|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Virtual Memory Map support | 
|  | * | 
|  | * (C) 2007 sgi. Christoph Lameter. | 
|  | * | 
|  | * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, | 
|  | * virt_to_page, page_address() to be implemented as a base offset | 
|  | * calculation without memory access. | 
|  | * | 
|  | * However, virtual mappings need a page table and TLBs. Many Linux | 
|  | * architectures already map their physical space using 1-1 mappings | 
|  | * via TLBs. For those arches the virtual memory map is essentially | 
|  | * for free if we use the same page size as the 1-1 mappings. In that | 
|  | * case the overhead consists of a few additional pages that are | 
|  | * allocated to create a view of memory for vmemmap. | 
|  | * | 
|  | * The architecture is expected to provide a vmemmap_populate() function | 
|  | * to instantiate the mapping. | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include <asm/dma.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "hugetlb_vmemmap.h" | 
|  |  | 
|  | /* | 
|  | * Flags for vmemmap_populate_range and friends. | 
|  | */ | 
|  | /* Get a ref on the head page struct page, for ZONE_DEVICE compound pages */ | 
|  | #define VMEMMAP_POPULATE_PAGEREF	0x0001 | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * Allocate a block of memory to be used to back the virtual memory map | 
|  | * or to back the page tables that are used to create the mapping. | 
|  | * Uses the main allocators if they are available, else bootmem. | 
|  | */ | 
|  |  | 
|  | static void * __ref __earlyonly_bootmem_alloc(int node, | 
|  | unsigned long size, | 
|  | unsigned long align, | 
|  | unsigned long goal) | 
|  | { | 
|  | return memmap_alloc(size, align, goal, node, false); | 
|  | } | 
|  |  | 
|  | void * __meminit vmemmap_alloc_block(unsigned long size, int node) | 
|  | { | 
|  | /* If the main allocator is up use that, fallback to bootmem. */ | 
|  | if (slab_is_available()) { | 
|  | gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; | 
|  | int order = get_order(size); | 
|  | static bool warned; | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_pages_node(node, gfp_mask, order); | 
|  | if (page) | 
|  | return page_address(page); | 
|  |  | 
|  | if (!warned) { | 
|  | warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, | 
|  | "vmemmap alloc failure: order:%u", order); | 
|  | warned = true; | 
|  | } | 
|  | return NULL; | 
|  | } else | 
|  | return __earlyonly_bootmem_alloc(node, size, size, | 
|  | __pa(MAX_DMA_ADDRESS)); | 
|  | } | 
|  |  | 
|  | static void * __meminit altmap_alloc_block_buf(unsigned long size, | 
|  | struct vmem_altmap *altmap); | 
|  |  | 
|  | /* need to make sure size is all the same during early stage */ | 
|  | void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | if (altmap) | 
|  | return altmap_alloc_block_buf(size, altmap); | 
|  |  | 
|  | ptr = sparse_buffer_alloc(size); | 
|  | if (!ptr) | 
|  | ptr = vmemmap_alloc_block(size, node); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) | 
|  | { | 
|  | return altmap->base_pfn + altmap->reserve + altmap->alloc | 
|  | + altmap->align; | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long allocated = altmap->alloc + altmap->align; | 
|  |  | 
|  | if (altmap->free > allocated) | 
|  | return altmap->free - allocated; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void * __meminit altmap_alloc_block_buf(unsigned long size, | 
|  | struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long pfn, nr_pfns, nr_align; | 
|  |  | 
|  | if (size & ~PAGE_MASK) { | 
|  | pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", | 
|  | __func__, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pfn = vmem_altmap_next_pfn(altmap); | 
|  | nr_pfns = size >> PAGE_SHIFT; | 
|  | nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); | 
|  | nr_align = ALIGN(pfn, nr_align) - pfn; | 
|  | if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) | 
|  | return NULL; | 
|  |  | 
|  | altmap->alloc += nr_pfns; | 
|  | altmap->align += nr_align; | 
|  | pfn += nr_align; | 
|  |  | 
|  | pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", | 
|  | __func__, pfn, altmap->alloc, altmap->align, nr_pfns); | 
|  | return __va(__pfn_to_phys(pfn)); | 
|  | } | 
|  |  | 
|  | void __meminit vmemmap_verify(pte_t *pte, int node, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(ptep_get(pte)); | 
|  | int actual_node = early_pfn_to_nid(pfn); | 
|  |  | 
|  | if (node_distance(actual_node, node) > LOCAL_DISTANCE) | 
|  | pr_warn_once("[%lx-%lx] potential offnode page_structs\n", | 
|  | start, end - 1); | 
|  | } | 
|  |  | 
|  | pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, | 
|  | struct vmem_altmap *altmap, | 
|  | unsigned long ptpfn, unsigned long flags) | 
|  | { | 
|  | pte_t *pte = pte_offset_kernel(pmd, addr); | 
|  | if (pte_none(ptep_get(pte))) { | 
|  | pte_t entry; | 
|  | void *p; | 
|  |  | 
|  | if (ptpfn == (unsigned long)-1) { | 
|  | p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); | 
|  | if (!p) | 
|  | return NULL; | 
|  | ptpfn = PHYS_PFN(__pa(p)); | 
|  | } else { | 
|  | /* | 
|  | * When a PTE/PMD entry is freed from the init_mm | 
|  | * there's a free_pages() call to this page allocated | 
|  | * above. Thus this get_page() is paired with the | 
|  | * put_page_testzero() on the freeing path. | 
|  | * This can only called by certain ZONE_DEVICE path, | 
|  | * and through vmemmap_populate_compound_pages() when | 
|  | * slab is available. | 
|  | */ | 
|  | if (flags & VMEMMAP_POPULATE_PAGEREF) | 
|  | get_page(pfn_to_page(ptpfn)); | 
|  | } | 
|  | entry = pfn_pte(ptpfn, PAGE_KERNEL); | 
|  | set_pte_at(&init_mm, addr, pte, entry); | 
|  | } | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) | 
|  | { | 
|  | void *p = vmemmap_alloc_block(size, node); | 
|  |  | 
|  | if (!p) | 
|  | return NULL; | 
|  | memset(p, 0, size); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(*pmd)) { | 
|  | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | kernel_pte_init(p); | 
|  | pmd_populate_kernel(&init_mm, pmd, p); | 
|  | } | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) | 
|  | { | 
|  | pud_t *pud = pud_offset(p4d, addr); | 
|  | if (pud_none(*pud)) { | 
|  | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pmd_init(p); | 
|  | pud_populate(&init_mm, pud, p); | 
|  | } | 
|  | return pud; | 
|  | } | 
|  |  | 
|  | p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) | 
|  | { | 
|  | p4d_t *p4d = p4d_offset(pgd, addr); | 
|  | if (p4d_none(*p4d)) { | 
|  | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pud_init(p); | 
|  | p4d_populate(&init_mm, p4d, p); | 
|  | } | 
|  | return p4d; | 
|  | } | 
|  |  | 
|  | pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset_k(addr); | 
|  | if (pgd_none(*pgd)) { | 
|  | void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); | 
|  | if (!p) | 
|  | return NULL; | 
|  | pgd_populate(&init_mm, pgd, p); | 
|  | } | 
|  | return pgd; | 
|  | } | 
|  |  | 
|  | static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, | 
|  | struct vmem_altmap *altmap, | 
|  | unsigned long ptpfn, | 
|  | unsigned long flags) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | pgd = vmemmap_pgd_populate(addr, node); | 
|  | if (!pgd) | 
|  | return NULL; | 
|  | p4d = vmemmap_p4d_populate(pgd, addr, node); | 
|  | if (!p4d) | 
|  | return NULL; | 
|  | pud = vmemmap_pud_populate(p4d, addr, node); | 
|  | if (!pud) | 
|  | return NULL; | 
|  | pmd = vmemmap_pmd_populate(pud, addr, node); | 
|  | if (!pmd) | 
|  | return NULL; | 
|  | pte = vmemmap_pte_populate(pmd, addr, node, altmap, ptpfn, flags); | 
|  | if (!pte) | 
|  | return NULL; | 
|  | vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static int __meminit vmemmap_populate_range(unsigned long start, | 
|  | unsigned long end, int node, | 
|  | struct vmem_altmap *altmap, | 
|  | unsigned long ptpfn, | 
|  | unsigned long flags) | 
|  | { | 
|  | unsigned long addr = start; | 
|  | pte_t *pte; | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE) { | 
|  | pte = vmemmap_populate_address(addr, node, altmap, | 
|  | ptpfn, flags); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, | 
|  | int node, struct vmem_altmap *altmap) | 
|  | { | 
|  | return vmemmap_populate_range(start, end, node, altmap, -1, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Undo populate_hvo, and replace it with a normal base page mapping. | 
|  | * Used in memory init in case a HVO mapping needs to be undone. | 
|  | * | 
|  | * This can happen when it is discovered that a memblock allocated | 
|  | * hugetlb page spans multiple zones, which can only be verified | 
|  | * after zones have been initialized. | 
|  | * | 
|  | * We know that: | 
|  | * 1) The first @headsize / PAGE_SIZE vmemmap pages were individually | 
|  | *    allocated through memblock, and mapped. | 
|  | * | 
|  | * 2) The rest of the vmemmap pages are mirrors of the last head page. | 
|  | */ | 
|  | int __meminit vmemmap_undo_hvo(unsigned long addr, unsigned long end, | 
|  | int node, unsigned long headsize) | 
|  | { | 
|  | unsigned long maddr, pfn; | 
|  | pte_t *pte; | 
|  | int headpages; | 
|  |  | 
|  | /* | 
|  | * Should only be called early in boot, so nothing will | 
|  | * be accessing these page structures. | 
|  | */ | 
|  | WARN_ON(!early_boot_irqs_disabled); | 
|  |  | 
|  | headpages = headsize >> PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Clear mirrored mappings for tail page structs. | 
|  | */ | 
|  | for (maddr = addr + headsize; maddr < end; maddr += PAGE_SIZE) { | 
|  | pte = virt_to_kpte(maddr); | 
|  | pte_clear(&init_mm, maddr, pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear and free mappings for head page and first tail page | 
|  | * structs. | 
|  | */ | 
|  | for (maddr = addr; headpages-- > 0; maddr += PAGE_SIZE) { | 
|  | pte = virt_to_kpte(maddr); | 
|  | pfn = pte_pfn(ptep_get(pte)); | 
|  | pte_clear(&init_mm, maddr, pte); | 
|  | memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | flush_tlb_kernel_range(addr, end); | 
|  |  | 
|  | return vmemmap_populate(addr, end, node, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write protect the mirrored tail page structs for HVO. This will be | 
|  | * called from the hugetlb code when gathering and initializing the | 
|  | * memblock allocated gigantic pages. The write protect can't be | 
|  | * done earlier, since it can't be guaranteed that the reserved | 
|  | * page structures will not be written to during initialization, | 
|  | * even if CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled. | 
|  | * | 
|  | * The PTEs are known to exist, and nothing else should be touching | 
|  | * these pages. The caller is responsible for any TLB flushing. | 
|  | */ | 
|  | void vmemmap_wrprotect_hvo(unsigned long addr, unsigned long end, | 
|  | int node, unsigned long headsize) | 
|  | { | 
|  | unsigned long maddr; | 
|  | pte_t *pte; | 
|  |  | 
|  | for (maddr = addr + headsize; maddr < end; maddr += PAGE_SIZE) { | 
|  | pte = virt_to_kpte(maddr); | 
|  | ptep_set_wrprotect(&init_mm, maddr, pte); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate vmemmap pages HVO-style. The first page contains the head | 
|  | * page and needed tail pages, the other ones are mirrors of the first | 
|  | * page. | 
|  | */ | 
|  | int __meminit vmemmap_populate_hvo(unsigned long addr, unsigned long end, | 
|  | int node, unsigned long headsize) | 
|  | { | 
|  | pte_t *pte; | 
|  | unsigned long maddr; | 
|  |  | 
|  | for (maddr = addr; maddr < addr + headsize; maddr += PAGE_SIZE) { | 
|  | pte = vmemmap_populate_address(maddr, node, NULL, -1, 0); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reuse the last page struct page mapped above for the rest. | 
|  | */ | 
|  | return vmemmap_populate_range(maddr, end, node, NULL, | 
|  | pte_pfn(ptep_get(pte)), 0); | 
|  | } | 
|  |  | 
|  | void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, | 
|  | unsigned long addr, unsigned long next) | 
|  | { | 
|  | } | 
|  |  | 
|  | int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node, | 
|  | unsigned long addr, unsigned long next) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end, | 
|  | int node, struct vmem_altmap *altmap) | 
|  | { | 
|  | unsigned long addr; | 
|  | unsigned long next; | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | for (addr = start; addr < end; addr = next) { | 
|  | next = pmd_addr_end(addr, end); | 
|  |  | 
|  | pgd = vmemmap_pgd_populate(addr, node); | 
|  | if (!pgd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p4d = vmemmap_p4d_populate(pgd, addr, node); | 
|  | if (!p4d) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pud = vmemmap_pud_populate(p4d, addr, node); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(READ_ONCE(*pmd))) { | 
|  | void *p; | 
|  |  | 
|  | p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); | 
|  | if (p) { | 
|  | vmemmap_set_pmd(pmd, p, node, addr, next); | 
|  | continue; | 
|  | } else if (altmap) { | 
|  | /* | 
|  | * No fallback: In any case we care about, the | 
|  | * altmap should be reasonably sized and aligned | 
|  | * such that vmemmap_alloc_block_buf() will always | 
|  | * succeed. For consistency with the PTE case, | 
|  | * return an error here as failure could indicate | 
|  | * a configuration issue with the size of the altmap. | 
|  | */ | 
|  | return -ENOMEM; | 
|  | } | 
|  | } else if (vmemmap_check_pmd(pmd, node, addr, next)) | 
|  | continue; | 
|  | if (vmemmap_populate_basepages(addr, next, node, altmap)) | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef vmemmap_populate_compound_pages | 
|  | /* | 
|  | * For compound pages bigger than section size (e.g. x86 1G compound | 
|  | * pages with 2M subsection size) fill the rest of sections as tail | 
|  | * pages. | 
|  | * | 
|  | * Note that memremap_pages() resets @nr_range value and will increment | 
|  | * it after each range successful onlining. Thus the value or @nr_range | 
|  | * at section memmap populate corresponds to the in-progress range | 
|  | * being onlined here. | 
|  | */ | 
|  | static bool __meminit reuse_compound_section(unsigned long start_pfn, | 
|  | struct dev_pagemap *pgmap) | 
|  | { | 
|  | unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); | 
|  | unsigned long offset = start_pfn - | 
|  | PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); | 
|  |  | 
|  | return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; | 
|  | } | 
|  |  | 
|  | static pte_t * __meminit compound_section_tail_page(unsigned long addr) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | addr -= PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * Assuming sections are populated sequentially, the previous section's | 
|  | * page data can be reused. | 
|  | */ | 
|  | pte = pte_offset_kernel(pmd_off_k(addr), addr); | 
|  | if (!pte) | 
|  | return NULL; | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, | 
|  | unsigned long start, | 
|  | unsigned long end, int node, | 
|  | struct dev_pagemap *pgmap) | 
|  | { | 
|  | unsigned long size, addr; | 
|  | pte_t *pte; | 
|  | int rc; | 
|  |  | 
|  | if (reuse_compound_section(start_pfn, pgmap)) { | 
|  | pte = compound_section_tail_page(start); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Reuse the page that was populated in the prior iteration | 
|  | * with just tail struct pages. | 
|  | */ | 
|  | return vmemmap_populate_range(start, end, node, NULL, | 
|  | pte_pfn(ptep_get(pte)), | 
|  | VMEMMAP_POPULATE_PAGEREF); | 
|  | } | 
|  |  | 
|  | size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); | 
|  | for (addr = start; addr < end; addr += size) { | 
|  | unsigned long next, last = addr + size; | 
|  |  | 
|  | /* Populate the head page vmemmap page */ | 
|  | pte = vmemmap_populate_address(addr, node, NULL, -1, 0); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Populate the tail pages vmemmap page */ | 
|  | next = addr + PAGE_SIZE; | 
|  | pte = vmemmap_populate_address(next, node, NULL, -1, 0); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Reuse the previous page for the rest of tail pages | 
|  | * See layout diagram in Documentation/mm/vmemmap_dedup.rst | 
|  | */ | 
|  | next += PAGE_SIZE; | 
|  | rc = vmemmap_populate_range(next, last, node, NULL, | 
|  | pte_pfn(ptep_get(pte)), | 
|  | VMEMMAP_POPULATE_PAGEREF); | 
|  | if (rc) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | struct page * __meminit __populate_section_memmap(unsigned long pfn, | 
|  | unsigned long nr_pages, int nid, struct vmem_altmap *altmap, | 
|  | struct dev_pagemap *pgmap) | 
|  | { | 
|  | unsigned long start = (unsigned long) pfn_to_page(pfn); | 
|  | unsigned long end = start + nr_pages * sizeof(struct page); | 
|  | int r; | 
|  |  | 
|  | if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || | 
|  | !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) | 
|  | return NULL; | 
|  |  | 
|  | if (vmemmap_can_optimize(altmap, pgmap)) | 
|  | r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); | 
|  | else | 
|  | r = vmemmap_populate(start, end, nid, altmap); | 
|  |  | 
|  | if (r < 0) | 
|  | return NULL; | 
|  |  | 
|  | if (system_state == SYSTEM_BOOTING) | 
|  | memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); | 
|  | else | 
|  | memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); | 
|  |  | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT | 
|  | /* | 
|  | * This is called just before initializing sections for a NUMA node. | 
|  | * Any special initialization that needs to be done before the | 
|  | * generic initialization can be done from here. Sections that | 
|  | * are initialized in hooks called from here will be skipped by | 
|  | * the generic initialization. | 
|  | */ | 
|  | void __init sparse_vmemmap_init_nid_early(int nid) | 
|  | { | 
|  | hugetlb_vmemmap_init_early(nid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called just before the initialization of page structures | 
|  | * through memmap_init. Zones are now initialized, so any work that | 
|  | * needs to be done that needs zone information can be done from | 
|  | * here. | 
|  | */ | 
|  | void __init sparse_vmemmap_init_nid_late(int nid) | 
|  | { | 
|  | hugetlb_vmemmap_init_late(nid); | 
|  | } | 
|  | #endif |