|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  kernel/sched/syscalls.c | 
|  | * | 
|  | *  Core kernel scheduler syscalls related code | 
|  | * | 
|  | *  Copyright (C) 1991-2002  Linus Torvalds | 
|  | *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/sched/debug.h> | 
|  |  | 
|  | #include <uapi/linux/sched/types.h> | 
|  |  | 
|  | #include "sched.h" | 
|  | #include "autogroup.h" | 
|  |  | 
|  | static inline int __normal_prio(int policy, int rt_prio, int nice) | 
|  | { | 
|  | int prio; | 
|  |  | 
|  | if (dl_policy(policy)) | 
|  | prio = MAX_DL_PRIO - 1; | 
|  | else if (rt_policy(policy)) | 
|  | prio = MAX_RT_PRIO - 1 - rt_prio; | 
|  | else | 
|  | prio = NICE_TO_PRIO(nice); | 
|  |  | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the expected normal priority: i.e. priority | 
|  | * without taking RT-inheritance into account. Might be | 
|  | * boosted by interactivity modifiers. Changes upon fork, | 
|  | * setprio syscalls, and whenever the interactivity | 
|  | * estimator recalculates. | 
|  | */ | 
|  | static inline int normal_prio(struct task_struct *p) | 
|  | { | 
|  | return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the current priority, i.e. the priority | 
|  | * taken into account by the scheduler. This value might | 
|  | * be boosted by RT tasks, or might be boosted by | 
|  | * interactivity modifiers. Will be RT if the task got | 
|  | * RT-boosted. If not then it returns p->normal_prio. | 
|  | */ | 
|  | static int effective_prio(struct task_struct *p) | 
|  | { | 
|  | p->normal_prio = normal_prio(p); | 
|  | /* | 
|  | * If we are RT tasks or we were boosted to RT priority, | 
|  | * keep the priority unchanged. Otherwise, update priority | 
|  | * to the normal priority: | 
|  | */ | 
|  | if (!rt_prio(p->prio)) | 
|  | return p->normal_prio; | 
|  | return p->prio; | 
|  | } | 
|  |  | 
|  | void set_user_nice(struct task_struct *p, long nice) | 
|  | { | 
|  | bool queued, running; | 
|  | struct rq *rq; | 
|  | int old_prio; | 
|  |  | 
|  | if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) | 
|  | return; | 
|  | /* | 
|  | * We have to be careful, if called from sys_setpriority(), | 
|  | * the task might be in the middle of scheduling on another CPU. | 
|  | */ | 
|  | CLASS(task_rq_lock, rq_guard)(p); | 
|  | rq = rq_guard.rq; | 
|  |  | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | /* | 
|  | * The RT priorities are set via sched_setscheduler(), but we still | 
|  | * allow the 'normal' nice value to be set - but as expected | 
|  | * it won't have any effect on scheduling until the task is | 
|  | * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: | 
|  | */ | 
|  | if (task_has_dl_policy(p) || task_has_rt_policy(p)) { | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | return; | 
|  | } | 
|  |  | 
|  | queued = task_on_rq_queued(p); | 
|  | running = task_current(rq, p); | 
|  | if (queued) | 
|  | dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); | 
|  | if (running) | 
|  | put_prev_task(rq, p); | 
|  |  | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | set_load_weight(p, true); | 
|  | old_prio = p->prio; | 
|  | p->prio = effective_prio(p); | 
|  |  | 
|  | if (queued) | 
|  | enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); | 
|  | if (running) | 
|  | set_next_task(rq, p); | 
|  |  | 
|  | /* | 
|  | * If the task increased its priority or is running and | 
|  | * lowered its priority, then reschedule its CPU: | 
|  | */ | 
|  | p->sched_class->prio_changed(rq, p, old_prio); | 
|  | } | 
|  | EXPORT_SYMBOL(set_user_nice); | 
|  |  | 
|  | /* | 
|  | * is_nice_reduction - check if nice value is an actual reduction | 
|  | * | 
|  | * Similar to can_nice() but does not perform a capability check. | 
|  | * | 
|  | * @p: task | 
|  | * @nice: nice value | 
|  | */ | 
|  | static bool is_nice_reduction(const struct task_struct *p, const int nice) | 
|  | { | 
|  | /* Convert nice value [19,-20] to rlimit style value [1,40]: */ | 
|  | int nice_rlim = nice_to_rlimit(nice); | 
|  |  | 
|  | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * can_nice - check if a task can reduce its nice value | 
|  | * @p: task | 
|  | * @nice: nice value | 
|  | */ | 
|  | int can_nice(const struct task_struct *p, const int nice) | 
|  | { | 
|  | return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_NICE | 
|  |  | 
|  | /* | 
|  | * sys_nice - change the priority of the current process. | 
|  | * @increment: priority increment | 
|  | * | 
|  | * sys_setpriority is a more generic, but much slower function that | 
|  | * does similar things. | 
|  | */ | 
|  | SYSCALL_DEFINE1(nice, int, increment) | 
|  | { | 
|  | long nice, retval; | 
|  |  | 
|  | /* | 
|  | * Setpriority might change our priority at the same moment. | 
|  | * We don't have to worry. Conceptually one call occurs first | 
|  | * and we have a single winner. | 
|  | */ | 
|  | increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); | 
|  | nice = task_nice(current) + increment; | 
|  |  | 
|  | nice = clamp_val(nice, MIN_NICE, MAX_NICE); | 
|  | if (increment < 0 && !can_nice(current, nice)) | 
|  | return -EPERM; | 
|  |  | 
|  | retval = security_task_setnice(current, nice); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | set_user_nice(current, nice); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * task_prio - return the priority value of a given task. | 
|  | * @p: the task in question. | 
|  | * | 
|  | * Return: The priority value as seen by users in /proc. | 
|  | * | 
|  | * sched policy         return value   kernel prio    user prio/nice | 
|  | * | 
|  | * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19] | 
|  | * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99] | 
|  | * deadline                     -101             -1           0 | 
|  | */ | 
|  | int task_prio(const struct task_struct *p) | 
|  | { | 
|  | return p->prio - MAX_RT_PRIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_cpu - is a given CPU idle currently? | 
|  | * @cpu: the processor in question. | 
|  | * | 
|  | * Return: 1 if the CPU is currently idle. 0 otherwise. | 
|  | */ | 
|  | int idle_cpu(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (rq->curr != rq->idle) | 
|  | return 0; | 
|  |  | 
|  | if (rq->nr_running) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (rq->ttwu_pending) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * available_idle_cpu - is a given CPU idle for enqueuing work. | 
|  | * @cpu: the CPU in question. | 
|  | * | 
|  | * Return: 1 if the CPU is currently idle. 0 otherwise. | 
|  | */ | 
|  | int available_idle_cpu(int cpu) | 
|  | { | 
|  | if (!idle_cpu(cpu)) | 
|  | return 0; | 
|  |  | 
|  | if (vcpu_is_preempted(cpu)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_task - return the idle task for a given CPU. | 
|  | * @cpu: the processor in question. | 
|  | * | 
|  | * Return: The idle task for the CPU @cpu. | 
|  | */ | 
|  | struct task_struct *idle_task(int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->idle; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_CORE | 
|  | int sched_core_idle_cpu(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (sched_core_enabled(rq) && rq->curr == rq->idle) | 
|  | return 1; | 
|  |  | 
|  | return idle_cpu(cpu); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * This function computes an effective utilization for the given CPU, to be | 
|  | * used for frequency selection given the linear relation: f = u * f_max. | 
|  | * | 
|  | * The scheduler tracks the following metrics: | 
|  | * | 
|  | *   cpu_util_{cfs,rt,dl,irq}() | 
|  | *   cpu_bw_dl() | 
|  | * | 
|  | * Where the cfs,rt and dl util numbers are tracked with the same metric and | 
|  | * synchronized windows and are thus directly comparable. | 
|  | * | 
|  | * The cfs,rt,dl utilization are the running times measured with rq->clock_task | 
|  | * which excludes things like IRQ and steal-time. These latter are then accrued | 
|  | * in the IRQ utilization. | 
|  | * | 
|  | * The DL bandwidth number OTOH is not a measured metric but a value computed | 
|  | * based on the task model parameters and gives the minimal utilization | 
|  | * required to meet deadlines. | 
|  | */ | 
|  | unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, | 
|  | unsigned long *min, | 
|  | unsigned long *max) | 
|  | { | 
|  | unsigned long util, irq, scale; | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | scale = arch_scale_cpu_capacity(cpu); | 
|  |  | 
|  | /* | 
|  | * Early check to see if IRQ/steal time saturates the CPU, can be | 
|  | * because of inaccuracies in how we track these -- see | 
|  | * update_irq_load_avg(). | 
|  | */ | 
|  | irq = cpu_util_irq(rq); | 
|  | if (unlikely(irq >= scale)) { | 
|  | if (min) | 
|  | *min = scale; | 
|  | if (max) | 
|  | *max = scale; | 
|  | return scale; | 
|  | } | 
|  |  | 
|  | if (min) { | 
|  | /* | 
|  | * The minimum utilization returns the highest level between: | 
|  | * - the computed DL bandwidth needed with the IRQ pressure which | 
|  | *   steals time to the deadline task. | 
|  | * - The minimum performance requirement for CFS and/or RT. | 
|  | */ | 
|  | *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); | 
|  |  | 
|  | /* | 
|  | * When an RT task is runnable and uclamp is not used, we must | 
|  | * ensure that the task will run at maximum compute capacity. | 
|  | */ | 
|  | if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) | 
|  | *min = max(*min, scale); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the time spend on RT/DL tasks is visible as 'lost' time to | 
|  | * CFS tasks and we use the same metric to track the effective | 
|  | * utilization (PELT windows are synchronized) we can directly add them | 
|  | * to obtain the CPU's actual utilization. | 
|  | */ | 
|  | util = util_cfs + cpu_util_rt(rq); | 
|  | util += cpu_util_dl(rq); | 
|  |  | 
|  | /* | 
|  | * The maximum hint is a soft bandwidth requirement, which can be lower | 
|  | * than the actual utilization because of uclamp_max requirements. | 
|  | */ | 
|  | if (max) | 
|  | *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); | 
|  |  | 
|  | if (util >= scale) | 
|  | return scale; | 
|  |  | 
|  | /* | 
|  | * There is still idle time; further improve the number by using the | 
|  | * IRQ metric. Because IRQ/steal time is hidden from the task clock we | 
|  | * need to scale the task numbers: | 
|  | * | 
|  | *              max - irq | 
|  | *   U' = irq + --------- * U | 
|  | *                 max | 
|  | */ | 
|  | util = scale_irq_capacity(util, irq, scale); | 
|  | util += irq; | 
|  |  | 
|  | return min(scale, util); | 
|  | } | 
|  |  | 
|  | unsigned long sched_cpu_util(int cpu) | 
|  | { | 
|  | return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /** | 
|  | * find_process_by_pid - find a process with a matching PID value. | 
|  | * @pid: the pid in question. | 
|  | * | 
|  | * The task of @pid, if found. %NULL otherwise. | 
|  | */ | 
|  | static struct task_struct *find_process_by_pid(pid_t pid) | 
|  | { | 
|  | return pid ? find_task_by_vpid(pid) : current; | 
|  | } | 
|  |  | 
|  | static struct task_struct *find_get_task(pid_t pid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | guard(rcu)(); | 
|  |  | 
|  | p = find_process_by_pid(pid); | 
|  | if (likely(p)) | 
|  | get_task_struct(p); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), | 
|  | find_get_task(pid), pid_t pid) | 
|  |  | 
|  | /* | 
|  | * sched_setparam() passes in -1 for its policy, to let the functions | 
|  | * it calls know not to change it. | 
|  | */ | 
|  | #define SETPARAM_POLICY	-1 | 
|  |  | 
|  | static void __setscheduler_params(struct task_struct *p, | 
|  | const struct sched_attr *attr) | 
|  | { | 
|  | int policy = attr->sched_policy; | 
|  |  | 
|  | if (policy == SETPARAM_POLICY) | 
|  | policy = p->policy; | 
|  |  | 
|  | p->policy = policy; | 
|  |  | 
|  | if (dl_policy(policy)) | 
|  | __setparam_dl(p, attr); | 
|  | else if (fair_policy(policy)) | 
|  | p->static_prio = NICE_TO_PRIO(attr->sched_nice); | 
|  |  | 
|  | /* | 
|  | * __sched_setscheduler() ensures attr->sched_priority == 0 when | 
|  | * !rt_policy. Always setting this ensures that things like | 
|  | * getparam()/getattr() don't report silly values for !rt tasks. | 
|  | */ | 
|  | p->rt_priority = attr->sched_priority; | 
|  | p->normal_prio = normal_prio(p); | 
|  | set_load_weight(p, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the target process has a UID that matches the current process's: | 
|  | */ | 
|  | static bool check_same_owner(struct task_struct *p) | 
|  | { | 
|  | const struct cred *cred = current_cred(), *pcred; | 
|  | guard(rcu)(); | 
|  |  | 
|  | pcred = __task_cred(p); | 
|  | return (uid_eq(cred->euid, pcred->euid) || | 
|  | uid_eq(cred->euid, pcred->uid)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK | 
|  |  | 
|  | static int uclamp_validate(struct task_struct *p, | 
|  | const struct sched_attr *attr) | 
|  | { | 
|  | int util_min = p->uclamp_req[UCLAMP_MIN].value; | 
|  | int util_max = p->uclamp_req[UCLAMP_MAX].value; | 
|  |  | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { | 
|  | util_min = attr->sched_util_min; | 
|  |  | 
|  | if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { | 
|  | util_max = attr->sched_util_max; | 
|  |  | 
|  | if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (util_min != -1 && util_max != -1 && util_min > util_max) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * We have valid uclamp attributes; make sure uclamp is enabled. | 
|  | * | 
|  | * We need to do that here, because enabling static branches is a | 
|  | * blocking operation which obviously cannot be done while holding | 
|  | * scheduler locks. | 
|  | */ | 
|  | static_branch_enable(&sched_uclamp_used); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool uclamp_reset(const struct sched_attr *attr, | 
|  | enum uclamp_id clamp_id, | 
|  | struct uclamp_se *uc_se) | 
|  | { | 
|  | /* Reset on sched class change for a non user-defined clamp value. */ | 
|  | if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && | 
|  | !uc_se->user_defined) | 
|  | return true; | 
|  |  | 
|  | /* Reset on sched_util_{min,max} == -1. */ | 
|  | if (clamp_id == UCLAMP_MIN && | 
|  | attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && | 
|  | attr->sched_util_min == -1) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (clamp_id == UCLAMP_MAX && | 
|  | attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && | 
|  | attr->sched_util_max == -1) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void __setscheduler_uclamp(struct task_struct *p, | 
|  | const struct sched_attr *attr) | 
|  | { | 
|  | enum uclamp_id clamp_id; | 
|  |  | 
|  | for_each_clamp_id(clamp_id) { | 
|  | struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; | 
|  | unsigned int value; | 
|  |  | 
|  | if (!uclamp_reset(attr, clamp_id, uc_se)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * RT by default have a 100% boost value that could be modified | 
|  | * at runtime. | 
|  | */ | 
|  | if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) | 
|  | value = sysctl_sched_uclamp_util_min_rt_default; | 
|  | else | 
|  | value = uclamp_none(clamp_id); | 
|  |  | 
|  | uclamp_se_set(uc_se, value, false); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) | 
|  | return; | 
|  |  | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && | 
|  | attr->sched_util_min != -1) { | 
|  | uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], | 
|  | attr->sched_util_min, true); | 
|  | } | 
|  |  | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && | 
|  | attr->sched_util_max != -1) { | 
|  | uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], | 
|  | attr->sched_util_max, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_UCLAMP_TASK: */ | 
|  |  | 
|  | static inline int uclamp_validate(struct task_struct *p, | 
|  | const struct sched_attr *attr) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | static void __setscheduler_uclamp(struct task_struct *p, | 
|  | const struct sched_attr *attr) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Allow unprivileged RT tasks to decrease priority. | 
|  | * Only issue a capable test if needed and only once to avoid an audit | 
|  | * event on permitted non-privileged operations: | 
|  | */ | 
|  | static int user_check_sched_setscheduler(struct task_struct *p, | 
|  | const struct sched_attr *attr, | 
|  | int policy, int reset_on_fork) | 
|  | { | 
|  | if (fair_policy(policy)) { | 
|  | if (attr->sched_nice < task_nice(p) && | 
|  | !is_nice_reduction(p, attr->sched_nice)) | 
|  | goto req_priv; | 
|  | } | 
|  |  | 
|  | if (rt_policy(policy)) { | 
|  | unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); | 
|  |  | 
|  | /* Can't set/change the rt policy: */ | 
|  | if (policy != p->policy && !rlim_rtprio) | 
|  | goto req_priv; | 
|  |  | 
|  | /* Can't increase priority: */ | 
|  | if (attr->sched_priority > p->rt_priority && | 
|  | attr->sched_priority > rlim_rtprio) | 
|  | goto req_priv; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can't set/change SCHED_DEADLINE policy at all for now | 
|  | * (safest behavior); in the future we would like to allow | 
|  | * unprivileged DL tasks to increase their relative deadline | 
|  | * or reduce their runtime (both ways reducing utilization) | 
|  | */ | 
|  | if (dl_policy(policy)) | 
|  | goto req_priv; | 
|  |  | 
|  | /* | 
|  | * Treat SCHED_IDLE as nice 20. Only allow a switch to | 
|  | * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. | 
|  | */ | 
|  | if (task_has_idle_policy(p) && !idle_policy(policy)) { | 
|  | if (!is_nice_reduction(p, task_nice(p))) | 
|  | goto req_priv; | 
|  | } | 
|  |  | 
|  | /* Can't change other user's priorities: */ | 
|  | if (!check_same_owner(p)) | 
|  | goto req_priv; | 
|  |  | 
|  | /* Normal users shall not reset the sched_reset_on_fork flag: */ | 
|  | if (p->sched_reset_on_fork && !reset_on_fork) | 
|  | goto req_priv; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | req_priv: | 
|  | if (!capable(CAP_SYS_NICE)) | 
|  | return -EPERM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __sched_setscheduler(struct task_struct *p, | 
|  | const struct sched_attr *attr, | 
|  | bool user, bool pi) | 
|  | { | 
|  | int oldpolicy = -1, policy = attr->sched_policy; | 
|  | int retval, oldprio, newprio, queued, running; | 
|  | const struct sched_class *prev_class; | 
|  | struct balance_callback *head; | 
|  | struct rq_flags rf; | 
|  | int reset_on_fork; | 
|  | int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; | 
|  | struct rq *rq; | 
|  | bool cpuset_locked = false; | 
|  |  | 
|  | /* The pi code expects interrupts enabled */ | 
|  | BUG_ON(pi && in_interrupt()); | 
|  | recheck: | 
|  | /* Double check policy once rq lock held: */ | 
|  | if (policy < 0) { | 
|  | reset_on_fork = p->sched_reset_on_fork; | 
|  | policy = oldpolicy = p->policy; | 
|  | } else { | 
|  | reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); | 
|  |  | 
|  | if (!valid_policy(policy)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Valid priorities for SCHED_FIFO and SCHED_RR are | 
|  | * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, | 
|  | * SCHED_BATCH and SCHED_IDLE is 0. | 
|  | */ | 
|  | if (attr->sched_priority > MAX_RT_PRIO-1) | 
|  | return -EINVAL; | 
|  | if ((dl_policy(policy) && !__checkparam_dl(attr)) || | 
|  | (rt_policy(policy) != (attr->sched_priority != 0))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (user) { | 
|  | retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (attr->sched_flags & SCHED_FLAG_SUGOV) | 
|  | return -EINVAL; | 
|  |  | 
|  | retval = security_task_setscheduler(p); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Update task specific "requested" clamps */ | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { | 
|  | retval = uclamp_validate(p, attr); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SCHED_DEADLINE bandwidth accounting relies on stable cpusets | 
|  | * information. | 
|  | */ | 
|  | if (dl_policy(policy) || dl_policy(p->policy)) { | 
|  | cpuset_locked = true; | 
|  | cpuset_lock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure no PI-waiters arrive (or leave) while we are | 
|  | * changing the priority of the task: | 
|  | * | 
|  | * To be able to change p->policy safely, the appropriate | 
|  | * runqueue lock must be held. | 
|  | */ | 
|  | rq = task_rq_lock(p, &rf); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | /* | 
|  | * Changing the policy of the stop threads its a very bad idea: | 
|  | */ | 
|  | if (p == rq->stop) { | 
|  | retval = -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If not changing anything there's no need to proceed further, | 
|  | * but store a possible modification of reset_on_fork. | 
|  | */ | 
|  | if (unlikely(policy == p->policy)) { | 
|  | if (fair_policy(policy) && attr->sched_nice != task_nice(p)) | 
|  | goto change; | 
|  | if (rt_policy(policy) && attr->sched_priority != p->rt_priority) | 
|  | goto change; | 
|  | if (dl_policy(policy) && dl_param_changed(p, attr)) | 
|  | goto change; | 
|  | if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) | 
|  | goto change; | 
|  |  | 
|  | p->sched_reset_on_fork = reset_on_fork; | 
|  | retval = 0; | 
|  | goto unlock; | 
|  | } | 
|  | change: | 
|  |  | 
|  | if (user) { | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | /* | 
|  | * Do not allow real-time tasks into groups that have no runtime | 
|  | * assigned. | 
|  | */ | 
|  | if (rt_bandwidth_enabled() && rt_policy(policy) && | 
|  | task_group(p)->rt_bandwidth.rt_runtime == 0 && | 
|  | !task_group_is_autogroup(task_group(p))) { | 
|  | retval = -EPERM; | 
|  | goto unlock; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | if (dl_bandwidth_enabled() && dl_policy(policy) && | 
|  | !(attr->sched_flags & SCHED_FLAG_SUGOV)) { | 
|  | cpumask_t *span = rq->rd->span; | 
|  |  | 
|  | /* | 
|  | * Don't allow tasks with an affinity mask smaller than | 
|  | * the entire root_domain to become SCHED_DEADLINE. We | 
|  | * will also fail if there's no bandwidth available. | 
|  | */ | 
|  | if (!cpumask_subset(span, p->cpus_ptr) || | 
|  | rq->rd->dl_bw.bw == 0) { | 
|  | retval = -EPERM; | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Re-check policy now with rq lock held: */ | 
|  | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
|  | policy = oldpolicy = -1; | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | if (cpuset_locked) | 
|  | cpuset_unlock(); | 
|  | goto recheck; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If setscheduling to SCHED_DEADLINE (or changing the parameters | 
|  | * of a SCHED_DEADLINE task) we need to check if enough bandwidth | 
|  | * is available. | 
|  | */ | 
|  | if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { | 
|  | retval = -EBUSY; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | p->sched_reset_on_fork = reset_on_fork; | 
|  | oldprio = p->prio; | 
|  |  | 
|  | newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); | 
|  | if (pi) { | 
|  | /* | 
|  | * Take priority boosted tasks into account. If the new | 
|  | * effective priority is unchanged, we just store the new | 
|  | * normal parameters and do not touch the scheduler class and | 
|  | * the runqueue. This will be done when the task deboost | 
|  | * itself. | 
|  | */ | 
|  | newprio = rt_effective_prio(p, newprio); | 
|  | if (newprio == oldprio) | 
|  | queue_flags &= ~DEQUEUE_MOVE; | 
|  | } | 
|  |  | 
|  | queued = task_on_rq_queued(p); | 
|  | running = task_current(rq, p); | 
|  | if (queued) | 
|  | dequeue_task(rq, p, queue_flags); | 
|  | if (running) | 
|  | put_prev_task(rq, p); | 
|  |  | 
|  | prev_class = p->sched_class; | 
|  |  | 
|  | if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { | 
|  | __setscheduler_params(p, attr); | 
|  | __setscheduler_prio(p, newprio); | 
|  | } | 
|  | __setscheduler_uclamp(p, attr); | 
|  |  | 
|  | if (queued) { | 
|  | /* | 
|  | * We enqueue to tail when the priority of a task is | 
|  | * increased (user space view). | 
|  | */ | 
|  | if (oldprio < p->prio) | 
|  | queue_flags |= ENQUEUE_HEAD; | 
|  |  | 
|  | enqueue_task(rq, p, queue_flags); | 
|  | } | 
|  | if (running) | 
|  | set_next_task(rq, p); | 
|  |  | 
|  | check_class_changed(rq, p, prev_class, oldprio); | 
|  |  | 
|  | /* Avoid rq from going away on us: */ | 
|  | preempt_disable(); | 
|  | head = splice_balance_callbacks(rq); | 
|  | task_rq_unlock(rq, p, &rf); | 
|  |  | 
|  | if (pi) { | 
|  | if (cpuset_locked) | 
|  | cpuset_unlock(); | 
|  | rt_mutex_adjust_pi(p); | 
|  | } | 
|  |  | 
|  | /* Run balance callbacks after we've adjusted the PI chain: */ | 
|  | balance_callbacks(rq, head); | 
|  | preempt_enable(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | unlock: | 
|  | task_rq_unlock(rq, p, &rf); | 
|  | if (cpuset_locked) | 
|  | cpuset_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int _sched_setscheduler(struct task_struct *p, int policy, | 
|  | const struct sched_param *param, bool check) | 
|  | { | 
|  | struct sched_attr attr = { | 
|  | .sched_policy   = policy, | 
|  | .sched_priority = param->sched_priority, | 
|  | .sched_nice	= PRIO_TO_NICE(p->static_prio), | 
|  | }; | 
|  |  | 
|  | /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ | 
|  | if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { | 
|  | attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; | 
|  | policy &= ~SCHED_RESET_ON_FORK; | 
|  | attr.sched_policy = policy; | 
|  | } | 
|  |  | 
|  | return __sched_setscheduler(p, &attr, check, true); | 
|  | } | 
|  | /** | 
|  | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 
|  | * @p: the task in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Use sched_set_fifo(), read its comment. | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | * | 
|  | * NOTE that the task may be already dead. | 
|  | */ | 
|  | int sched_setscheduler(struct task_struct *p, int policy, | 
|  | const struct sched_param *param) | 
|  | { | 
|  | return _sched_setscheduler(p, policy, param, true); | 
|  | } | 
|  |  | 
|  | int sched_setattr(struct task_struct *p, const struct sched_attr *attr) | 
|  | { | 
|  | return __sched_setscheduler(p, attr, true, true); | 
|  | } | 
|  |  | 
|  | int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) | 
|  | { | 
|  | return __sched_setscheduler(p, attr, false, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_setattr_nocheck); | 
|  |  | 
|  | /** | 
|  | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. | 
|  | * @p: the task in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Just like sched_setscheduler, only don't bother checking if the | 
|  | * current context has permission.  For example, this is needed in | 
|  | * stop_machine(): we create temporary high priority worker threads, | 
|  | * but our caller might not have that capability. | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | */ | 
|  | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | 
|  | const struct sched_param *param) | 
|  | { | 
|  | return _sched_setscheduler(p, policy, param, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally | 
|  | * incapable of resource management, which is the one thing an OS really should | 
|  | * be doing. | 
|  | * | 
|  | * This is of course the reason it is limited to privileged users only. | 
|  | * | 
|  | * Worse still; it is fundamentally impossible to compose static priority | 
|  | * workloads. You cannot take two correctly working static prio workloads | 
|  | * and smash them together and still expect them to work. | 
|  | * | 
|  | * For this reason 'all' FIFO tasks the kernel creates are basically at: | 
|  | * | 
|  | *   MAX_RT_PRIO / 2 | 
|  | * | 
|  | * The administrator _MUST_ configure the system, the kernel simply doesn't | 
|  | * know enough information to make a sensible choice. | 
|  | */ | 
|  | void sched_set_fifo(struct task_struct *p) | 
|  | { | 
|  | struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; | 
|  | WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_set_fifo); | 
|  |  | 
|  | /* | 
|  | * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. | 
|  | */ | 
|  | void sched_set_fifo_low(struct task_struct *p) | 
|  | { | 
|  | struct sched_param sp = { .sched_priority = 1 }; | 
|  | WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_set_fifo_low); | 
|  |  | 
|  | void sched_set_normal(struct task_struct *p, int nice) | 
|  | { | 
|  | struct sched_attr attr = { | 
|  | .sched_policy = SCHED_NORMAL, | 
|  | .sched_nice = nice, | 
|  | }; | 
|  | WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_set_normal); | 
|  |  | 
|  | static int | 
|  | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
|  | { | 
|  | struct sched_param lparam; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
|  | return -EFAULT; | 
|  |  | 
|  | CLASS(find_get_task, p)(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | return sched_setscheduler(p, policy, &lparam); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mimics kernel/events/core.c perf_copy_attr(). | 
|  | */ | 
|  | static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) | 
|  | { | 
|  | u32 size; | 
|  | int ret; | 
|  |  | 
|  | /* Zero the full structure, so that a short copy will be nice: */ | 
|  | memset(attr, 0, sizeof(*attr)); | 
|  |  | 
|  | ret = get_user(size, &uattr->size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* ABI compatibility quirk: */ | 
|  | if (!size) | 
|  | size = SCHED_ATTR_SIZE_VER0; | 
|  | if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) | 
|  | goto err_size; | 
|  |  | 
|  | ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); | 
|  | if (ret) { | 
|  | if (ret == -E2BIG) | 
|  | goto err_size; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && | 
|  | size < SCHED_ATTR_SIZE_VER1) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * XXX: Do we want to be lenient like existing syscalls; or do we want | 
|  | * to be strict and return an error on out-of-bounds values? | 
|  | */ | 
|  | attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_size: | 
|  | put_user(sizeof(*attr), &uattr->size); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | static void get_params(struct task_struct *p, struct sched_attr *attr) | 
|  | { | 
|  | if (task_has_dl_policy(p)) | 
|  | __getparam_dl(p, attr); | 
|  | else if (task_has_rt_policy(p)) | 
|  | attr->sched_priority = p->rt_priority; | 
|  | else | 
|  | attr->sched_nice = task_nice(p); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
|  | * @pid: the pid in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | */ | 
|  | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) | 
|  | { | 
|  | if (policy < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_sched_setscheduler(pid, policy, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setparam - set/change the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | */ | 
|  | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) | 
|  | { | 
|  | return do_sched_setscheduler(pid, SETPARAM_POLICY, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setattr - same as above, but with extended sched_attr | 
|  | * @pid: the pid in question. | 
|  | * @uattr: structure containing the extended parameters. | 
|  | * @flags: for future extension. | 
|  | */ | 
|  | SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, | 
|  | unsigned int, flags) | 
|  | { | 
|  | struct sched_attr attr; | 
|  | int retval; | 
|  |  | 
|  | if (!uattr || pid < 0 || flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | retval = sched_copy_attr(uattr, &attr); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if ((int)attr.sched_policy < 0) | 
|  | return -EINVAL; | 
|  | if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) | 
|  | attr.sched_policy = SETPARAM_POLICY; | 
|  |  | 
|  | CLASS(find_get_task, p)(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) | 
|  | get_params(p, &attr); | 
|  |  | 
|  | return sched_setattr(p, &attr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
|  | * @pid: the pid in question. | 
|  | * | 
|  | * Return: On success, the policy of the thread. Otherwise, a negative error | 
|  | * code. | 
|  | */ | 
|  | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | guard(rcu)(); | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (!retval) { | 
|  | retval = p->policy; | 
|  | if (p->sched_reset_on_fork) | 
|  | retval |= SCHED_RESET_ON_FORK; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getparam - get the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the RT priority. | 
|  | * | 
|  | * Return: On success, 0 and the RT priority is in @param. Otherwise, an error | 
|  | * code. | 
|  | */ | 
|  | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | 
|  | { | 
|  | struct sched_param lp = { .sched_priority = 0 }; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | scoped_guard (rcu) { | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (task_has_rt_policy(p)) | 
|  | lp.sched_priority = p->rt_priority; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This one might sleep, we cannot do it with a spinlock held ... | 
|  | */ | 
|  | return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the kernel size attribute structure (which might be larger | 
|  | * than what user-space knows about) to user-space. | 
|  | * | 
|  | * Note that all cases are valid: user-space buffer can be larger or | 
|  | * smaller than the kernel-space buffer. The usual case is that both | 
|  | * have the same size. | 
|  | */ | 
|  | static int | 
|  | sched_attr_copy_to_user(struct sched_attr __user *uattr, | 
|  | struct sched_attr *kattr, | 
|  | unsigned int usize) | 
|  | { | 
|  | unsigned int ksize = sizeof(*kattr); | 
|  |  | 
|  | if (!access_ok(uattr, usize)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * sched_getattr() ABI forwards and backwards compatibility: | 
|  | * | 
|  | * If usize == ksize then we just copy everything to user-space and all is good. | 
|  | * | 
|  | * If usize < ksize then we only copy as much as user-space has space for, | 
|  | * this keeps ABI compatibility as well. We skip the rest. | 
|  | * | 
|  | * If usize > ksize then user-space is using a newer version of the ABI, | 
|  | * which part the kernel doesn't know about. Just ignore it - tooling can | 
|  | * detect the kernel's knowledge of attributes from the attr->size value | 
|  | * which is set to ksize in this case. | 
|  | */ | 
|  | kattr->size = min(usize, ksize); | 
|  |  | 
|  | if (copy_to_user(uattr, kattr, kattr->size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getattr - similar to sched_getparam, but with sched_attr | 
|  | * @pid: the pid in question. | 
|  | * @uattr: structure containing the extended parameters. | 
|  | * @usize: sizeof(attr) for fwd/bwd comp. | 
|  | * @flags: for future extension. | 
|  | */ | 
|  | SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, | 
|  | unsigned int, usize, unsigned int, flags) | 
|  | { | 
|  | struct sched_attr kattr = { }; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!uattr || pid < 0 || usize > PAGE_SIZE || | 
|  | usize < SCHED_ATTR_SIZE_VER0 || flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | scoped_guard (rcu) { | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | kattr.sched_policy = p->policy; | 
|  | if (p->sched_reset_on_fork) | 
|  | kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; | 
|  | get_params(p, &kattr); | 
|  | kattr.sched_flags &= SCHED_FLAG_ALL; | 
|  |  | 
|  | #ifdef CONFIG_UCLAMP_TASK | 
|  | /* | 
|  | * This could race with another potential updater, but this is fine | 
|  | * because it'll correctly read the old or the new value. We don't need | 
|  | * to guarantee who wins the race as long as it doesn't return garbage. | 
|  | */ | 
|  | kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; | 
|  | kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return sched_attr_copy_to_user(uattr, &kattr, usize); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) | 
|  | { | 
|  | /* | 
|  | * If the task isn't a deadline task or admission control is | 
|  | * disabled then we don't care about affinity changes. | 
|  | */ | 
|  | if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Since bandwidth control happens on root_domain basis, | 
|  | * if admission test is enabled, we only admit -deadline | 
|  | * tasks allowed to run on all the CPUs in the task's | 
|  | * root_domain. | 
|  | */ | 
|  | guard(rcu)(); | 
|  | if (!cpumask_subset(task_rq(p)->rd->span, mask)) | 
|  | return -EBUSY; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) | 
|  | { | 
|  | int retval; | 
|  | cpumask_var_t cpus_allowed, new_mask; | 
|  |  | 
|  | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | 
|  | retval = -ENOMEM; | 
|  | goto out_free_cpus_allowed; | 
|  | } | 
|  |  | 
|  | cpuset_cpus_allowed(p, cpus_allowed); | 
|  | cpumask_and(new_mask, ctx->new_mask, cpus_allowed); | 
|  |  | 
|  | ctx->new_mask = new_mask; | 
|  | ctx->flags |= SCA_CHECK; | 
|  |  | 
|  | retval = dl_task_check_affinity(p, new_mask); | 
|  | if (retval) | 
|  | goto out_free_new_mask; | 
|  |  | 
|  | retval = __set_cpus_allowed_ptr(p, ctx); | 
|  | if (retval) | 
|  | goto out_free_new_mask; | 
|  |  | 
|  | cpuset_cpus_allowed(p, cpus_allowed); | 
|  | if (!cpumask_subset(new_mask, cpus_allowed)) { | 
|  | /* | 
|  | * We must have raced with a concurrent cpuset update. | 
|  | * Just reset the cpumask to the cpuset's cpus_allowed. | 
|  | */ | 
|  | cpumask_copy(new_mask, cpus_allowed); | 
|  |  | 
|  | /* | 
|  | * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() | 
|  | * will restore the previous user_cpus_ptr value. | 
|  | * | 
|  | * In the unlikely event a previous user_cpus_ptr exists, | 
|  | * we need to further restrict the mask to what is allowed | 
|  | * by that old user_cpus_ptr. | 
|  | */ | 
|  | if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { | 
|  | bool empty = !cpumask_and(new_mask, new_mask, | 
|  | ctx->user_mask); | 
|  |  | 
|  | if (WARN_ON_ONCE(empty)) | 
|  | cpumask_copy(new_mask, cpus_allowed); | 
|  | } | 
|  | __set_cpus_allowed_ptr(p, ctx); | 
|  | retval = -EINVAL; | 
|  | } | 
|  |  | 
|  | out_free_new_mask: | 
|  | free_cpumask_var(new_mask); | 
|  | out_free_cpus_allowed: | 
|  | free_cpumask_var(cpus_allowed); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | 
|  | { | 
|  | struct affinity_context ac; | 
|  | struct cpumask *user_mask; | 
|  | int retval; | 
|  |  | 
|  | CLASS(find_get_task, p)(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | if (p->flags & PF_NO_SETAFFINITY) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!check_same_owner(p)) { | 
|  | guard(rcu)(); | 
|  | if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | retval = security_task_setscheduler(p); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * With non-SMP configs, user_cpus_ptr/user_mask isn't used and | 
|  | * alloc_user_cpus_ptr() returns NULL. | 
|  | */ | 
|  | user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); | 
|  | if (user_mask) { | 
|  | cpumask_copy(user_mask, in_mask); | 
|  | } else if (IS_ENABLED(CONFIG_SMP)) { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ac = (struct affinity_context){ | 
|  | .new_mask  = in_mask, | 
|  | .user_mask = user_mask, | 
|  | .flags     = SCA_USER, | 
|  | }; | 
|  |  | 
|  | retval = __sched_setaffinity(p, &ac); | 
|  | kfree(ac.user_mask); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
|  | struct cpumask *new_mask) | 
|  | { | 
|  | if (len < cpumask_size()) | 
|  | cpumask_clear(new_mask); | 
|  | else if (len > cpumask_size()) | 
|  | len = cpumask_size(); | 
|  |  | 
|  | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setaffinity - set the CPU affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to the new CPU mask | 
|  | * | 
|  | * Return: 0 on success. An error code otherwise. | 
|  | */ | 
|  | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | 
|  | unsigned long __user *, user_mask_ptr) | 
|  | { | 
|  | cpumask_var_t new_mask; | 
|  | int retval; | 
|  |  | 
|  | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); | 
|  | if (retval == 0) | 
|  | retval = sched_setaffinity(pid, new_mask); | 
|  | free_cpumask_var(new_mask); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | long sched_getaffinity(pid_t pid, struct cpumask *mask) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | guard(rcu)(); | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | guard(raw_spinlock_irqsave)(&p->pi_lock); | 
|  | cpumask_and(mask, &p->cpus_mask, cpu_active_mask); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getaffinity - get the CPU affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to hold the current CPU mask | 
|  | * | 
|  | * Return: size of CPU mask copied to user_mask_ptr on success. An | 
|  | * error code otherwise. | 
|  | */ | 
|  | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, | 
|  | unsigned long __user *, user_mask_ptr) | 
|  | { | 
|  | int ret; | 
|  | cpumask_var_t mask; | 
|  |  | 
|  | if ((len * BITS_PER_BYTE) < nr_cpu_ids) | 
|  | return -EINVAL; | 
|  | if (len & (sizeof(unsigned long)-1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = sched_getaffinity(pid, mask); | 
|  | if (ret == 0) { | 
|  | unsigned int retlen = min(len, cpumask_size()); | 
|  |  | 
|  | if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) | 
|  | ret = -EFAULT; | 
|  | else | 
|  | ret = retlen; | 
|  | } | 
|  | free_cpumask_var(mask); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void do_sched_yield(void) | 
|  | { | 
|  | struct rq_flags rf; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = this_rq_lock_irq(&rf); | 
|  |  | 
|  | schedstat_inc(rq->yld_count); | 
|  | current->sched_class->yield_task(rq); | 
|  |  | 
|  | preempt_disable(); | 
|  | rq_unlock_irq(rq, &rf); | 
|  | sched_preempt_enable_no_resched(); | 
|  |  | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_yield - yield the current processor to other threads. | 
|  | * | 
|  | * This function yields the current CPU to other tasks. If there are no | 
|  | * other threads running on this CPU then this function will return. | 
|  | * | 
|  | * Return: 0. | 
|  | */ | 
|  | SYSCALL_DEFINE0(sched_yield) | 
|  | { | 
|  | do_sched_yield(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * yield - yield the current processor to other threads. | 
|  | * | 
|  | * Do not ever use this function, there's a 99% chance you're doing it wrong. | 
|  | * | 
|  | * The scheduler is at all times free to pick the calling task as the most | 
|  | * eligible task to run, if removing the yield() call from your code breaks | 
|  | * it, it's already broken. | 
|  | * | 
|  | * Typical broken usage is: | 
|  | * | 
|  | * while (!event) | 
|  | *	yield(); | 
|  | * | 
|  | * where one assumes that yield() will let 'the other' process run that will | 
|  | * make event true. If the current task is a SCHED_FIFO task that will never | 
|  | * happen. Never use yield() as a progress guarantee!! | 
|  | * | 
|  | * If you want to use yield() to wait for something, use wait_event(). | 
|  | * If you want to use yield() to be 'nice' for others, use cond_resched(). | 
|  | * If you still want to use yield(), do not! | 
|  | */ | 
|  | void __sched yield(void) | 
|  | { | 
|  | set_current_state(TASK_RUNNING); | 
|  | do_sched_yield(); | 
|  | } | 
|  | EXPORT_SYMBOL(yield); | 
|  |  | 
|  | /** | 
|  | * yield_to - yield the current processor to another thread in | 
|  | * your thread group, or accelerate that thread toward the | 
|  | * processor it's on. | 
|  | * @p: target task | 
|  | * @preempt: whether task preemption is allowed or not | 
|  | * | 
|  | * It's the caller's job to ensure that the target task struct | 
|  | * can't go away on us before we can do any checks. | 
|  | * | 
|  | * Return: | 
|  | *	true (>0) if we indeed boosted the target task. | 
|  | *	false (0) if we failed to boost the target. | 
|  | *	-ESRCH if there's no task to yield to. | 
|  | */ | 
|  | int __sched yield_to(struct task_struct *p, bool preempt) | 
|  | { | 
|  | struct task_struct *curr = current; | 
|  | struct rq *rq, *p_rq; | 
|  | int yielded = 0; | 
|  |  | 
|  | scoped_guard (irqsave) { | 
|  | rq = this_rq(); | 
|  |  | 
|  | again: | 
|  | p_rq = task_rq(p); | 
|  | /* | 
|  | * If we're the only runnable task on the rq and target rq also | 
|  | * has only one task, there's absolutely no point in yielding. | 
|  | */ | 
|  | if (rq->nr_running == 1 && p_rq->nr_running == 1) | 
|  | return -ESRCH; | 
|  |  | 
|  | guard(double_rq_lock)(rq, p_rq); | 
|  | if (task_rq(p) != p_rq) | 
|  | goto again; | 
|  |  | 
|  | if (!curr->sched_class->yield_to_task) | 
|  | return 0; | 
|  |  | 
|  | if (curr->sched_class != p->sched_class) | 
|  | return 0; | 
|  |  | 
|  | if (task_on_cpu(p_rq, p) || !task_is_running(p)) | 
|  | return 0; | 
|  |  | 
|  | yielded = curr->sched_class->yield_to_task(rq, p); | 
|  | if (yielded) { | 
|  | schedstat_inc(rq->yld_count); | 
|  | /* | 
|  | * Make p's CPU reschedule; pick_next_entity | 
|  | * takes care of fairness. | 
|  | */ | 
|  | if (preempt && rq != p_rq) | 
|  | resched_curr(p_rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (yielded) | 
|  | schedule(); | 
|  |  | 
|  | return yielded; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(yield_to); | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_max - return maximum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * Return: On success, this syscall returns the maximum | 
|  | * rt_priority that can be used by a given scheduling class. | 
|  | * On failure, a negative error code is returned. | 
|  | */ | 
|  | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = MAX_RT_PRIO-1; | 
|  | break; | 
|  | case SCHED_DEADLINE: | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | case SCHED_IDLE: | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_min - return minimum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * Return: On success, this syscall returns the minimum | 
|  | * rt_priority that can be used by a given scheduling class. | 
|  | * On failure, a negative error code is returned. | 
|  | */ | 
|  | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = 1; | 
|  | break; | 
|  | case SCHED_DEADLINE: | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | case SCHED_IDLE: | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) | 
|  | { | 
|  | unsigned int time_slice = 0; | 
|  | int retval; | 
|  |  | 
|  | if (pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | scoped_guard (rcu) { | 
|  | struct task_struct *p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | return -ESRCH; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | scoped_guard (task_rq_lock, p) { | 
|  | struct rq *rq = scope.rq; | 
|  | if (p->sched_class->get_rr_interval) | 
|  | time_slice = p->sched_class->get_rr_interval(rq, p); | 
|  | } | 
|  | } | 
|  |  | 
|  | jiffies_to_timespec64(time_slice, t); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_rr_get_interval - return the default time-slice of a process. | 
|  | * @pid: pid of the process. | 
|  | * @interval: userspace pointer to the time-slice value. | 
|  | * | 
|  | * this syscall writes the default time-slice value of a given process | 
|  | * into the user-space timespec buffer. A value of '0' means infinity. | 
|  | * | 
|  | * Return: On success, 0 and the time-slice is in @interval. Otherwise, | 
|  | * an error code. | 
|  | */ | 
|  | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | 
|  | struct __kernel_timespec __user *, interval) | 
|  | { | 
|  | struct timespec64 t; | 
|  | int retval = sched_rr_get_interval(pid, &t); | 
|  |  | 
|  | if (retval == 0) | 
|  | retval = put_timespec64(&t, interval); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_32BIT_TIME | 
|  | SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, | 
|  | struct old_timespec32 __user *, interval) | 
|  | { | 
|  | struct timespec64 t; | 
|  | int retval = sched_rr_get_interval(pid, &t); | 
|  |  | 
|  | if (retval == 0) | 
|  | retval = put_old_timespec32(&t, interval); | 
|  | return retval; | 
|  | } | 
|  | #endif |