| // SPDX-License-Identifier: GPL-2.0 |
| |
| //! Implementation of [`Box`]. |
| |
| #[allow(unused_imports)] // Used in doc comments. |
| use super::allocator::{KVmalloc, Kmalloc, Vmalloc}; |
| use super::{AllocError, Allocator, Flags}; |
| use core::alloc::Layout; |
| use core::borrow::{Borrow, BorrowMut}; |
| use core::fmt; |
| use core::marker::PhantomData; |
| use core::mem::ManuallyDrop; |
| use core::mem::MaybeUninit; |
| use core::ops::{Deref, DerefMut}; |
| use core::pin::Pin; |
| use core::ptr::NonNull; |
| use core::result::Result; |
| |
| use crate::ffi::c_void; |
| use crate::init::InPlaceInit; |
| use crate::types::ForeignOwnable; |
| use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption}; |
| |
| /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. |
| /// |
| /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, |
| /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not |
| /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] |
| /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions |
| /// that may allocate memory are fallible. |
| /// |
| /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. |
| /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). |
| /// |
| /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?; |
| /// |
| /// assert_eq!(*b, 24_u64); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| /// |
| /// ``` |
| /// # use kernel::bindings; |
| /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; |
| /// struct Huge([u8; SIZE]); |
| /// |
| /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); |
| /// ``` |
| /// |
| /// ``` |
| /// # use kernel::bindings; |
| /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; |
| /// struct Huge([u8; SIZE]); |
| /// |
| /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok()); |
| /// ``` |
| /// |
| /// [`Box`]es can also be used to store trait objects by coercing their type: |
| /// |
| /// ``` |
| /// trait FooTrait {} |
| /// |
| /// struct FooStruct; |
| /// impl FooTrait for FooStruct {} |
| /// |
| /// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>; |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| /// |
| /// # Invariants |
| /// |
| /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for |
| /// zero-sized types, is a dangling, well aligned pointer. |
| #[repr(transparent)] |
| #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] |
| pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>( |
| NonNull<T>, |
| PhantomData<A>, |
| ); |
| |
| // This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the |
| // dynamically-sized type (DST) `U`. |
| #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] |
| impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A> |
| where |
| T: ?Sized + core::marker::Unsize<U>, |
| U: ?Sized, |
| A: Allocator, |
| { |
| } |
| |
| // This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U, |
| // A>`. |
| #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] |
| impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A> |
| where |
| T: ?Sized + core::marker::Unsize<U>, |
| U: ?Sized, |
| A: Allocator, |
| { |
| } |
| |
| /// Type alias for [`Box`] with a [`Kmalloc`] allocator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let b = KBox::new(24_u64, GFP_KERNEL)?; |
| /// |
| /// assert_eq!(*b, 24_u64); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| pub type KBox<T> = Box<T, super::allocator::Kmalloc>; |
| |
| /// Type alias for [`Box`] with a [`Vmalloc`] allocator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let b = VBox::new(24_u64, GFP_KERNEL)?; |
| /// |
| /// assert_eq!(*b, 24_u64); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| pub type VBox<T> = Box<T, super::allocator::Vmalloc>; |
| |
| /// Type alias for [`Box`] with a [`KVmalloc`] allocator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let b = KVBox::new(24_u64, GFP_KERNEL)?; |
| /// |
| /// assert_eq!(*b, 24_u64); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| pub type KVBox<T> = Box<T, super::allocator::KVmalloc>; |
| |
| // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: |
| // <https://doc.rust-lang.org/stable/std/option/index.html#representation>). |
| unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {} |
| |
| // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. |
| unsafe impl<T, A> Send for Box<T, A> |
| where |
| T: Send + ?Sized, |
| A: Allocator, |
| { |
| } |
| |
| // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. |
| unsafe impl<T, A> Sync for Box<T, A> |
| where |
| T: Sync + ?Sized, |
| A: Allocator, |
| { |
| } |
| |
| impl<T, A> Box<T, A> |
| where |
| T: ?Sized, |
| A: Allocator, |
| { |
| /// Creates a new `Box<T, A>` from a raw pointer. |
| /// |
| /// # Safety |
| /// |
| /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently |
| /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the |
| /// `Box`. |
| /// |
| /// For ZSTs, `raw` must be a dangling, well aligned pointer. |
| #[inline] |
| pub const unsafe fn from_raw(raw: *mut T) -> Self { |
| // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. |
| // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. |
| Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) |
| } |
| |
| /// Consumes the `Box<T, A>` and returns a raw pointer. |
| /// |
| /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive |
| /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the |
| /// allocation, if any. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let x = KBox::new(24, GFP_KERNEL)?; |
| /// let ptr = KBox::into_raw(x); |
| /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. |
| /// let x = unsafe { KBox::from_raw(ptr) }; |
| /// |
| /// assert_eq!(*x, 24); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| #[inline] |
| pub fn into_raw(b: Self) -> *mut T { |
| ManuallyDrop::new(b).0.as_ptr() |
| } |
| |
| /// Consumes and leaks the `Box<T, A>` and returns a mutable reference. |
| /// |
| /// See [`Box::into_raw`] for more details. |
| #[inline] |
| pub fn leak<'a>(b: Self) -> &'a mut T { |
| // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer |
| // which points to an initialized instance of `T`. |
| unsafe { &mut *Box::into_raw(b) } |
| } |
| } |
| |
| impl<T, A> Box<MaybeUninit<T>, A> |
| where |
| A: Allocator, |
| { |
| /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`. |
| /// |
| /// It is undefined behavior to call this function while the value inside of `b` is not yet |
| /// fully initialized. |
| /// |
| /// # Safety |
| /// |
| /// Callers must ensure that the value inside of `b` is in an initialized state. |
| pub unsafe fn assume_init(self) -> Box<T, A> { |
| let raw = Self::into_raw(self); |
| |
| // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements |
| // of this function, the value inside the `Box` is in an initialized state. Hence, it is |
| // safe to reconstruct the `Box` as `Box<T, A>`. |
| unsafe { Box::from_raw(raw.cast()) } |
| } |
| |
| /// Writes the value and converts to `Box<T, A>`. |
| pub fn write(mut self, value: T) -> Box<T, A> { |
| (*self).write(value); |
| |
| // SAFETY: We've just initialized `b`'s value. |
| unsafe { self.assume_init() } |
| } |
| } |
| |
| impl<T, A> Box<T, A> |
| where |
| A: Allocator, |
| { |
| /// Creates a new `Box<T, A>` and initializes its contents with `x`. |
| /// |
| /// New memory is allocated with `A`. The allocation may fail, in which case an error is |
| /// returned. For ZSTs no memory is allocated. |
| pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> { |
| let b = Self::new_uninit(flags)?; |
| Ok(Box::write(b, x)) |
| } |
| |
| /// Creates a new `Box<T, A>` with uninitialized contents. |
| /// |
| /// New memory is allocated with `A`. The allocation may fail, in which case an error is |
| /// returned. For ZSTs no memory is allocated. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?; |
| /// let b = KBox::write(b, 24); |
| /// |
| /// assert_eq!(*b, 24_u64); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { |
| let layout = Layout::new::<MaybeUninit<T>>(); |
| let ptr = A::alloc(layout, flags)?; |
| |
| // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, |
| // which is sufficient in size and alignment for storing a `T`. |
| Ok(Box(ptr.cast(), PhantomData)) |
| } |
| |
| /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be |
| /// pinned in memory and can't be moved. |
| #[inline] |
| pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> |
| where |
| A: 'static, |
| { |
| Ok(Self::new(x, flags)?.into()) |
| } |
| |
| /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement |
| /// [`Unpin`], then `x` will be pinned in memory and can't be moved. |
| pub fn into_pin(this: Self) -> Pin<Self> { |
| this.into() |
| } |
| |
| /// Forgets the contents (does not run the destructor), but keeps the allocation. |
| fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { |
| let ptr = Self::into_raw(this); |
| |
| // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. |
| unsafe { Box::from_raw(ptr.cast()) } |
| } |
| |
| /// Drops the contents, but keeps the allocation. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let value = KBox::new([0; 32], GFP_KERNEL)?; |
| /// assert_eq!(*value, [0; 32]); |
| /// let value = KBox::drop_contents(value); |
| /// // Now we can re-use `value`: |
| /// let value = KBox::write(value, [1; 32]); |
| /// assert_eq!(*value, [1; 32]); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> { |
| let ptr = this.0.as_ptr(); |
| |
| // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the |
| // value stored in `this` again. |
| unsafe { core::ptr::drop_in_place(ptr) }; |
| |
| Self::forget_contents(this) |
| } |
| |
| /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. |
| pub fn into_inner(b: Self) -> T { |
| // SAFETY: By the type invariant `&*b` is valid for `read`. |
| let value = unsafe { core::ptr::read(&*b) }; |
| let _ = Self::forget_contents(b); |
| value |
| } |
| } |
| |
| impl<T, A> From<Box<T, A>> for Pin<Box<T, A>> |
| where |
| T: ?Sized, |
| A: Allocator, |
| { |
| /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then |
| /// `*b` will be pinned in memory and can't be moved. |
| /// |
| /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. |
| fn from(b: Box<T, A>) -> Self { |
| // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long |
| // as `T` does not implement `Unpin`. |
| unsafe { Pin::new_unchecked(b) } |
| } |
| } |
| |
| impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A> |
| where |
| A: Allocator + 'static, |
| { |
| type Initialized = Box<T, A>; |
| |
| fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { |
| let slot = self.as_mut_ptr(); |
| // SAFETY: When init errors/panics, slot will get deallocated but not dropped, |
| // slot is valid. |
| unsafe { init.__init(slot)? }; |
| // SAFETY: All fields have been initialized. |
| Ok(unsafe { Box::assume_init(self) }) |
| } |
| |
| fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { |
| let slot = self.as_mut_ptr(); |
| // SAFETY: When init errors/panics, slot will get deallocated but not dropped, |
| // slot is valid and will not be moved, because we pin it later. |
| unsafe { init.__pinned_init(slot)? }; |
| // SAFETY: All fields have been initialized. |
| Ok(unsafe { Box::assume_init(self) }.into()) |
| } |
| } |
| |
| impl<T, A> InPlaceInit<T> for Box<T, A> |
| where |
| A: Allocator + 'static, |
| { |
| type PinnedSelf = Pin<Self>; |
| |
| #[inline] |
| fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> |
| where |
| E: From<AllocError>, |
| { |
| Box::<_, A>::new_uninit(flags)?.write_pin_init(init) |
| } |
| |
| #[inline] |
| fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> |
| where |
| E: From<AllocError>, |
| { |
| Box::<_, A>::new_uninit(flags)?.write_init(init) |
| } |
| } |
| |
| // SAFETY: The pointer returned by `into_foreign` comes from a well aligned |
| // pointer to `T`. |
| unsafe impl<T: 'static, A> ForeignOwnable for Box<T, A> |
| where |
| A: Allocator, |
| { |
| const FOREIGN_ALIGN: usize = core::mem::align_of::<T>(); |
| type Borrowed<'a> = &'a T; |
| type BorrowedMut<'a> = &'a mut T; |
| |
| fn into_foreign(self) -> *mut c_void { |
| Box::into_raw(self).cast() |
| } |
| |
| unsafe fn from_foreign(ptr: *mut c_void) -> Self { |
| // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous |
| // call to `Self::into_foreign`. |
| unsafe { Box::from_raw(ptr.cast()) } |
| } |
| |
| unsafe fn borrow<'a>(ptr: *mut c_void) -> &'a T { |
| // SAFETY: The safety requirements of this method ensure that the object remains alive and |
| // immutable for the duration of 'a. |
| unsafe { &*ptr.cast() } |
| } |
| |
| unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> &'a mut T { |
| let ptr = ptr.cast(); |
| // SAFETY: The safety requirements of this method ensure that the pointer is valid and that |
| // nothing else will access the value for the duration of 'a. |
| unsafe { &mut *ptr } |
| } |
| } |
| |
| // SAFETY: The pointer returned by `into_foreign` comes from a well aligned |
| // pointer to `T`. |
| unsafe impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>> |
| where |
| A: Allocator, |
| { |
| const FOREIGN_ALIGN: usize = core::mem::align_of::<T>(); |
| type Borrowed<'a> = Pin<&'a T>; |
| type BorrowedMut<'a> = Pin<&'a mut T>; |
| |
| fn into_foreign(self) -> *mut c_void { |
| // SAFETY: We are still treating the box as pinned. |
| Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast() |
| } |
| |
| unsafe fn from_foreign(ptr: *mut c_void) -> Self { |
| // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous |
| // call to `Self::into_foreign`. |
| unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) } |
| } |
| |
| unsafe fn borrow<'a>(ptr: *mut c_void) -> Pin<&'a T> { |
| // SAFETY: The safety requirements for this function ensure that the object is still alive, |
| // so it is safe to dereference the raw pointer. |
| // The safety requirements of `from_foreign` also ensure that the object remains alive for |
| // the lifetime of the returned value. |
| let r = unsafe { &*ptr.cast() }; |
| |
| // SAFETY: This pointer originates from a `Pin<Box<T>>`. |
| unsafe { Pin::new_unchecked(r) } |
| } |
| |
| unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> Pin<&'a mut T> { |
| let ptr = ptr.cast(); |
| // SAFETY: The safety requirements for this function ensure that the object is still alive, |
| // so it is safe to dereference the raw pointer. |
| // The safety requirements of `from_foreign` also ensure that the object remains alive for |
| // the lifetime of the returned value. |
| let r = unsafe { &mut *ptr }; |
| |
| // SAFETY: This pointer originates from a `Pin<Box<T>>`. |
| unsafe { Pin::new_unchecked(r) } |
| } |
| } |
| |
| impl<T, A> Deref for Box<T, A> |
| where |
| T: ?Sized, |
| A: Allocator, |
| { |
| type Target = T; |
| |
| fn deref(&self) -> &T { |
| // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized |
| // instance of `T`. |
| unsafe { self.0.as_ref() } |
| } |
| } |
| |
| impl<T, A> DerefMut for Box<T, A> |
| where |
| T: ?Sized, |
| A: Allocator, |
| { |
| fn deref_mut(&mut self) -> &mut T { |
| // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized |
| // instance of `T`. |
| unsafe { self.0.as_mut() } |
| } |
| } |
| |
| /// # Examples |
| /// |
| /// ``` |
| /// # use core::borrow::Borrow; |
| /// # use kernel::alloc::KBox; |
| /// struct Foo<B: Borrow<u32>>(B); |
| /// |
| /// // Owned instance. |
| /// let owned = Foo(1); |
| /// |
| /// // Owned instance using `KBox`. |
| /// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?); |
| /// |
| /// let i = 1; |
| /// // Borrowed from `i`. |
| /// let borrowed = Foo(&i); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| impl<T, A> Borrow<T> for Box<T, A> |
| where |
| T: ?Sized, |
| A: Allocator, |
| { |
| fn borrow(&self) -> &T { |
| self.deref() |
| } |
| } |
| |
| /// # Examples |
| /// |
| /// ``` |
| /// # use core::borrow::BorrowMut; |
| /// # use kernel::alloc::KBox; |
| /// struct Foo<B: BorrowMut<u32>>(B); |
| /// |
| /// // Owned instance. |
| /// let owned = Foo(1); |
| /// |
| /// // Owned instance using `KBox`. |
| /// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?); |
| /// |
| /// let mut i = 1; |
| /// // Borrowed from `i`. |
| /// let borrowed = Foo(&mut i); |
| /// # Ok::<(), Error>(()) |
| /// ``` |
| impl<T, A> BorrowMut<T> for Box<T, A> |
| where |
| T: ?Sized, |
| A: Allocator, |
| { |
| fn borrow_mut(&mut self) -> &mut T { |
| self.deref_mut() |
| } |
| } |
| |
| impl<T, A> fmt::Display for Box<T, A> |
| where |
| T: ?Sized + fmt::Display, |
| A: Allocator, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| <T as fmt::Display>::fmt(&**self, f) |
| } |
| } |
| |
| impl<T, A> fmt::Debug for Box<T, A> |
| where |
| T: ?Sized + fmt::Debug, |
| A: Allocator, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| <T as fmt::Debug>::fmt(&**self, f) |
| } |
| } |
| |
| impl<T, A> Drop for Box<T, A> |
| where |
| T: ?Sized, |
| A: Allocator, |
| { |
| fn drop(&mut self) { |
| let layout = Layout::for_value::<T>(self); |
| |
| // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. |
| unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) }; |
| |
| // SAFETY: |
| // - `self.0` was previously allocated with `A`. |
| // - `layout` is equal to the `Layout´ `self.0` was allocated with. |
| unsafe { A::free(self.0.cast(), layout) }; |
| } |
| } |