|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * crash.c - kernel crash support code. | 
|  | * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/buildid.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/cpuhotplug.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/crash_core.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/btf.h> | 
|  | #include <linux/objtool.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | #include <crypto/sha1.h> | 
|  |  | 
|  | #include "kallsyms_internal.h" | 
|  | #include "kexec_internal.h" | 
|  |  | 
|  | /* Per cpu memory for storing cpu states in case of system crash. */ | 
|  | note_buf_t __percpu *crash_notes; | 
|  |  | 
|  | #ifdef CONFIG_CRASH_DUMP | 
|  |  | 
|  | int kimage_crash_copy_vmcoreinfo(struct kimage *image) | 
|  | { | 
|  | struct page *vmcoreinfo_page; | 
|  | void *safecopy; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_CRASH_DUMP)) | 
|  | return 0; | 
|  | if (image->type != KEXEC_TYPE_CRASH) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * For kdump, allocate one vmcoreinfo safe copy from the | 
|  | * crash memory. as we have arch_kexec_protect_crashkres() | 
|  | * after kexec syscall, we naturally protect it from write | 
|  | * (even read) access under kernel direct mapping. But on | 
|  | * the other hand, we still need to operate it when crash | 
|  | * happens to generate vmcoreinfo note, hereby we rely on | 
|  | * vmap for this purpose. | 
|  | */ | 
|  | vmcoreinfo_page = kimage_alloc_control_pages(image, 0); | 
|  | if (!vmcoreinfo_page) { | 
|  | pr_warn("Could not allocate vmcoreinfo buffer\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); | 
|  | if (!safecopy) { | 
|  | pr_warn("Could not vmap vmcoreinfo buffer\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | image->vmcoreinfo_data_copy = safecopy; | 
|  | crash_update_vmcoreinfo_safecopy(safecopy); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | int kexec_should_crash(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * If crash_kexec_post_notifiers is enabled, don't run | 
|  | * crash_kexec() here yet, which must be run after panic | 
|  | * notifiers in panic(). | 
|  | */ | 
|  | if (crash_kexec_post_notifiers) | 
|  | return 0; | 
|  | /* | 
|  | * There are 4 panic() calls in make_task_dead() path, each of which | 
|  | * corresponds to each of these 4 conditions. | 
|  | */ | 
|  | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kexec_crash_loaded(void) | 
|  | { | 
|  | return !!kexec_crash_image; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kexec_crash_loaded); | 
|  |  | 
|  | /* | 
|  | * No panic_cpu check version of crash_kexec().  This function is called | 
|  | * only when panic_cpu holds the current CPU number; this is the only CPU | 
|  | * which processes crash_kexec routines. | 
|  | */ | 
|  | void __noclone __crash_kexec(struct pt_regs *regs) | 
|  | { | 
|  | /* Take the kexec_lock here to prevent sys_kexec_load | 
|  | * running on one cpu from replacing the crash kernel | 
|  | * we are using after a panic on a different cpu. | 
|  | * | 
|  | * If the crash kernel was not located in a fixed area | 
|  | * of memory the xchg(&kexec_crash_image) would be | 
|  | * sufficient.  But since I reuse the memory... | 
|  | */ | 
|  | if (kexec_trylock()) { | 
|  | if (kexec_crash_image) { | 
|  | struct pt_regs fixed_regs; | 
|  |  | 
|  | crash_setup_regs(&fixed_regs, regs); | 
|  | crash_save_vmcoreinfo(); | 
|  | machine_crash_shutdown(&fixed_regs); | 
|  | machine_kexec(kexec_crash_image); | 
|  | } | 
|  | kexec_unlock(); | 
|  | } | 
|  | } | 
|  | STACK_FRAME_NON_STANDARD(__crash_kexec); | 
|  |  | 
|  | __bpf_kfunc void crash_kexec(struct pt_regs *regs) | 
|  | { | 
|  | int old_cpu, this_cpu; | 
|  |  | 
|  | /* | 
|  | * Only one CPU is allowed to execute the crash_kexec() code as with | 
|  | * panic().  Otherwise parallel calls of panic() and crash_kexec() | 
|  | * may stop each other.  To exclude them, we use panic_cpu here too. | 
|  | */ | 
|  | old_cpu = PANIC_CPU_INVALID; | 
|  | this_cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) { | 
|  | /* This is the 1st CPU which comes here, so go ahead. */ | 
|  | __crash_kexec(regs); | 
|  |  | 
|  | /* | 
|  | * Reset panic_cpu to allow another panic()/crash_kexec() | 
|  | * call. | 
|  | */ | 
|  | atomic_set(&panic_cpu, PANIC_CPU_INVALID); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline resource_size_t crash_resource_size(const struct resource *res) | 
|  | { | 
|  | return !res->end ? 0 : resource_size(res); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map, | 
|  | void **addr, unsigned long *sz) | 
|  | { | 
|  | Elf64_Ehdr *ehdr; | 
|  | Elf64_Phdr *phdr; | 
|  | unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; | 
|  | unsigned char *buf; | 
|  | unsigned int cpu, i; | 
|  | unsigned long long notes_addr; | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | /* extra phdr for vmcoreinfo ELF note */ | 
|  | nr_phdr = nr_cpus + 1; | 
|  | nr_phdr += mem->nr_ranges; | 
|  |  | 
|  | /* | 
|  | * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping | 
|  | * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). | 
|  | * I think this is required by tools like gdb. So same physical | 
|  | * memory will be mapped in two ELF headers. One will contain kernel | 
|  | * text virtual addresses and other will have __va(physical) addresses. | 
|  | */ | 
|  |  | 
|  | nr_phdr++; | 
|  | elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); | 
|  | elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); | 
|  |  | 
|  | buf = vzalloc(elf_sz); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ehdr = (Elf64_Ehdr *)buf; | 
|  | phdr = (Elf64_Phdr *)(ehdr + 1); | 
|  | memcpy(ehdr->e_ident, ELFMAG, SELFMAG); | 
|  | ehdr->e_ident[EI_CLASS] = ELFCLASS64; | 
|  | ehdr->e_ident[EI_DATA] = ELFDATA2LSB; | 
|  | ehdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | ehdr->e_ident[EI_OSABI] = ELF_OSABI; | 
|  | memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); | 
|  | ehdr->e_type = ET_CORE; | 
|  | ehdr->e_machine = ELF_ARCH; | 
|  | ehdr->e_version = EV_CURRENT; | 
|  | ehdr->e_phoff = sizeof(Elf64_Ehdr); | 
|  | ehdr->e_ehsize = sizeof(Elf64_Ehdr); | 
|  | ehdr->e_phentsize = sizeof(Elf64_Phdr); | 
|  |  | 
|  | /* Prepare one phdr of type PT_NOTE for each possible CPU */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | phdr->p_type = PT_NOTE; | 
|  | notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); | 
|  | phdr->p_offset = phdr->p_paddr = notes_addr; | 
|  | phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); | 
|  | (ehdr->e_phnum)++; | 
|  | phdr++; | 
|  | } | 
|  |  | 
|  | /* Prepare one PT_NOTE header for vmcoreinfo */ | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); | 
|  | phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; | 
|  | (ehdr->e_phnum)++; | 
|  | phdr++; | 
|  |  | 
|  | /* Prepare PT_LOAD type program header for kernel text region */ | 
|  | if (need_kernel_map) { | 
|  | phdr->p_type = PT_LOAD; | 
|  | phdr->p_flags = PF_R|PF_W|PF_X; | 
|  | phdr->p_vaddr = (unsigned long) _text; | 
|  | phdr->p_filesz = phdr->p_memsz = _end - _text; | 
|  | phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); | 
|  | ehdr->e_phnum++; | 
|  | phdr++; | 
|  | } | 
|  |  | 
|  | /* Go through all the ranges in mem->ranges[] and prepare phdr */ | 
|  | for (i = 0; i < mem->nr_ranges; i++) { | 
|  | mstart = mem->ranges[i].start; | 
|  | mend = mem->ranges[i].end; | 
|  |  | 
|  | phdr->p_type = PT_LOAD; | 
|  | phdr->p_flags = PF_R|PF_W|PF_X; | 
|  | phdr->p_offset  = mstart; | 
|  |  | 
|  | phdr->p_paddr = mstart; | 
|  | phdr->p_vaddr = (unsigned long) __va(mstart); | 
|  | phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; | 
|  | phdr->p_align = 0; | 
|  | ehdr->e_phnum++; | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", | 
|  | phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, | 
|  | ehdr->e_phnum, phdr->p_offset); | 
|  | #endif | 
|  | phdr++; | 
|  | } | 
|  |  | 
|  | *addr = buf; | 
|  | *sz = elf_sz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int crash_exclude_mem_range(struct crash_mem *mem, | 
|  | unsigned long long mstart, unsigned long long mend) | 
|  | { | 
|  | int i; | 
|  | unsigned long long start, end, p_start, p_end; | 
|  |  | 
|  | for (i = 0; i < mem->nr_ranges; i++) { | 
|  | start = mem->ranges[i].start; | 
|  | end = mem->ranges[i].end; | 
|  | p_start = mstart; | 
|  | p_end = mend; | 
|  |  | 
|  | if (p_start > end) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Because the memory ranges in mem->ranges are stored in | 
|  | * ascending order, when we detect `p_end < start`, we can | 
|  | * immediately exit the for loop, as the subsequent memory | 
|  | * ranges will definitely be outside the range we are looking | 
|  | * for. | 
|  | */ | 
|  | if (p_end < start) | 
|  | break; | 
|  |  | 
|  | /* Truncate any area outside of range */ | 
|  | if (p_start < start) | 
|  | p_start = start; | 
|  | if (p_end > end) | 
|  | p_end = end; | 
|  |  | 
|  | /* Found completely overlapping range */ | 
|  | if (p_start == start && p_end == end) { | 
|  | memmove(&mem->ranges[i], &mem->ranges[i + 1], | 
|  | (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); | 
|  | i--; | 
|  | mem->nr_ranges--; | 
|  | } else if (p_start > start && p_end < end) { | 
|  | /* Split original range */ | 
|  | if (mem->nr_ranges >= mem->max_nr_ranges) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memmove(&mem->ranges[i + 2], &mem->ranges[i + 1], | 
|  | (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); | 
|  |  | 
|  | mem->ranges[i].end = p_start - 1; | 
|  | mem->ranges[i + 1].start = p_end + 1; | 
|  | mem->ranges[i + 1].end = end; | 
|  |  | 
|  | i++; | 
|  | mem->nr_ranges++; | 
|  | } else if (p_start != start) | 
|  | mem->ranges[i].end = p_start - 1; | 
|  | else | 
|  | mem->ranges[i].start = p_end + 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ssize_t crash_get_memory_size(void) | 
|  | { | 
|  | ssize_t size = 0; | 
|  |  | 
|  | if (!kexec_trylock()) | 
|  | return -EBUSY; | 
|  |  | 
|  | size += crash_resource_size(&crashk_res); | 
|  | size += crash_resource_size(&crashk_low_res); | 
|  |  | 
|  | kexec_unlock(); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static int __crash_shrink_memory(struct resource *old_res, | 
|  | unsigned long new_size) | 
|  | { | 
|  | struct resource *ram_res; | 
|  |  | 
|  | ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); | 
|  | if (!ram_res) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ram_res->start = old_res->start + new_size; | 
|  | ram_res->end   = old_res->end; | 
|  | ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; | 
|  | ram_res->name  = "System RAM"; | 
|  |  | 
|  | if (!new_size) { | 
|  | release_resource(old_res); | 
|  | old_res->start = 0; | 
|  | old_res->end   = 0; | 
|  | } else { | 
|  | crashk_res.end = ram_res->start - 1; | 
|  | } | 
|  |  | 
|  | crash_free_reserved_phys_range(ram_res->start, ram_res->end); | 
|  | insert_resource(&iomem_resource, ram_res); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int crash_shrink_memory(unsigned long new_size) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long old_size, low_size; | 
|  |  | 
|  | if (!kexec_trylock()) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (kexec_crash_image) { | 
|  | ret = -ENOENT; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | low_size = crash_resource_size(&crashk_low_res); | 
|  | old_size = crash_resource_size(&crashk_res) + low_size; | 
|  | new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); | 
|  | if (new_size >= old_size) { | 
|  | ret = (new_size == old_size) ? 0 : -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * (low_size > new_size) implies that low_size is greater than zero. | 
|  | * This also means that if low_size is zero, the else branch is taken. | 
|  | * | 
|  | * If low_size is greater than 0, (low_size > new_size) indicates that | 
|  | * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res | 
|  | * needs to be shrunken. | 
|  | */ | 
|  | if (low_size > new_size) { | 
|  | ret = __crash_shrink_memory(&crashk_res, 0); | 
|  | if (ret) | 
|  | goto unlock; | 
|  |  | 
|  | ret = __crash_shrink_memory(&crashk_low_res, new_size); | 
|  | } else { | 
|  | ret = __crash_shrink_memory(&crashk_res, new_size - low_size); | 
|  | } | 
|  |  | 
|  | /* Swap crashk_res and crashk_low_res if needed */ | 
|  | if (!crashk_res.end && crashk_low_res.end) { | 
|  | crashk_res.start = crashk_low_res.start; | 
|  | crashk_res.end   = crashk_low_res.end; | 
|  | release_resource(&crashk_low_res); | 
|  | crashk_low_res.start = 0; | 
|  | crashk_low_res.end   = 0; | 
|  | insert_resource(&iomem_resource, &crashk_res); | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | kexec_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void crash_save_cpu(struct pt_regs *regs, int cpu) | 
|  | { | 
|  | struct elf_prstatus prstatus; | 
|  | u32 *buf; | 
|  |  | 
|  | if ((cpu < 0) || (cpu >= nr_cpu_ids)) | 
|  | return; | 
|  |  | 
|  | /* Using ELF notes here is opportunistic. | 
|  | * I need a well defined structure format | 
|  | * for the data I pass, and I need tags | 
|  | * on the data to indicate what information I have | 
|  | * squirrelled away.  ELF notes happen to provide | 
|  | * all of that, so there is no need to invent something new. | 
|  | */ | 
|  | buf = (u32 *)per_cpu_ptr(crash_notes, cpu); | 
|  | if (!buf) | 
|  | return; | 
|  | memset(&prstatus, 0, sizeof(prstatus)); | 
|  | prstatus.common.pr_pid = current->pid; | 
|  | elf_core_copy_regs(&prstatus.pr_reg, regs); | 
|  | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | 
|  | &prstatus, sizeof(prstatus)); | 
|  | final_note(buf); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int __init crash_notes_memory_init(void) | 
|  | { | 
|  | /* Allocate memory for saving cpu registers. */ | 
|  | size_t size, align; | 
|  |  | 
|  | /* | 
|  | * crash_notes could be allocated across 2 vmalloc pages when percpu | 
|  | * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc | 
|  | * pages are also on 2 continuous physical pages. In this case the | 
|  | * 2nd part of crash_notes in 2nd page could be lost since only the | 
|  | * starting address and size of crash_notes are exported through sysfs. | 
|  | * Here round up the size of crash_notes to the nearest power of two | 
|  | * and pass it to __alloc_percpu as align value. This can make sure | 
|  | * crash_notes is allocated inside one physical page. | 
|  | */ | 
|  | size = sizeof(note_buf_t); | 
|  | align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * Break compile if size is bigger than PAGE_SIZE since crash_notes | 
|  | * definitely will be in 2 pages with that. | 
|  | */ | 
|  | BUILD_BUG_ON(size > PAGE_SIZE); | 
|  |  | 
|  | crash_notes = __alloc_percpu(size, align); | 
|  | if (!crash_notes) { | 
|  | pr_warn("Memory allocation for saving cpu register states failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(crash_notes_memory_init); | 
|  |  | 
|  | #endif /*CONFIG_CRASH_DUMP*/ | 
|  |  | 
|  | #ifdef CONFIG_CRASH_HOTPLUG | 
|  | #undef pr_fmt | 
|  | #define pr_fmt(fmt) "crash hp: " fmt | 
|  |  | 
|  | /* | 
|  | * Different than kexec/kdump loading/unloading/jumping/shrinking which | 
|  | * usually rarely happen, there will be many crash hotplug events notified | 
|  | * during one short period, e.g one memory board is hot added and memory | 
|  | * regions are online. So mutex lock  __crash_hotplug_lock is used to | 
|  | * serialize the crash hotplug handling specifically. | 
|  | */ | 
|  | static DEFINE_MUTEX(__crash_hotplug_lock); | 
|  | #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock) | 
|  | #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock) | 
|  |  | 
|  | /* | 
|  | * This routine utilized when the crash_hotplug sysfs node is read. | 
|  | * It reflects the kernel's ability/permission to update the kdump | 
|  | * image directly. | 
|  | */ | 
|  | int crash_check_hotplug_support(void) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | crash_hotplug_lock(); | 
|  | /* Obtain lock while reading crash information */ | 
|  | if (!kexec_trylock()) { | 
|  | pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); | 
|  | crash_hotplug_unlock(); | 
|  | return 0; | 
|  | } | 
|  | if (kexec_crash_image) { | 
|  | rc = kexec_crash_image->hotplug_support; | 
|  | } | 
|  | /* Release lock now that update complete */ | 
|  | kexec_unlock(); | 
|  | crash_hotplug_unlock(); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To accurately reflect hot un/plug changes of CPU and Memory resources | 
|  | * (including onling and offlining of those resources), the relevant | 
|  | * kexec segments must be updated with latest CPU and Memory resources. | 
|  | * | 
|  | * Architectures must ensure two things for all segments that need | 
|  | * updating during hotplug events: | 
|  | * | 
|  | * 1. Segments must be large enough to accommodate a growing number of | 
|  | *    resources. | 
|  | * 2. Exclude the segments from SHA verification. | 
|  | * | 
|  | * For example, on most architectures, the elfcorehdr (which is passed | 
|  | * to the crash kernel via the elfcorehdr= parameter) must include the | 
|  | * new list of CPUs and memory. To make changes to the elfcorehdr, it | 
|  | * should be large enough to permit a growing number of CPU and Memory | 
|  | * resources. One can estimate the elfcorehdr memory size based on | 
|  | * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is | 
|  | * excluded from SHA verification by default if the architecture | 
|  | * supports crash hotplug. | 
|  | */ | 
|  | static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg) | 
|  | { | 
|  | struct kimage *image; | 
|  |  | 
|  | crash_hotplug_lock(); | 
|  | /* Obtain lock while changing crash information */ | 
|  | if (!kexec_trylock()) { | 
|  | pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); | 
|  | crash_hotplug_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check kdump is not loaded */ | 
|  | if (!kexec_crash_image) | 
|  | goto out; | 
|  |  | 
|  | image = kexec_crash_image; | 
|  |  | 
|  | /* Check that kexec segments update is permitted */ | 
|  | if (!image->hotplug_support) | 
|  | goto out; | 
|  |  | 
|  | if (hp_action == KEXEC_CRASH_HP_ADD_CPU || | 
|  | hp_action == KEXEC_CRASH_HP_REMOVE_CPU) | 
|  | pr_debug("hp_action %u, cpu %u\n", hp_action, cpu); | 
|  | else | 
|  | pr_debug("hp_action %u\n", hp_action); | 
|  |  | 
|  | /* | 
|  | * The elfcorehdr_index is set to -1 when the struct kimage | 
|  | * is allocated. Find the segment containing the elfcorehdr, | 
|  | * if not already found. | 
|  | */ | 
|  | if (image->elfcorehdr_index < 0) { | 
|  | unsigned long mem; | 
|  | unsigned char *ptr; | 
|  | unsigned int n; | 
|  |  | 
|  | for (n = 0; n < image->nr_segments; n++) { | 
|  | mem = image->segment[n].mem; | 
|  | ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT)); | 
|  | if (ptr) { | 
|  | /* The segment containing elfcorehdr */ | 
|  | if (memcmp(ptr, ELFMAG, SELFMAG) == 0) | 
|  | image->elfcorehdr_index = (int)n; | 
|  | kunmap_local(ptr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (image->elfcorehdr_index < 0) { | 
|  | pr_err("unable to locate elfcorehdr segment"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Needed in order for the segments to be updated */ | 
|  | arch_kexec_unprotect_crashkres(); | 
|  |  | 
|  | /* Differentiate between normal load and hotplug update */ | 
|  | image->hp_action = hp_action; | 
|  |  | 
|  | /* Now invoke arch-specific update handler */ | 
|  | arch_crash_handle_hotplug_event(image, arg); | 
|  |  | 
|  | /* No longer handling a hotplug event */ | 
|  | image->hp_action = KEXEC_CRASH_HP_NONE; | 
|  | image->elfcorehdr_updated = true; | 
|  |  | 
|  | /* Change back to read-only */ | 
|  | arch_kexec_protect_crashkres(); | 
|  |  | 
|  | /* Errors in the callback is not a reason to rollback state */ | 
|  | out: | 
|  | /* Release lock now that update complete */ | 
|  | kexec_unlock(); | 
|  | crash_hotplug_unlock(); | 
|  | } | 
|  |  | 
|  | static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg) | 
|  | { | 
|  | switch (val) { | 
|  | case MEM_ONLINE: | 
|  | crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY, | 
|  | KEXEC_CRASH_HP_INVALID_CPU, arg); | 
|  | break; | 
|  |  | 
|  | case MEM_OFFLINE: | 
|  | crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY, | 
|  | KEXEC_CRASH_HP_INVALID_CPU, arg); | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block crash_memhp_nb = { | 
|  | .notifier_call = crash_memhp_notifier, | 
|  | .priority = 0 | 
|  | }; | 
|  |  | 
|  | static int crash_cpuhp_online(unsigned int cpu) | 
|  | { | 
|  | crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crash_cpuhp_offline(unsigned int cpu) | 
|  | { | 
|  | crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init crash_hotplug_init(void) | 
|  | { | 
|  | int result = 0; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) | 
|  | register_memory_notifier(&crash_memhp_nb); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { | 
|  | result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, | 
|  | "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | subsys_initcall(crash_hotplug_init); | 
|  | #endif |