|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * NTP state machine interfaces and logic. | 
|  | * | 
|  | * This code was mainly moved from kernel/timer.c and kernel/time.c | 
|  | * Please see those files for relevant copyright info and historical | 
|  | * changelogs. | 
|  | */ | 
|  | #include <linux/capability.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/rtc.h> | 
|  | #include <linux/audit.h> | 
|  |  | 
|  | #include "ntp_internal.h" | 
|  | #include "timekeeping_internal.h" | 
|  |  | 
|  |  | 
|  | /* | 
|  | * NTP timekeeping variables: | 
|  | * | 
|  | * Note: All of the NTP state is protected by the timekeeping locks. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* USER_HZ period (usecs): */ | 
|  | unsigned long			tick_usec = USER_TICK_USEC; | 
|  |  | 
|  | /* SHIFTED_HZ period (nsecs): */ | 
|  | unsigned long			tick_nsec; | 
|  |  | 
|  | static u64			tick_length; | 
|  | static u64			tick_length_base; | 
|  |  | 
|  | #define SECS_PER_DAY		86400 | 
|  | #define MAX_TICKADJ		500LL		/* usecs */ | 
|  | #define MAX_TICKADJ_SCALED \ | 
|  | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | 
|  | #define MAX_TAI_OFFSET		100000 | 
|  |  | 
|  | /* | 
|  | * phase-lock loop variables | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * clock synchronization status | 
|  | * | 
|  | * (TIME_ERROR prevents overwriting the CMOS clock) | 
|  | */ | 
|  | static int			time_state = TIME_OK; | 
|  |  | 
|  | /* clock status bits:							*/ | 
|  | static int			time_status = STA_UNSYNC; | 
|  |  | 
|  | /* time adjustment (nsecs):						*/ | 
|  | static s64			time_offset; | 
|  |  | 
|  | /* pll time constant:							*/ | 
|  | static long			time_constant = 2; | 
|  |  | 
|  | /* maximum error (usecs):						*/ | 
|  | static long			time_maxerror = NTP_PHASE_LIMIT; | 
|  |  | 
|  | /* estimated error (usecs):						*/ | 
|  | static long			time_esterror = NTP_PHASE_LIMIT; | 
|  |  | 
|  | /* frequency offset (scaled nsecs/secs):				*/ | 
|  | static s64			time_freq; | 
|  |  | 
|  | /* time at last adjustment (secs):					*/ | 
|  | static time64_t		time_reftime; | 
|  |  | 
|  | static long			time_adjust; | 
|  |  | 
|  | /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/ | 
|  | static s64			ntp_tick_adj; | 
|  |  | 
|  | /* second value of the next pending leapsecond, or TIME64_MAX if no leap */ | 
|  | static time64_t			ntp_next_leap_sec = TIME64_MAX; | 
|  |  | 
|  | #ifdef CONFIG_NTP_PPS | 
|  |  | 
|  | /* | 
|  | * The following variables are used when a pulse-per-second (PPS) signal | 
|  | * is available. They establish the engineering parameters of the clock | 
|  | * discipline loop when controlled by the PPS signal. | 
|  | */ | 
|  | #define PPS_VALID	10	/* PPS signal watchdog max (s) */ | 
|  | #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */ | 
|  | #define PPS_INTMIN	2	/* min freq interval (s) (shift) */ | 
|  | #define PPS_INTMAX	8	/* max freq interval (s) (shift) */ | 
|  | #define PPS_INTCOUNT	4	/* number of consecutive good intervals to | 
|  | increase pps_shift or consecutive bad | 
|  | intervals to decrease it */ | 
|  | #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */ | 
|  |  | 
|  | static int pps_valid;		/* signal watchdog counter */ | 
|  | static long pps_tf[3];		/* phase median filter */ | 
|  | static long pps_jitter;		/* current jitter (ns) */ | 
|  | static struct timespec64 pps_fbase; /* beginning of the last freq interval */ | 
|  | static int pps_shift;		/* current interval duration (s) (shift) */ | 
|  | static int pps_intcnt;		/* interval counter */ | 
|  | static s64 pps_freq;		/* frequency offset (scaled ns/s) */ | 
|  | static long pps_stabil;		/* current stability (scaled ns/s) */ | 
|  |  | 
|  | /* | 
|  | * PPS signal quality monitors | 
|  | */ | 
|  | static long pps_calcnt;		/* calibration intervals */ | 
|  | static long pps_jitcnt;		/* jitter limit exceeded */ | 
|  | static long pps_stbcnt;		/* stability limit exceeded */ | 
|  | static long pps_errcnt;		/* calibration errors */ | 
|  |  | 
|  |  | 
|  | /* PPS kernel consumer compensates the whole phase error immediately. | 
|  | * Otherwise, reduce the offset by a fixed factor times the time constant. | 
|  | */ | 
|  | static inline s64 ntp_offset_chunk(s64 offset) | 
|  | { | 
|  | if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) | 
|  | return offset; | 
|  | else | 
|  | return shift_right(offset, SHIFT_PLL + time_constant); | 
|  | } | 
|  |  | 
|  | static inline void pps_reset_freq_interval(void) | 
|  | { | 
|  | /* the PPS calibration interval may end | 
|  | surprisingly early */ | 
|  | pps_shift = PPS_INTMIN; | 
|  | pps_intcnt = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pps_clear - Clears the PPS state variables | 
|  | */ | 
|  | static inline void pps_clear(void) | 
|  | { | 
|  | pps_reset_freq_interval(); | 
|  | pps_tf[0] = 0; | 
|  | pps_tf[1] = 0; | 
|  | pps_tf[2] = 0; | 
|  | pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; | 
|  | pps_freq = 0; | 
|  | } | 
|  |  | 
|  | /* Decrease pps_valid to indicate that another second has passed since | 
|  | * the last PPS signal. When it reaches 0, indicate that PPS signal is | 
|  | * missing. | 
|  | */ | 
|  | static inline void pps_dec_valid(void) | 
|  | { | 
|  | if (pps_valid > 0) | 
|  | pps_valid--; | 
|  | else { | 
|  | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | 
|  | STA_PPSWANDER | STA_PPSERROR); | 
|  | pps_clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void pps_set_freq(s64 freq) | 
|  | { | 
|  | pps_freq = freq; | 
|  | } | 
|  |  | 
|  | static inline int is_error_status(int status) | 
|  | { | 
|  | return (status & (STA_UNSYNC|STA_CLOCKERR)) | 
|  | /* PPS signal lost when either PPS time or | 
|  | * PPS frequency synchronization requested | 
|  | */ | 
|  | || ((status & (STA_PPSFREQ|STA_PPSTIME)) | 
|  | && !(status & STA_PPSSIGNAL)) | 
|  | /* PPS jitter exceeded when | 
|  | * PPS time synchronization requested */ | 
|  | || ((status & (STA_PPSTIME|STA_PPSJITTER)) | 
|  | == (STA_PPSTIME|STA_PPSJITTER)) | 
|  | /* PPS wander exceeded or calibration error when | 
|  | * PPS frequency synchronization requested | 
|  | */ | 
|  | || ((status & STA_PPSFREQ) | 
|  | && (status & (STA_PPSWANDER|STA_PPSERROR))); | 
|  | } | 
|  |  | 
|  | static inline void pps_fill_timex(struct __kernel_timex *txc) | 
|  | { | 
|  | txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * | 
|  | PPM_SCALE_INV, NTP_SCALE_SHIFT); | 
|  | txc->jitter	   = pps_jitter; | 
|  | if (!(time_status & STA_NANO)) | 
|  | txc->jitter = pps_jitter / NSEC_PER_USEC; | 
|  | txc->shift	   = pps_shift; | 
|  | txc->stabil	   = pps_stabil; | 
|  | txc->jitcnt	   = pps_jitcnt; | 
|  | txc->calcnt	   = pps_calcnt; | 
|  | txc->errcnt	   = pps_errcnt; | 
|  | txc->stbcnt	   = pps_stbcnt; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_NTP_PPS */ | 
|  |  | 
|  | static inline s64 ntp_offset_chunk(s64 offset) | 
|  | { | 
|  | return shift_right(offset, SHIFT_PLL + time_constant); | 
|  | } | 
|  |  | 
|  | static inline void pps_reset_freq_interval(void) {} | 
|  | static inline void pps_clear(void) {} | 
|  | static inline void pps_dec_valid(void) {} | 
|  | static inline void pps_set_freq(s64 freq) {} | 
|  |  | 
|  | static inline int is_error_status(int status) | 
|  | { | 
|  | return status & (STA_UNSYNC|STA_CLOCKERR); | 
|  | } | 
|  |  | 
|  | static inline void pps_fill_timex(struct __kernel_timex *txc) | 
|  | { | 
|  | /* PPS is not implemented, so these are zero */ | 
|  | txc->ppsfreq	   = 0; | 
|  | txc->jitter	   = 0; | 
|  | txc->shift	   = 0; | 
|  | txc->stabil	   = 0; | 
|  | txc->jitcnt	   = 0; | 
|  | txc->calcnt	   = 0; | 
|  | txc->errcnt	   = 0; | 
|  | txc->stbcnt	   = 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_NTP_PPS */ | 
|  |  | 
|  |  | 
|  | /** | 
|  | * ntp_synced - Returns 1 if the NTP status is not UNSYNC | 
|  | * | 
|  | */ | 
|  | static inline int ntp_synced(void) | 
|  | { | 
|  | return !(time_status & STA_UNSYNC); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * NTP methods: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Update (tick_length, tick_length_base, tick_nsec), based | 
|  | * on (tick_usec, ntp_tick_adj, time_freq): | 
|  | */ | 
|  | static void ntp_update_frequency(void) | 
|  | { | 
|  | u64 second_length; | 
|  | u64 new_base; | 
|  |  | 
|  | second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 
|  | << NTP_SCALE_SHIFT; | 
|  |  | 
|  | second_length		+= ntp_tick_adj; | 
|  | second_length		+= time_freq; | 
|  |  | 
|  | tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; | 
|  | new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ); | 
|  |  | 
|  | /* | 
|  | * Don't wait for the next second_overflow, apply | 
|  | * the change to the tick length immediately: | 
|  | */ | 
|  | tick_length		+= new_base - tick_length_base; | 
|  | tick_length_base	 = new_base; | 
|  | } | 
|  |  | 
|  | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) | 
|  | { | 
|  | time_status &= ~STA_MODE; | 
|  |  | 
|  | if (secs < MINSEC) | 
|  | return 0; | 
|  |  | 
|  | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | 
|  | return 0; | 
|  |  | 
|  | time_status |= STA_MODE; | 
|  |  | 
|  | return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); | 
|  | } | 
|  |  | 
|  | static void ntp_update_offset(long offset) | 
|  | { | 
|  | s64 freq_adj; | 
|  | s64 offset64; | 
|  | long secs; | 
|  |  | 
|  | if (!(time_status & STA_PLL)) | 
|  | return; | 
|  |  | 
|  | if (!(time_status & STA_NANO)) { | 
|  | /* Make sure the multiplication below won't overflow */ | 
|  | offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC); | 
|  | offset *= NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scale the phase adjustment and | 
|  | * clamp to the operating range. | 
|  | */ | 
|  | offset = clamp(offset, -MAXPHASE, MAXPHASE); | 
|  |  | 
|  | /* | 
|  | * Select how the frequency is to be controlled | 
|  | * and in which mode (PLL or FLL). | 
|  | */ | 
|  | secs = (long)(__ktime_get_real_seconds() - time_reftime); | 
|  | if (unlikely(time_status & STA_FREQHOLD)) | 
|  | secs = 0; | 
|  |  | 
|  | time_reftime = __ktime_get_real_seconds(); | 
|  |  | 
|  | offset64    = offset; | 
|  | freq_adj    = ntp_update_offset_fll(offset64, secs); | 
|  |  | 
|  | /* | 
|  | * Clamp update interval to reduce PLL gain with low | 
|  | * sampling rate (e.g. intermittent network connection) | 
|  | * to avoid instability. | 
|  | */ | 
|  | if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) | 
|  | secs = 1 << (SHIFT_PLL + 1 + time_constant); | 
|  |  | 
|  | freq_adj    += (offset64 * secs) << | 
|  | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); | 
|  |  | 
|  | freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED); | 
|  |  | 
|  | time_freq   = max(freq_adj, -MAXFREQ_SCALED); | 
|  |  | 
|  | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntp_clear - Clears the NTP state variables | 
|  | */ | 
|  | void ntp_clear(void) | 
|  | { | 
|  | time_adjust	= 0;		/* stop active adjtime() */ | 
|  | time_status	|= STA_UNSYNC; | 
|  | time_maxerror	= NTP_PHASE_LIMIT; | 
|  | time_esterror	= NTP_PHASE_LIMIT; | 
|  |  | 
|  | ntp_update_frequency(); | 
|  |  | 
|  | tick_length	= tick_length_base; | 
|  | time_offset	= 0; | 
|  |  | 
|  | ntp_next_leap_sec = TIME64_MAX; | 
|  | /* Clear PPS state variables */ | 
|  | pps_clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | u64 ntp_tick_length(void) | 
|  | { | 
|  | return tick_length; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t | 
|  | * | 
|  | * Provides the time of the next leapsecond against CLOCK_REALTIME in | 
|  | * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending. | 
|  | */ | 
|  | ktime_t ntp_get_next_leap(void) | 
|  | { | 
|  | ktime_t ret; | 
|  |  | 
|  | if ((time_state == TIME_INS) && (time_status & STA_INS)) | 
|  | return ktime_set(ntp_next_leap_sec, 0); | 
|  | ret = KTIME_MAX; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this routine handles the overflow of the microsecond field | 
|  | * | 
|  | * The tricky bits of code to handle the accurate clock support | 
|  | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
|  | * They were originally developed for SUN and DEC kernels. | 
|  | * All the kudos should go to Dave for this stuff. | 
|  | * | 
|  | * Also handles leap second processing, and returns leap offset | 
|  | */ | 
|  | int second_overflow(time64_t secs) | 
|  | { | 
|  | s64 delta; | 
|  | int leap = 0; | 
|  | s32 rem; | 
|  |  | 
|  | /* | 
|  | * Leap second processing. If in leap-insert state at the end of the | 
|  | * day, the system clock is set back one second; if in leap-delete | 
|  | * state, the system clock is set ahead one second. | 
|  | */ | 
|  | switch (time_state) { | 
|  | case TIME_OK: | 
|  | if (time_status & STA_INS) { | 
|  | time_state = TIME_INS; | 
|  | div_s64_rem(secs, SECS_PER_DAY, &rem); | 
|  | ntp_next_leap_sec = secs + SECS_PER_DAY - rem; | 
|  | } else if (time_status & STA_DEL) { | 
|  | time_state = TIME_DEL; | 
|  | div_s64_rem(secs + 1, SECS_PER_DAY, &rem); | 
|  | ntp_next_leap_sec = secs + SECS_PER_DAY - rem; | 
|  | } | 
|  | break; | 
|  | case TIME_INS: | 
|  | if (!(time_status & STA_INS)) { | 
|  | ntp_next_leap_sec = TIME64_MAX; | 
|  | time_state = TIME_OK; | 
|  | } else if (secs == ntp_next_leap_sec) { | 
|  | leap = -1; | 
|  | time_state = TIME_OOP; | 
|  | printk(KERN_NOTICE | 
|  | "Clock: inserting leap second 23:59:60 UTC\n"); | 
|  | } | 
|  | break; | 
|  | case TIME_DEL: | 
|  | if (!(time_status & STA_DEL)) { | 
|  | ntp_next_leap_sec = TIME64_MAX; | 
|  | time_state = TIME_OK; | 
|  | } else if (secs == ntp_next_leap_sec) { | 
|  | leap = 1; | 
|  | ntp_next_leap_sec = TIME64_MAX; | 
|  | time_state = TIME_WAIT; | 
|  | printk(KERN_NOTICE | 
|  | "Clock: deleting leap second 23:59:59 UTC\n"); | 
|  | } | 
|  | break; | 
|  | case TIME_OOP: | 
|  | ntp_next_leap_sec = TIME64_MAX; | 
|  | time_state = TIME_WAIT; | 
|  | break; | 
|  | case TIME_WAIT: | 
|  | if (!(time_status & (STA_INS | STA_DEL))) | 
|  | time_state = TIME_OK; | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Bump the maxerror field */ | 
|  | time_maxerror += MAXFREQ / NSEC_PER_USEC; | 
|  | if (time_maxerror > NTP_PHASE_LIMIT) { | 
|  | time_maxerror = NTP_PHASE_LIMIT; | 
|  | time_status |= STA_UNSYNC; | 
|  | } | 
|  |  | 
|  | /* Compute the phase adjustment for the next second */ | 
|  | tick_length	 = tick_length_base; | 
|  |  | 
|  | delta		 = ntp_offset_chunk(time_offset); | 
|  | time_offset	-= delta; | 
|  | tick_length	+= delta; | 
|  |  | 
|  | /* Check PPS signal */ | 
|  | pps_dec_valid(); | 
|  |  | 
|  | if (!time_adjust) | 
|  | goto out; | 
|  |  | 
|  | if (time_adjust > MAX_TICKADJ) { | 
|  | time_adjust -= MAX_TICKADJ; | 
|  | tick_length += MAX_TICKADJ_SCALED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (time_adjust < -MAX_TICKADJ) { | 
|  | time_adjust += MAX_TICKADJ; | 
|  | tick_length -= MAX_TICKADJ_SCALED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | 
|  | << NTP_SCALE_SHIFT; | 
|  | time_adjust = 0; | 
|  |  | 
|  | out: | 
|  | return leap; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) | 
|  | static void sync_hw_clock(struct work_struct *work); | 
|  | static DECLARE_WORK(sync_work, sync_hw_clock); | 
|  | static struct hrtimer sync_hrtimer; | 
|  | #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC) | 
|  |  | 
|  | static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer) | 
|  | { | 
|  | queue_work(system_freezable_power_efficient_wq, &sync_work); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry) | 
|  | { | 
|  | ktime_t exp = ktime_set(ktime_get_real_seconds(), 0); | 
|  |  | 
|  | if (retry) | 
|  | exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec); | 
|  | else | 
|  | exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec); | 
|  |  | 
|  | hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether @now is correct versus the required time to update the RTC | 
|  | * and calculate the value which needs to be written to the RTC so that the | 
|  | * next seconds increment of the RTC after the write is aligned with the next | 
|  | * seconds increment of clock REALTIME. | 
|  | * | 
|  | * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds | 
|  | * | 
|  | * t2.tv_nsec == 0 | 
|  | * tsched = t2 - set_offset_nsec | 
|  | * newval = t2 - NSEC_PER_SEC | 
|  | * | 
|  | * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC | 
|  | * | 
|  | * As the execution of this code is not guaranteed to happen exactly at | 
|  | * tsched this allows it to happen within a fuzzy region: | 
|  | * | 
|  | *	abs(now - tsched) < FUZZ | 
|  | * | 
|  | * If @now is not inside the allowed window the function returns false. | 
|  | */ | 
|  | static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec, | 
|  | struct timespec64 *to_set, | 
|  | const struct timespec64 *now) | 
|  | { | 
|  | /* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */ | 
|  | const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; | 
|  | struct timespec64 delay = {.tv_sec = -1, | 
|  | .tv_nsec = set_offset_nsec}; | 
|  |  | 
|  | *to_set = timespec64_add(*now, delay); | 
|  |  | 
|  | if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { | 
|  | to_set->tv_nsec = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { | 
|  | to_set->tv_sec++; | 
|  | to_set->tv_nsec = 0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 
|  | int __weak update_persistent_clock64(struct timespec64 now64) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  | #else | 
|  | static inline int update_persistent_clock64(struct timespec64 now64) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RTC_SYSTOHC | 
|  | /* Save NTP synchronized time to the RTC */ | 
|  | static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec) | 
|  | { | 
|  | struct rtc_device *rtc; | 
|  | struct rtc_time tm; | 
|  | int err = -ENODEV; | 
|  |  | 
|  | rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE); | 
|  | if (!rtc) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!rtc->ops || !rtc->ops->set_time) | 
|  | goto out_close; | 
|  |  | 
|  | /* First call might not have the correct offset */ | 
|  | if (*offset_nsec == rtc->set_offset_nsec) { | 
|  | rtc_time64_to_tm(to_set->tv_sec, &tm); | 
|  | err = rtc_set_time(rtc, &tm); | 
|  | } else { | 
|  | /* Store the update offset and let the caller try again */ | 
|  | *offset_nsec = rtc->set_offset_nsec; | 
|  | err = -EAGAIN; | 
|  | } | 
|  | out_close: | 
|  | rtc_class_close(rtc); | 
|  | return err; | 
|  | } | 
|  | #else | 
|  | static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If we have an externally synchronized Linux clock, then update RTC clock | 
|  | * accordingly every ~11 minutes. Generally RTCs can only store second | 
|  | * precision, but many RTCs will adjust the phase of their second tick to | 
|  | * match the moment of update. This infrastructure arranges to call to the RTC | 
|  | * set at the correct moment to phase synchronize the RTC second tick over | 
|  | * with the kernel clock. | 
|  | */ | 
|  | static void sync_hw_clock(struct work_struct *work) | 
|  | { | 
|  | /* | 
|  | * The default synchronization offset is 500ms for the deprecated | 
|  | * update_persistent_clock64() under the assumption that it uses | 
|  | * the infamous CMOS clock (MC146818). | 
|  | */ | 
|  | static unsigned long offset_nsec = NSEC_PER_SEC / 2; | 
|  | struct timespec64 now, to_set; | 
|  | int res = -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer() | 
|  | * managed to schedule the work between the timer firing and the | 
|  | * work being able to rearm the timer. Wait for the timer to expire. | 
|  | */ | 
|  | if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer)) | 
|  | return; | 
|  |  | 
|  | ktime_get_real_ts64(&now); | 
|  | /* If @now is not in the allowed window, try again */ | 
|  | if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now)) | 
|  | goto rearm; | 
|  |  | 
|  | /* Take timezone adjusted RTCs into account */ | 
|  | if (persistent_clock_is_local) | 
|  | to_set.tv_sec -= (sys_tz.tz_minuteswest * 60); | 
|  |  | 
|  | /* Try the legacy RTC first. */ | 
|  | res = update_persistent_clock64(to_set); | 
|  | if (res != -ENODEV) | 
|  | goto rearm; | 
|  |  | 
|  | /* Try the RTC class */ | 
|  | res = update_rtc(&to_set, &offset_nsec); | 
|  | if (res == -ENODEV) | 
|  | return; | 
|  | rearm: | 
|  | sched_sync_hw_clock(offset_nsec, res != 0); | 
|  | } | 
|  |  | 
|  | void ntp_notify_cmos_timer(void) | 
|  | { | 
|  | /* | 
|  | * When the work is currently executed but has not yet the timer | 
|  | * rearmed this queues the work immediately again. No big issue, | 
|  | * just a pointless work scheduled. | 
|  | */ | 
|  | if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer)) | 
|  | queue_work(system_freezable_power_efficient_wq, &sync_work); | 
|  | } | 
|  |  | 
|  | static void __init ntp_init_cmos_sync(void) | 
|  | { | 
|  | hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS); | 
|  | sync_hrtimer.function = sync_timer_callback; | 
|  | } | 
|  | #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */ | 
|  | static inline void __init ntp_init_cmos_sync(void) { } | 
|  | #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */ | 
|  |  | 
|  | /* | 
|  | * Propagate a new txc->status value into the NTP state: | 
|  | */ | 
|  | static inline void process_adj_status(const struct __kernel_timex *txc) | 
|  | { | 
|  | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { | 
|  | time_state = TIME_OK; | 
|  | time_status = STA_UNSYNC; | 
|  | ntp_next_leap_sec = TIME64_MAX; | 
|  | /* restart PPS frequency calibration */ | 
|  | pps_reset_freq_interval(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we turn on PLL adjustments then reset the | 
|  | * reference time to current time. | 
|  | */ | 
|  | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | 
|  | time_reftime = __ktime_get_real_seconds(); | 
|  |  | 
|  | /* only set allowed bits */ | 
|  | time_status &= STA_RONLY; | 
|  | time_status |= txc->status & ~STA_RONLY; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void process_adjtimex_modes(const struct __kernel_timex *txc, | 
|  | s32 *time_tai) | 
|  | { | 
|  | if (txc->modes & ADJ_STATUS) | 
|  | process_adj_status(txc); | 
|  |  | 
|  | if (txc->modes & ADJ_NANO) | 
|  | time_status |= STA_NANO; | 
|  |  | 
|  | if (txc->modes & ADJ_MICRO) | 
|  | time_status &= ~STA_NANO; | 
|  |  | 
|  | if (txc->modes & ADJ_FREQUENCY) { | 
|  | time_freq = txc->freq * PPM_SCALE; | 
|  | time_freq = min(time_freq, MAXFREQ_SCALED); | 
|  | time_freq = max(time_freq, -MAXFREQ_SCALED); | 
|  | /* update pps_freq */ | 
|  | pps_set_freq(time_freq); | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_MAXERROR) | 
|  | time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT); | 
|  |  | 
|  | if (txc->modes & ADJ_ESTERROR) | 
|  | time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT); | 
|  |  | 
|  | if (txc->modes & ADJ_TIMECONST) { | 
|  | time_constant = clamp(txc->constant, 0, MAXTC); | 
|  | if (!(time_status & STA_NANO)) | 
|  | time_constant += 4; | 
|  | time_constant = clamp(time_constant, 0, MAXTC); | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_TAI && | 
|  | txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET) | 
|  | *time_tai = txc->constant; | 
|  |  | 
|  | if (txc->modes & ADJ_OFFSET) | 
|  | ntp_update_offset(txc->offset); | 
|  |  | 
|  | if (txc->modes & ADJ_TICK) | 
|  | tick_usec = txc->tick; | 
|  |  | 
|  | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | 
|  | ntp_update_frequency(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * adjtimex mainly allows reading (and writing, if superuser) of | 
|  | * kernel time-keeping variables. used by xntpd. | 
|  | */ | 
|  | int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts, | 
|  | s32 *time_tai, struct audit_ntp_data *ad) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | if (txc->modes & ADJ_ADJTIME) { | 
|  | long save_adjust = time_adjust; | 
|  |  | 
|  | if (!(txc->modes & ADJ_OFFSET_READONLY)) { | 
|  | /* adjtime() is independent from ntp_adjtime() */ | 
|  | time_adjust = txc->offset; | 
|  | ntp_update_frequency(); | 
|  |  | 
|  | audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust); | 
|  | audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust); | 
|  | } | 
|  | txc->offset = save_adjust; | 
|  | } else { | 
|  | /* If there are input parameters, then process them: */ | 
|  | if (txc->modes) { | 
|  | audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset); | 
|  | audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq); | 
|  | audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status); | 
|  | audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai); | 
|  | audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec); | 
|  |  | 
|  | process_adjtimex_modes(txc, time_tai); | 
|  |  | 
|  | audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset); | 
|  | audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq); | 
|  | audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status); | 
|  | audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai); | 
|  | audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec); | 
|  | } | 
|  |  | 
|  | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, | 
|  | NTP_SCALE_SHIFT); | 
|  | if (!(time_status & STA_NANO)) | 
|  | txc->offset = (u32)txc->offset / NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | result = time_state;	/* mostly `TIME_OK' */ | 
|  | /* check for errors */ | 
|  | if (is_error_status(time_status)) | 
|  | result = TIME_ERROR; | 
|  |  | 
|  | txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * | 
|  | PPM_SCALE_INV, NTP_SCALE_SHIFT); | 
|  | txc->maxerror	   = time_maxerror; | 
|  | txc->esterror	   = time_esterror; | 
|  | txc->status	   = time_status; | 
|  | txc->constant	   = time_constant; | 
|  | txc->precision	   = 1; | 
|  | txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE; | 
|  | txc->tick	   = tick_usec; | 
|  | txc->tai	   = *time_tai; | 
|  |  | 
|  | /* fill PPS status fields */ | 
|  | pps_fill_timex(txc); | 
|  |  | 
|  | txc->time.tv_sec = ts->tv_sec; | 
|  | txc->time.tv_usec = ts->tv_nsec; | 
|  | if (!(time_status & STA_NANO)) | 
|  | txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC; | 
|  |  | 
|  | /* Handle leapsec adjustments */ | 
|  | if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) { | 
|  | if ((time_state == TIME_INS) && (time_status & STA_INS)) { | 
|  | result = TIME_OOP; | 
|  | txc->tai++; | 
|  | txc->time.tv_sec--; | 
|  | } | 
|  | if ((time_state == TIME_DEL) && (time_status & STA_DEL)) { | 
|  | result = TIME_WAIT; | 
|  | txc->tai--; | 
|  | txc->time.tv_sec++; | 
|  | } | 
|  | if ((time_state == TIME_OOP) && | 
|  | (ts->tv_sec == ntp_next_leap_sec)) { | 
|  | result = TIME_WAIT; | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #ifdef	CONFIG_NTP_PPS | 
|  |  | 
|  | /* actually struct pps_normtime is good old struct timespec, but it is | 
|  | * semantically different (and it is the reason why it was invented): | 
|  | * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] | 
|  | * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ | 
|  | struct pps_normtime { | 
|  | s64		sec;	/* seconds */ | 
|  | long		nsec;	/* nanoseconds */ | 
|  | }; | 
|  |  | 
|  | /* normalize the timestamp so that nsec is in the | 
|  | ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ | 
|  | static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts) | 
|  | { | 
|  | struct pps_normtime norm = { | 
|  | .sec = ts.tv_sec, | 
|  | .nsec = ts.tv_nsec | 
|  | }; | 
|  |  | 
|  | if (norm.nsec > (NSEC_PER_SEC >> 1)) { | 
|  | norm.nsec -= NSEC_PER_SEC; | 
|  | norm.sec++; | 
|  | } | 
|  |  | 
|  | return norm; | 
|  | } | 
|  |  | 
|  | /* get current phase correction and jitter */ | 
|  | static inline long pps_phase_filter_get(long *jitter) | 
|  | { | 
|  | *jitter = pps_tf[0] - pps_tf[1]; | 
|  | if (*jitter < 0) | 
|  | *jitter = -*jitter; | 
|  |  | 
|  | /* TODO: test various filters */ | 
|  | return pps_tf[0]; | 
|  | } | 
|  |  | 
|  | /* add the sample to the phase filter */ | 
|  | static inline void pps_phase_filter_add(long err) | 
|  | { | 
|  | pps_tf[2] = pps_tf[1]; | 
|  | pps_tf[1] = pps_tf[0]; | 
|  | pps_tf[0] = err; | 
|  | } | 
|  |  | 
|  | /* decrease frequency calibration interval length. | 
|  | * It is halved after four consecutive unstable intervals. | 
|  | */ | 
|  | static inline void pps_dec_freq_interval(void) | 
|  | { | 
|  | if (--pps_intcnt <= -PPS_INTCOUNT) { | 
|  | pps_intcnt = -PPS_INTCOUNT; | 
|  | if (pps_shift > PPS_INTMIN) { | 
|  | pps_shift--; | 
|  | pps_intcnt = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* increase frequency calibration interval length. | 
|  | * It is doubled after four consecutive stable intervals. | 
|  | */ | 
|  | static inline void pps_inc_freq_interval(void) | 
|  | { | 
|  | if (++pps_intcnt >= PPS_INTCOUNT) { | 
|  | pps_intcnt = PPS_INTCOUNT; | 
|  | if (pps_shift < PPS_INTMAX) { | 
|  | pps_shift++; | 
|  | pps_intcnt = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update clock frequency based on MONOTONIC_RAW clock PPS signal | 
|  | * timestamps | 
|  | * | 
|  | * At the end of the calibration interval the difference between the | 
|  | * first and last MONOTONIC_RAW clock timestamps divided by the length | 
|  | * of the interval becomes the frequency update. If the interval was | 
|  | * too long, the data are discarded. | 
|  | * Returns the difference between old and new frequency values. | 
|  | */ | 
|  | static long hardpps_update_freq(struct pps_normtime freq_norm) | 
|  | { | 
|  | long delta, delta_mod; | 
|  | s64 ftemp; | 
|  |  | 
|  | /* check if the frequency interval was too long */ | 
|  | if (freq_norm.sec > (2 << pps_shift)) { | 
|  | time_status |= STA_PPSERROR; | 
|  | pps_errcnt++; | 
|  | pps_dec_freq_interval(); | 
|  | printk_deferred(KERN_ERR | 
|  | "hardpps: PPSERROR: interval too long - %lld s\n", | 
|  | freq_norm.sec); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* here the raw frequency offset and wander (stability) is | 
|  | * calculated. If the wander is less than the wander threshold | 
|  | * the interval is increased; otherwise it is decreased. | 
|  | */ | 
|  | ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, | 
|  | freq_norm.sec); | 
|  | delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); | 
|  | pps_freq = ftemp; | 
|  | if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { | 
|  | printk_deferred(KERN_WARNING | 
|  | "hardpps: PPSWANDER: change=%ld\n", delta); | 
|  | time_status |= STA_PPSWANDER; | 
|  | pps_stbcnt++; | 
|  | pps_dec_freq_interval(); | 
|  | } else {	/* good sample */ | 
|  | pps_inc_freq_interval(); | 
|  | } | 
|  |  | 
|  | /* the stability metric is calculated as the average of recent | 
|  | * frequency changes, but is used only for performance | 
|  | * monitoring | 
|  | */ | 
|  | delta_mod = delta; | 
|  | if (delta_mod < 0) | 
|  | delta_mod = -delta_mod; | 
|  | pps_stabil += (div_s64(((s64)delta_mod) << | 
|  | (NTP_SCALE_SHIFT - SHIFT_USEC), | 
|  | NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; | 
|  |  | 
|  | /* if enabled, the system clock frequency is updated */ | 
|  | if ((time_status & STA_PPSFREQ) != 0 && | 
|  | (time_status & STA_FREQHOLD) == 0) { | 
|  | time_freq = pps_freq; | 
|  | ntp_update_frequency(); | 
|  | } | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | /* correct REALTIME clock phase error against PPS signal */ | 
|  | static void hardpps_update_phase(long error) | 
|  | { | 
|  | long correction = -error; | 
|  | long jitter; | 
|  |  | 
|  | /* add the sample to the median filter */ | 
|  | pps_phase_filter_add(correction); | 
|  | correction = pps_phase_filter_get(&jitter); | 
|  |  | 
|  | /* Nominal jitter is due to PPS signal noise. If it exceeds the | 
|  | * threshold, the sample is discarded; otherwise, if so enabled, | 
|  | * the time offset is updated. | 
|  | */ | 
|  | if (jitter > (pps_jitter << PPS_POPCORN)) { | 
|  | printk_deferred(KERN_WARNING | 
|  | "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", | 
|  | jitter, (pps_jitter << PPS_POPCORN)); | 
|  | time_status |= STA_PPSJITTER; | 
|  | pps_jitcnt++; | 
|  | } else if (time_status & STA_PPSTIME) { | 
|  | /* correct the time using the phase offset */ | 
|  | time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, | 
|  | NTP_INTERVAL_FREQ); | 
|  | /* cancel running adjtime() */ | 
|  | time_adjust = 0; | 
|  | } | 
|  | /* update jitter */ | 
|  | pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __hardpps() - discipline CPU clock oscillator to external PPS signal | 
|  | * | 
|  | * This routine is called at each PPS signal arrival in order to | 
|  | * discipline the CPU clock oscillator to the PPS signal. It takes two | 
|  | * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former | 
|  | * is used to correct clock phase error and the latter is used to | 
|  | * correct the frequency. | 
|  | * | 
|  | * This code is based on David Mills's reference nanokernel | 
|  | * implementation. It was mostly rewritten but keeps the same idea. | 
|  | */ | 
|  | void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) | 
|  | { | 
|  | struct pps_normtime pts_norm, freq_norm; | 
|  |  | 
|  | pts_norm = pps_normalize_ts(*phase_ts); | 
|  |  | 
|  | /* clear the error bits, they will be set again if needed */ | 
|  | time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); | 
|  |  | 
|  | /* indicate signal presence */ | 
|  | time_status |= STA_PPSSIGNAL; | 
|  | pps_valid = PPS_VALID; | 
|  |  | 
|  | /* when called for the first time, | 
|  | * just start the frequency interval */ | 
|  | if (unlikely(pps_fbase.tv_sec == 0)) { | 
|  | pps_fbase = *raw_ts; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* ok, now we have a base for frequency calculation */ | 
|  | freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase)); | 
|  |  | 
|  | /* check that the signal is in the range | 
|  | * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ | 
|  | if ((freq_norm.sec == 0) || | 
|  | (freq_norm.nsec > MAXFREQ * freq_norm.sec) || | 
|  | (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { | 
|  | time_status |= STA_PPSJITTER; | 
|  | /* restart the frequency calibration interval */ | 
|  | pps_fbase = *raw_ts; | 
|  | printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* signal is ok */ | 
|  |  | 
|  | /* check if the current frequency interval is finished */ | 
|  | if (freq_norm.sec >= (1 << pps_shift)) { | 
|  | pps_calcnt++; | 
|  | /* restart the frequency calibration interval */ | 
|  | pps_fbase = *raw_ts; | 
|  | hardpps_update_freq(freq_norm); | 
|  | } | 
|  |  | 
|  | hardpps_update_phase(pts_norm.nsec); | 
|  |  | 
|  | } | 
|  | #endif	/* CONFIG_NTP_PPS */ | 
|  |  | 
|  | static int __init ntp_tick_adj_setup(char *str) | 
|  | { | 
|  | int rc = kstrtos64(str, 0, &ntp_tick_adj); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | ntp_tick_adj <<= NTP_SCALE_SHIFT; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | 
|  |  | 
|  | void __init ntp_init(void) | 
|  | { | 
|  | ntp_clear(); | 
|  | ntp_init_cmos_sync(); | 
|  | } |