | rdev_err(rdev, "Failed to request enable GPIO: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | goto wash; | 
|  | } | 
|  | /* The regulator core took over the GPIO descriptor */ | 
|  | dangling_cfg_gpiod = false; | 
|  | dangling_of_gpiod = false; | 
|  | } | 
|  |  | 
|  | ret = set_machine_constraints(rdev); | 
|  | if (ret == -EPROBE_DEFER && !resolved_early) { | 
|  | /* Regulator might be in bypass mode and so needs its supply | 
|  | * to set the constraints | 
|  | */ | 
|  | /* FIXME: this currently triggers a chicken-and-egg problem | 
|  | * when creating -SUPPLY symlink in sysfs to a regulator | 
|  | * that is just being created | 
|  | */ | 
|  | rdev_dbg(rdev, "will resolve supply early: %s\n", | 
|  | rdev->supply_name); | 
|  | ret = regulator_resolve_supply(rdev); | 
|  | if (!ret) | 
|  | ret = set_machine_constraints(rdev); | 
|  | else | 
|  | rdev_dbg(rdev, "unable to resolve supply early: %pe\n", | 
|  | ERR_PTR(ret)); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto wash; | 
|  |  | 
|  | ret = regulator_init_coupling(rdev); | 
|  | if (ret < 0) | 
|  | goto wash; | 
|  |  | 
|  | /* add consumers devices */ | 
|  | if (init_data) { | 
|  | for (i = 0; i < init_data->num_consumer_supplies; i++) { | 
|  | ret = set_consumer_device_supply(rdev, | 
|  | init_data->consumer_supplies[i].dev_name, | 
|  | init_data->consumer_supplies[i].supply); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "Failed to set supply %s\n", | 
|  | init_data->consumer_supplies[i].supply); | 
|  | goto unset_supplies; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!rdev->desc->ops->get_voltage && | 
|  | !rdev->desc->ops->list_voltage && | 
|  | !rdev->desc->fixed_uV) | 
|  | rdev->is_switch = true; | 
|  |  | 
|  | ret = device_add(&rdev->dev); | 
|  | if (ret != 0) | 
|  | goto unset_supplies; | 
|  |  | 
|  | rdev_init_debugfs(rdev); | 
|  |  | 
|  | /* try to resolve regulators coupling since a new one was registered */ | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | regulator_resolve_coupling(rdev); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  |  | 
|  | /* try to resolve regulators supply since a new one was registered */ | 
|  | class_for_each_device(®ulator_class, NULL, NULL, | 
|  | regulator_register_resolve_supply); | 
|  | kfree(config); | 
|  | return rdev; | 
|  |  | 
|  | unset_supplies: | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | unset_regulator_supplies(rdev); | 
|  | regulator_remove_coupling(rdev); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | wash: | 
|  | regulator_put(rdev->supply); | 
|  | kfree(rdev->coupling_desc.coupled_rdevs); | 
|  | mutex_lock(®ulator_list_mutex); | 
|  | regulator_ena_gpio_free(rdev); | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | clean: | 
|  | if (dangling_of_gpiod) | 
|  | gpiod_put(config->ena_gpiod); | 
|  | kfree(config); | 
|  | put_device(&rdev->dev); | 
|  | rinse: | 
|  | if (dangling_cfg_gpiod) | 
|  | gpiod_put(cfg->ena_gpiod); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_register); | 
|  |  | 
|  | /** | 
|  | * regulator_unregister - unregister regulator | 
|  | * @rdev: regulator to unregister | 
|  | * | 
|  | * Called by regulator drivers to unregister a regulator. | 
|  | */ | 
|  | void regulator_unregister(struct regulator_dev *rdev) | 
|  | { | 
|  | if (rdev == NULL) | 
|  | return; | 
|  |  | 
|  | if (rdev->supply) { | 
|  | while (rdev->use_count--) | 
|  | regulator_disable(rdev->supply); | 
|  | regulator_put(rdev->supply); | 
|  | } | 
|  |  | 
|  | flush_work(&rdev->disable_work.work); | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  |  | 
|  | WARN_ON(rdev->open_count); | 
|  | regulator_remove_coupling(rdev); | 
|  | unset_regulator_supplies(rdev); | 
|  | list_del(&rdev->list); | 
|  | regulator_ena_gpio_free(rdev); | 
|  | device_unregister(&rdev->dev); | 
|  |  | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_unregister); | 
|  |  | 
|  | #ifdef CONFIG_SUSPEND | 
|  | /** | 
|  | * regulator_suspend - prepare regulators for system wide suspend | 
|  | * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() | 
|  | * | 
|  | * Configure each regulator with it's suspend operating parameters for state. | 
|  | * | 
|  | * Return: 0 on success or a negative error number on failure. | 
|  | */ | 
|  | static int regulator_suspend(struct device *dev) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  | suspend_state_t state = pm_suspend_target_state; | 
|  | int ret; | 
|  | const struct regulator_state *rstate; | 
|  |  | 
|  | rstate = regulator_get_suspend_state_check(rdev, state); | 
|  | if (!rstate) | 
|  | return 0; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  | ret = __suspend_set_state(rdev, rstate); | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int regulator_resume(struct device *dev) | 
|  | { | 
|  | suspend_state_t state = pm_suspend_target_state; | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  | struct regulator_state *rstate; | 
|  | int ret = 0; | 
|  |  | 
|  | rstate = regulator_get_suspend_state(rdev, state); | 
|  | if (rstate == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* Avoid grabbing the lock if we don't need to */ | 
|  | if (!rdev->desc->ops->resume) | 
|  | return 0; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  |  | 
|  | if (rstate->enabled == ENABLE_IN_SUSPEND || | 
|  | rstate->enabled == DISABLE_IN_SUSPEND) | 
|  | ret = rdev->desc->ops->resume(rdev); | 
|  |  | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #else /* !CONFIG_SUSPEND */ | 
|  |  | 
|  | #define regulator_suspend	NULL | 
|  | #define regulator_resume	NULL | 
|  |  | 
|  | #endif /* !CONFIG_SUSPEND */ | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { | 
|  | .suspend	= regulator_suspend, | 
|  | .resume		= regulator_resume, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | const struct class regulator_class = { | 
|  | .name = "regulator", | 
|  | .dev_release = regulator_dev_release, | 
|  | .dev_groups = regulator_dev_groups, | 
|  | #ifdef CONFIG_PM | 
|  | .pm = ®ulator_pm_ops, | 
|  | #endif | 
|  | }; | 
|  | /** | 
|  | * regulator_has_full_constraints - the system has fully specified constraints | 
|  | * | 
|  | * Calling this function will cause the regulator API to disable all | 
|  | * regulators which have a zero use count and don't have an always_on | 
|  | * constraint in a late_initcall. | 
|  | * | 
|  | * The intention is that this will become the default behaviour in a | 
|  | * future kernel release so users are encouraged to use this facility | 
|  | * now. | 
|  | */ | 
|  | void regulator_has_full_constraints(void) | 
|  | { | 
|  | has_full_constraints = 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_has_full_constraints); | 
|  |  | 
|  | /** | 
|  | * rdev_get_drvdata - get rdev regulator driver data | 
|  | * @rdev: regulator | 
|  | * | 
|  | * Get rdev regulator driver private data. This call can be used in the | 
|  | * regulator driver context. | 
|  | * | 
|  | * Return: Pointer to regulator driver private data. | 
|  | */ | 
|  | void *rdev_get_drvdata(struct regulator_dev *rdev) | 
|  | { | 
|  | return rdev->reg_data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rdev_get_drvdata); | 
|  |  | 
|  | /** | 
|  | * regulator_get_drvdata - get regulator driver data | 
|  | * @regulator: regulator | 
|  | * | 
|  | * Get regulator driver private data. This call can be used in the consumer | 
|  | * driver context when non API regulator specific functions need to be called. | 
|  | * | 
|  | * Return: Pointer to regulator driver private data. | 
|  | */ | 
|  | void *regulator_get_drvdata(struct regulator *regulator) | 
|  | { | 
|  | return regulator->rdev->reg_data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_drvdata); | 
|  |  | 
|  | /** | 
|  | * regulator_set_drvdata - set regulator driver data | 
|  | * @regulator: regulator | 
|  | * @data: data | 
|  | */ | 
|  | void regulator_set_drvdata(struct regulator *regulator, void *data) | 
|  | { | 
|  | regulator->rdev->reg_data = data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_set_drvdata); | 
|  |  | 
|  | /** | 
|  | * rdev_get_id - get regulator ID | 
|  | * @rdev: regulator | 
|  | * | 
|  | * Return: Regulator ID for @rdev. | 
|  | */ | 
|  | int rdev_get_id(struct regulator_dev *rdev) | 
|  | { | 
|  | return rdev->desc->id; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rdev_get_id); | 
|  |  | 
|  | struct device *rdev_get_dev(struct regulator_dev *rdev) | 
|  | { | 
|  | return &rdev->dev; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rdev_get_dev); | 
|  |  | 
|  | struct regmap *rdev_get_regmap(struct regulator_dev *rdev) | 
|  | { | 
|  | return rdev->regmap; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rdev_get_regmap); | 
|  |  | 
|  | void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) | 
|  | { | 
|  | return reg_init_data->driver_data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static int supply_map_show(struct seq_file *sf, void *data) | 
|  | { | 
|  | struct regulator_map *map; | 
|  |  | 
|  | list_for_each_entry(map, ®ulator_map_list, list) { | 
|  | seq_printf(sf, "%s -> %s.%s\n", | 
|  | rdev_get_name(map->regulator), map->dev_name, | 
|  | map->supply); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SHOW_ATTRIBUTE(supply_map); | 
|  |  | 
|  | struct summary_data { | 
|  | struct seq_file *s; | 
|  | struct regulator_dev *parent; | 
|  | int level; | 
|  | }; | 
|  |  | 
|  | static void regulator_summary_show_subtree(struct seq_file *s, | 
|  | struct regulator_dev *rdev, | 
|  | int level); | 
|  |  | 
|  | static int regulator_summary_show_children(struct device *dev, void *data) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  | struct summary_data *summary_data = data; | 
|  |  | 
|  | if (rdev->supply && rdev->supply->rdev == summary_data->parent) | 
|  | regulator_summary_show_subtree(summary_data->s, rdev, | 
|  | summary_data->level + 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void regulator_summary_show_subtree(struct seq_file *s, | 
|  | struct regulator_dev *rdev, | 
|  | int level) | 
|  | { | 
|  | struct regulation_constraints *c; | 
|  | struct regulator *consumer; | 
|  | struct summary_data summary_data; | 
|  | unsigned int opmode; | 
|  |  | 
|  | if (!rdev) | 
|  | return; | 
|  |  | 
|  | opmode = _regulator_get_mode_unlocked(rdev); | 
|  | seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", | 
|  | level * 3 + 1, "", | 
|  | 30 - level * 3, rdev_get_name(rdev), | 
|  | rdev->use_count, rdev->open_count, rdev->bypass_count, | 
|  | regulator_opmode_to_str(opmode)); | 
|  |  | 
|  | seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); | 
|  | seq_printf(s, "%5dmA ", | 
|  | _regulator_get_current_limit_unlocked(rdev) / 1000); | 
|  |  | 
|  | c = rdev->constraints; | 
|  | if (c) { | 
|  | switch (rdev->desc->type) { | 
|  | case REGULATOR_VOLTAGE: | 
|  | seq_printf(s, "%5dmV %5dmV ", | 
|  | c->min_uV / 1000, c->max_uV / 1000); | 
|  | break; | 
|  | case REGULATOR_CURRENT: | 
|  | seq_printf(s, "%5dmA %5dmA ", | 
|  | c->min_uA / 1000, c->max_uA / 1000); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | seq_puts(s, "\n"); | 
|  |  | 
|  | list_for_each_entry(consumer, &rdev->consumer_list, list) { | 
|  | if (consumer->dev && consumer->dev->class == ®ulator_class) | 
|  | continue; | 
|  |  | 
|  | seq_printf(s, "%*s%-*s ", | 
|  | (level + 1) * 3 + 1, "", | 
|  | 30 - (level + 1) * 3, | 
|  | consumer->supply_name ? consumer->supply_name : | 
|  | consumer->dev ? dev_name(consumer->dev) : "deviceless"); | 
|  |  | 
|  | switch (rdev->desc->type) { | 
|  | case REGULATOR_VOLTAGE: | 
|  | seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", | 
|  | consumer->enable_count, | 
|  | consumer->uA_load / 1000, | 
|  | consumer->uA_load && !consumer->enable_count ? | 
|  | '*' : ' ', | 
|  | consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, | 
|  | consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); | 
|  | break; | 
|  | case REGULATOR_CURRENT: | 
|  | break; | 
|  | } | 
|  |  | 
|  | seq_puts(s, "\n"); | 
|  | } | 
|  |  | 
|  | summary_data.s = s; | 
|  | summary_data.level = level; | 
|  | summary_data.parent = rdev; | 
|  |  | 
|  | class_for_each_device(®ulator_class, NULL, &summary_data, | 
|  | regulator_summary_show_children); | 
|  | } | 
|  |  | 
|  | struct summary_lock_data { | 
|  | struct ww_acquire_ctx *ww_ctx; | 
|  | struct regulator_dev **new_contended_rdev; | 
|  | struct regulator_dev **old_contended_rdev; | 
|  | }; | 
|  |  | 
|  | static int regulator_summary_lock_one(struct device *dev, void *data) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  | struct summary_lock_data *lock_data = data; | 
|  | int ret = 0; | 
|  |  | 
|  | if (rdev != *lock_data->old_contended_rdev) { | 
|  | ret = regulator_lock_nested(rdev, lock_data->ww_ctx); | 
|  |  | 
|  | if (ret == -EDEADLK) | 
|  | *lock_data->new_contended_rdev = rdev; | 
|  | else | 
|  | WARN_ON_ONCE(ret); | 
|  | } else { | 
|  | *lock_data->old_contended_rdev = NULL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int regulator_summary_unlock_one(struct device *dev, void *data) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  | struct summary_lock_data *lock_data = data; | 
|  |  | 
|  | if (lock_data) { | 
|  | if (rdev == *lock_data->new_contended_rdev) | 
|  | return -EDEADLK; | 
|  | } | 
|  |  | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, | 
|  | struct regulator_dev **new_contended_rdev, | 
|  | struct regulator_dev **old_contended_rdev) | 
|  | { | 
|  | struct summary_lock_data lock_data; | 
|  | int ret; | 
|  |  | 
|  | lock_data.ww_ctx = ww_ctx; | 
|  | lock_data.new_contended_rdev = new_contended_rdev; | 
|  | lock_data.old_contended_rdev = old_contended_rdev; | 
|  |  | 
|  | ret = class_for_each_device(®ulator_class, NULL, &lock_data, | 
|  | regulator_summary_lock_one); | 
|  | if (ret) | 
|  | class_for_each_device(®ulator_class, NULL, &lock_data, | 
|  | regulator_summary_unlock_one); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) | 
|  | { | 
|  | struct regulator_dev *new_contended_rdev = NULL; | 
|  | struct regulator_dev *old_contended_rdev = NULL; | 
|  | int err; | 
|  |  | 
|  | mutex_lock(®ulator_list_mutex); | 
|  |  | 
|  | ww_acquire_init(ww_ctx, ®ulator_ww_class); | 
|  |  | 
|  | do { | 
|  | if (new_contended_rdev) { | 
|  | ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); | 
|  | old_contended_rdev = new_contended_rdev; | 
|  | old_contended_rdev->ref_cnt++; | 
|  | old_contended_rdev->mutex_owner = current; | 
|  | } | 
|  |  | 
|  | err = regulator_summary_lock_all(ww_ctx, | 
|  | &new_contended_rdev, | 
|  | &old_contended_rdev); | 
|  |  | 
|  | if (old_contended_rdev) | 
|  | regulator_unlock(old_contended_rdev); | 
|  |  | 
|  | } while (err == -EDEADLK); | 
|  |  | 
|  | ww_acquire_done(ww_ctx); | 
|  | } | 
|  |  | 
|  | static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) | 
|  | { | 
|  | class_for_each_device(®ulator_class, NULL, NULL, | 
|  | regulator_summary_unlock_one); | 
|  | ww_acquire_fini(ww_ctx); | 
|  |  | 
|  | mutex_unlock(®ulator_list_mutex); | 
|  | } | 
|  |  | 
|  | static int regulator_summary_show_roots(struct device *dev, void *data) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  | struct seq_file *s = data; | 
|  |  | 
|  | if (!rdev->supply) | 
|  | regulator_summary_show_subtree(s, rdev, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int regulator_summary_show(struct seq_file *s, void *data) | 
|  | { | 
|  | struct ww_acquire_ctx ww_ctx; | 
|  |  | 
|  | seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n"); | 
|  | seq_puts(s, "---------------------------------------------------------------------------------------\n"); | 
|  |  | 
|  | regulator_summary_lock(&ww_ctx); | 
|  |  | 
|  | class_for_each_device(®ulator_class, NULL, s, | 
|  | regulator_summary_show_roots); | 
|  |  | 
|  | regulator_summary_unlock(&ww_ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SHOW_ATTRIBUTE(regulator_summary); | 
|  | #endif /* CONFIG_DEBUG_FS */ | 
|  |  | 
|  | static int __init regulator_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = class_register(®ulator_class); | 
|  |  | 
|  | debugfs_root = debugfs_create_dir("regulator", NULL); | 
|  | if (IS_ERR(debugfs_root)) | 
|  | pr_debug("regulator: Failed to create debugfs directory\n"); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | debugfs_create_file("supply_map", 0444, debugfs_root, NULL, | 
|  | &supply_map_fops); | 
|  |  | 
|  | debugfs_create_file("regulator_summary", 0444, debugfs_root, | 
|  | NULL, ®ulator_summary_fops); | 
|  | #endif | 
|  | regulator_dummy_init(); | 
|  |  | 
|  | regulator_coupler_register(&generic_regulator_coupler); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* init early to allow our consumers to complete system booting */ | 
|  | core_initcall(regulator_init); | 
|  |  | 
|  | static int regulator_late_cleanup(struct device *dev, void *data) | 
|  | { | 
|  | struct regulator_dev *rdev = dev_to_rdev(dev); | 
|  | struct regulation_constraints *c = rdev->constraints; | 
|  | int ret; | 
|  |  | 
|  | if (c && c->always_on) | 
|  | return 0; | 
|  |  | 
|  | if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) | 
|  | return 0; | 
|  |  | 
|  | regulator_lock(rdev); | 
|  |  | 
|  | if (rdev->use_count) | 
|  | goto unlock; | 
|  |  | 
|  | /* If reading the status failed, assume that it's off. */ | 
|  | if (_regulator_is_enabled(rdev) <= 0) | 
|  | goto unlock; | 
|  |  | 
|  | if (have_full_constraints()) { | 
|  | /* We log since this may kill the system if it goes | 
|  | * wrong. | 
|  | */ | 
|  | rdev_info(rdev, "disabling\n"); | 
|  | ret = _regulator_do_disable(rdev); | 
|  | if (ret != 0) | 
|  | rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); | 
|  | } else { | 
|  | /* The intention is that in future we will | 
|  | * assume that full constraints are provided | 
|  | * so warn even if we aren't going to do | 
|  | * anything here. | 
|  | */ | 
|  | rdev_warn(rdev, "incomplete constraints, leaving on\n"); | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | regulator_unlock(rdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool regulator_ignore_unused; | 
|  | static int __init regulator_ignore_unused_setup(char *__unused) | 
|  | { | 
|  | regulator_ignore_unused = true; | 
|  | return 1; | 
|  | } | 
|  | __setup("regulator_ignore_unused", regulator_ignore_unused_setup); | 
|  |  | 
|  | static void regulator_init_complete_work_function(struct work_struct *work) | 
|  | { | 
|  | /* | 
|  | * Regulators may had failed to resolve their input supplies | 
|  | * when were registered, either because the input supply was | 
|  | * not registered yet or because its parent device was not | 
|  | * bound yet. So attempt to resolve the input supplies for | 
|  | * pending regulators before trying to disable unused ones. | 
|  | */ | 
|  | class_for_each_device(®ulator_class, NULL, NULL, | 
|  | regulator_register_resolve_supply); | 
|  |  | 
|  | /* | 
|  | * For debugging purposes, it may be useful to prevent unused | 
|  | * regulators from being disabled. | 
|  | */ | 
|  | if (regulator_ignore_unused) { | 
|  | pr_warn("regulator: Not disabling unused regulators\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* If we have a full configuration then disable any regulators | 
|  | * we have permission to change the status for and which are | 
|  | * not in use or always_on.  This is effectively the default | 
|  | * for DT and ACPI as they have full constraints. | 
|  | */ | 
|  | class_for_each_device(®ulator_class, NULL, NULL, | 
|  | regulator_late_cleanup); | 
|  | } | 
|  |  | 
|  | static DECLARE_DELAYED_WORK(regulator_init_complete_work, | 
|  | regulator_init_complete_work_function); | 
|  |  | 
|  | static int __init regulator_init_complete(void) | 
|  | { | 
|  | /* | 
|  | * Since DT doesn't provide an idiomatic mechanism for | 
|  | * enabling full constraints and since it's much more natural | 
|  | * with DT to provide them just assume that a DT enabled | 
|  | * system has full constraints. | 
|  | */ | 
|  | if (of_have_populated_dt()) | 
|  | has_full_constraints = true; | 
|  |  | 
|  | /* | 
|  | * We punt completion for an arbitrary amount of time since | 
|  | * systems like distros will load many drivers from userspace | 
|  | * so consumers might not always be ready yet, this is | 
|  | * particularly an issue with laptops where this might bounce | 
|  | * the display off then on.  Ideally we'd get a notification | 
|  | * from userspace when this happens but we don't so just wait | 
|  | * a bit and hope we waited long enough.  It'd be better if | 
|  | * we'd only do this on systems that need it, and a kernel | 
|  | * command line option might be useful. | 
|  | */ | 
|  | schedule_delayed_work(®ulator_init_complete_work, | 
|  | msecs_to_jiffies(30000)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | late_initcall_sync(regulator_init_complete); |