| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * KVM dirty page logging test |
| * |
| * Copyright (C) 2018, Red Hat, Inc. |
| */ |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <pthread.h> |
| #include <semaphore.h> |
| #include <sys/types.h> |
| #include <signal.h> |
| #include <errno.h> |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/atomic.h> |
| #include <asm/barrier.h> |
| |
| #include "kvm_util.h" |
| #include "test_util.h" |
| #include "guest_modes.h" |
| #include "processor.h" |
| #include "ucall_common.h" |
| |
| #define DIRTY_MEM_BITS 30 /* 1G */ |
| #define PAGE_SHIFT_4K 12 |
| |
| /* The memory slot index to track dirty pages */ |
| #define TEST_MEM_SLOT_INDEX 1 |
| |
| /* Default guest test virtual memory offset */ |
| #define DEFAULT_GUEST_TEST_MEM 0xc0000000 |
| |
| /* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */ |
| #define TEST_HOST_LOOP_N 32UL |
| |
| /* Interval for each host loop (ms) */ |
| #define TEST_HOST_LOOP_INTERVAL 10UL |
| |
| /* |
| * Ensure the vCPU is able to perform a reasonable number of writes in each |
| * iteration to provide a lower bound on coverage. |
| */ |
| #define TEST_MIN_WRITES_PER_ITERATION 0x100 |
| |
| /* Dirty bitmaps are always little endian, so we need to swap on big endian */ |
| #if defined(__s390x__) |
| # define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) |
| # define test_bit_le(nr, addr) \ |
| test_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| # define __set_bit_le(nr, addr) \ |
| __set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| # define __clear_bit_le(nr, addr) \ |
| __clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| # define __test_and_set_bit_le(nr, addr) \ |
| __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| # define __test_and_clear_bit_le(nr, addr) \ |
| __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr) |
| #else |
| # define test_bit_le test_bit |
| # define __set_bit_le __set_bit |
| # define __clear_bit_le __clear_bit |
| # define __test_and_set_bit_le __test_and_set_bit |
| # define __test_and_clear_bit_le __test_and_clear_bit |
| #endif |
| |
| #define TEST_DIRTY_RING_COUNT 65536 |
| |
| #define SIG_IPI SIGUSR1 |
| |
| /* |
| * Guest/Host shared variables. Ensure addr_gva2hva() and/or |
| * sync_global_to/from_guest() are used when accessing from |
| * the host. READ/WRITE_ONCE() should also be used with anything |
| * that may change. |
| */ |
| static uint64_t host_page_size; |
| static uint64_t guest_page_size; |
| static uint64_t guest_num_pages; |
| static uint64_t iteration; |
| static uint64_t nr_writes; |
| static bool vcpu_stop; |
| |
| /* |
| * Guest physical memory offset of the testing memory slot. |
| * This will be set to the topmost valid physical address minus |
| * the test memory size. |
| */ |
| static uint64_t guest_test_phys_mem; |
| |
| /* |
| * Guest virtual memory offset of the testing memory slot. |
| * Must not conflict with identity mapped test code. |
| */ |
| static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; |
| |
| /* |
| * Continuously write to the first 8 bytes of a random pages within |
| * the testing memory region. |
| */ |
| static void guest_code(void) |
| { |
| uint64_t addr; |
| |
| #ifdef __s390x__ |
| uint64_t i; |
| |
| /* |
| * On s390x, all pages of a 1M segment are initially marked as dirty |
| * when a page of the segment is written to for the very first time. |
| * To compensate this specialty in this test, we need to touch all |
| * pages during the first iteration. |
| */ |
| for (i = 0; i < guest_num_pages; i++) { |
| addr = guest_test_virt_mem + i * guest_page_size; |
| vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration)); |
| nr_writes++; |
| } |
| #endif |
| |
| while (true) { |
| while (!READ_ONCE(vcpu_stop)) { |
| addr = guest_test_virt_mem; |
| addr += (guest_random_u64(&guest_rng) % guest_num_pages) |
| * guest_page_size; |
| addr = align_down(addr, host_page_size); |
| |
| vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration)); |
| nr_writes++; |
| } |
| |
| GUEST_SYNC(1); |
| } |
| } |
| |
| /* Host variables */ |
| static bool host_quit; |
| |
| /* Points to the test VM memory region on which we track dirty logs */ |
| static void *host_test_mem; |
| static uint64_t host_num_pages; |
| |
| /* For statistics only */ |
| static uint64_t host_dirty_count; |
| static uint64_t host_clear_count; |
| |
| /* Whether dirty ring reset is requested, or finished */ |
| static sem_t sem_vcpu_stop; |
| static sem_t sem_vcpu_cont; |
| |
| /* |
| * This is updated by the vcpu thread to tell the host whether it's a |
| * ring-full event. It should only be read until a sem_wait() of |
| * sem_vcpu_stop and before vcpu continues to run. |
| */ |
| static bool dirty_ring_vcpu_ring_full; |
| |
| /* |
| * This is only used for verifying the dirty pages. Dirty ring has a very |
| * tricky case when the ring just got full, kvm will do userspace exit due to |
| * ring full. When that happens, the very last PFN is set but actually the |
| * data is not changed (the guest WRITE is not really applied yet), because |
| * we found that the dirty ring is full, refused to continue the vcpu, and |
| * recorded the dirty gfn with the old contents. |
| * |
| * For this specific case, it's safe to skip checking this pfn for this |
| * bit, because it's a redundant bit, and when the write happens later the bit |
| * will be set again. We use this variable to always keep track of the latest |
| * dirty gfn we've collected, so that if a mismatch of data found later in the |
| * verifying process, we let it pass. |
| */ |
| static uint64_t dirty_ring_last_page = -1ULL; |
| |
| /* |
| * In addition to the above, it is possible (especially if this |
| * test is run nested) for the above scenario to repeat multiple times: |
| * |
| * The following can happen: |
| * |
| * - L1 vCPU: Memory write is logged to PML but not committed. |
| * |
| * - L1 test thread: Ignores the write because its last dirty ring entry |
| * Resets the dirty ring which: |
| * - Resets the A/D bits in EPT |
| * - Issues tlb flush (invept), which is intercepted by L0 |
| * |
| * - L0: frees the whole nested ept mmu root as the response to invept, |
| * and thus ensures that when memory write is retried, it will fault again |
| * |
| * - L1 vCPU: Same memory write is logged to the PML but not committed again. |
| * |
| * - L1 test thread: Ignores the write because its last dirty ring entry (again) |
| * Resets the dirty ring which: |
| * - Resets the A/D bits in EPT (again) |
| * - Issues tlb flush (again) which is intercepted by L0 |
| * |
| * ... |
| * |
| * N times |
| * |
| * - L1 vCPU: Memory write is logged in the PML and then committed. |
| * Lots of other memory writes are logged and committed. |
| * ... |
| * |
| * - L1 test thread: Sees the memory write along with other memory writes |
| * in the dirty ring, and since the write is usually not |
| * the last entry in the dirty-ring and has a very outdated |
| * iteration, the test fails. |
| * |
| * |
| * Note that this is only possible when the write was the last log entry |
| * write during iteration N-1, thus remember last iteration last log entry |
| * and also don't fail when it is reported in the next iteration, together with |
| * an outdated iteration count. |
| */ |
| static uint64_t dirty_ring_prev_iteration_last_page; |
| |
| enum log_mode_t { |
| /* Only use KVM_GET_DIRTY_LOG for logging */ |
| LOG_MODE_DIRTY_LOG = 0, |
| |
| /* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */ |
| LOG_MODE_CLEAR_LOG = 1, |
| |
| /* Use dirty ring for logging */ |
| LOG_MODE_DIRTY_RING = 2, |
| |
| LOG_MODE_NUM, |
| |
| /* Run all supported modes */ |
| LOG_MODE_ALL = LOG_MODE_NUM, |
| }; |
| |
| /* Mode of logging to test. Default is to run all supported modes */ |
| static enum log_mode_t host_log_mode_option = LOG_MODE_ALL; |
| /* Logging mode for current run */ |
| static enum log_mode_t host_log_mode; |
| static pthread_t vcpu_thread; |
| static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT; |
| |
| static bool clear_log_supported(void) |
| { |
| return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); |
| } |
| |
| static void clear_log_create_vm_done(struct kvm_vm *vm) |
| { |
| u64 manual_caps; |
| |
| manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); |
| TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!"); |
| manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | |
| KVM_DIRTY_LOG_INITIALLY_SET); |
| vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps); |
| } |
| |
| static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, |
| void *bitmap, uint32_t num_pages, |
| uint32_t *unused) |
| { |
| kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); |
| } |
| |
| static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, |
| void *bitmap, uint32_t num_pages, |
| uint32_t *unused) |
| { |
| kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap); |
| kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages); |
| } |
| |
| /* Should only be called after a GUEST_SYNC */ |
| static void vcpu_handle_sync_stop(void) |
| { |
| if (READ_ONCE(vcpu_stop)) { |
| sem_post(&sem_vcpu_stop); |
| sem_wait(&sem_vcpu_cont); |
| } |
| } |
| |
| static void default_after_vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| |
| TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC, |
| "Invalid guest sync status: exit_reason=%s", |
| exit_reason_str(run->exit_reason)); |
| |
| vcpu_handle_sync_stop(); |
| } |
| |
| static bool dirty_ring_supported(void) |
| { |
| return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) || |
| kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL)); |
| } |
| |
| static void dirty_ring_create_vm_done(struct kvm_vm *vm) |
| { |
| uint64_t pages; |
| uint32_t limit; |
| |
| /* |
| * We rely on vcpu exit due to full dirty ring state. Adjust |
| * the ring buffer size to ensure we're able to reach the |
| * full dirty ring state. |
| */ |
| pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; |
| pages = vm_adjust_num_guest_pages(vm->mode, pages); |
| if (vm->page_size < getpagesize()) |
| pages = vm_num_host_pages(vm->mode, pages); |
| |
| limit = 1 << (31 - __builtin_clz(pages)); |
| test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count)); |
| test_dirty_ring_count = min(limit, test_dirty_ring_count); |
| pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count); |
| |
| /* |
| * Switch to dirty ring mode after VM creation but before any |
| * of the vcpu creation. |
| */ |
| vm_enable_dirty_ring(vm, test_dirty_ring_count * |
| sizeof(struct kvm_dirty_gfn)); |
| } |
| |
| static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) |
| { |
| return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; |
| } |
| |
| static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) |
| { |
| smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); |
| } |
| |
| static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns, |
| int slot, void *bitmap, |
| uint32_t num_pages, uint32_t *fetch_index) |
| { |
| struct kvm_dirty_gfn *cur; |
| uint32_t count = 0; |
| |
| while (true) { |
| cur = &dirty_gfns[*fetch_index % test_dirty_ring_count]; |
| if (!dirty_gfn_is_dirtied(cur)) |
| break; |
| TEST_ASSERT(cur->slot == slot, "Slot number didn't match: " |
| "%u != %u", cur->slot, slot); |
| TEST_ASSERT(cur->offset < num_pages, "Offset overflow: " |
| "0x%llx >= 0x%x", cur->offset, num_pages); |
| __set_bit_le(cur->offset, bitmap); |
| dirty_ring_last_page = cur->offset; |
| dirty_gfn_set_collected(cur); |
| (*fetch_index)++; |
| count++; |
| } |
| |
| return count; |
| } |
| |
| static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, |
| void *bitmap, uint32_t num_pages, |
| uint32_t *ring_buf_idx) |
| { |
| uint32_t count, cleared; |
| |
| /* Only have one vcpu */ |
| count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu), |
| slot, bitmap, num_pages, |
| ring_buf_idx); |
| |
| cleared = kvm_vm_reset_dirty_ring(vcpu->vm); |
| |
| /* |
| * Cleared pages should be the same as collected, as KVM is supposed to |
| * clear only the entries that have been harvested. |
| */ |
| TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch " |
| "with collected (%u)", cleared, count); |
| } |
| |
| static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| |
| /* A ucall-sync or ring-full event is allowed */ |
| if (get_ucall(vcpu, NULL) == UCALL_SYNC) { |
| vcpu_handle_sync_stop(); |
| } else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL) { |
| WRITE_ONCE(dirty_ring_vcpu_ring_full, true); |
| vcpu_handle_sync_stop(); |
| } else { |
| TEST_ASSERT(false, "Invalid guest sync status: " |
| "exit_reason=%s", |
| exit_reason_str(run->exit_reason)); |
| } |
| } |
| |
| struct log_mode { |
| const char *name; |
| /* Return true if this mode is supported, otherwise false */ |
| bool (*supported)(void); |
| /* Hook when the vm creation is done (before vcpu creation) */ |
| void (*create_vm_done)(struct kvm_vm *vm); |
| /* Hook to collect the dirty pages into the bitmap provided */ |
| void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot, |
| void *bitmap, uint32_t num_pages, |
| uint32_t *ring_buf_idx); |
| /* Hook to call when after each vcpu run */ |
| void (*after_vcpu_run)(struct kvm_vcpu *vcpu); |
| } log_modes[LOG_MODE_NUM] = { |
| { |
| .name = "dirty-log", |
| .collect_dirty_pages = dirty_log_collect_dirty_pages, |
| .after_vcpu_run = default_after_vcpu_run, |
| }, |
| { |
| .name = "clear-log", |
| .supported = clear_log_supported, |
| .create_vm_done = clear_log_create_vm_done, |
| .collect_dirty_pages = clear_log_collect_dirty_pages, |
| .after_vcpu_run = default_after_vcpu_run, |
| }, |
| { |
| .name = "dirty-ring", |
| .supported = dirty_ring_supported, |
| .create_vm_done = dirty_ring_create_vm_done, |
| .collect_dirty_pages = dirty_ring_collect_dirty_pages, |
| .after_vcpu_run = dirty_ring_after_vcpu_run, |
| }, |
| }; |
| |
| static void log_modes_dump(void) |
| { |
| int i; |
| |
| printf("all"); |
| for (i = 0; i < LOG_MODE_NUM; i++) |
| printf(", %s", log_modes[i].name); |
| printf("\n"); |
| } |
| |
| static bool log_mode_supported(void) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| if (mode->supported) |
| return mode->supported(); |
| |
| return true; |
| } |
| |
| static void log_mode_create_vm_done(struct kvm_vm *vm) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| if (mode->create_vm_done) |
| mode->create_vm_done(vm); |
| } |
| |
| static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot, |
| void *bitmap, uint32_t num_pages, |
| uint32_t *ring_buf_idx) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| TEST_ASSERT(mode->collect_dirty_pages != NULL, |
| "collect_dirty_pages() is required for any log mode!"); |
| mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx); |
| } |
| |
| static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| struct log_mode *mode = &log_modes[host_log_mode]; |
| |
| if (mode->after_vcpu_run) |
| mode->after_vcpu_run(vcpu); |
| } |
| |
| static void *vcpu_worker(void *data) |
| { |
| struct kvm_vcpu *vcpu = data; |
| |
| sem_wait(&sem_vcpu_cont); |
| |
| while (!READ_ONCE(host_quit)) { |
| /* Let the guest dirty the random pages */ |
| vcpu_run(vcpu); |
| log_mode_after_vcpu_run(vcpu); |
| } |
| |
| return NULL; |
| } |
| |
| static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long **bmap) |
| { |
| uint64_t page, nr_dirty_pages = 0, nr_clean_pages = 0; |
| uint64_t step = vm_num_host_pages(mode, 1); |
| |
| for (page = 0; page < host_num_pages; page += step) { |
| uint64_t val = *(uint64_t *)(host_test_mem + page * host_page_size); |
| bool bmap0_dirty = __test_and_clear_bit_le(page, bmap[0]); |
| |
| /* |
| * Ensure both bitmaps are cleared, as a page can be written |
| * multiple times per iteration, i.e. can show up in both |
| * bitmaps, and the dirty ring is additive, i.e. doesn't purge |
| * bitmap entries from previous collections. |
| */ |
| if (__test_and_clear_bit_le(page, bmap[1]) || bmap0_dirty) { |
| nr_dirty_pages++; |
| |
| /* |
| * If the page is dirty, the value written to memory |
| * should be the current iteration number. |
| */ |
| if (val == iteration) |
| continue; |
| |
| if (host_log_mode == LOG_MODE_DIRTY_RING) { |
| /* |
| * The last page in the ring from previous |
| * iteration can be written with the value |
| * from the previous iteration, as the value to |
| * be written may be cached in a CPU register. |
| */ |
| if (page == dirty_ring_prev_iteration_last_page && |
| val == iteration - 1) |
| continue; |
| |
| /* |
| * Any value from a previous iteration is legal |
| * for the last entry, as the write may not yet |
| * have retired, i.e. the page may hold whatever |
| * it had before this iteration started. |
| */ |
| if (page == dirty_ring_last_page && |
| val < iteration) |
| continue; |
| } else if (!val && iteration == 1 && bmap0_dirty) { |
| /* |
| * When testing get+clear, the dirty bitmap |
| * starts with all bits set, and so the first |
| * iteration can observe a "dirty" page that |
| * was never written, but only in the first |
| * bitmap (collecting the bitmap also clears |
| * all dirty pages). |
| */ |
| continue; |
| } |
| |
| TEST_FAIL("Dirty page %lu value (%lu) != iteration (%lu) " |
| "(last = %lu, prev_last = %lu)", |
| page, val, iteration, dirty_ring_last_page, |
| dirty_ring_prev_iteration_last_page); |
| } else { |
| nr_clean_pages++; |
| /* |
| * If cleared, the value written can be any |
| * value smaller than the iteration number. |
| */ |
| TEST_ASSERT(val < iteration, |
| "Clear page %lu value (%lu) >= iteration (%lu) " |
| "(last = %lu, prev_last = %lu)", |
| page, val, iteration, dirty_ring_last_page, |
| dirty_ring_prev_iteration_last_page); |
| } |
| } |
| |
| pr_info("Iteration %2ld: dirty: %-6lu clean: %-6lu writes: %-6lu\n", |
| iteration, nr_dirty_pages, nr_clean_pages, nr_writes); |
| |
| host_dirty_count += nr_dirty_pages; |
| host_clear_count += nr_clean_pages; |
| } |
| |
| static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu, |
| uint64_t extra_mem_pages, void *guest_code) |
| { |
| struct kvm_vm *vm; |
| |
| pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); |
| |
| vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages); |
| |
| log_mode_create_vm_done(vm); |
| *vcpu = vm_vcpu_add(vm, 0, guest_code); |
| return vm; |
| } |
| |
| struct test_params { |
| unsigned long iterations; |
| unsigned long interval; |
| uint64_t phys_offset; |
| }; |
| |
| static void run_test(enum vm_guest_mode mode, void *arg) |
| { |
| struct test_params *p = arg; |
| struct kvm_vcpu *vcpu; |
| struct kvm_vm *vm; |
| unsigned long *bmap[2]; |
| uint32_t ring_buf_idx = 0; |
| int sem_val; |
| |
| if (!log_mode_supported()) { |
| print_skip("Log mode '%s' not supported", |
| log_modes[host_log_mode].name); |
| return; |
| } |
| |
| /* |
| * We reserve page table for 2 times of extra dirty mem which |
| * will definitely cover the original (1G+) test range. Here |
| * we do the calculation with 4K page size which is the |
| * smallest so the page number will be enough for all archs |
| * (e.g., 64K page size guest will need even less memory for |
| * page tables). |
| */ |
| vm = create_vm(mode, &vcpu, |
| 2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code); |
| |
| guest_page_size = vm->page_size; |
| /* |
| * A little more than 1G of guest page sized pages. Cover the |
| * case where the size is not aligned to 64 pages. |
| */ |
| guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3; |
| guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages); |
| |
| host_page_size = getpagesize(); |
| host_num_pages = vm_num_host_pages(mode, guest_num_pages); |
| |
| if (!p->phys_offset) { |
| guest_test_phys_mem = (vm->max_gfn - guest_num_pages) * |
| guest_page_size; |
| guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size); |
| } else { |
| guest_test_phys_mem = p->phys_offset; |
| } |
| |
| #ifdef __s390x__ |
| /* Align to 1M (segment size) */ |
| guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20); |
| |
| /* |
| * The workaround in guest_code() to write all pages prior to the first |
| * iteration isn't compatible with the dirty ring, as the dirty ring |
| * support relies on the vCPU to actually stop when vcpu_stop is set so |
| * that the vCPU doesn't hang waiting for the dirty ring to be emptied. |
| */ |
| TEST_ASSERT(host_log_mode != LOG_MODE_DIRTY_RING, |
| "Test needs to be updated to support s390 dirty ring"); |
| #endif |
| |
| pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); |
| |
| bmap[0] = bitmap_zalloc(host_num_pages); |
| bmap[1] = bitmap_zalloc(host_num_pages); |
| |
| /* Add an extra memory slot for testing dirty logging */ |
| vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, |
| guest_test_phys_mem, |
| TEST_MEM_SLOT_INDEX, |
| guest_num_pages, |
| KVM_MEM_LOG_DIRTY_PAGES); |
| |
| /* Do mapping for the dirty track memory slot */ |
| virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages); |
| |
| /* Cache the HVA pointer of the region */ |
| host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem); |
| |
| /* Export the shared variables to the guest */ |
| sync_global_to_guest(vm, host_page_size); |
| sync_global_to_guest(vm, guest_page_size); |
| sync_global_to_guest(vm, guest_test_virt_mem); |
| sync_global_to_guest(vm, guest_num_pages); |
| |
| host_dirty_count = 0; |
| host_clear_count = 0; |
| WRITE_ONCE(host_quit, false); |
| |
| /* |
| * Ensure the previous iteration didn't leave a dangling semaphore, i.e. |
| * that the main task and vCPU worker were synchronized and completed |
| * verification of all iterations. |
| */ |
| sem_getvalue(&sem_vcpu_stop, &sem_val); |
| TEST_ASSERT_EQ(sem_val, 0); |
| sem_getvalue(&sem_vcpu_cont, &sem_val); |
| TEST_ASSERT_EQ(sem_val, 0); |
| |
| TEST_ASSERT_EQ(vcpu_stop, false); |
| |
| pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu); |
| |
| for (iteration = 1; iteration <= p->iterations; iteration++) { |
| unsigned long i; |
| |
| sync_global_to_guest(vm, iteration); |
| |
| WRITE_ONCE(nr_writes, 0); |
| sync_global_to_guest(vm, nr_writes); |
| |
| dirty_ring_prev_iteration_last_page = dirty_ring_last_page; |
| WRITE_ONCE(dirty_ring_vcpu_ring_full, false); |
| |
| sem_post(&sem_vcpu_cont); |
| |
| /* |
| * Let the vCPU run beyond the configured interval until it has |
| * performed the minimum number of writes. This verifies the |
| * guest is making forward progress, e.g. isn't stuck because |
| * of a KVM bug, and puts a firm floor on test coverage. |
| */ |
| for (i = 0; i < p->interval || nr_writes < TEST_MIN_WRITES_PER_ITERATION; i++) { |
| /* |
| * Sleep in 1ms chunks to keep the interval math simple |
| * and so that the test doesn't run too far beyond the |
| * specified interval. |
| */ |
| usleep(1000); |
| |
| sync_global_from_guest(vm, nr_writes); |
| |
| /* |
| * Reap dirty pages while the guest is running so that |
| * dirty ring full events are resolved, i.e. so that a |
| * larger interval doesn't always end up with a vCPU |
| * that's effectively blocked. Collecting while the |
| * guest is running also verifies KVM doesn't lose any |
| * state. |
| * |
| * For bitmap modes, KVM overwrites the entire bitmap, |
| * i.e. collecting the bitmaps is destructive. Collect |
| * the bitmap only on the first pass, otherwise this |
| * test would lose track of dirty pages. |
| */ |
| if (i && host_log_mode != LOG_MODE_DIRTY_RING) |
| continue; |
| |
| /* |
| * For the dirty ring, empty the ring on subsequent |
| * passes only if the ring was filled at least once, |
| * to verify KVM's handling of a full ring (emptying |
| * the ring on every pass would make it unlikely the |
| * vCPU would ever fill the fing). |
| */ |
| if (i && !READ_ONCE(dirty_ring_vcpu_ring_full)) |
| continue; |
| |
| log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX, |
| bmap[0], host_num_pages, |
| &ring_buf_idx); |
| } |
| |
| /* |
| * Stop the vCPU prior to collecting and verifying the dirty |
| * log. If the vCPU is allowed to run during collection, then |
| * pages that are written during this iteration may be missed, |
| * i.e. collected in the next iteration. And if the vCPU is |
| * writing memory during verification, pages that this thread |
| * sees as clean may be written with this iteration's value. |
| */ |
| WRITE_ONCE(vcpu_stop, true); |
| sync_global_to_guest(vm, vcpu_stop); |
| sem_wait(&sem_vcpu_stop); |
| |
| /* |
| * Clear vcpu_stop after the vCPU thread has acknowledge the |
| * stop request and is waiting, i.e. is definitely not running! |
| */ |
| WRITE_ONCE(vcpu_stop, false); |
| sync_global_to_guest(vm, vcpu_stop); |
| |
| /* |
| * Sync the number of writes performed before verification, the |
| * info will be printed along with the dirty/clean page counts. |
| */ |
| sync_global_from_guest(vm, nr_writes); |
| |
| /* |
| * NOTE: for dirty ring, it's possible that we didn't stop at |
| * GUEST_SYNC but instead we stopped because ring is full; |
| * that's okay too because ring full means we're only missing |
| * the flush of the last page, and since we handle the last |
| * page specially verification will succeed anyway. |
| */ |
| log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX, |
| bmap[1], host_num_pages, |
| &ring_buf_idx); |
| vm_dirty_log_verify(mode, bmap); |
| } |
| |
| WRITE_ONCE(host_quit, true); |
| sem_post(&sem_vcpu_cont); |
| |
| pthread_join(vcpu_thread, NULL); |
| |
| pr_info("Total bits checked: dirty (%lu), clear (%lu)\n", |
| host_dirty_count, host_clear_count); |
| |
| free(bmap[0]); |
| free(bmap[1]); |
| kvm_vm_free(vm); |
| } |
| |
| static void help(char *name) |
| { |
| puts(""); |
| printf("usage: %s [-h] [-i iterations] [-I interval] " |
| "[-p offset] [-m mode]\n", name); |
| puts(""); |
| printf(" -c: hint to dirty ring size, in number of entries\n"); |
| printf(" (only useful for dirty-ring test; default: %"PRIu32")\n", |
| TEST_DIRTY_RING_COUNT); |
| printf(" -i: specify iteration counts (default: %"PRIu64")\n", |
| TEST_HOST_LOOP_N); |
| printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n", |
| TEST_HOST_LOOP_INTERVAL); |
| printf(" -p: specify guest physical test memory offset\n" |
| " Warning: a low offset can conflict with the loaded test code.\n"); |
| printf(" -M: specify the host logging mode " |
| "(default: run all log modes). Supported modes: \n\t"); |
| log_modes_dump(); |
| guest_modes_help(); |
| puts(""); |
| exit(0); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| struct test_params p = { |
| .iterations = TEST_HOST_LOOP_N, |
| .interval = TEST_HOST_LOOP_INTERVAL, |
| }; |
| int opt, i; |
| |
| sem_init(&sem_vcpu_stop, 0, 0); |
| sem_init(&sem_vcpu_cont, 0, 0); |
| |
| guest_modes_append_default(); |
| |
| while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) { |
| switch (opt) { |
| case 'c': |
| test_dirty_ring_count = strtol(optarg, NULL, 10); |
| break; |
| case 'i': |
| p.iterations = strtol(optarg, NULL, 10); |
| break; |
| case 'I': |
| p.interval = strtol(optarg, NULL, 10); |
| break; |
| case 'p': |
| p.phys_offset = strtoull(optarg, NULL, 0); |
| break; |
| case 'm': |
| guest_modes_cmdline(optarg); |
| break; |
| case 'M': |
| if (!strcmp(optarg, "all")) { |
| host_log_mode_option = LOG_MODE_ALL; |
| break; |
| } |
| for (i = 0; i < LOG_MODE_NUM; i++) { |
| if (!strcmp(optarg, log_modes[i].name)) { |
| pr_info("Setting log mode to: '%s'\n", |
| optarg); |
| host_log_mode_option = i; |
| break; |
| } |
| } |
| if (i == LOG_MODE_NUM) { |
| printf("Log mode '%s' invalid. Please choose " |
| "from: ", optarg); |
| log_modes_dump(); |
| exit(1); |
| } |
| break; |
| case 'h': |
| default: |
| help(argv[0]); |
| break; |
| } |
| } |
| |
| TEST_ASSERT(p.iterations > 0, "Iterations must be greater than zero"); |
| TEST_ASSERT(p.interval > 0, "Interval must be greater than zero"); |
| |
| pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n", |
| p.iterations, p.interval); |
| |
| if (host_log_mode_option == LOG_MODE_ALL) { |
| /* Run each log mode */ |
| for (i = 0; i < LOG_MODE_NUM; i++) { |
| pr_info("Testing Log Mode '%s'\n", log_modes[i].name); |
| host_log_mode = i; |
| for_each_guest_mode(run_test, &p); |
| } |
| } else { |
| host_log_mode = host_log_mode_option; |
| for_each_guest_mode(run_test, &p); |
| } |
| |
| return 0; |
| } |