| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * set_id_regs - Test for setting ID register from usersapce. |
| * |
| * Copyright (c) 2023 Google LLC. |
| * |
| * |
| * Test that KVM supports setting ID registers from userspace and handles the |
| * feature set correctly. |
| */ |
| |
| #include <stdint.h> |
| #include "kvm_util.h" |
| #include "processor.h" |
| #include "test_util.h" |
| #include <linux/bitfield.h> |
| |
| bool have_cap_arm_mte; |
| |
| enum ftr_type { |
| FTR_EXACT, /* Use a predefined safe value */ |
| FTR_LOWER_SAFE, /* Smaller value is safe */ |
| FTR_HIGHER_SAFE, /* Bigger value is safe */ |
| FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */ |
| FTR_END, /* Mark the last ftr bits */ |
| }; |
| |
| #define FTR_SIGNED true /* Value should be treated as signed */ |
| #define FTR_UNSIGNED false /* Value should be treated as unsigned */ |
| |
| struct reg_ftr_bits { |
| char *name; |
| bool sign; |
| enum ftr_type type; |
| uint8_t shift; |
| uint64_t mask; |
| /* |
| * For FTR_EXACT, safe_val is used as the exact safe value. |
| * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value. |
| */ |
| int64_t safe_val; |
| }; |
| |
| struct test_feature_reg { |
| uint32_t reg; |
| const struct reg_ftr_bits *ftr_bits; |
| }; |
| |
| #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL) \ |
| { \ |
| .name = #NAME, \ |
| .sign = SIGNED, \ |
| .type = TYPE, \ |
| .shift = SHIFT, \ |
| .mask = MASK, \ |
| .safe_val = SAFE_VAL, \ |
| } |
| |
| #define REG_FTR_BITS(type, reg, field, safe_val) \ |
| __REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \ |
| reg##_##field##_MASK, safe_val) |
| |
| #define S_REG_FTR_BITS(type, reg, field, safe_val) \ |
| __REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \ |
| reg##_##field##_MASK, safe_val) |
| |
| #define REG_FTR_END \ |
| { \ |
| .type = FTR_END, \ |
| } |
| |
| static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = { |
| S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0), |
| S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_dfr0_el1[] = { |
| S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0), |
| REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, DF2, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0), |
| REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1), |
| REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1), |
| REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1), |
| S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0), |
| S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0), |
| REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64mmfr3_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1POE, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1PIE, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, SCTLRX, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, TCRX, 0), |
| REG_FTR_END, |
| }; |
| |
| static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = { |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0), |
| REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0), |
| REG_FTR_END, |
| }; |
| |
| #define TEST_REG(id, table) \ |
| { \ |
| .reg = id, \ |
| .ftr_bits = &((table)[0]), \ |
| } |
| |
| static struct test_feature_reg test_regs[] = { |
| TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1), |
| TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1), |
| TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1), |
| TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1), |
| TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1), |
| TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1), |
| TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1), |
| TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1), |
| TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1), |
| TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1), |
| TEST_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3_el1), |
| TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1), |
| }; |
| |
| #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0); |
| |
| static void guest_code(void) |
| { |
| GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1); |
| GUEST_REG_SYNC(SYS_ID_DFR0_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64MMFR3_EL1); |
| GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1); |
| GUEST_REG_SYNC(SYS_CTR_EL0); |
| GUEST_REG_SYNC(SYS_MIDR_EL1); |
| GUEST_REG_SYNC(SYS_REVIDR_EL1); |
| GUEST_REG_SYNC(SYS_AIDR_EL1); |
| |
| GUEST_DONE(); |
| } |
| |
| /* Return a safe value to a given ftr_bits an ftr value */ |
| uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr) |
| { |
| uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0); |
| |
| if (ftr_bits->sign == FTR_UNSIGNED) { |
| switch (ftr_bits->type) { |
| case FTR_EXACT: |
| ftr = ftr_bits->safe_val; |
| break; |
| case FTR_LOWER_SAFE: |
| if (ftr > ftr_bits->safe_val) |
| ftr--; |
| break; |
| case FTR_HIGHER_SAFE: |
| if (ftr < ftr_max) |
| ftr++; |
| break; |
| case FTR_HIGHER_OR_ZERO_SAFE: |
| if (ftr == ftr_max) |
| ftr = 0; |
| else if (ftr != 0) |
| ftr++; |
| break; |
| default: |
| break; |
| } |
| } else if (ftr != ftr_max) { |
| switch (ftr_bits->type) { |
| case FTR_EXACT: |
| ftr = ftr_bits->safe_val; |
| break; |
| case FTR_LOWER_SAFE: |
| if (ftr > ftr_bits->safe_val) |
| ftr--; |
| break; |
| case FTR_HIGHER_SAFE: |
| if (ftr < ftr_max - 1) |
| ftr++; |
| break; |
| case FTR_HIGHER_OR_ZERO_SAFE: |
| if (ftr != 0 && ftr != ftr_max - 1) |
| ftr++; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return ftr; |
| } |
| |
| /* Return an invalid value to a given ftr_bits an ftr value */ |
| uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr) |
| { |
| uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0); |
| |
| if (ftr_bits->sign == FTR_UNSIGNED) { |
| switch (ftr_bits->type) { |
| case FTR_EXACT: |
| ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1); |
| break; |
| case FTR_LOWER_SAFE: |
| ftr++; |
| break; |
| case FTR_HIGHER_SAFE: |
| ftr--; |
| break; |
| case FTR_HIGHER_OR_ZERO_SAFE: |
| if (ftr == 0) |
| ftr = ftr_max; |
| else |
| ftr--; |
| break; |
| default: |
| break; |
| } |
| } else if (ftr != ftr_max) { |
| switch (ftr_bits->type) { |
| case FTR_EXACT: |
| ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1); |
| break; |
| case FTR_LOWER_SAFE: |
| ftr++; |
| break; |
| case FTR_HIGHER_SAFE: |
| ftr--; |
| break; |
| case FTR_HIGHER_OR_ZERO_SAFE: |
| if (ftr == 0) |
| ftr = ftr_max - 1; |
| else |
| ftr--; |
| break; |
| default: |
| break; |
| } |
| } else { |
| ftr = 0; |
| } |
| |
| return ftr; |
| } |
| |
| static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg, |
| const struct reg_ftr_bits *ftr_bits) |
| { |
| uint8_t shift = ftr_bits->shift; |
| uint64_t mask = ftr_bits->mask; |
| uint64_t val, new_val, ftr; |
| |
| val = vcpu_get_reg(vcpu, reg); |
| ftr = (val & mask) >> shift; |
| |
| ftr = get_safe_value(ftr_bits, ftr); |
| |
| ftr <<= shift; |
| val &= ~mask; |
| val |= ftr; |
| |
| vcpu_set_reg(vcpu, reg, val); |
| new_val = vcpu_get_reg(vcpu, reg); |
| TEST_ASSERT_EQ(new_val, val); |
| |
| return new_val; |
| } |
| |
| static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg, |
| const struct reg_ftr_bits *ftr_bits) |
| { |
| uint8_t shift = ftr_bits->shift; |
| uint64_t mask = ftr_bits->mask; |
| uint64_t val, old_val, ftr; |
| int r; |
| |
| val = vcpu_get_reg(vcpu, reg); |
| ftr = (val & mask) >> shift; |
| |
| ftr = get_invalid_value(ftr_bits, ftr); |
| |
| old_val = val; |
| ftr <<= shift; |
| val &= ~mask; |
| val |= ftr; |
| |
| r = __vcpu_set_reg(vcpu, reg, val); |
| TEST_ASSERT(r < 0 && errno == EINVAL, |
| "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno); |
| |
| val = vcpu_get_reg(vcpu, reg); |
| TEST_ASSERT_EQ(val, old_val); |
| } |
| |
| static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE]; |
| |
| #define encoding_to_range_idx(encoding) \ |
| KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding), \ |
| sys_reg_CRn(encoding), sys_reg_CRm(encoding), \ |
| sys_reg_Op2(encoding)) |
| |
| |
| static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only) |
| { |
| uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; |
| struct reg_mask_range range = { |
| .addr = (__u64)masks, |
| }; |
| int ret; |
| |
| /* KVM should return error when reserved field is not zero */ |
| range.reserved[0] = 1; |
| ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); |
| TEST_ASSERT(ret, "KVM doesn't check invalid parameters."); |
| |
| /* Get writable masks for feature ID registers */ |
| memset(range.reserved, 0, sizeof(range.reserved)); |
| vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); |
| |
| for (int i = 0; i < ARRAY_SIZE(test_regs); i++) { |
| const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits; |
| uint32_t reg_id = test_regs[i].reg; |
| uint64_t reg = KVM_ARM64_SYS_REG(reg_id); |
| int idx; |
| |
| /* Get the index to masks array for the idreg */ |
| idx = encoding_to_range_idx(reg_id); |
| |
| for (int j = 0; ftr_bits[j].type != FTR_END; j++) { |
| /* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */ |
| if (aarch64_only && sys_reg_CRm(reg_id) < 4) { |
| ksft_test_result_skip("%s on AARCH64 only system\n", |
| ftr_bits[j].name); |
| continue; |
| } |
| |
| /* Make sure the feature field is writable */ |
| TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask); |
| |
| test_reg_set_fail(vcpu, reg, &ftr_bits[j]); |
| |
| test_reg_vals[idx] = test_reg_set_success(vcpu, reg, |
| &ftr_bits[j]); |
| |
| ksft_test_result_pass("%s\n", ftr_bits[j].name); |
| } |
| } |
| } |
| |
| #define MPAM_IDREG_TEST 6 |
| static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu) |
| { |
| uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; |
| struct reg_mask_range range = { |
| .addr = (__u64)masks, |
| }; |
| uint64_t val; |
| int idx, err; |
| |
| /* |
| * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero, |
| * check that if it can be set to 1, (i.e. it is supported by the |
| * hardware), that it can't be set to other values. |
| */ |
| |
| /* Get writable masks for feature ID registers */ |
| memset(range.reserved, 0, sizeof(range.reserved)); |
| vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); |
| |
| /* Writeable? Nothing to test! */ |
| idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1); |
| if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) { |
| ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n"); |
| return; |
| } |
| |
| /* Get the id register value */ |
| val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1)); |
| |
| /* Try to set MPAM=0. This should always be possible. */ |
| val &= ~ID_AA64PFR0_EL1_MPAM_MASK; |
| val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0); |
| err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); |
| if (err) |
| ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n"); |
| else |
| ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n"); |
| |
| /* Try to set MPAM=1 */ |
| val &= ~ID_AA64PFR0_EL1_MPAM_MASK; |
| val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1); |
| err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); |
| if (err) |
| ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n"); |
| else |
| ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n"); |
| |
| /* Try to set MPAM=2 */ |
| val &= ~ID_AA64PFR0_EL1_MPAM_MASK; |
| val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2); |
| err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val); |
| if (err) |
| ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n"); |
| else |
| ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n"); |
| |
| /* And again for ID_AA64PFR1_EL1.MPAM_frac */ |
| idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1); |
| if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) { |
| ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n"); |
| return; |
| } |
| |
| /* Get the id register value */ |
| val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1)); |
| |
| /* Try to set MPAM_frac=0. This should always be possible. */ |
| val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; |
| val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0); |
| err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); |
| if (err) |
| ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n"); |
| else |
| ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n"); |
| |
| /* Try to set MPAM_frac=1 */ |
| val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; |
| val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1); |
| err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); |
| if (err) |
| ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n"); |
| else |
| ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n"); |
| |
| /* Try to set MPAM_frac=2 */ |
| val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; |
| val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2); |
| err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); |
| if (err) |
| ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n"); |
| else |
| ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n"); |
| } |
| |
| #define MTE_IDREG_TEST 1 |
| static void test_user_set_mte_reg(struct kvm_vcpu *vcpu) |
| { |
| uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE]; |
| struct reg_mask_range range = { |
| .addr = (__u64)masks, |
| }; |
| uint64_t val; |
| uint64_t mte; |
| uint64_t mte_frac; |
| int idx, err; |
| |
| if (!have_cap_arm_mte) { |
| ksft_test_result_skip("MTE capability not supported, nothing to test\n"); |
| return; |
| } |
| |
| /* Get writable masks for feature ID registers */ |
| memset(range.reserved, 0, sizeof(range.reserved)); |
| vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range); |
| |
| idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1); |
| if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) { |
| ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n"); |
| return; |
| } |
| |
| /* |
| * When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2) |
| * ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported |
| * and MTE_frac == 0 indicates it is supported. |
| * |
| * As MTE_frac was previously unconditionally read as 0, check |
| * that the set to 0 succeeds but does not change MTE_frac |
| * from unsupported (0xF) to supported (0). |
| * |
| */ |
| val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1)); |
| |
| mte = FIELD_GET(ID_AA64PFR1_EL1_MTE, val); |
| mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val); |
| if (mte != ID_AA64PFR1_EL1_MTE_MTE2 || |
| mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) { |
| ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n"); |
| return; |
| } |
| |
| /* Try to set MTE_frac=0. */ |
| val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK; |
| val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0); |
| err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val); |
| if (err) { |
| ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n"); |
| return; |
| } |
| |
| val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1)); |
| mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val); |
| if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI) |
| ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n"); |
| else |
| ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n"); |
| } |
| |
| static void test_guest_reg_read(struct kvm_vcpu *vcpu) |
| { |
| bool done = false; |
| struct ucall uc; |
| |
| while (!done) { |
| vcpu_run(vcpu); |
| |
| switch (get_ucall(vcpu, &uc)) { |
| case UCALL_ABORT: |
| REPORT_GUEST_ASSERT(uc); |
| break; |
| case UCALL_SYNC: |
| /* Make sure the written values are seen by guest */ |
| TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])], |
| uc.args[3]); |
| break; |
| case UCALL_DONE: |
| done = true; |
| break; |
| default: |
| TEST_FAIL("Unexpected ucall: %lu", uc.cmd); |
| } |
| } |
| } |
| |
| /* Politely lifted from arch/arm64/include/asm/cache.h */ |
| /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */ |
| #define CLIDR_CTYPE_SHIFT(level) (3 * (level - 1)) |
| #define CLIDR_CTYPE_MASK(level) (7 << CLIDR_CTYPE_SHIFT(level)) |
| #define CLIDR_CTYPE(clidr, level) \ |
| (((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level)) |
| |
| static void test_clidr(struct kvm_vcpu *vcpu) |
| { |
| uint64_t clidr; |
| int level; |
| |
| clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1)); |
| |
| /* find the first empty level in the cache hierarchy */ |
| for (level = 1; level < 7; level++) { |
| if (!CLIDR_CTYPE(clidr, level)) |
| break; |
| } |
| |
| /* |
| * If you have a mind-boggling 7 levels of cache, congratulations, you |
| * get to fix this. |
| */ |
| TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy"); |
| |
| /* stick in a unified cache level */ |
| clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level); |
| |
| vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr); |
| test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr; |
| } |
| |
| static void test_ctr(struct kvm_vcpu *vcpu) |
| { |
| u64 ctr; |
| |
| ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0)); |
| ctr &= ~CTR_EL0_DIC_MASK; |
| if (ctr & CTR_EL0_IminLine_MASK) |
| ctr--; |
| |
| vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr); |
| test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr; |
| } |
| |
| static void test_id_reg(struct kvm_vcpu *vcpu, u32 id) |
| { |
| u64 val; |
| |
| val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id)); |
| val++; |
| vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val); |
| test_reg_vals[encoding_to_range_idx(id)] = val; |
| } |
| |
| static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu) |
| { |
| test_clidr(vcpu); |
| test_ctr(vcpu); |
| |
| test_id_reg(vcpu, SYS_MPIDR_EL1); |
| ksft_test_result_pass("%s\n", __func__); |
| } |
| |
| static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu) |
| { |
| test_id_reg(vcpu, SYS_MIDR_EL1); |
| test_id_reg(vcpu, SYS_REVIDR_EL1); |
| test_id_reg(vcpu, SYS_AIDR_EL1); |
| |
| ksft_test_result_pass("%s\n", __func__); |
| } |
| |
| static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding) |
| { |
| size_t idx = encoding_to_range_idx(encoding); |
| uint64_t observed; |
| |
| observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding)); |
| TEST_ASSERT_EQ(test_reg_vals[idx], observed); |
| } |
| |
| static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an |
| * architectural reset of the vCPU. |
| */ |
| aarch64_vcpu_setup(vcpu, NULL); |
| |
| for (int i = 0; i < ARRAY_SIZE(test_regs); i++) |
| test_assert_id_reg_unchanged(vcpu, test_regs[i].reg); |
| |
| test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1); |
| test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1); |
| test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0); |
| test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1); |
| test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1); |
| test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1); |
| |
| ksft_test_result_pass("%s\n", __func__); |
| } |
| |
| void kvm_arch_vm_post_create(struct kvm_vm *vm) |
| { |
| if (vm_check_cap(vm, KVM_CAP_ARM_MTE)) { |
| vm_enable_cap(vm, KVM_CAP_ARM_MTE, 0); |
| have_cap_arm_mte = true; |
| } |
| } |
| |
| int main(void) |
| { |
| struct kvm_vcpu *vcpu; |
| struct kvm_vm *vm; |
| bool aarch64_only; |
| uint64_t val, el0; |
| int test_cnt; |
| |
| TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES)); |
| TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS)); |
| |
| vm = vm_create(1); |
| vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0); |
| vcpu = vm_vcpu_add(vm, 0, guest_code); |
| |
| /* Check for AARCH64 only system */ |
| val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1)); |
| el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val); |
| aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP); |
| |
| ksft_print_header(); |
| |
| test_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) + |
| ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) + |
| ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) + |
| ARRAY_SIZE(ftr_id_aa64pfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr0_el1) + |
| ARRAY_SIZE(ftr_id_aa64mmfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr2_el1) + |
| ARRAY_SIZE(ftr_id_aa64mmfr3_el1) + ARRAY_SIZE(ftr_id_aa64zfr0_el1) - |
| ARRAY_SIZE(test_regs) + 3 + MPAM_IDREG_TEST + MTE_IDREG_TEST; |
| |
| ksft_set_plan(test_cnt); |
| |
| test_vm_ftr_id_regs(vcpu, aarch64_only); |
| test_vcpu_ftr_id_regs(vcpu); |
| test_vcpu_non_ftr_id_regs(vcpu); |
| test_user_set_mpam_reg(vcpu); |
| test_user_set_mte_reg(vcpu); |
| |
| test_guest_reg_read(vcpu); |
| |
| test_reset_preserves_id_regs(vcpu); |
| |
| kvm_vm_free(vm); |
| |
| ksft_finished(); |
| } |