|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #include <linux/export.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | #include <linux/io.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/topology.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/cacheinfo.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/spec-ctrl.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/pci-direct.h> | 
|  | #include <asm/delay.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/resctrl.h> | 
|  | #include <asm/sev.h> | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | # include <asm/mmconfig.h> | 
|  | #endif | 
|  |  | 
|  | #include "cpu.h" | 
|  |  | 
|  | u16 invlpgb_count_max __ro_after_init; | 
|  |  | 
|  | static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) | 
|  | { | 
|  | u32 gprs[8] = { 0 }; | 
|  | int err; | 
|  |  | 
|  | WARN_ONCE((boot_cpu_data.x86 != 0xf), | 
|  | "%s should only be used on K8!\n", __func__); | 
|  |  | 
|  | gprs[1] = msr; | 
|  | gprs[7] = 0x9c5a203a; | 
|  |  | 
|  | err = rdmsr_safe_regs(gprs); | 
|  |  | 
|  | *p = gprs[0] | ((u64)gprs[2] << 32); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) | 
|  | { | 
|  | u32 gprs[8] = { 0 }; | 
|  |  | 
|  | WARN_ONCE((boot_cpu_data.x86 != 0xf), | 
|  | "%s should only be used on K8!\n", __func__); | 
|  |  | 
|  | gprs[0] = (u32)val; | 
|  | gprs[1] = msr; | 
|  | gprs[2] = val >> 32; | 
|  | gprs[7] = 0x9c5a203a; | 
|  |  | 
|  | return wrmsr_safe_regs(gprs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause | 
|  | *	misexecution of code under Linux. Owners of such processors should | 
|  | *	contact AMD for precise details and a CPU swap. | 
|  | * | 
|  | *	See	http://www.multimania.com/poulot/k6bug.html | 
|  | *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" | 
|  | *		(Publication # 21266  Issue Date: August 1998) | 
|  | * | 
|  | *	The following test is erm.. interesting. AMD neglected to up | 
|  | *	the chip setting when fixing the bug but they also tweaked some | 
|  | *	performance at the same time.. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | extern __visible void vide(void); | 
|  | __asm__(".text\n" | 
|  | ".globl vide\n" | 
|  | ".type vide, @function\n" | 
|  | ".align 4\n" | 
|  | "vide: ret\n"); | 
|  | #endif | 
|  |  | 
|  | static void init_amd_k5(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * General Systems BIOSen alias the cpu frequency registers | 
|  | * of the Elan at 0x000df000. Unfortunately, one of the Linux | 
|  | * drivers subsequently pokes it, and changes the CPU speed. | 
|  | * Workaround : Remove the unneeded alias. | 
|  | */ | 
|  | #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */ | 
|  | #define CBAR_ENB	(0x80000000) | 
|  | #define CBAR_KEY	(0X000000CB) | 
|  | if (c->x86_model == 9 || c->x86_model == 10) { | 
|  | if (inl(CBAR) & CBAR_ENB) | 
|  | outl(0 | CBAR_KEY, CBAR); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void init_amd_k6(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | u32 l, h; | 
|  | int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); | 
|  |  | 
|  | if (c->x86_model < 6) { | 
|  | /* Based on AMD doc 20734R - June 2000 */ | 
|  | if (c->x86_model == 0) { | 
|  | clear_cpu_cap(c, X86_FEATURE_APIC); | 
|  | set_cpu_cap(c, X86_FEATURE_PGE); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (c->x86_model == 6 && c->x86_stepping == 1) { | 
|  | const int K6_BUG_LOOP = 1000000; | 
|  | int n; | 
|  | void (*f_vide)(void); | 
|  | u64 d, d2; | 
|  |  | 
|  | pr_info("AMD K6 stepping B detected - "); | 
|  |  | 
|  | /* | 
|  | * It looks like AMD fixed the 2.6.2 bug and improved indirect | 
|  | * calls at the same time. | 
|  | */ | 
|  |  | 
|  | n = K6_BUG_LOOP; | 
|  | f_vide = vide; | 
|  | OPTIMIZER_HIDE_VAR(f_vide); | 
|  | d = rdtsc(); | 
|  | while (n--) | 
|  | f_vide(); | 
|  | d2 = rdtsc(); | 
|  | d = d2-d; | 
|  |  | 
|  | if (d > 20*K6_BUG_LOOP) | 
|  | pr_cont("system stability may be impaired when more than 32 MB are used.\n"); | 
|  | else | 
|  | pr_cont("probably OK (after B9730xxxx).\n"); | 
|  | } | 
|  |  | 
|  | /* K6 with old style WHCR */ | 
|  | if (c->x86_model < 8 || | 
|  | (c->x86_model == 8 && c->x86_stepping < 8)) { | 
|  | /* We can only write allocate on the low 508Mb */ | 
|  | if (mbytes > 508) | 
|  | mbytes = 508; | 
|  |  | 
|  | rdmsr(MSR_K6_WHCR, l, h); | 
|  | if ((l&0x0000FFFF) == 0) { | 
|  | unsigned long flags; | 
|  | l = (1<<0)|((mbytes/4)<<1); | 
|  | local_irq_save(flags); | 
|  | wbinvd(); | 
|  | wrmsr(MSR_K6_WHCR, l, h); | 
|  | local_irq_restore(flags); | 
|  | pr_info("Enabling old style K6 write allocation for %d Mb\n", | 
|  | mbytes); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((c->x86_model == 8 && c->x86_stepping > 7) || | 
|  | c->x86_model == 9 || c->x86_model == 13) { | 
|  | /* The more serious chips .. */ | 
|  |  | 
|  | if (mbytes > 4092) | 
|  | mbytes = 4092; | 
|  |  | 
|  | rdmsr(MSR_K6_WHCR, l, h); | 
|  | if ((l&0xFFFF0000) == 0) { | 
|  | unsigned long flags; | 
|  | l = ((mbytes>>2)<<22)|(1<<16); | 
|  | local_irq_save(flags); | 
|  | wbinvd(); | 
|  | wrmsr(MSR_K6_WHCR, l, h); | 
|  | local_irq_restore(flags); | 
|  | pr_info("Enabling new style K6 write allocation for %d Mb\n", | 
|  | mbytes); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (c->x86_model == 10) { | 
|  | /* AMD Geode LX is model 10 */ | 
|  | /* placeholder for any needed mods */ | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void init_amd_k7(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | u32 l, h; | 
|  |  | 
|  | /* | 
|  | * Bit 15 of Athlon specific MSR 15, needs to be 0 | 
|  | * to enable SSE on Palomino/Morgan/Barton CPU's. | 
|  | * If the BIOS didn't enable it already, enable it here. | 
|  | */ | 
|  | if (c->x86_model >= 6 && c->x86_model <= 10) { | 
|  | if (!cpu_has(c, X86_FEATURE_XMM)) { | 
|  | pr_info("Enabling disabled K7/SSE Support.\n"); | 
|  | msr_clear_bit(MSR_K7_HWCR, 15); | 
|  | set_cpu_cap(c, X86_FEATURE_XMM); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's been determined by AMD that Athlons since model 8 stepping 1 | 
|  | * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx | 
|  | * As per AMD technical note 27212 0.2 | 
|  | */ | 
|  | if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { | 
|  | rdmsr(MSR_K7_CLK_CTL, l, h); | 
|  | if ((l & 0xfff00000) != 0x20000000) { | 
|  | pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", | 
|  | l, ((l & 0x000fffff)|0x20000000)); | 
|  | wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* calling is from identify_secondary_cpu() ? */ | 
|  | if (!c->cpu_index) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Certain Athlons might work (for various values of 'work') in SMP | 
|  | * but they are not certified as MP capable. | 
|  | */ | 
|  | /* Athlon 660/661 is valid. */ | 
|  | if ((c->x86_model == 6) && ((c->x86_stepping == 0) || | 
|  | (c->x86_stepping == 1))) | 
|  | return; | 
|  |  | 
|  | /* Duron 670 is valid */ | 
|  | if ((c->x86_model == 7) && (c->x86_stepping == 0)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Athlon 662, Duron 671, and Athlon >model 7 have capability | 
|  | * bit. It's worth noting that the A5 stepping (662) of some | 
|  | * Athlon XP's have the MP bit set. | 
|  | * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for | 
|  | * more. | 
|  | */ | 
|  | if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || | 
|  | ((c->x86_model == 7) && (c->x86_stepping >= 1)) || | 
|  | (c->x86_model > 7)) | 
|  | if (cpu_has(c, X86_FEATURE_MP)) | 
|  | return; | 
|  |  | 
|  | /* If we get here, not a certified SMP capable AMD system. */ | 
|  |  | 
|  | /* | 
|  | * Don't taint if we are running SMP kernel on a single non-MP | 
|  | * approved Athlon | 
|  | */ | 
|  | WARN_ONCE(1, "WARNING: This combination of AMD" | 
|  | " processors is not suitable for SMP.\n"); | 
|  | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * To workaround broken NUMA config.  Read the comment in | 
|  | * srat_detect_node(). | 
|  | */ | 
|  | static int nearby_node(int apicid) | 
|  | { | 
|  | int i, node; | 
|  |  | 
|  | for (i = apicid - 1; i >= 0; i--) { | 
|  | node = __apicid_to_node[i]; | 
|  | if (node != NUMA_NO_NODE && node_online(node)) | 
|  | return node; | 
|  | } | 
|  | for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { | 
|  | node = __apicid_to_node[i]; | 
|  | if (node != NUMA_NO_NODE && node_online(node)) | 
|  | return node; | 
|  | } | 
|  | return first_node(node_online_map); /* Shouldn't happen */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void srat_detect_node(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | int cpu = smp_processor_id(); | 
|  | int node; | 
|  | unsigned apicid = c->topo.apicid; | 
|  |  | 
|  | node = numa_cpu_node(cpu); | 
|  | if (node == NUMA_NO_NODE) | 
|  | node = per_cpu_llc_id(cpu); | 
|  |  | 
|  | /* | 
|  | * On multi-fabric platform (e.g. Numascale NumaChip) a | 
|  | * platform-specific handler needs to be called to fixup some | 
|  | * IDs of the CPU. | 
|  | */ | 
|  | if (x86_cpuinit.fixup_cpu_id) | 
|  | x86_cpuinit.fixup_cpu_id(c, node); | 
|  |  | 
|  | if (!node_online(node)) { | 
|  | /* | 
|  | * Two possibilities here: | 
|  | * | 
|  | * - The CPU is missing memory and no node was created.  In | 
|  | *   that case try picking one from a nearby CPU. | 
|  | * | 
|  | * - The APIC IDs differ from the HyperTransport node IDs | 
|  | *   which the K8 northbridge parsing fills in.  Assume | 
|  | *   they are all increased by a constant offset, but in | 
|  | *   the same order as the HT nodeids.  If that doesn't | 
|  | *   result in a usable node fall back to the path for the | 
|  | *   previous case. | 
|  | * | 
|  | * This workaround operates directly on the mapping between | 
|  | * APIC ID and NUMA node, assuming certain relationship | 
|  | * between APIC ID, HT node ID and NUMA topology.  As going | 
|  | * through CPU mapping may alter the outcome, directly | 
|  | * access __apicid_to_node[]. | 
|  | */ | 
|  | int ht_nodeid = c->topo.initial_apicid; | 
|  |  | 
|  | if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) | 
|  | node = __apicid_to_node[ht_nodeid]; | 
|  | /* Pick a nearby node */ | 
|  | if (!node_online(node)) | 
|  | node = nearby_node(apicid); | 
|  | } | 
|  | numa_set_node(cpu, node); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bsp_determine_snp(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_ARCH_HAS_CC_PLATFORM | 
|  | cc_vendor = CC_VENDOR_AMD; | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_SEV_SNP)) { | 
|  | /* | 
|  | * RMP table entry format is not architectural and is defined by the | 
|  | * per-processor PPR. Restrict SNP support on the known CPU models | 
|  | * for which the RMP table entry format is currently defined or for | 
|  | * processors which support the architecturally defined RMPREAD | 
|  | * instruction. | 
|  | */ | 
|  | if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && | 
|  | (cpu_feature_enabled(X86_FEATURE_ZEN3) || | 
|  | cpu_feature_enabled(X86_FEATURE_ZEN4) || | 
|  | cpu_feature_enabled(X86_FEATURE_RMPREAD)) && | 
|  | snp_probe_rmptable_info()) { | 
|  | cc_platform_set(CC_ATTR_HOST_SEV_SNP); | 
|  | } else { | 
|  | setup_clear_cpu_cap(X86_FEATURE_SEV_SNP); | 
|  | cc_platform_clear(CC_ATTR_HOST_SEV_SNP); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bsp_init_amd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { | 
|  |  | 
|  | if (c->x86 > 0x10 || | 
|  | (c->x86 == 0x10 && c->x86_model >= 0x2)) { | 
|  | u64 val; | 
|  |  | 
|  | rdmsrl(MSR_K7_HWCR, val); | 
|  | if (!(val & BIT(24))) | 
|  | pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (c->x86 == 0x15) { | 
|  | unsigned long upperbit; | 
|  | u32 cpuid, assoc; | 
|  |  | 
|  | cpuid	 = cpuid_edx(0x80000005); | 
|  | assoc	 = cpuid >> 16 & 0xff; | 
|  | upperbit = ((cpuid >> 24) << 10) / assoc; | 
|  |  | 
|  | va_align.mask	  = (upperbit - 1) & PAGE_MASK; | 
|  | va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64; | 
|  |  | 
|  | /* A random value per boot for bit slice [12:upper_bit) */ | 
|  | va_align.bits = get_random_u32() & va_align.mask; | 
|  | } | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_MWAITX)) | 
|  | use_mwaitx_delay(); | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && | 
|  | !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && | 
|  | c->x86 >= 0x15 && c->x86 <= 0x17) { | 
|  | unsigned int bit; | 
|  |  | 
|  | switch (c->x86) { | 
|  | case 0x15: bit = 54; break; | 
|  | case 0x16: bit = 33; break; | 
|  | case 0x17: bit = 10; break; | 
|  | default: return; | 
|  | } | 
|  | /* | 
|  | * Try to cache the base value so further operations can | 
|  | * avoid RMW. If that faults, do not enable SSBD. | 
|  | */ | 
|  | if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { | 
|  | setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); | 
|  | setup_force_cpu_cap(X86_FEATURE_SSBD); | 
|  | x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | resctrl_cpu_detect(c); | 
|  |  | 
|  | /* Figure out Zen generations: */ | 
|  | switch (c->x86) { | 
|  | case 0x17: | 
|  | switch (c->x86_model) { | 
|  | case 0x00 ... 0x2f: | 
|  | case 0x50 ... 0x5f: | 
|  | setup_force_cpu_cap(X86_FEATURE_ZEN1); | 
|  | break; | 
|  | case 0x30 ... 0x4f: | 
|  | case 0x60 ... 0x7f: | 
|  | case 0x90 ... 0x91: | 
|  | case 0xa0 ... 0xaf: | 
|  | setup_force_cpu_cap(X86_FEATURE_ZEN2); | 
|  | break; | 
|  | default: | 
|  | goto warn; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0x19: | 
|  | switch (c->x86_model) { | 
|  | case 0x00 ... 0x0f: | 
|  | case 0x20 ... 0x5f: | 
|  | setup_force_cpu_cap(X86_FEATURE_ZEN3); | 
|  | break; | 
|  | case 0x10 ... 0x1f: | 
|  | case 0x60 ... 0xaf: | 
|  | setup_force_cpu_cap(X86_FEATURE_ZEN4); | 
|  | break; | 
|  | default: | 
|  | goto warn; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0x1a: | 
|  | switch (c->x86_model) { | 
|  | case 0x00 ... 0x2f: | 
|  | case 0x40 ... 0x4f: | 
|  | case 0x60 ... 0x7f: | 
|  | setup_force_cpu_cap(X86_FEATURE_ZEN5); | 
|  | break; | 
|  | default: | 
|  | goto warn; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | bsp_determine_snp(c); | 
|  | return; | 
|  |  | 
|  | warn: | 
|  | WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model); | 
|  | } | 
|  |  | 
|  | static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 msr; | 
|  |  | 
|  | /* | 
|  | * BIOS support is required for SME and SEV. | 
|  | *   For SME: If BIOS has enabled SME then adjust x86_phys_bits by | 
|  | *	      the SME physical address space reduction value. | 
|  | *	      If BIOS has not enabled SME then don't advertise the | 
|  | *	      SME feature (set in scattered.c). | 
|  | *	      If the kernel has not enabled SME via any means then | 
|  | *	      don't advertise the SME feature. | 
|  | *   For SEV: If BIOS has not enabled SEV then don't advertise SEV and | 
|  | *	      any additional functionality based on it. | 
|  | * | 
|  | *   In all cases, since support for SME and SEV requires long mode, | 
|  | *   don't advertise the feature under CONFIG_X86_32. | 
|  | */ | 
|  | if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { | 
|  | /* Check if memory encryption is enabled */ | 
|  | rdmsrl(MSR_AMD64_SYSCFG, msr); | 
|  | if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) | 
|  | goto clear_all; | 
|  |  | 
|  | /* | 
|  | * Always adjust physical address bits. Even though this | 
|  | * will be a value above 32-bits this is still done for | 
|  | * CONFIG_X86_32 so that accurate values are reported. | 
|  | */ | 
|  | c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_X86_32)) | 
|  | goto clear_all; | 
|  |  | 
|  | if (!sme_me_mask) | 
|  | setup_clear_cpu_cap(X86_FEATURE_SME); | 
|  |  | 
|  | rdmsrl(MSR_K7_HWCR, msr); | 
|  | if (!(msr & MSR_K7_HWCR_SMMLOCK)) | 
|  | goto clear_sev; | 
|  |  | 
|  | return; | 
|  |  | 
|  | clear_all: | 
|  | setup_clear_cpu_cap(X86_FEATURE_SME); | 
|  | clear_sev: | 
|  | setup_clear_cpu_cap(X86_FEATURE_SEV); | 
|  | setup_clear_cpu_cap(X86_FEATURE_SEV_ES); | 
|  | setup_clear_cpu_cap(X86_FEATURE_SEV_SNP); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void early_init_amd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u32 dummy; | 
|  |  | 
|  | if (c->x86 >= 0xf) | 
|  | set_cpu_cap(c, X86_FEATURE_K8); | 
|  |  | 
|  | rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); | 
|  |  | 
|  | /* | 
|  | * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate | 
|  | * with P/T states and does not stop in deep C-states | 
|  | */ | 
|  | if (c->x86_power & (1 << 8)) { | 
|  | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); | 
|  | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); | 
|  | } | 
|  |  | 
|  | /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ | 
|  | if (c->x86_power & BIT(12)) | 
|  | set_cpu_cap(c, X86_FEATURE_ACC_POWER); | 
|  |  | 
|  | /* Bit 14 indicates the Runtime Average Power Limit interface. */ | 
|  | if (c->x86_power & BIT(14)) | 
|  | set_cpu_cap(c, X86_FEATURE_RAPL); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | set_cpu_cap(c, X86_FEATURE_SYSCALL32); | 
|  | #else | 
|  | /*  Set MTRR capability flag if appropriate */ | 
|  | if (c->x86 == 5) | 
|  | if (c->x86_model == 13 || c->x86_model == 9 || | 
|  | (c->x86_model == 8 && c->x86_stepping >= 8)) | 
|  | set_cpu_cap(c, X86_FEATURE_K6_MTRR); | 
|  | #endif | 
|  | #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) | 
|  | /* | 
|  | * ApicID can always be treated as an 8-bit value for AMD APIC versions | 
|  | * >= 0x10, but even old K8s came out of reset with version 0x10. So, we | 
|  | * can safely set X86_FEATURE_EXTD_APICID unconditionally for families | 
|  | * after 16h. | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_APIC)) { | 
|  | if (c->x86 > 0x16) | 
|  | set_cpu_cap(c, X86_FEATURE_EXTD_APICID); | 
|  | else if (c->x86 >= 0xf) { | 
|  | /* check CPU config space for extended APIC ID */ | 
|  | unsigned int val; | 
|  |  | 
|  | val = read_pci_config(0, 24, 0, 0x68); | 
|  | if ((val >> 17 & 0x3) == 0x3) | 
|  | set_cpu_cap(c, X86_FEATURE_EXTD_APICID); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is only needed to tell the kernel whether to use VMCALL | 
|  | * and VMMCALL.  VMMCALL is never executed except under virt, so | 
|  | * we can set it unconditionally. | 
|  | */ | 
|  | set_cpu_cap(c, X86_FEATURE_VMMCALL); | 
|  |  | 
|  | /* F16h erratum 793, CVE-2013-6885 */ | 
|  | if (c->x86 == 0x16 && c->x86_model <= 0xf) | 
|  | msr_set_bit(MSR_AMD64_LS_CFG, 15); | 
|  |  | 
|  | early_detect_mem_encrypt(c); | 
|  |  | 
|  | if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) { | 
|  | if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB)) | 
|  | setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); | 
|  | else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) { | 
|  | setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); | 
|  | setup_force_cpu_cap(X86_FEATURE_SBPB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_amd_k8(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u32 level; | 
|  | u64 value; | 
|  |  | 
|  | /* On C+ stepping K8 rep microcode works well for copy/memset */ | 
|  | level = cpuid_eax(1); | 
|  | if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) | 
|  | set_cpu_cap(c, X86_FEATURE_REP_GOOD); | 
|  |  | 
|  | /* | 
|  | * Some BIOSes incorrectly force this feature, but only K8 revision D | 
|  | * (model = 0x14) and later actually support it. | 
|  | * (AMD Erratum #110, docId: 25759). | 
|  | */ | 
|  | if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM) && !cpu_has(c, X86_FEATURE_HYPERVISOR)) { | 
|  | clear_cpu_cap(c, X86_FEATURE_LAHF_LM); | 
|  | if (!rdmsrl_amd_safe(0xc001100d, &value)) { | 
|  | value &= ~BIT_64(32); | 
|  | wrmsrl_amd_safe(0xc001100d, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!c->x86_model_id[0]) | 
|  | strcpy(c->x86_model_id, "Hammer"); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Disable TLB flush filter by setting HWCR.FFDIS on K8 | 
|  | * bit 6 of msr C001_0015 | 
|  | * | 
|  | * Errata 63 for SH-B3 steppings | 
|  | * Errata 122 for all steppings (F+ have it disabled by default) | 
|  | */ | 
|  | msr_set_bit(MSR_K7_HWCR, 6); | 
|  | #endif | 
|  | set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); | 
|  |  | 
|  | /* | 
|  | * Check models and steppings affected by erratum 400. This is | 
|  | * used to select the proper idle routine and to enable the | 
|  | * check whether the machine is affected in arch_post_acpi_subsys_init() | 
|  | * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. | 
|  | */ | 
|  | if (c->x86_model > 0x41 || | 
|  | (c->x86_model == 0x41 && c->x86_stepping >= 0x2)) | 
|  | setup_force_cpu_bug(X86_BUG_AMD_E400); | 
|  | } | 
|  |  | 
|  | static void init_amd_gh(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_MMCONF_FAM10H | 
|  | /* do this for boot cpu */ | 
|  | if (c == &boot_cpu_data) | 
|  | check_enable_amd_mmconf_dmi(); | 
|  |  | 
|  | fam10h_check_enable_mmcfg(); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Disable GART TLB Walk Errors on Fam10h. We do this here because this | 
|  | * is always needed when GART is enabled, even in a kernel which has no | 
|  | * MCE support built in. BIOS should disable GartTlbWlk Errors already. | 
|  | * If it doesn't, we do it here as suggested by the BKDG. | 
|  | * | 
|  | * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 | 
|  | */ | 
|  | msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); | 
|  |  | 
|  | /* | 
|  | * On family 10h BIOS may not have properly enabled WC+ support, causing | 
|  | * it to be converted to CD memtype. This may result in performance | 
|  | * degradation for certain nested-paging guests. Prevent this conversion | 
|  | * by clearing bit 24 in MSR_AMD64_BU_CFG2. | 
|  | * | 
|  | * NOTE: we want to use the _safe accessors so as not to #GP kvm | 
|  | * guests on older kvm hosts. | 
|  | */ | 
|  | msr_clear_bit(MSR_AMD64_BU_CFG2, 24); | 
|  |  | 
|  | set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); | 
|  |  | 
|  | /* | 
|  | * Check models and steppings affected by erratum 400. This is | 
|  | * used to select the proper idle routine and to enable the | 
|  | * check whether the machine is affected in arch_post_acpi_subsys_init() | 
|  | * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. | 
|  | */ | 
|  | if (c->x86_model > 0x2 || | 
|  | (c->x86_model == 0x2 && c->x86_stepping >= 0x1)) | 
|  | setup_force_cpu_bug(X86_BUG_AMD_E400); | 
|  | } | 
|  |  | 
|  | static void init_amd_ln(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* | 
|  | * Apply erratum 665 fix unconditionally so machines without a BIOS | 
|  | * fix work. | 
|  | */ | 
|  | msr_set_bit(MSR_AMD64_DE_CFG, 31); | 
|  | } | 
|  |  | 
|  | static bool rdrand_force; | 
|  |  | 
|  | static int __init rdrand_cmdline(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!strcmp(str, "force")) | 
|  | rdrand_force = true; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("rdrand", rdrand_cmdline); | 
|  |  | 
|  | static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* | 
|  | * Saving of the MSR used to hide the RDRAND support during | 
|  | * suspend/resume is done by arch/x86/power/cpu.c, which is | 
|  | * dependent on CONFIG_PM_SLEEP. | 
|  | */ | 
|  | if (!IS_ENABLED(CONFIG_PM_SLEEP)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The self-test can clear X86_FEATURE_RDRAND, so check for | 
|  | * RDRAND support using the CPUID function directly. | 
|  | */ | 
|  | if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force) | 
|  | return; | 
|  |  | 
|  | msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62); | 
|  |  | 
|  | /* | 
|  | * Verify that the CPUID change has occurred in case the kernel is | 
|  | * running virtualized and the hypervisor doesn't support the MSR. | 
|  | */ | 
|  | if (cpuid_ecx(1) & BIT(30)) { | 
|  | pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | clear_cpu_cap(c, X86_FEATURE_RDRAND); | 
|  | pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n"); | 
|  | } | 
|  |  | 
|  | static void init_amd_jg(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* | 
|  | * Some BIOS implementations do not restore proper RDRAND support | 
|  | * across suspend and resume. Check on whether to hide the RDRAND | 
|  | * instruction support via CPUID. | 
|  | */ | 
|  | clear_rdrand_cpuid_bit(c); | 
|  | } | 
|  |  | 
|  | static void init_amd_bd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | /* | 
|  | * The way access filter has a performance penalty on some workloads. | 
|  | * Disable it on the affected CPUs. | 
|  | */ | 
|  | if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { | 
|  | if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { | 
|  | value |= 0x1E; | 
|  | wrmsrl_safe(MSR_F15H_IC_CFG, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some BIOS implementations do not restore proper RDRAND support | 
|  | * across suspend and resume. Check on whether to hide the RDRAND | 
|  | * instruction support via CPUID. | 
|  | */ | 
|  | clear_rdrand_cpuid_bit(c); | 
|  | } | 
|  |  | 
|  | static const struct x86_cpu_id erratum_1386_microcode[] = { | 
|  | X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x01), 0x2, 0x2, 0x0800126e), | 
|  | X86_MATCH_VFM_STEPS(VFM_MAKE(X86_VENDOR_AMD, 0x17, 0x31), 0x0, 0x0, 0x08301052), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static void fix_erratum_1386(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* | 
|  | * Work around Erratum 1386.  The XSAVES instruction malfunctions in | 
|  | * certain circumstances on Zen1/2 uarch, and not all parts have had | 
|  | * updated microcode at the time of writing (March 2023). | 
|  | * | 
|  | * Affected parts all have no supervisor XSAVE states, meaning that | 
|  | * the XSAVEC instruction (which works fine) is equivalent. | 
|  | * | 
|  | * Clear the feature flag only on microcode revisions which | 
|  | * don't have the fix. | 
|  | */ | 
|  | if (x86_match_min_microcode_rev(erratum_1386_microcode)) | 
|  | return; | 
|  |  | 
|  | clear_cpu_cap(c, X86_FEATURE_XSAVES); | 
|  | } | 
|  |  | 
|  | void init_spectral_chicken(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_MITIGATION_UNRET_ENTRY | 
|  | u64 value; | 
|  |  | 
|  | /* | 
|  | * On Zen2 we offer this chicken (bit) on the altar of Speculation. | 
|  | * | 
|  | * This suppresses speculation from the middle of a basic block, i.e. it | 
|  | * suppresses non-branch predictions. | 
|  | */ | 
|  | if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { | 
|  | if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) { | 
|  | value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT; | 
|  | wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void init_amd_zen_common(void) | 
|  | { | 
|  | setup_force_cpu_cap(X86_FEATURE_ZEN); | 
|  | #ifdef CONFIG_NUMA | 
|  | node_reclaim_distance = 32; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void init_amd_zen1(struct cpuinfo_x86 *c) | 
|  | { | 
|  | fix_erratum_1386(c); | 
|  |  | 
|  | /* Fix up CPUID bits, but only if not virtualised. */ | 
|  | if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { | 
|  |  | 
|  | /* Erratum 1076: CPB feature bit not being set in CPUID. */ | 
|  | if (!cpu_has(c, X86_FEATURE_CPB)) | 
|  | set_cpu_cap(c, X86_FEATURE_CPB); | 
|  | } | 
|  |  | 
|  | pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n"); | 
|  | setup_force_cpu_bug(X86_BUG_DIV0); | 
|  | } | 
|  |  | 
|  | static bool cpu_has_zenbleed_microcode(void) | 
|  | { | 
|  | u32 good_rev = 0; | 
|  |  | 
|  | switch (boot_cpu_data.x86_model) { | 
|  | case 0x30 ... 0x3f: good_rev = 0x0830107b; break; | 
|  | case 0x60 ... 0x67: good_rev = 0x0860010c; break; | 
|  | case 0x68 ... 0x6f: good_rev = 0x08608107; break; | 
|  | case 0x70 ... 0x7f: good_rev = 0x08701033; break; | 
|  | case 0xa0 ... 0xaf: good_rev = 0x08a00009; break; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (boot_cpu_data.microcode < good_rev) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void zen2_zenbleed_check(struct cpuinfo_x86 *c) | 
|  | { | 
|  | if (cpu_has(c, X86_FEATURE_HYPERVISOR)) | 
|  | return; | 
|  |  | 
|  | if (!cpu_has(c, X86_FEATURE_AVX)) | 
|  | return; | 
|  |  | 
|  | if (!cpu_has_zenbleed_microcode()) { | 
|  | pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n"); | 
|  | msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); | 
|  | } else { | 
|  | msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_amd_zen2(struct cpuinfo_x86 *c) | 
|  | { | 
|  | init_spectral_chicken(c); | 
|  | fix_erratum_1386(c); | 
|  | zen2_zenbleed_check(c); | 
|  | } | 
|  |  | 
|  | static void init_amd_zen3(struct cpuinfo_x86 *c) | 
|  | { | 
|  | if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { | 
|  | /* | 
|  | * Zen3 (Fam19 model < 0x10) parts are not susceptible to | 
|  | * Branch Type Confusion, but predate the allocation of the | 
|  | * BTC_NO bit. | 
|  | */ | 
|  | if (!cpu_has(c, X86_FEATURE_BTC_NO)) | 
|  | set_cpu_cap(c, X86_FEATURE_BTC_NO); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_amd_zen4(struct cpuinfo_x86 *c) | 
|  | { | 
|  | if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) | 
|  | msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT); | 
|  |  | 
|  | /* | 
|  | * These Zen4 SoCs advertise support for virtualized VMLOAD/VMSAVE | 
|  | * in some BIOS versions but they can lead to random host reboots. | 
|  | */ | 
|  | switch (c->x86_model) { | 
|  | case 0x18 ... 0x1f: | 
|  | case 0x60 ... 0x7f: | 
|  | clear_cpu_cap(c, X86_FEATURE_V_VMSAVE_VMLOAD); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_amd_zen5(struct cpuinfo_x86 *c) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void init_amd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 vm_cr; | 
|  |  | 
|  | early_init_amd(c); | 
|  |  | 
|  | /* | 
|  | * Bit 31 in normal CPUID used for nonstandard 3DNow ID; | 
|  | * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway | 
|  | */ | 
|  | clear_cpu_cap(c, 0*32+31); | 
|  |  | 
|  | if (c->x86 >= 0x10) | 
|  | set_cpu_cap(c, X86_FEATURE_REP_GOOD); | 
|  |  | 
|  | /* AMD FSRM also implies FSRS */ | 
|  | if (cpu_has(c, X86_FEATURE_FSRM)) | 
|  | set_cpu_cap(c, X86_FEATURE_FSRS); | 
|  |  | 
|  | /* K6s reports MCEs but don't actually have all the MSRs */ | 
|  | if (c->x86 < 6) | 
|  | clear_cpu_cap(c, X86_FEATURE_MCE); | 
|  |  | 
|  | switch (c->x86) { | 
|  | case 4:    init_amd_k5(c); break; | 
|  | case 5:    init_amd_k6(c); break; | 
|  | case 6:	   init_amd_k7(c); break; | 
|  | case 0xf:  init_amd_k8(c); break; | 
|  | case 0x10: init_amd_gh(c); break; | 
|  | case 0x12: init_amd_ln(c); break; | 
|  | case 0x15: init_amd_bd(c); break; | 
|  | case 0x16: init_amd_jg(c); break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save up on some future enablement work and do common Zen | 
|  | * settings. | 
|  | */ | 
|  | if (c->x86 >= 0x17) | 
|  | init_amd_zen_common(); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_ZEN1)) | 
|  | init_amd_zen1(c); | 
|  | else if (boot_cpu_has(X86_FEATURE_ZEN2)) | 
|  | init_amd_zen2(c); | 
|  | else if (boot_cpu_has(X86_FEATURE_ZEN3)) | 
|  | init_amd_zen3(c); | 
|  | else if (boot_cpu_has(X86_FEATURE_ZEN4)) | 
|  | init_amd_zen4(c); | 
|  | else if (boot_cpu_has(X86_FEATURE_ZEN5)) | 
|  | init_amd_zen5(c); | 
|  |  | 
|  | /* | 
|  | * Enable workaround for FXSAVE leak on CPUs | 
|  | * without a XSaveErPtr feature | 
|  | */ | 
|  | if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) | 
|  | set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); | 
|  |  | 
|  | cpu_detect_cache_sizes(c); | 
|  |  | 
|  | srat_detect_node(c); | 
|  |  | 
|  | init_amd_cacheinfo(c); | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_SVM)) { | 
|  | rdmsrl(MSR_VM_CR, vm_cr); | 
|  | if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) { | 
|  | pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n"); | 
|  | clear_cpu_cap(c, X86_FEATURE_SVM); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) { | 
|  | /* | 
|  | * Use LFENCE for execution serialization.  On families which | 
|  | * don't have that MSR, LFENCE is already serializing. | 
|  | * msr_set_bit() uses the safe accessors, too, even if the MSR | 
|  | * is not present. | 
|  | */ | 
|  | msr_set_bit(MSR_AMD64_DE_CFG, | 
|  | MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT); | 
|  |  | 
|  | /* A serializing LFENCE stops RDTSC speculation */ | 
|  | set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Family 0x12 and above processors have APIC timer | 
|  | * running in deep C states. | 
|  | */ | 
|  | if (c->x86 > 0x11) | 
|  | set_cpu_cap(c, X86_FEATURE_ARAT); | 
|  |  | 
|  | /* 3DNow or LM implies PREFETCHW */ | 
|  | if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) | 
|  | if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) | 
|  | set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); | 
|  |  | 
|  | /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ | 
|  | if (!cpu_feature_enabled(X86_FEATURE_XENPV)) | 
|  | set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); | 
|  |  | 
|  | /* | 
|  | * Turn on the Instructions Retired free counter on machines not | 
|  | * susceptible to erratum #1054 "Instructions Retired Performance | 
|  | * Counter May Be Inaccurate". | 
|  | */ | 
|  | if (cpu_has(c, X86_FEATURE_IRPERF) && | 
|  | (boot_cpu_has(X86_FEATURE_ZEN1) && c->x86_model > 0x2f)) | 
|  | msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT); | 
|  |  | 
|  | check_null_seg_clears_base(c); | 
|  |  | 
|  | /* | 
|  | * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up | 
|  | * using the trampoline code and as part of it, MSR_EFER gets prepared there in | 
|  | * order to be replicated onto them. Regardless, set it here again, if not set, | 
|  | * to protect against any future refactoring/code reorganization which might | 
|  | * miss setting this important bit. | 
|  | */ | 
|  | if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && | 
|  | cpu_has(c, X86_FEATURE_AUTOIBRS)) | 
|  | WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS) < 0); | 
|  |  | 
|  | /* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */ | 
|  | clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); | 
|  |  | 
|  | /* Enable Translation Cache Extension */ | 
|  | if (cpu_has(c, X86_FEATURE_TCE)) | 
|  | msr_set_bit(MSR_EFER, _EFER_TCE); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) | 
|  | { | 
|  | /* AMD errata T13 (order #21922) */ | 
|  | if (c->x86 == 6) { | 
|  | /* Duron Rev A0 */ | 
|  | if (c->x86_model == 3 && c->x86_stepping == 0) | 
|  | size = 64; | 
|  | /* Tbird rev A1/A2 */ | 
|  | if (c->x86_model == 4 && | 
|  | (c->x86_stepping == 0 || c->x86_stepping == 1)) | 
|  | size = 256; | 
|  | } | 
|  | return size; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u32 ebx, eax, ecx, edx; | 
|  | u16 mask = 0xfff; | 
|  |  | 
|  | if (c->x86 < 0xf) | 
|  | return; | 
|  |  | 
|  | if (c->extended_cpuid_level < 0x80000006) | 
|  | return; | 
|  |  | 
|  | cpuid(0x80000006, &eax, &ebx, &ecx, &edx); | 
|  |  | 
|  | tlb_lld_4k = (ebx >> 16) & mask; | 
|  | tlb_lli_4k = ebx & mask; | 
|  |  | 
|  | /* | 
|  | * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB | 
|  | * characteristics from the CPUID function 0x80000005 instead. | 
|  | */ | 
|  | if (c->x86 == 0xf) { | 
|  | cpuid(0x80000005, &eax, &ebx, &ecx, &edx); | 
|  | mask = 0xff; | 
|  | } | 
|  |  | 
|  | /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ | 
|  | if (!((eax >> 16) & mask)) | 
|  | tlb_lld_2m = (cpuid_eax(0x80000005) >> 16) & 0xff; | 
|  | else | 
|  | tlb_lld_2m = (eax >> 16) & mask; | 
|  |  | 
|  | /* a 4M entry uses two 2M entries */ | 
|  | tlb_lld_4m = tlb_lld_2m >> 1; | 
|  |  | 
|  | /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ | 
|  | if (!(eax & mask)) { | 
|  | /* Erratum 658 */ | 
|  | if (c->x86 == 0x15 && c->x86_model <= 0x1f) { | 
|  | tlb_lli_2m = 1024; | 
|  | } else { | 
|  | cpuid(0x80000005, &eax, &ebx, &ecx, &edx); | 
|  | tlb_lli_2m = eax & 0xff; | 
|  | } | 
|  | } else | 
|  | tlb_lli_2m = eax & mask; | 
|  |  | 
|  | tlb_lli_4m = tlb_lli_2m >> 1; | 
|  |  | 
|  | /* Max number of pages INVLPGB can invalidate in one shot */ | 
|  | if (cpu_has(c, X86_FEATURE_INVLPGB)) | 
|  | invlpgb_count_max = (cpuid_edx(0x80000008) & 0xffff) + 1; | 
|  | } | 
|  |  | 
|  | static const struct cpu_dev amd_cpu_dev = { | 
|  | .c_vendor	= "AMD", | 
|  | .c_ident	= { "AuthenticAMD" }, | 
|  | #ifdef CONFIG_X86_32 | 
|  | .legacy_models = { | 
|  | { .family = 4, .model_names = | 
|  | { | 
|  | [3] = "486 DX/2", | 
|  | [7] = "486 DX/2-WB", | 
|  | [8] = "486 DX/4", | 
|  | [9] = "486 DX/4-WB", | 
|  | [14] = "Am5x86-WT", | 
|  | [15] = "Am5x86-WB" | 
|  | } | 
|  | }, | 
|  | }, | 
|  | .legacy_cache_size = amd_size_cache, | 
|  | #endif | 
|  | .c_early_init   = early_init_amd, | 
|  | .c_detect_tlb	= cpu_detect_tlb_amd, | 
|  | .c_bsp_init	= bsp_init_amd, | 
|  | .c_init		= init_amd, | 
|  | .c_x86_vendor	= X86_VENDOR_AMD, | 
|  | }; | 
|  |  | 
|  | cpu_dev_register(amd_cpu_dev); | 
|  |  | 
|  | static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask); | 
|  |  | 
|  | static unsigned int amd_msr_dr_addr_masks[] = { | 
|  | MSR_F16H_DR0_ADDR_MASK, | 
|  | MSR_F16H_DR1_ADDR_MASK, | 
|  | MSR_F16H_DR1_ADDR_MASK + 1, | 
|  | MSR_F16H_DR1_ADDR_MASK + 2 | 
|  | }; | 
|  |  | 
|  | void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) | 
|  | return; | 
|  |  | 
|  | if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask) | 
|  | return; | 
|  |  | 
|  | wrmsr(amd_msr_dr_addr_masks[dr], mask, 0); | 
|  | per_cpu(amd_dr_addr_mask, cpu)[dr] = mask; | 
|  | } | 
|  |  | 
|  | unsigned long amd_get_dr_addr_mask(unsigned int dr) | 
|  | { | 
|  | if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) | 
|  | return 0; | 
|  |  | 
|  | if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) | 
|  | return 0; | 
|  |  | 
|  | return per_cpu(amd_dr_addr_mask[dr], smp_processor_id()); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask); | 
|  |  | 
|  | static void zenbleed_check_cpu(void *unused) | 
|  | { | 
|  | struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); | 
|  |  | 
|  | zen2_zenbleed_check(c); | 
|  | } | 
|  |  | 
|  | void amd_check_microcode(void) | 
|  | { | 
|  | if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) | 
|  | return; | 
|  |  | 
|  | if (cpu_feature_enabled(X86_FEATURE_ZEN2)) | 
|  | on_each_cpu(zenbleed_check_cpu, NULL, 1); | 
|  | } |