| // SPDX-License-Identifier: GPL-2.0 |
| |
| // Copyright (C) 2024 Google LLC. |
| |
| //! A linked list implementation. |
| |
| use crate::sync::ArcBorrow; |
| use crate::types::Opaque; |
| use core::iter::{DoubleEndedIterator, FusedIterator}; |
| use core::marker::PhantomData; |
| use core::ptr; |
| use pin_init::PinInit; |
| |
| mod impl_list_item_mod; |
| pub use self::impl_list_item_mod::{ |
| impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr, |
| }; |
| |
| mod arc; |
| pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc}; |
| |
| mod arc_field; |
| pub use self::arc_field::{define_list_arc_field_getter, ListArcField}; |
| |
| /// A linked list. |
| /// |
| /// All elements in this linked list will be [`ListArc`] references to the value. Since a value can |
| /// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same |
| /// prev/next pointers are not used for several linked lists. |
| /// |
| /// # Invariants |
| /// |
| /// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks` |
| /// field of the first element in the list. |
| /// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle. |
| /// * For every item in the list, the list owns the associated [`ListArc`] reference and has |
| /// exclusive access to the `ListLinks` field. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::list::*; |
| /// |
| /// #[pin_data] |
| /// struct BasicItem { |
| /// value: i32, |
| /// #[pin] |
| /// links: ListLinks, |
| /// } |
| /// |
| /// impl BasicItem { |
| /// fn new(value: i32) -> Result<ListArc<Self>> { |
| /// ListArc::pin_init(try_pin_init!(Self { |
| /// value, |
| /// links <- ListLinks::new(), |
| /// }), GFP_KERNEL) |
| /// } |
| /// } |
| /// |
| /// impl_list_arc_safe! { |
| /// impl ListArcSafe<0> for BasicItem { untracked; } |
| /// } |
| /// impl_list_item! { |
| /// impl ListItem<0> for BasicItem { using ListLinks { self.links }; } |
| /// } |
| /// |
| /// // Create a new empty list. |
| /// let mut list = List::new(); |
| /// { |
| /// assert!(list.is_empty()); |
| /// } |
| /// |
| /// // Insert 3 elements using `push_back()`. |
| /// list.push_back(BasicItem::new(15)?); |
| /// list.push_back(BasicItem::new(10)?); |
| /// list.push_back(BasicItem::new(30)?); |
| /// |
| /// // Iterate over the list to verify the nodes were inserted correctly. |
| /// // [15, 10, 30] |
| /// { |
| /// let mut iter = list.iter(); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 15); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 10); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 30); |
| /// assert!(iter.next().is_none()); |
| /// |
| /// // Verify the length of the list. |
| /// assert_eq!(list.iter().count(), 3); |
| /// } |
| /// |
| /// // Pop the items from the list using `pop_back()` and verify the content. |
| /// { |
| /// assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 30); |
| /// assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 10); |
| /// assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 15); |
| /// } |
| /// |
| /// // Insert 3 elements using `push_front()`. |
| /// list.push_front(BasicItem::new(15)?); |
| /// list.push_front(BasicItem::new(10)?); |
| /// list.push_front(BasicItem::new(30)?); |
| /// |
| /// // Iterate over the list to verify the nodes were inserted correctly. |
| /// // [30, 10, 15] |
| /// { |
| /// let mut iter = list.iter(); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 30); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 10); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 15); |
| /// assert!(iter.next().is_none()); |
| /// |
| /// // Verify the length of the list. |
| /// assert_eq!(list.iter().count(), 3); |
| /// } |
| /// |
| /// // Pop the items from the list using `pop_front()` and verify the content. |
| /// { |
| /// assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 30); |
| /// assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 10); |
| /// } |
| /// |
| /// // Push `list2` to `list` through `push_all_back()`. |
| /// // list: [15] |
| /// // list2: [25, 35] |
| /// { |
| /// let mut list2 = List::new(); |
| /// list2.push_back(BasicItem::new(25)?); |
| /// list2.push_back(BasicItem::new(35)?); |
| /// |
| /// list.push_all_back(&mut list2); |
| /// |
| /// // list: [15, 25, 35] |
| /// // list2: [] |
| /// let mut iter = list.iter(); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 15); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 25); |
| /// assert_eq!(iter.next().ok_or(EINVAL)?.value, 35); |
| /// assert!(iter.next().is_none()); |
| /// assert!(list2.is_empty()); |
| /// } |
| /// # Result::<(), Error>::Ok(()) |
| /// ``` |
| pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> { |
| first: *mut ListLinksFields, |
| _ty: PhantomData<ListArc<T, ID>>, |
| } |
| |
| // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same |
| // type of access to the `ListArc<T, ID>` elements. |
| unsafe impl<T, const ID: u64> Send for List<T, ID> |
| where |
| ListArc<T, ID>: Send, |
| T: ?Sized + ListItem<ID>, |
| { |
| } |
| // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same |
| // type of access to the `ListArc<T, ID>` elements. |
| unsafe impl<T, const ID: u64> Sync for List<T, ID> |
| where |
| ListArc<T, ID>: Sync, |
| T: ?Sized + ListItem<ID>, |
| { |
| } |
| |
| /// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`]. |
| /// |
| /// # Safety |
| /// |
| /// Implementers must ensure that they provide the guarantees documented on methods provided by |
| /// this trait. |
| /// |
| /// [`ListArc<Self>`]: ListArc |
| pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> { |
| /// Views the [`ListLinks`] for this value. |
| /// |
| /// # Guarantees |
| /// |
| /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove` |
| /// since the most recent such call, then this returns the same pointer as the one returned by |
| /// the most recent call to `prepare_to_insert`. |
| /// |
| /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers. |
| /// |
| /// # Safety |
| /// |
| /// The provided pointer must point at a valid value. (It need not be in an `Arc`.) |
| unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>; |
| |
| /// View the full value given its [`ListLinks`] field. |
| /// |
| /// Can only be used when the value is in a list. |
| /// |
| /// # Guarantees |
| /// |
| /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`. |
| /// * The returned pointer is valid until the next call to `post_remove`. |
| /// |
| /// # Safety |
| /// |
| /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or |
| /// from a call to `view_links` that happened after the most recent call to |
| /// `prepare_to_insert`. |
| /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have |
| /// been called. |
| unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self; |
| |
| /// This is called when an item is inserted into a [`List`]. |
| /// |
| /// # Guarantees |
| /// |
| /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is |
| /// called. |
| /// |
| /// # Safety |
| /// |
| /// * The provided pointer must point at a valid value in an [`Arc`]. |
| /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate. |
| /// * The caller must own the [`ListArc`] for this value. |
| /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been |
| /// called after this call to `prepare_to_insert`. |
| /// |
| /// [`Arc`]: crate::sync::Arc |
| unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>; |
| |
| /// This undoes a previous call to `prepare_to_insert`. |
| /// |
| /// # Guarantees |
| /// |
| /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`. |
| /// |
| /// # Safety |
| /// |
| /// The provided pointer must be the pointer returned by the most recent call to |
| /// `prepare_to_insert`. |
| unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self; |
| } |
| |
| #[repr(C)] |
| #[derive(Copy, Clone)] |
| struct ListLinksFields { |
| next: *mut ListLinksFields, |
| prev: *mut ListLinksFields, |
| } |
| |
| /// The prev/next pointers for an item in a linked list. |
| /// |
| /// # Invariants |
| /// |
| /// The fields are null if and only if this item is not in a list. |
| #[repr(transparent)] |
| pub struct ListLinks<const ID: u64 = 0> { |
| // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked |
| // list. |
| inner: Opaque<ListLinksFields>, |
| } |
| |
| // SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the |
| // associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to |
| // move this an instance of this type to a different thread if the pointees are `!Send`. |
| unsafe impl<const ID: u64> Send for ListLinks<ID> {} |
| // SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's |
| // okay to have immutable access to a ListLinks from several threads at once. |
| unsafe impl<const ID: u64> Sync for ListLinks<ID> {} |
| |
| impl<const ID: u64> ListLinks<ID> { |
| /// Creates a new initializer for this type. |
| pub fn new() -> impl PinInit<Self> { |
| // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will |
| // not be constructed in an `Arc` that already has a `ListArc`. |
| ListLinks { |
| inner: Opaque::new(ListLinksFields { |
| prev: ptr::null_mut(), |
| next: ptr::null_mut(), |
| }), |
| } |
| } |
| |
| /// # Safety |
| /// |
| /// `me` must be dereferenceable. |
| #[inline] |
| unsafe fn fields(me: *mut Self) -> *mut ListLinksFields { |
| // SAFETY: The caller promises that the pointer is valid. |
| unsafe { Opaque::cast_into(ptr::addr_of!((*me).inner)) } |
| } |
| |
| /// # Safety |
| /// |
| /// `me` must be dereferenceable. |
| #[inline] |
| unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self { |
| me.cast() |
| } |
| } |
| |
| /// Similar to [`ListLinks`], but also contains a pointer to the full value. |
| /// |
| /// This type can be used instead of [`ListLinks`] to support lists with trait objects. |
| #[repr(C)] |
| pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> { |
| /// The `ListLinks` field inside this value. |
| /// |
| /// This is public so that it can be used with `impl_has_list_links!`. |
| pub inner: ListLinks<ID>, |
| // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and |
| // `ptr::null()` doesn't work for `T: ?Sized`. |
| self_ptr: Opaque<*const T>, |
| } |
| |
| // SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries. |
| unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {} |
| // SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore, |
| // it's okay to have immutable access to a ListLinks from several threads at once. |
| // |
| // Note that `inner` being a public field does not prevent this type from being opaque, since |
| // `inner` is a opaque type. |
| unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {} |
| |
| impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> { |
| /// Creates a new initializer for this type. |
| pub fn new() -> impl PinInit<Self> { |
| // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will |
| // not be constructed in an `Arc` that already has a `ListArc`. |
| Self { |
| inner: ListLinks { |
| inner: Opaque::new(ListLinksFields { |
| prev: ptr::null_mut(), |
| next: ptr::null_mut(), |
| }), |
| }, |
| self_ptr: Opaque::uninit(), |
| } |
| } |
| |
| /// Returns a pointer to the self pointer. |
| /// |
| /// # Safety |
| /// |
| /// The provided pointer must point at a valid struct of type `Self`. |
| pub unsafe fn raw_get_self_ptr(me: *const Self) -> *const Opaque<*const T> { |
| // SAFETY: The caller promises that the pointer is valid. |
| unsafe { ptr::addr_of!((*me).self_ptr) } |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> { |
| /// Creates a new empty list. |
| pub const fn new() -> Self { |
| Self { |
| first: ptr::null_mut(), |
| _ty: PhantomData, |
| } |
| } |
| |
| /// Returns whether this list is empty. |
| pub fn is_empty(&self) -> bool { |
| self.first.is_null() |
| } |
| |
| /// Inserts `item` before `next` in the cycle. |
| /// |
| /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list |
| /// is empty. |
| /// |
| /// # Safety |
| /// |
| /// * `next` must be an element in this list or null. |
| /// * if `next` is null, then the list must be empty. |
| unsafe fn insert_inner( |
| &mut self, |
| item: ListArc<T, ID>, |
| next: *mut ListLinksFields, |
| ) -> *mut ListLinksFields { |
| let raw_item = ListArc::into_raw(item); |
| // SAFETY: |
| // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`. |
| // * Since we have ownership of the `ListArc`, `post_remove` must have been called after |
| // the most recent call to `prepare_to_insert`, if any. |
| // * We own the `ListArc`. |
| // * Removing items from this list is always done using `remove_internal_inner`, which |
| // calls `post_remove` before giving up ownership. |
| let list_links = unsafe { T::prepare_to_insert(raw_item) }; |
| // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid. |
| let item = unsafe { ListLinks::fields(list_links) }; |
| |
| // Check if the list is empty. |
| if next.is_null() { |
| // SAFETY: The caller just gave us ownership of these fields. |
| // INVARIANT: A linked list with one item should be cyclic. |
| unsafe { |
| (*item).next = item; |
| (*item).prev = item; |
| } |
| self.first = item; |
| } else { |
| // SAFETY: By the type invariant, this pointer is valid or null. We just checked that |
| // it's not null, so it must be valid. |
| let prev = unsafe { (*next).prev }; |
| // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us |
| // ownership of the fields on `item`. |
| // INVARIANT: This correctly inserts `item` between `prev` and `next`. |
| unsafe { |
| (*item).next = next; |
| (*item).prev = prev; |
| (*prev).next = item; |
| (*next).prev = item; |
| } |
| } |
| |
| item |
| } |
| |
| /// Add the provided item to the back of the list. |
| pub fn push_back(&mut self, item: ListArc<T, ID>) { |
| // SAFETY: |
| // * `self.first` is null or in the list. |
| // * `self.first` is only null if the list is empty. |
| unsafe { self.insert_inner(item, self.first) }; |
| } |
| |
| /// Add the provided item to the front of the list. |
| pub fn push_front(&mut self, item: ListArc<T, ID>) { |
| // SAFETY: |
| // * `self.first` is null or in the list. |
| // * `self.first` is only null if the list is empty. |
| let new_elem = unsafe { self.insert_inner(item, self.first) }; |
| |
| // INVARIANT: `new_elem` is in the list because we just inserted it. |
| self.first = new_elem; |
| } |
| |
| /// Removes the last item from this list. |
| pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> { |
| if self.is_empty() { |
| return None; |
| } |
| |
| // SAFETY: We just checked that the list is not empty. |
| let last = unsafe { (*self.first).prev }; |
| // SAFETY: The last item of this list is in this list. |
| Some(unsafe { self.remove_internal(last) }) |
| } |
| |
| /// Removes the first item from this list. |
| pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> { |
| if self.is_empty() { |
| return None; |
| } |
| |
| // SAFETY: The first item of this list is in this list. |
| Some(unsafe { self.remove_internal(self.first) }) |
| } |
| |
| /// Removes the provided item from this list and returns it. |
| /// |
| /// This returns `None` if the item is not in the list. (Note that by the safety requirements, |
| /// this means that the item is not in any list.) |
| /// |
| /// # Safety |
| /// |
| /// `item` must not be in a different linked list (with the same id). |
| pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> { |
| // SAFETY: TODO. |
| let mut item = unsafe { ListLinks::fields(T::view_links(item)) }; |
| // SAFETY: The user provided a reference, and reference are never dangling. |
| // |
| // As for why this is not a data race, there are two cases: |
| // |
| // * If `item` is not in any list, then these fields are read-only and null. |
| // * If `item` is in this list, then we have exclusive access to these fields since we |
| // have a mutable reference to the list. |
| // |
| // In either case, there's no race. |
| let ListLinksFields { next, prev } = unsafe { *item }; |
| |
| debug_assert_eq!(next.is_null(), prev.is_null()); |
| if !next.is_null() { |
| // This is really a no-op, but this ensures that `item` is a raw pointer that was |
| // obtained without going through a pointer->reference->pointer conversion roundtrip. |
| // This ensures that the list is valid under the more restrictive strict provenance |
| // ruleset. |
| // |
| // SAFETY: We just checked that `next` is not null, and it's not dangling by the |
| // list invariants. |
| unsafe { |
| debug_assert_eq!(item, (*next).prev); |
| item = (*next).prev; |
| } |
| |
| // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it |
| // is in this list. The pointers are in the right order. |
| Some(unsafe { self.remove_internal_inner(item, next, prev) }) |
| } else { |
| None |
| } |
| } |
| |
| /// Removes the provided item from the list. |
| /// |
| /// # Safety |
| /// |
| /// `item` must point at an item in this list. |
| unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> { |
| // SAFETY: The caller promises that this pointer is not dangling, and there's no data race |
| // since we have a mutable reference to the list containing `item`. |
| let ListLinksFields { next, prev } = unsafe { *item }; |
| // SAFETY: The pointers are ok and in the right order. |
| unsafe { self.remove_internal_inner(item, next, prev) } |
| } |
| |
| /// Removes the provided item from the list. |
| /// |
| /// # Safety |
| /// |
| /// The `item` pointer must point at an item in this list, and we must have `(*item).next == |
| /// next` and `(*item).prev == prev`. |
| unsafe fn remove_internal_inner( |
| &mut self, |
| item: *mut ListLinksFields, |
| next: *mut ListLinksFields, |
| prev: *mut ListLinksFields, |
| ) -> ListArc<T, ID> { |
| // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next |
| // pointers are always valid for items in a list. |
| // |
| // INVARIANT: There are three cases: |
| // * If the list has at least three items, then after removing the item, `prev` and `next` |
| // will be next to each other. |
| // * If the list has two items, then the remaining item will point at itself. |
| // * If the list has one item, then `next == prev == item`, so these writes have no |
| // effect. The list remains unchanged and `item` is still in the list for now. |
| unsafe { |
| (*next).prev = prev; |
| (*prev).next = next; |
| } |
| // SAFETY: We have exclusive access to items in the list. |
| // INVARIANT: `item` is being removed, so the pointers should be null. |
| unsafe { |
| (*item).prev = ptr::null_mut(); |
| (*item).next = ptr::null_mut(); |
| } |
| // INVARIANT: There are three cases: |
| // * If `item` was not the first item, then `self.first` should remain unchanged. |
| // * If `item` was the first item and there is another item, then we just updated |
| // `prev->next` to `next`, which is the new first item, and setting `item->next` to null |
| // did not modify `prev->next`. |
| // * If `item` was the only item in the list, then `prev == item`, and we just set |
| // `item->next` to null, so this correctly sets `first` to null now that the list is |
| // empty. |
| if self.first == item { |
| // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this |
| // list, so it must be valid. There is no race since `prev` is still in the list and we |
| // still have exclusive access to the list. |
| self.first = unsafe { (*prev).next }; |
| } |
| |
| // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants |
| // of `List`. |
| let list_links = unsafe { ListLinks::from_fields(item) }; |
| // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call. |
| let raw_item = unsafe { T::post_remove(list_links) }; |
| // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`. |
| unsafe { ListArc::from_raw(raw_item) } |
| } |
| |
| /// Moves all items from `other` into `self`. |
| /// |
| /// The items of `other` are added to the back of `self`, so the last item of `other` becomes |
| /// the last item of `self`. |
| pub fn push_all_back(&mut self, other: &mut List<T, ID>) { |
| // First, we insert the elements into `self`. At the end, we make `other` empty. |
| if self.is_empty() { |
| // INVARIANT: All of the elements in `other` become elements of `self`. |
| self.first = other.first; |
| } else if !other.is_empty() { |
| let other_first = other.first; |
| // SAFETY: The other list is not empty, so this pointer is valid. |
| let other_last = unsafe { (*other_first).prev }; |
| let self_first = self.first; |
| // SAFETY: The self list is not empty, so this pointer is valid. |
| let self_last = unsafe { (*self_first).prev }; |
| |
| // SAFETY: We have exclusive access to both lists, so we can update the pointers. |
| // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to |
| // update `self.first` because the first element of `self` does not change. |
| unsafe { |
| (*self_first).prev = other_last; |
| (*other_last).next = self_first; |
| (*self_last).next = other_first; |
| (*other_first).prev = self_last; |
| } |
| } |
| |
| // INVARIANT: The other list is now empty, so update its pointer. |
| other.first = ptr::null_mut(); |
| } |
| |
| /// Returns a cursor that points before the first element of the list. |
| pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> { |
| // INVARIANT: `self.first` is in this list. |
| Cursor { |
| next: self.first, |
| list: self, |
| } |
| } |
| |
| /// Returns a cursor that points after the last element in the list. |
| pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> { |
| // INVARIANT: `next` is allowed to be null. |
| Cursor { |
| next: core::ptr::null_mut(), |
| list: self, |
| } |
| } |
| |
| /// Creates an iterator over the list. |
| pub fn iter(&self) -> Iter<'_, T, ID> { |
| // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point |
| // at the first element of the same list. |
| Iter { |
| current: self.first, |
| stop: self.first, |
| _ty: PhantomData, |
| } |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> { |
| fn default() -> Self { |
| List::new() |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> { |
| fn drop(&mut self) { |
| while let Some(item) = self.pop_front() { |
| drop(item); |
| } |
| } |
| } |
| |
| /// An iterator over a [`List`]. |
| /// |
| /// # Invariants |
| /// |
| /// * There must be a [`List`] that is immutably borrowed for the duration of `'a`. |
| /// * The `current` pointer is null or points at a value in that [`List`]. |
| /// * The `stop` pointer is equal to the `first` field of that [`List`]. |
| #[derive(Clone)] |
| pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> { |
| current: *mut ListLinksFields, |
| stop: *mut ListLinksFields, |
| _ty: PhantomData<&'a ListArc<T, ID>>, |
| } |
| |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> { |
| type Item = ArcBorrow<'a, T>; |
| |
| fn next(&mut self) -> Option<ArcBorrow<'a, T>> { |
| if self.current.is_null() { |
| return None; |
| } |
| |
| let current = self.current; |
| |
| // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not |
| // dangling. There's no race because the iterator holds an immutable borrow to the list. |
| let next = unsafe { (*current).next }; |
| // INVARIANT: If `current` was the last element of the list, then this updates it to null. |
| // Otherwise, we update it to the next element. |
| self.current = if next != self.stop { |
| next |
| } else { |
| ptr::null_mut() |
| }; |
| |
| // SAFETY: The `current` pointer points at a value in the list. |
| let item = unsafe { T::view_value(ListLinks::from_fields(current)) }; |
| // SAFETY: |
| // * All values in a list are stored in an `Arc`. |
| // * The value cannot be removed from the list for the duration of the lifetime annotated |
| // on the returned `ArcBorrow`, because removing it from the list would require mutable |
| // access to the list. However, the `ArcBorrow` is annotated with the iterator's |
| // lifetime, and the list is immutably borrowed for that lifetime. |
| // * Values in a list never have a `UniqueArc` reference. |
| Some(unsafe { ArcBorrow::from_raw(item) }) |
| } |
| } |
| |
| /// A cursor into a [`List`]. |
| /// |
| /// A cursor always rests between two elements in the list. This means that a cursor has a previous |
| /// and next element, but no current element. It also means that it's possible to have a cursor |
| /// into an empty list. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::prelude::*; |
| /// use kernel::list::{List, ListArc, ListLinks}; |
| /// |
| /// #[pin_data] |
| /// struct ListItem { |
| /// value: u32, |
| /// #[pin] |
| /// links: ListLinks, |
| /// } |
| /// |
| /// impl ListItem { |
| /// fn new(value: u32) -> Result<ListArc<Self>> { |
| /// ListArc::pin_init(try_pin_init!(Self { |
| /// value, |
| /// links <- ListLinks::new(), |
| /// }), GFP_KERNEL) |
| /// } |
| /// } |
| /// |
| /// kernel::list::impl_list_arc_safe! { |
| /// impl ListArcSafe<0> for ListItem { untracked; } |
| /// } |
| /// kernel::list::impl_list_item! { |
| /// impl ListItem<0> for ListItem { using ListLinks { self.links }; } |
| /// } |
| /// |
| /// // Use a cursor to remove the first element with the given value. |
| /// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> { |
| /// let mut cursor = list.cursor_front(); |
| /// while let Some(next) = cursor.peek_next() { |
| /// if next.value == value { |
| /// return Some(next.remove()); |
| /// } |
| /// cursor.move_next(); |
| /// } |
| /// None |
| /// } |
| /// |
| /// // Use a cursor to remove the last element with the given value. |
| /// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> { |
| /// let mut cursor = list.cursor_back(); |
| /// while let Some(prev) = cursor.peek_prev() { |
| /// if prev.value == value { |
| /// return Some(prev.remove()); |
| /// } |
| /// cursor.move_prev(); |
| /// } |
| /// None |
| /// } |
| /// |
| /// // Use a cursor to remove all elements with the given value. The removed elements are moved to |
| /// // a new list. |
| /// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> { |
| /// let mut out = List::new(); |
| /// let mut cursor = list.cursor_front(); |
| /// while let Some(next) = cursor.peek_next() { |
| /// if next.value == value { |
| /// out.push_back(next.remove()); |
| /// } else { |
| /// cursor.move_next(); |
| /// } |
| /// } |
| /// out |
| /// } |
| /// |
| /// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of |
| /// // bounds. |
| /// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result { |
| /// let mut cursor = list.cursor_front(); |
| /// for _ in 0..idx { |
| /// if !cursor.move_next() { |
| /// return Err(EINVAL); |
| /// } |
| /// } |
| /// cursor.insert_next(new); |
| /// Ok(()) |
| /// } |
| /// |
| /// // Merge two sorted lists into a single sorted list. |
| /// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) { |
| /// let mut cursor = list.cursor_front(); |
| /// for to_insert in merge { |
| /// while let Some(next) = cursor.peek_next() { |
| /// if to_insert.value < next.value { |
| /// break; |
| /// } |
| /// cursor.move_next(); |
| /// } |
| /// cursor.insert_prev(to_insert); |
| /// } |
| /// } |
| /// |
| /// let mut list = List::new(); |
| /// list.push_back(ListItem::new(14)?); |
| /// list.push_back(ListItem::new(12)?); |
| /// list.push_back(ListItem::new(10)?); |
| /// list.push_back(ListItem::new(12)?); |
| /// list.push_back(ListItem::new(15)?); |
| /// list.push_back(ListItem::new(14)?); |
| /// assert_eq!(remove_all(&mut list, 12).iter().count(), 2); |
| /// // [14, 10, 15, 14] |
| /// assert!(remove_first(&mut list, 14).is_some()); |
| /// // [10, 15, 14] |
| /// insert_at(&mut list, ListItem::new(12)?, 2)?; |
| /// // [10, 15, 12, 14] |
| /// assert!(remove_last(&mut list, 15).is_some()); |
| /// // [10, 12, 14] |
| /// |
| /// let mut list2 = List::new(); |
| /// list2.push_back(ListItem::new(11)?); |
| /// list2.push_back(ListItem::new(13)?); |
| /// merge_sorted(&mut list, list2); |
| /// |
| /// let mut items = list.into_iter(); |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 10); |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 11); |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 12); |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 13); |
| /// assert_eq!(items.next().ok_or(EINVAL)?.value, 14); |
| /// assert!(items.next().is_none()); |
| /// # Result::<(), Error>::Ok(()) |
| /// ``` |
| /// |
| /// # Invariants |
| /// |
| /// The `next` pointer is null or points a value in `list`. |
| pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> { |
| list: &'a mut List<T, ID>, |
| /// Points at the element after this cursor, or null if the cursor is after the last element. |
| next: *mut ListLinksFields, |
| } |
| |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> { |
| /// Returns a pointer to the element before the cursor. |
| /// |
| /// Returns null if there is no element before the cursor. |
| fn prev_ptr(&self) -> *mut ListLinksFields { |
| let mut next = self.next; |
| let first = self.list.first; |
| if next == first { |
| // We are before the first element. |
| return core::ptr::null_mut(); |
| } |
| |
| if next.is_null() { |
| // We are after the last element, so we need a pointer to the last element, which is |
| // the same as `(*first).prev`. |
| next = first; |
| } |
| |
| // SAFETY: `next` can't be null, because then `first` must also be null, but in that case |
| // we would have exited at the `next == first` check. Thus, `next` is an element in the |
| // list, so we can access its `prev` pointer. |
| unsafe { (*next).prev } |
| } |
| |
| /// Access the element after this cursor. |
| pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> { |
| if self.next.is_null() { |
| return None; |
| } |
| |
| // INVARIANT: |
| // * We just checked that `self.next` is non-null, so it must be in `self.list`. |
| // * `ptr` is equal to `self.next`. |
| Some(CursorPeek { |
| ptr: self.next, |
| cursor: self, |
| }) |
| } |
| |
| /// Access the element before this cursor. |
| pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> { |
| let prev = self.prev_ptr(); |
| |
| if prev.is_null() { |
| return None; |
| } |
| |
| // INVARIANT: |
| // * We just checked that `prev` is non-null, so it must be in `self.list`. |
| // * `self.prev_ptr()` never returns `self.next`. |
| Some(CursorPeek { |
| ptr: prev, |
| cursor: self, |
| }) |
| } |
| |
| /// Move the cursor one element forward. |
| /// |
| /// If the cursor is after the last element, then this call does nothing. This call returns |
| /// `true` if the cursor's position was changed. |
| pub fn move_next(&mut self) -> bool { |
| if self.next.is_null() { |
| return false; |
| } |
| |
| // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can |
| // access the `next` field. |
| let mut next = unsafe { (*self.next).next }; |
| |
| if next == self.list.first { |
| next = core::ptr::null_mut(); |
| } |
| |
| // INVARIANT: `next` is either null or the next element after an element in the list. |
| self.next = next; |
| true |
| } |
| |
| /// Move the cursor one element backwards. |
| /// |
| /// If the cursor is before the first element, then this call does nothing. This call returns |
| /// `true` if the cursor's position was changed. |
| pub fn move_prev(&mut self) -> bool { |
| if self.next == self.list.first { |
| return false; |
| } |
| |
| // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list. |
| self.next = self.prev_ptr(); |
| true |
| } |
| |
| /// Inserts an element where the cursor is pointing and get a pointer to the new element. |
| fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields { |
| let ptr = if self.next.is_null() { |
| self.list.first |
| } else { |
| self.next |
| }; |
| // SAFETY: |
| // * `ptr` is an element in the list or null. |
| // * if `ptr` is null, then `self.list.first` is null so the list is empty. |
| let item = unsafe { self.list.insert_inner(item, ptr) }; |
| if self.next == self.list.first { |
| // INVARIANT: We just inserted `item`, so it's a member of list. |
| self.list.first = item; |
| } |
| item |
| } |
| |
| /// Insert an element at this cursor's location. |
| pub fn insert(mut self, item: ListArc<T, ID>) { |
| // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it |
| // reduces confusion when the last operation on the cursor is an insertion; in that case, |
| // you just want to insert the element at the cursor, and it is confusing that the call |
| // involves the word prev or next. |
| self.insert_inner(item); |
| } |
| |
| /// Inserts an element after this cursor. |
| /// |
| /// After insertion, the new element will be after the cursor. |
| pub fn insert_next(&mut self, item: ListArc<T, ID>) { |
| self.next = self.insert_inner(item); |
| } |
| |
| /// Inserts an element before this cursor. |
| /// |
| /// After insertion, the new element will be before the cursor. |
| pub fn insert_prev(&mut self, item: ListArc<T, ID>) { |
| self.insert_inner(item); |
| } |
| |
| /// Remove the next element from the list. |
| pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> { |
| self.peek_next().map(|v| v.remove()) |
| } |
| |
| /// Remove the previous element from the list. |
| pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> { |
| self.peek_prev().map(|v| v.remove()) |
| } |
| } |
| |
| /// References the element in the list next to the cursor. |
| /// |
| /// # Invariants |
| /// |
| /// * `ptr` is an element in `self.cursor.list`. |
| /// * `ISNEXT == (self.ptr == self.cursor.next)`. |
| pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> { |
| cursor: &'a mut Cursor<'b, T, ID>, |
| ptr: *mut ListLinksFields, |
| } |
| |
| impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> |
| CursorPeek<'a, 'b, T, ISNEXT, ID> |
| { |
| /// Remove the element from the list. |
| pub fn remove(self) -> ListArc<T, ID> { |
| if ISNEXT { |
| self.cursor.move_next(); |
| } |
| |
| // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next` |
| // call. |
| // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of |
| // `self.cursor.list` by the type invariants of `Cursor`. |
| unsafe { self.cursor.list.remove_internal(self.ptr) } |
| } |
| |
| /// Access this value as an [`ArcBorrow`]. |
| pub fn arc(&self) -> ArcBorrow<'_, T> { |
| // SAFETY: `self.ptr` points at an element in `self.cursor.list`. |
| let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) }; |
| // SAFETY: |
| // * All values in a list are stored in an `Arc`. |
| // * The value cannot be removed from the list for the duration of the lifetime annotated |
| // on the returned `ArcBorrow`, because removing it from the list would require mutable |
| // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds |
| // an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the |
| // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable |
| // access requires first releasing the immutable borrow on the `CursorPeek`. |
| // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc` |
| // reference, and `UniqueArc` references must be unique. |
| unsafe { ArcBorrow::from_raw(me) } |
| } |
| } |
| |
| impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref |
| for CursorPeek<'a, 'b, T, ISNEXT, ID> |
| { |
| // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could |
| // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`. |
| // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>` |
| // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be |
| // unsound. |
| type Target = T; |
| |
| fn deref(&self) -> &T { |
| // SAFETY: `self.ptr` points at an element in `self.cursor.list`. |
| let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) }; |
| |
| // SAFETY: The value cannot be removed from the list for the duration of the lifetime |
| // annotated on the returned `&T`, because removing it from the list would require mutable |
| // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an |
| // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the |
| // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access |
| // requires first releasing the immutable borrow on the `CursorPeek`. |
| unsafe { &*me } |
| } |
| } |
| |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {} |
| |
| impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> { |
| type IntoIter = Iter<'a, T, ID>; |
| type Item = ArcBorrow<'a, T>; |
| |
| fn into_iter(self) -> Iter<'a, T, ID> { |
| self.iter() |
| } |
| } |
| |
| /// An owning iterator into a [`List`]. |
| pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> { |
| list: List<T, ID>, |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> { |
| type Item = ListArc<T, ID>; |
| |
| fn next(&mut self) -> Option<ListArc<T, ID>> { |
| self.list.pop_front() |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {} |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> { |
| fn next_back(&mut self) -> Option<ListArc<T, ID>> { |
| self.list.pop_back() |
| } |
| } |
| |
| impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> { |
| type IntoIter = IntoIter<T, ID>; |
| type Item = ListArc<T, ID>; |
| |
| fn into_iter(self) -> IntoIter<T, ID> { |
| IntoIter { list: self } |
| } |
| } |