| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * cpuid support routines |
| * |
| * derived from arch/x86/kvm/x86.c |
| * |
| * Copyright 2011 Red Hat, Inc. and/or its affiliates. |
| * Copyright IBM Corporation, 2008 |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_host.h> |
| #include "linux/lockdep.h" |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <linux/uaccess.h> |
| #include <linux/sched/stat.h> |
| |
| #include <asm/processor.h> |
| #include <asm/user.h> |
| #include <asm/fpu/xstate.h> |
| #include <asm/sgx.h> |
| #include <asm/cpuid.h> |
| #include "cpuid.h" |
| #include "lapic.h" |
| #include "mmu.h" |
| #include "trace.h" |
| #include "pmu.h" |
| #include "xen.h" |
| |
| /* |
| * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be |
| * aligned to sizeof(unsigned long) because it's not accessed via bitops. |
| */ |
| u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly; |
| EXPORT_SYMBOL_GPL(kvm_cpu_caps); |
| |
| struct cpuid_xstate_sizes { |
| u32 eax; |
| u32 ebx; |
| u32 ecx; |
| }; |
| |
| static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init; |
| |
| void __init kvm_init_xstate_sizes(void) |
| { |
| u32 ign; |
| int i; |
| |
| for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) { |
| struct cpuid_xstate_sizes *xs = &xstate_sizes[i]; |
| |
| cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign); |
| } |
| } |
| |
| u32 xstate_required_size(u64 xstate_bv, bool compacted) |
| { |
| u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; |
| int i; |
| |
| xstate_bv &= XFEATURE_MASK_EXTEND; |
| for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes) && xstate_bv; i++) { |
| struct cpuid_xstate_sizes *xs = &xstate_sizes[i]; |
| u32 offset; |
| |
| if (!(xstate_bv & BIT_ULL(i))) |
| continue; |
| |
| /* ECX[1]: 64B alignment in compacted form */ |
| if (compacted) |
| offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret; |
| else |
| offset = xs->ebx; |
| ret = max(ret, offset + xs->eax); |
| xstate_bv &= ~BIT_ULL(i); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Magic value used by KVM when querying userspace-provided CPUID entries and |
| * doesn't care about the CPIUD index because the index of the function in |
| * question is not significant. Note, this magic value must have at least one |
| * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find() |
| * to avoid false positives when processing guest CPUID input. |
| */ |
| #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull |
| |
| static struct kvm_cpuid_entry2 *cpuid_entry2_find(struct kvm_vcpu *vcpu, |
| u32 function, u64 index) |
| { |
| struct kvm_cpuid_entry2 *e; |
| int i; |
| |
| /* |
| * KVM has a semi-arbitrary rule that querying the guest's CPUID model |
| * with IRQs disabled is disallowed. The CPUID model can legitimately |
| * have over one hundred entries, i.e. the lookup is slow, and IRQs are |
| * typically disabled in KVM only when KVM is in a performance critical |
| * path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break |
| * if this rule is violated, this assertion is purely to flag potential |
| * performance issues. If this fires, consider moving the lookup out |
| * of the hotpath, e.g. by caching information during CPUID updates. |
| */ |
| lockdep_assert_irqs_enabled(); |
| |
| for (i = 0; i < vcpu->arch.cpuid_nent; i++) { |
| e = &vcpu->arch.cpuid_entries[i]; |
| |
| if (e->function != function) |
| continue; |
| |
| /* |
| * If the index isn't significant, use the first entry with a |
| * matching function. It's userspace's responsibility to not |
| * provide "duplicate" entries in all cases. |
| */ |
| if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index) |
| return e; |
| |
| |
| /* |
| * Similarly, use the first matching entry if KVM is doing a |
| * lookup (as opposed to emulating CPUID) for a function that's |
| * architecturally defined as not having a significant index. |
| */ |
| if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) { |
| /* |
| * Direct lookups from KVM should not diverge from what |
| * KVM defines internally (the architectural behavior). |
| */ |
| WARN_ON_ONCE(cpuid_function_is_indexed(function)); |
| return e; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu, |
| u32 function, u32 index) |
| { |
| return cpuid_entry2_find(vcpu, function, index); |
| } |
| EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index); |
| |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, |
| u32 function) |
| { |
| return cpuid_entry2_find(vcpu, function, KVM_CPUID_INDEX_NOT_SIGNIFICANT); |
| } |
| EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); |
| |
| /* |
| * cpuid_entry2_find() and KVM_CPUID_INDEX_NOT_SIGNIFICANT should never be used |
| * directly outside of kvm_find_cpuid_entry() and kvm_find_cpuid_entry_index(). |
| */ |
| #undef KVM_CPUID_INDEX_NOT_SIGNIFICANT |
| |
| static int kvm_check_cpuid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| u64 xfeatures; |
| |
| /* |
| * The existing code assumes virtual address is 48-bit or 57-bit in the |
| * canonical address checks; exit if it is ever changed. |
| */ |
| best = kvm_find_cpuid_entry(vcpu, 0x80000008); |
| if (best) { |
| int vaddr_bits = (best->eax & 0xff00) >> 8; |
| |
| if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) |
| return -EINVAL; |
| } |
| |
| /* |
| * Exposing dynamic xfeatures to the guest requires additional |
| * enabling in the FPU, e.g. to expand the guest XSAVE state size. |
| */ |
| best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0); |
| if (!best) |
| return 0; |
| |
| xfeatures = best->eax | ((u64)best->edx << 32); |
| xfeatures &= XFEATURE_MASK_USER_DYNAMIC; |
| if (!xfeatures) |
| return 0; |
| |
| return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures); |
| } |
| |
| static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu); |
| static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu); |
| |
| /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */ |
| static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, |
| int nent) |
| { |
| struct kvm_cpuid_entry2 *orig; |
| int i; |
| |
| /* |
| * Apply runtime CPUID updates to the incoming CPUID entries to avoid |
| * false positives due mismatches on KVM-owned feature flags. |
| * |
| * Note! @e2 and @nent track the _old_ CPUID entries! |
| */ |
| kvm_update_cpuid_runtime(vcpu); |
| kvm_apply_cpuid_pv_features_quirk(vcpu); |
| |
| if (nent != vcpu->arch.cpuid_nent) |
| return -EINVAL; |
| |
| for (i = 0; i < nent; i++) { |
| orig = &vcpu->arch.cpuid_entries[i]; |
| if (e2[i].function != orig->function || |
| e2[i].index != orig->index || |
| e2[i].flags != orig->flags || |
| e2[i].eax != orig->eax || e2[i].ebx != orig->ebx || |
| e2[i].ecx != orig->ecx || e2[i].edx != orig->edx) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu, |
| const char *sig) |
| { |
| struct kvm_hypervisor_cpuid cpuid = {}; |
| struct kvm_cpuid_entry2 *entry; |
| u32 base; |
| |
| for_each_possible_hypervisor_cpuid_base(base) { |
| entry = kvm_find_cpuid_entry(vcpu, base); |
| |
| if (entry) { |
| u32 signature[3]; |
| |
| signature[0] = entry->ebx; |
| signature[1] = entry->ecx; |
| signature[2] = entry->edx; |
| |
| if (!memcmp(signature, sig, sizeof(signature))) { |
| cpuid.base = base; |
| cpuid.limit = entry->eax; |
| break; |
| } |
| } |
| } |
| |
| return cpuid; |
| } |
| |
| static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_hypervisor_cpuid kvm_cpuid; |
| struct kvm_cpuid_entry2 *best; |
| |
| kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE); |
| if (!kvm_cpuid.base) |
| return 0; |
| |
| best = kvm_find_cpuid_entry(vcpu, kvm_cpuid.base | KVM_CPUID_FEATURES); |
| if (!best) |
| return 0; |
| |
| if (kvm_hlt_in_guest(vcpu->kvm)) |
| best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); |
| |
| return best->eax; |
| } |
| |
| /* |
| * Calculate guest's supported XCR0 taking into account guest CPUID data and |
| * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0). |
| */ |
| static u64 cpuid_get_supported_xcr0(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0); |
| if (!best) |
| return 0; |
| |
| return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0; |
| } |
| |
| static __always_inline void kvm_update_feature_runtime(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid_entry2 *entry, |
| unsigned int x86_feature, |
| bool has_feature) |
| { |
| cpuid_entry_change(entry, x86_feature, has_feature); |
| guest_cpu_cap_change(vcpu, x86_feature, has_feature); |
| } |
| |
| static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| vcpu->arch.cpuid_dynamic_bits_dirty = false; |
| |
| best = kvm_find_cpuid_entry(vcpu, 1); |
| if (best) { |
| kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSXSAVE, |
| kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)); |
| |
| kvm_update_feature_runtime(vcpu, best, X86_FEATURE_APIC, |
| vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE); |
| |
| if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) |
| kvm_update_feature_runtime(vcpu, best, X86_FEATURE_MWAIT, |
| vcpu->arch.ia32_misc_enable_msr & |
| MSR_IA32_MISC_ENABLE_MWAIT); |
| } |
| |
| best = kvm_find_cpuid_entry_index(vcpu, 7, 0); |
| if (best) |
| kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSPKE, |
| kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)); |
| |
| |
| best = kvm_find_cpuid_entry_index(vcpu, 0xD, 0); |
| if (best) |
| best->ebx = xstate_required_size(vcpu->arch.xcr0, false); |
| |
| best = kvm_find_cpuid_entry_index(vcpu, 0xD, 1); |
| if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) || |
| cpuid_entry_has(best, X86_FEATURE_XSAVEC))) |
| best->ebx = xstate_required_size(vcpu->arch.xcr0, true); |
| } |
| |
| static bool kvm_cpuid_has_hyperv(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_KVM_HYPERV |
| struct kvm_cpuid_entry2 *entry; |
| |
| entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE); |
| return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX; |
| #else |
| return false; |
| #endif |
| } |
| |
| static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *entry; |
| |
| entry = kvm_find_cpuid_entry(vcpu, 0); |
| if (!entry) |
| return false; |
| |
| return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) || |
| is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx); |
| } |
| |
| /* |
| * This isn't truly "unsafe", but except for the cpu_caps initialization code, |
| * all register lookups should use __cpuid_entry_get_reg(), which provides |
| * compile-time validation of the input. |
| */ |
| static u32 cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 *entry, u32 reg) |
| { |
| switch (reg) { |
| case CPUID_EAX: |
| return entry->eax; |
| case CPUID_EBX: |
| return entry->ebx; |
| case CPUID_ECX: |
| return entry->ecx; |
| case CPUID_EDX: |
| return entry->edx; |
| default: |
| WARN_ON_ONCE(1); |
| return 0; |
| } |
| } |
| |
| static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func, |
| bool include_partially_emulated); |
| |
| void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| struct kvm_cpuid_entry2 *best; |
| struct kvm_cpuid_entry2 *entry; |
| bool allow_gbpages; |
| int i; |
| |
| memset(vcpu->arch.cpu_caps, 0, sizeof(vcpu->arch.cpu_caps)); |
| BUILD_BUG_ON(ARRAY_SIZE(reverse_cpuid) != NR_KVM_CPU_CAPS); |
| |
| /* |
| * Reset guest capabilities to userspace's guest CPUID definition, i.e. |
| * honor userspace's definition for features that don't require KVM or |
| * hardware management/support (or that KVM simply doesn't care about). |
| */ |
| for (i = 0; i < NR_KVM_CPU_CAPS; i++) { |
| const struct cpuid_reg cpuid = reverse_cpuid[i]; |
| struct kvm_cpuid_entry2 emulated; |
| |
| if (!cpuid.function) |
| continue; |
| |
| entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index); |
| if (!entry) |
| continue; |
| |
| cpuid_func_emulated(&emulated, cpuid.function, true); |
| |
| /* |
| * A vCPU has a feature if it's supported by KVM and is enabled |
| * in guest CPUID. Note, this includes features that are |
| * supported by KVM but aren't advertised to userspace! |
| */ |
| vcpu->arch.cpu_caps[i] = kvm_cpu_caps[i] | |
| cpuid_get_reg_unsafe(&emulated, cpuid.reg); |
| vcpu->arch.cpu_caps[i] &= cpuid_get_reg_unsafe(entry, cpuid.reg); |
| } |
| |
| kvm_update_cpuid_runtime(vcpu); |
| |
| /* |
| * If TDP is enabled, let the guest use GBPAGES if they're supported in |
| * hardware. The hardware page walker doesn't let KVM disable GBPAGES, |
| * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA |
| * walk for performance and complexity reasons. Not to mention KVM |
| * _can't_ solve the problem because GVA->GPA walks aren't visible to |
| * KVM once a TDP translation is installed. Mimic hardware behavior so |
| * that KVM's is at least consistent, i.e. doesn't randomly inject #PF. |
| * If TDP is disabled, honor *only* guest CPUID as KVM has full control |
| * and can install smaller shadow pages if the host lacks 1GiB support. |
| */ |
| allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) : |
| guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES); |
| guest_cpu_cap_change(vcpu, X86_FEATURE_GBPAGES, allow_gbpages); |
| |
| best = kvm_find_cpuid_entry(vcpu, 1); |
| if (best && apic) { |
| if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER)) |
| apic->lapic_timer.timer_mode_mask = 3 << 17; |
| else |
| apic->lapic_timer.timer_mode_mask = 1 << 17; |
| |
| kvm_apic_set_version(vcpu); |
| } |
| |
| vcpu->arch.guest_supported_xcr0 = cpuid_get_supported_xcr0(vcpu); |
| |
| vcpu->arch.pv_cpuid.features = kvm_apply_cpuid_pv_features_quirk(vcpu); |
| |
| vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu); |
| vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); |
| vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); |
| |
| kvm_pmu_refresh(vcpu); |
| |
| #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) |
| vcpu->arch.cr4_guest_rsvd_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_) | |
| __cr4_reserved_bits(guest_cpu_cap_has, vcpu); |
| #undef __kvm_cpu_cap_has |
| |
| kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu)); |
| |
| /* Invoke the vendor callback only after the above state is updated. */ |
| kvm_x86_call(vcpu_after_set_cpuid)(vcpu); |
| |
| /* |
| * Except for the MMU, which needs to do its thing any vendor specific |
| * adjustments to the reserved GPA bits. |
| */ |
| kvm_mmu_after_set_cpuid(vcpu); |
| } |
| |
| int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0x80000000); |
| if (!best || best->eax < 0x80000008) |
| goto not_found; |
| best = kvm_find_cpuid_entry(vcpu, 0x80000008); |
| if (best) |
| return best->eax & 0xff; |
| not_found: |
| return 36; |
| } |
| |
| /* |
| * This "raw" version returns the reserved GPA bits without any adjustments for |
| * encryption technologies that usurp bits. The raw mask should be used if and |
| * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs. |
| */ |
| u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu) |
| { |
| return rsvd_bits(cpuid_maxphyaddr(vcpu), 63); |
| } |
| |
| static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, |
| int nent) |
| { |
| u32 vcpu_caps[NR_KVM_CPU_CAPS]; |
| int r; |
| |
| /* |
| * Swap the existing (old) entries with the incoming (new) entries in |
| * order to massage the new entries, e.g. to account for dynamic bits |
| * that KVM controls, without clobbering the current guest CPUID, which |
| * KVM needs to preserve in order to unwind on failure. |
| * |
| * Similarly, save the vCPU's current cpu_caps so that the capabilities |
| * can be updated alongside the CPUID entries when performing runtime |
| * updates. Full initialization is done if and only if the vCPU hasn't |
| * run, i.e. only if userspace is potentially changing CPUID features. |
| */ |
| swap(vcpu->arch.cpuid_entries, e2); |
| swap(vcpu->arch.cpuid_nent, nent); |
| |
| memcpy(vcpu_caps, vcpu->arch.cpu_caps, sizeof(vcpu_caps)); |
| BUILD_BUG_ON(sizeof(vcpu_caps) != sizeof(vcpu->arch.cpu_caps)); |
| |
| /* |
| * KVM does not correctly handle changing guest CPUID after KVM_RUN, as |
| * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't |
| * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page |
| * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with |
| * the core vCPU model on the fly. It would've been better to forbid any |
| * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately |
| * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do |
| * KVM_SET_CPUID{,2} again. To support this legacy behavior, check |
| * whether the supplied CPUID data is equal to what's already set. |
| */ |
| if (kvm_vcpu_has_run(vcpu)) { |
| r = kvm_cpuid_check_equal(vcpu, e2, nent); |
| if (r) |
| goto err; |
| goto success; |
| } |
| |
| #ifdef CONFIG_KVM_HYPERV |
| if (kvm_cpuid_has_hyperv(vcpu)) { |
| r = kvm_hv_vcpu_init(vcpu); |
| if (r) |
| goto err; |
| } |
| #endif |
| |
| r = kvm_check_cpuid(vcpu); |
| if (r) |
| goto err; |
| |
| #ifdef CONFIG_KVM_XEN |
| vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE); |
| #endif |
| kvm_vcpu_after_set_cpuid(vcpu); |
| |
| success: |
| kvfree(e2); |
| return 0; |
| |
| err: |
| memcpy(vcpu->arch.cpu_caps, vcpu_caps, sizeof(vcpu_caps)); |
| swap(vcpu->arch.cpuid_entries, e2); |
| swap(vcpu->arch.cpuid_nent, nent); |
| return r; |
| } |
| |
| /* when an old userspace process fills a new kernel module */ |
| int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid *cpuid, |
| struct kvm_cpuid_entry __user *entries) |
| { |
| int r, i; |
| struct kvm_cpuid_entry *e = NULL; |
| struct kvm_cpuid_entry2 *e2 = NULL; |
| |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| return -E2BIG; |
| |
| if (cpuid->nent) { |
| e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e)); |
| if (IS_ERR(e)) |
| return PTR_ERR(e); |
| |
| e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT); |
| if (!e2) { |
| r = -ENOMEM; |
| goto out_free_cpuid; |
| } |
| } |
| for (i = 0; i < cpuid->nent; i++) { |
| e2[i].function = e[i].function; |
| e2[i].eax = e[i].eax; |
| e2[i].ebx = e[i].ebx; |
| e2[i].ecx = e[i].ecx; |
| e2[i].edx = e[i].edx; |
| e2[i].index = 0; |
| e2[i].flags = 0; |
| e2[i].padding[0] = 0; |
| e2[i].padding[1] = 0; |
| e2[i].padding[2] = 0; |
| } |
| |
| r = kvm_set_cpuid(vcpu, e2, cpuid->nent); |
| if (r) |
| kvfree(e2); |
| |
| out_free_cpuid: |
| kvfree(e); |
| |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| struct kvm_cpuid_entry2 *e2 = NULL; |
| int r; |
| |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| return -E2BIG; |
| |
| if (cpuid->nent) { |
| e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2)); |
| if (IS_ERR(e2)) |
| return PTR_ERR(e2); |
| } |
| |
| r = kvm_set_cpuid(vcpu, e2, cpuid->nent); |
| if (r) |
| kvfree(e2); |
| |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| if (cpuid->nent < vcpu->arch.cpuid_nent) |
| return -E2BIG; |
| |
| if (vcpu->arch.cpuid_dynamic_bits_dirty) |
| kvm_update_cpuid_runtime(vcpu); |
| |
| if (copy_to_user(entries, vcpu->arch.cpuid_entries, |
| vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) |
| return -EFAULT; |
| |
| cpuid->nent = vcpu->arch.cpuid_nent; |
| return 0; |
| } |
| |
| static __always_inline u32 raw_cpuid_get(struct cpuid_reg cpuid) |
| { |
| struct kvm_cpuid_entry2 entry; |
| u32 base; |
| |
| /* |
| * KVM only supports features defined by Intel (0x0), AMD (0x80000000), |
| * and Centaur (0xc0000000). WARN if a feature for new vendor base is |
| * defined, as this and other code would need to be updated. |
| */ |
| base = cpuid.function & 0xffff0000; |
| if (WARN_ON_ONCE(base && base != 0x80000000 && base != 0xc0000000)) |
| return 0; |
| |
| if (cpuid_eax(base) < cpuid.function) |
| return 0; |
| |
| cpuid_count(cpuid.function, cpuid.index, |
| &entry.eax, &entry.ebx, &entry.ecx, &entry.edx); |
| |
| return *__cpuid_entry_get_reg(&entry, cpuid.reg); |
| } |
| |
| /* |
| * For kernel-defined leafs, mask KVM's supported feature set with the kernel's |
| * capabilities as well as raw CPUID. For KVM-defined leafs, consult only raw |
| * CPUID, as KVM is the one and only authority (in the kernel). |
| */ |
| #define kvm_cpu_cap_init(leaf, feature_initializers...) \ |
| do { \ |
| const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); \ |
| const u32 __maybe_unused kvm_cpu_cap_init_in_progress = leaf; \ |
| const u32 *kernel_cpu_caps = boot_cpu_data.x86_capability; \ |
| u32 kvm_cpu_cap_passthrough = 0; \ |
| u32 kvm_cpu_cap_synthesized = 0; \ |
| u32 kvm_cpu_cap_emulated = 0; \ |
| u32 kvm_cpu_cap_features = 0; \ |
| \ |
| feature_initializers \ |
| \ |
| kvm_cpu_caps[leaf] = kvm_cpu_cap_features; \ |
| \ |
| if (leaf < NCAPINTS) \ |
| kvm_cpu_caps[leaf] &= kernel_cpu_caps[leaf]; \ |
| \ |
| kvm_cpu_caps[leaf] |= kvm_cpu_cap_passthrough; \ |
| kvm_cpu_caps[leaf] &= (raw_cpuid_get(cpuid) | \ |
| kvm_cpu_cap_synthesized); \ |
| kvm_cpu_caps[leaf] |= kvm_cpu_cap_emulated; \ |
| } while (0) |
| |
| /* |
| * Assert that the feature bit being declared, e.g. via F(), is in the CPUID |
| * word that's being initialized. Exempt 0x8000_0001.EDX usage of 0x1.EDX |
| * features, as AMD duplicated many 0x1.EDX features into 0x8000_0001.EDX. |
| */ |
| #define KVM_VALIDATE_CPU_CAP_USAGE(name) \ |
| do { \ |
| u32 __leaf = __feature_leaf(X86_FEATURE_##name); \ |
| \ |
| BUILD_BUG_ON(__leaf != kvm_cpu_cap_init_in_progress); \ |
| } while (0) |
| |
| #define F(name) \ |
| ({ \ |
| KVM_VALIDATE_CPU_CAP_USAGE(name); \ |
| kvm_cpu_cap_features |= feature_bit(name); \ |
| }) |
| |
| /* Scattered Flag - For features that are scattered by cpufeatures.h. */ |
| #define SCATTERED_F(name) \ |
| ({ \ |
| BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \ |
| KVM_VALIDATE_CPU_CAP_USAGE(name); \ |
| if (boot_cpu_has(X86_FEATURE_##name)) \ |
| F(name); \ |
| }) |
| |
| /* Features that KVM supports only on 64-bit kernels. */ |
| #define X86_64_F(name) \ |
| ({ \ |
| KVM_VALIDATE_CPU_CAP_USAGE(name); \ |
| if (IS_ENABLED(CONFIG_X86_64)) \ |
| F(name); \ |
| }) |
| |
| /* |
| * Emulated Feature - For features that KVM emulates in software irrespective |
| * of host CPU/kernel support. |
| */ |
| #define EMULATED_F(name) \ |
| ({ \ |
| kvm_cpu_cap_emulated |= feature_bit(name); \ |
| F(name); \ |
| }) |
| |
| /* |
| * Synthesized Feature - For features that are synthesized into boot_cpu_data, |
| * i.e. may not be present in the raw CPUID, but can still be advertised to |
| * userspace. Primarily used for mitigation related feature flags. |
| */ |
| #define SYNTHESIZED_F(name) \ |
| ({ \ |
| kvm_cpu_cap_synthesized |= feature_bit(name); \ |
| F(name); \ |
| }) |
| |
| /* |
| * Passthrough Feature - For features that KVM supports based purely on raw |
| * hardware CPUID, i.e. that KVM virtualizes even if the host kernel doesn't |
| * use the feature. Simply force set the feature in KVM's capabilities, raw |
| * CPUID support will be factored in by kvm_cpu_cap_mask(). |
| */ |
| #define PASSTHROUGH_F(name) \ |
| ({ \ |
| kvm_cpu_cap_passthrough |= feature_bit(name); \ |
| F(name); \ |
| }) |
| |
| /* |
| * Aliased Features - For features in 0x8000_0001.EDX that are duplicates of |
| * identical 0x1.EDX features, and thus are aliased from 0x1 to 0x8000_0001. |
| */ |
| #define ALIASED_1_EDX_F(name) \ |
| ({ \ |
| BUILD_BUG_ON(__feature_leaf(X86_FEATURE_##name) != CPUID_1_EDX); \ |
| BUILD_BUG_ON(kvm_cpu_cap_init_in_progress != CPUID_8000_0001_EDX); \ |
| kvm_cpu_cap_features |= feature_bit(name); \ |
| }) |
| |
| /* |
| * Vendor Features - For features that KVM supports, but are added in later |
| * because they require additional vendor enabling. |
| */ |
| #define VENDOR_F(name) \ |
| ({ \ |
| KVM_VALIDATE_CPU_CAP_USAGE(name); \ |
| }) |
| |
| /* |
| * Runtime Features - For features that KVM dynamically sets/clears at runtime, |
| * e.g. when CR4 changes, but which are never advertised to userspace. |
| */ |
| #define RUNTIME_F(name) \ |
| ({ \ |
| KVM_VALIDATE_CPU_CAP_USAGE(name); \ |
| }) |
| |
| /* |
| * Undefine the MSR bit macro to avoid token concatenation issues when |
| * processing X86_FEATURE_SPEC_CTRL_SSBD. |
| */ |
| #undef SPEC_CTRL_SSBD |
| |
| /* DS is defined by ptrace-abi.h on 32-bit builds. */ |
| #undef DS |
| |
| void kvm_set_cpu_caps(void) |
| { |
| memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps)); |
| |
| BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) > |
| sizeof(boot_cpu_data.x86_capability)); |
| |
| kvm_cpu_cap_init(CPUID_1_ECX, |
| F(XMM3), |
| F(PCLMULQDQ), |
| VENDOR_F(DTES64), |
| /* |
| * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not* |
| * advertised to guests via CPUID! MWAIT is also technically a |
| * runtime flag thanks to IA32_MISC_ENABLES; mark it as such so |
| * that KVM is aware that it's a known, unadvertised flag. |
| */ |
| RUNTIME_F(MWAIT), |
| /* DS-CPL */ |
| VENDOR_F(VMX), |
| /* SMX, EST */ |
| /* TM2 */ |
| F(SSSE3), |
| /* CNXT-ID */ |
| /* Reserved */ |
| F(FMA), |
| F(CX16), |
| /* xTPR Update */ |
| F(PDCM), |
| F(PCID), |
| /* Reserved, DCA */ |
| F(XMM4_1), |
| F(XMM4_2), |
| EMULATED_F(X2APIC), |
| F(MOVBE), |
| F(POPCNT), |
| EMULATED_F(TSC_DEADLINE_TIMER), |
| F(AES), |
| F(XSAVE), |
| RUNTIME_F(OSXSAVE), |
| F(AVX), |
| F(F16C), |
| F(RDRAND), |
| EMULATED_F(HYPERVISOR), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_1_EDX, |
| F(FPU), |
| F(VME), |
| F(DE), |
| F(PSE), |
| F(TSC), |
| F(MSR), |
| F(PAE), |
| F(MCE), |
| F(CX8), |
| F(APIC), |
| /* Reserved */ |
| F(SEP), |
| F(MTRR), |
| F(PGE), |
| F(MCA), |
| F(CMOV), |
| F(PAT), |
| F(PSE36), |
| /* PSN */ |
| F(CLFLUSH), |
| /* Reserved */ |
| VENDOR_F(DS), |
| /* ACPI */ |
| F(MMX), |
| F(FXSR), |
| F(XMM), |
| F(XMM2), |
| F(SELFSNOOP), |
| /* HTT, TM, Reserved, PBE */ |
| ); |
| |
| kvm_cpu_cap_init(CPUID_7_0_EBX, |
| F(FSGSBASE), |
| EMULATED_F(TSC_ADJUST), |
| F(SGX), |
| F(BMI1), |
| F(HLE), |
| F(AVX2), |
| F(FDP_EXCPTN_ONLY), |
| F(SMEP), |
| F(BMI2), |
| F(ERMS), |
| F(INVPCID), |
| F(RTM), |
| F(ZERO_FCS_FDS), |
| VENDOR_F(MPX), |
| F(AVX512F), |
| F(AVX512DQ), |
| F(RDSEED), |
| F(ADX), |
| F(SMAP), |
| F(AVX512IFMA), |
| F(CLFLUSHOPT), |
| F(CLWB), |
| VENDOR_F(INTEL_PT), |
| F(AVX512PF), |
| F(AVX512ER), |
| F(AVX512CD), |
| F(SHA_NI), |
| F(AVX512BW), |
| F(AVX512VL), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_7_ECX, |
| F(AVX512VBMI), |
| PASSTHROUGH_F(LA57), |
| F(PKU), |
| RUNTIME_F(OSPKE), |
| F(RDPID), |
| F(AVX512_VPOPCNTDQ), |
| F(UMIP), |
| F(AVX512_VBMI2), |
| F(GFNI), |
| F(VAES), |
| F(VPCLMULQDQ), |
| F(AVX512_VNNI), |
| F(AVX512_BITALG), |
| F(CLDEMOTE), |
| F(MOVDIRI), |
| F(MOVDIR64B), |
| VENDOR_F(WAITPKG), |
| F(SGX_LC), |
| F(BUS_LOCK_DETECT), |
| ); |
| |
| /* |
| * PKU not yet implemented for shadow paging and requires OSPKE |
| * to be set on the host. Clear it if that is not the case |
| */ |
| if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) |
| kvm_cpu_cap_clear(X86_FEATURE_PKU); |
| |
| kvm_cpu_cap_init(CPUID_7_EDX, |
| F(AVX512_4VNNIW), |
| F(AVX512_4FMAPS), |
| F(SPEC_CTRL), |
| F(SPEC_CTRL_SSBD), |
| EMULATED_F(ARCH_CAPABILITIES), |
| F(INTEL_STIBP), |
| F(MD_CLEAR), |
| F(AVX512_VP2INTERSECT), |
| F(FSRM), |
| F(SERIALIZE), |
| F(TSXLDTRK), |
| F(AVX512_FP16), |
| F(AMX_TILE), |
| F(AMX_INT8), |
| F(AMX_BF16), |
| F(FLUSH_L1D), |
| ); |
| |
| if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) && |
| boot_cpu_has(X86_FEATURE_AMD_IBPB) && |
| boot_cpu_has(X86_FEATURE_AMD_IBRS)) |
| kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL); |
| if (boot_cpu_has(X86_FEATURE_STIBP)) |
| kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP); |
| if (boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD); |
| |
| kvm_cpu_cap_init(CPUID_7_1_EAX, |
| F(SHA512), |
| F(SM3), |
| F(SM4), |
| F(AVX_VNNI), |
| F(AVX512_BF16), |
| F(CMPCCXADD), |
| F(FZRM), |
| F(FSRS), |
| F(FSRC), |
| F(AMX_FP16), |
| F(AVX_IFMA), |
| F(LAM), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_7_1_EDX, |
| F(AVX_VNNI_INT8), |
| F(AVX_NE_CONVERT), |
| F(AMX_COMPLEX), |
| F(AVX_VNNI_INT16), |
| F(PREFETCHITI), |
| F(AVX10), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_7_2_EDX, |
| F(INTEL_PSFD), |
| F(IPRED_CTRL), |
| F(RRSBA_CTRL), |
| F(DDPD_U), |
| F(BHI_CTRL), |
| F(MCDT_NO), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_D_1_EAX, |
| F(XSAVEOPT), |
| F(XSAVEC), |
| F(XGETBV1), |
| F(XSAVES), |
| X86_64_F(XFD), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_12_EAX, |
| SCATTERED_F(SGX1), |
| SCATTERED_F(SGX2), |
| SCATTERED_F(SGX_EDECCSSA), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_24_0_EBX, |
| F(AVX10_128), |
| F(AVX10_256), |
| F(AVX10_512), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_8000_0001_ECX, |
| F(LAHF_LM), |
| F(CMP_LEGACY), |
| VENDOR_F(SVM), |
| /* ExtApicSpace */ |
| F(CR8_LEGACY), |
| F(ABM), |
| F(SSE4A), |
| F(MISALIGNSSE), |
| F(3DNOWPREFETCH), |
| F(OSVW), |
| /* IBS */ |
| F(XOP), |
| /* SKINIT, WDT, LWP */ |
| F(FMA4), |
| F(TBM), |
| F(TOPOEXT), |
| VENDOR_F(PERFCTR_CORE), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_8000_0001_EDX, |
| ALIASED_1_EDX_F(FPU), |
| ALIASED_1_EDX_F(VME), |
| ALIASED_1_EDX_F(DE), |
| ALIASED_1_EDX_F(PSE), |
| ALIASED_1_EDX_F(TSC), |
| ALIASED_1_EDX_F(MSR), |
| ALIASED_1_EDX_F(PAE), |
| ALIASED_1_EDX_F(MCE), |
| ALIASED_1_EDX_F(CX8), |
| ALIASED_1_EDX_F(APIC), |
| /* Reserved */ |
| F(SYSCALL), |
| ALIASED_1_EDX_F(MTRR), |
| ALIASED_1_EDX_F(PGE), |
| ALIASED_1_EDX_F(MCA), |
| ALIASED_1_EDX_F(CMOV), |
| ALIASED_1_EDX_F(PAT), |
| ALIASED_1_EDX_F(PSE36), |
| /* Reserved */ |
| F(NX), |
| /* Reserved */ |
| F(MMXEXT), |
| ALIASED_1_EDX_F(MMX), |
| ALIASED_1_EDX_F(FXSR), |
| F(FXSR_OPT), |
| X86_64_F(GBPAGES), |
| F(RDTSCP), |
| /* Reserved */ |
| X86_64_F(LM), |
| F(3DNOWEXT), |
| F(3DNOW), |
| ); |
| |
| if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64)) |
| kvm_cpu_cap_set(X86_FEATURE_GBPAGES); |
| |
| kvm_cpu_cap_init(CPUID_8000_0007_EDX, |
| SCATTERED_F(CONSTANT_TSC), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_8000_0008_EBX, |
| F(CLZERO), |
| F(XSAVEERPTR), |
| F(WBNOINVD), |
| F(AMD_IBPB), |
| F(AMD_IBRS), |
| F(AMD_SSBD), |
| F(VIRT_SSBD), |
| F(AMD_SSB_NO), |
| F(AMD_STIBP), |
| F(AMD_STIBP_ALWAYS_ON), |
| F(AMD_PSFD), |
| F(AMD_IBPB_RET), |
| ); |
| |
| /* |
| * AMD has separate bits for each SPEC_CTRL bit. |
| * arch/x86/kernel/cpu/bugs.c is kind enough to |
| * record that in cpufeatures so use them. |
| */ |
| if (boot_cpu_has(X86_FEATURE_IBPB)) { |
| kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB); |
| if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) && |
| !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET); |
| } |
| if (boot_cpu_has(X86_FEATURE_IBRS)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS); |
| if (boot_cpu_has(X86_FEATURE_STIBP)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP); |
| if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD); |
| if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO); |
| /* |
| * The preference is to use SPEC CTRL MSR instead of the |
| * VIRT_SPEC MSR. |
| */ |
| if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && |
| !boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); |
| |
| /* All SVM features required additional vendor module enabling. */ |
| kvm_cpu_cap_init(CPUID_8000_000A_EDX, |
| VENDOR_F(NPT), |
| VENDOR_F(VMCBCLEAN), |
| VENDOR_F(FLUSHBYASID), |
| VENDOR_F(NRIPS), |
| VENDOR_F(TSCRATEMSR), |
| VENDOR_F(V_VMSAVE_VMLOAD), |
| VENDOR_F(LBRV), |
| VENDOR_F(PAUSEFILTER), |
| VENDOR_F(PFTHRESHOLD), |
| VENDOR_F(VGIF), |
| VENDOR_F(VNMI), |
| VENDOR_F(SVME_ADDR_CHK), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_8000_001F_EAX, |
| VENDOR_F(SME), |
| VENDOR_F(SEV), |
| /* VM_PAGE_FLUSH */ |
| VENDOR_F(SEV_ES), |
| F(SME_COHERENT), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_8000_0021_EAX, |
| F(NO_NESTED_DATA_BP), |
| /* |
| * Synthesize "LFENCE is serializing" into the AMD-defined entry |
| * in KVM's supported CPUID, i.e. if the feature is reported as |
| * supported by the kernel. LFENCE_RDTSC was a Linux-defined |
| * synthetic feature long before AMD joined the bandwagon, e.g. |
| * LFENCE is serializing on most CPUs that support SSE2. On |
| * CPUs that don't support AMD's leaf, ANDing with the raw host |
| * CPUID will drop the flags, and reporting support in AMD's |
| * leaf can make it easier for userspace to detect the feature. |
| */ |
| SYNTHESIZED_F(LFENCE_RDTSC), |
| /* SmmPgCfgLock */ |
| F(NULL_SEL_CLR_BASE), |
| F(AUTOIBRS), |
| EMULATED_F(NO_SMM_CTL_MSR), |
| /* PrefetchCtlMsr */ |
| F(WRMSR_XX_BASE_NS), |
| SYNTHESIZED_F(SBPB), |
| SYNTHESIZED_F(IBPB_BRTYPE), |
| SYNTHESIZED_F(SRSO_NO), |
| F(SRSO_USER_KERNEL_NO), |
| ); |
| |
| kvm_cpu_cap_init(CPUID_8000_0022_EAX, |
| F(PERFMON_V2), |
| ); |
| |
| if (!static_cpu_has_bug(X86_BUG_NULL_SEG)) |
| kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE); |
| |
| kvm_cpu_cap_init(CPUID_C000_0001_EDX, |
| F(XSTORE), |
| F(XSTORE_EN), |
| F(XCRYPT), |
| F(XCRYPT_EN), |
| F(ACE2), |
| F(ACE2_EN), |
| F(PHE), |
| F(PHE_EN), |
| F(PMM), |
| F(PMM_EN), |
| ); |
| |
| /* |
| * Hide RDTSCP and RDPID if either feature is reported as supported but |
| * probing MSR_TSC_AUX failed. This is purely a sanity check and |
| * should never happen, but the guest will likely crash if RDTSCP or |
| * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in |
| * the past. For example, the sanity check may fire if this instance of |
| * KVM is running as L1 on top of an older, broken KVM. |
| */ |
| if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) || |
| kvm_cpu_cap_has(X86_FEATURE_RDPID)) && |
| !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) { |
| kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); |
| kvm_cpu_cap_clear(X86_FEATURE_RDPID); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cpu_caps); |
| |
| #undef F |
| #undef SCATTERED_F |
| #undef X86_64_F |
| #undef EMULATED_F |
| #undef SYNTHESIZED_F |
| #undef PASSTHROUGH_F |
| #undef ALIASED_1_EDX_F |
| #undef VENDOR_F |
| #undef RUNTIME_F |
| |
| struct kvm_cpuid_array { |
| struct kvm_cpuid_entry2 *entries; |
| int maxnent; |
| int nent; |
| }; |
| |
| static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array) |
| { |
| if (array->nent >= array->maxnent) |
| return NULL; |
| |
| return &array->entries[array->nent++]; |
| } |
| |
| static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array, |
| u32 function, u32 index) |
| { |
| struct kvm_cpuid_entry2 *entry = get_next_cpuid(array); |
| |
| if (!entry) |
| return NULL; |
| |
| memset(entry, 0, sizeof(*entry)); |
| entry->function = function; |
| entry->index = index; |
| switch (function & 0xC0000000) { |
| case 0x40000000: |
| /* Hypervisor leaves are always synthesized by __do_cpuid_func. */ |
| return entry; |
| |
| case 0x80000000: |
| /* |
| * 0x80000021 is sometimes synthesized by __do_cpuid_func, which |
| * would result in out-of-bounds calls to do_host_cpuid. |
| */ |
| { |
| static int max_cpuid_80000000; |
| if (!READ_ONCE(max_cpuid_80000000)) |
| WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000)); |
| if (function > READ_ONCE(max_cpuid_80000000)) |
| return entry; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| cpuid_count(entry->function, entry->index, |
| &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); |
| |
| if (cpuid_function_is_indexed(function)) |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| |
| return entry; |
| } |
| |
| static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func, |
| bool include_partially_emulated) |
| { |
| memset(entry, 0, sizeof(*entry)); |
| |
| entry->function = func; |
| entry->index = 0; |
| entry->flags = 0; |
| |
| switch (func) { |
| case 0: |
| entry->eax = 7; |
| return 1; |
| case 1: |
| entry->ecx = feature_bit(MOVBE); |
| /* |
| * KVM allows userspace to enumerate MONITOR+MWAIT support to |
| * the guest, but the MWAIT feature flag is never advertised |
| * to userspace because MONITOR+MWAIT aren't virtualized by |
| * hardware, can't be faithfully emulated in software (KVM |
| * emulates them as NOPs), and allowing the guest to execute |
| * them natively requires enabling a per-VM capability. |
| */ |
| if (include_partially_emulated) |
| entry->ecx |= feature_bit(MWAIT); |
| return 1; |
| case 7: |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| entry->eax = 0; |
| if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) |
| entry->ecx = feature_bit(RDPID); |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func) |
| { |
| if (array->nent >= array->maxnent) |
| return -E2BIG; |
| |
| array->nent += cpuid_func_emulated(&array->entries[array->nent], func, false); |
| return 0; |
| } |
| |
| static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function) |
| { |
| struct kvm_cpuid_entry2 *entry; |
| int r, i, max_idx; |
| |
| /* all calls to cpuid_count() should be made on the same cpu */ |
| get_cpu(); |
| |
| r = -E2BIG; |
| |
| entry = do_host_cpuid(array, function, 0); |
| if (!entry) |
| goto out; |
| |
| switch (function) { |
| case 0: |
| /* Limited to the highest leaf implemented in KVM. */ |
| entry->eax = min(entry->eax, 0x24U); |
| break; |
| case 1: |
| cpuid_entry_override(entry, CPUID_1_EDX); |
| cpuid_entry_override(entry, CPUID_1_ECX); |
| break; |
| case 2: |
| /* |
| * On ancient CPUs, function 2 entries are STATEFUL. That is, |
| * CPUID(function=2, index=0) may return different results each |
| * time, with the least-significant byte in EAX enumerating the |
| * number of times software should do CPUID(2, 0). |
| * |
| * Modern CPUs, i.e. every CPU KVM has *ever* run on are less |
| * idiotic. Intel's SDM states that EAX & 0xff "will always |
| * return 01H. Software should ignore this value and not |
| * interpret it as an informational descriptor", while AMD's |
| * APM states that CPUID(2) is reserved. |
| * |
| * WARN if a frankenstein CPU that supports virtualization and |
| * a stateful CPUID.0x2 is encountered. |
| */ |
| WARN_ON_ONCE((entry->eax & 0xff) > 1); |
| break; |
| /* functions 4 and 0x8000001d have additional index. */ |
| case 4: |
| case 0x8000001d: |
| /* |
| * Read entries until the cache type in the previous entry is |
| * zero, i.e. indicates an invalid entry. |
| */ |
| for (i = 1; entry->eax & 0x1f; ++i) { |
| entry = do_host_cpuid(array, function, i); |
| if (!entry) |
| goto out; |
| } |
| break; |
| case 6: /* Thermal management */ |
| entry->eax = 0x4; /* allow ARAT */ |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| /* function 7 has additional index. */ |
| case 7: |
| max_idx = entry->eax = min(entry->eax, 2u); |
| cpuid_entry_override(entry, CPUID_7_0_EBX); |
| cpuid_entry_override(entry, CPUID_7_ECX); |
| cpuid_entry_override(entry, CPUID_7_EDX); |
| |
| /* KVM only supports up to 0x7.2, capped above via min(). */ |
| if (max_idx >= 1) { |
| entry = do_host_cpuid(array, function, 1); |
| if (!entry) |
| goto out; |
| |
| cpuid_entry_override(entry, CPUID_7_1_EAX); |
| cpuid_entry_override(entry, CPUID_7_1_EDX); |
| entry->ebx = 0; |
| entry->ecx = 0; |
| } |
| if (max_idx >= 2) { |
| entry = do_host_cpuid(array, function, 2); |
| if (!entry) |
| goto out; |
| |
| cpuid_entry_override(entry, CPUID_7_2_EDX); |
| entry->ecx = 0; |
| entry->ebx = 0; |
| entry->eax = 0; |
| } |
| break; |
| case 0xa: { /* Architectural Performance Monitoring */ |
| union cpuid10_eax eax = { }; |
| union cpuid10_edx edx = { }; |
| |
| if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| eax.split.version_id = kvm_pmu_cap.version; |
| eax.split.num_counters = kvm_pmu_cap.num_counters_gp; |
| eax.split.bit_width = kvm_pmu_cap.bit_width_gp; |
| eax.split.mask_length = kvm_pmu_cap.events_mask_len; |
| edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed; |
| edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed; |
| |
| if (kvm_pmu_cap.version) |
| edx.split.anythread_deprecated = 1; |
| |
| entry->eax = eax.full; |
| entry->ebx = kvm_pmu_cap.events_mask; |
| entry->ecx = 0; |
| entry->edx = edx.full; |
| break; |
| } |
| case 0x1f: |
| case 0xb: |
| /* |
| * No topology; a valid topology is indicated by the presence |
| * of subleaf 1. |
| */ |
| entry->eax = entry->ebx = entry->ecx = 0; |
| break; |
| case 0xd: { |
| u64 permitted_xcr0 = kvm_get_filtered_xcr0(); |
| u64 permitted_xss = kvm_caps.supported_xss; |
| |
| entry->eax &= permitted_xcr0; |
| entry->ebx = xstate_required_size(permitted_xcr0, false); |
| entry->ecx = entry->ebx; |
| entry->edx &= permitted_xcr0 >> 32; |
| if (!permitted_xcr0) |
| break; |
| |
| entry = do_host_cpuid(array, function, 1); |
| if (!entry) |
| goto out; |
| |
| cpuid_entry_override(entry, CPUID_D_1_EAX); |
| if (entry->eax & (feature_bit(XSAVES) | feature_bit(XSAVEC))) |
| entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss, |
| true); |
| else { |
| WARN_ON_ONCE(permitted_xss != 0); |
| entry->ebx = 0; |
| } |
| entry->ecx &= permitted_xss; |
| entry->edx &= permitted_xss >> 32; |
| |
| for (i = 2; i < 64; ++i) { |
| bool s_state; |
| if (permitted_xcr0 & BIT_ULL(i)) |
| s_state = false; |
| else if (permitted_xss & BIT_ULL(i)) |
| s_state = true; |
| else |
| continue; |
| |
| entry = do_host_cpuid(array, function, i); |
| if (!entry) |
| goto out; |
| |
| /* |
| * The supported check above should have filtered out |
| * invalid sub-leafs. Only valid sub-leafs should |
| * reach this point, and they should have a non-zero |
| * save state size. Furthermore, check whether the |
| * processor agrees with permitted_xcr0/permitted_xss |
| * on whether this is an XCR0- or IA32_XSS-managed area. |
| */ |
| if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) { |
| --array->nent; |
| continue; |
| } |
| |
| if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) |
| entry->ecx &= ~BIT_ULL(2); |
| entry->edx = 0; |
| } |
| break; |
| } |
| case 0x12: |
| /* Intel SGX */ |
| if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| /* |
| * Index 0: Sub-features, MISCSELECT (a.k.a extended features) |
| * and max enclave sizes. The SGX sub-features and MISCSELECT |
| * are restricted by kernel and KVM capabilities (like most |
| * feature flags), while enclave size is unrestricted. |
| */ |
| cpuid_entry_override(entry, CPUID_12_EAX); |
| entry->ebx &= SGX_MISC_EXINFO; |
| |
| entry = do_host_cpuid(array, function, 1); |
| if (!entry) |
| goto out; |
| |
| /* |
| * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la |
| * feature flags. Advertise all supported flags, including |
| * privileged attributes that require explicit opt-in from |
| * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is |
| * expected to derive it from supported XCR0. |
| */ |
| entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK; |
| entry->ebx &= 0; |
| break; |
| /* Intel PT */ |
| case 0x14: |
| if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { |
| if (!do_host_cpuid(array, function, i)) |
| goto out; |
| } |
| break; |
| /* Intel AMX TILE */ |
| case 0x1d: |
| if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { |
| if (!do_host_cpuid(array, function, i)) |
| goto out; |
| } |
| break; |
| case 0x1e: /* TMUL information */ |
| if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| break; |
| case 0x24: { |
| u8 avx10_version; |
| |
| if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| /* |
| * The AVX10 version is encoded in EBX[7:0]. Note, the version |
| * is guaranteed to be >=1 if AVX10 is supported. Note #2, the |
| * version needs to be captured before overriding EBX features! |
| */ |
| avx10_version = min_t(u8, entry->ebx & 0xff, 1); |
| cpuid_entry_override(entry, CPUID_24_0_EBX); |
| entry->ebx |= avx10_version; |
| |
| entry->eax = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| } |
| case KVM_CPUID_SIGNATURE: { |
| const u32 *sigptr = (const u32 *)KVM_SIGNATURE; |
| entry->eax = KVM_CPUID_FEATURES; |
| entry->ebx = sigptr[0]; |
| entry->ecx = sigptr[1]; |
| entry->edx = sigptr[2]; |
| break; |
| } |
| case KVM_CPUID_FEATURES: |
| entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | |
| (1 << KVM_FEATURE_NOP_IO_DELAY) | |
| (1 << KVM_FEATURE_CLOCKSOURCE2) | |
| (1 << KVM_FEATURE_ASYNC_PF) | |
| (1 << KVM_FEATURE_PV_EOI) | |
| (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | |
| (1 << KVM_FEATURE_PV_UNHALT) | |
| (1 << KVM_FEATURE_PV_TLB_FLUSH) | |
| (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | |
| (1 << KVM_FEATURE_PV_SEND_IPI) | |
| (1 << KVM_FEATURE_POLL_CONTROL) | |
| (1 << KVM_FEATURE_PV_SCHED_YIELD) | |
| (1 << KVM_FEATURE_ASYNC_PF_INT); |
| |
| if (sched_info_on()) |
| entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); |
| |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| case 0x80000000: |
| entry->eax = min(entry->eax, 0x80000022); |
| /* |
| * Serializing LFENCE is reported in a multitude of ways, and |
| * NullSegClearsBase is not reported in CPUID on Zen2; help |
| * userspace by providing the CPUID leaf ourselves. |
| * |
| * However, only do it if the host has CPUID leaf 0x8000001d. |
| * QEMU thinks that it can query the host blindly for that |
| * CPUID leaf if KVM reports that it supports 0x8000001d or |
| * above. The processor merrily returns values from the |
| * highest Intel leaf which QEMU tries to use as the guest's |
| * 0x8000001d. Even worse, this can result in an infinite |
| * loop if said highest leaf has no subleaves indexed by ECX. |
| */ |
| if (entry->eax >= 0x8000001d && |
| (static_cpu_has(X86_FEATURE_LFENCE_RDTSC) |
| || !static_cpu_has_bug(X86_BUG_NULL_SEG))) |
| entry->eax = max(entry->eax, 0x80000021); |
| break; |
| case 0x80000001: |
| entry->ebx &= ~GENMASK(27, 16); |
| cpuid_entry_override(entry, CPUID_8000_0001_EDX); |
| cpuid_entry_override(entry, CPUID_8000_0001_ECX); |
| break; |
| case 0x80000005: |
| /* Pass host L1 cache and TLB info. */ |
| break; |
| case 0x80000006: |
| /* Drop reserved bits, pass host L2 cache and TLB info. */ |
| entry->edx &= ~GENMASK(17, 16); |
| break; |
| case 0x80000007: /* Advanced power management */ |
| cpuid_entry_override(entry, CPUID_8000_0007_EDX); |
| |
| /* mask against host */ |
| entry->edx &= boot_cpu_data.x86_power; |
| entry->eax = entry->ebx = entry->ecx = 0; |
| break; |
| case 0x80000008: { |
| /* |
| * GuestPhysAddrSize (EAX[23:16]) is intended for software |
| * use. |
| * |
| * KVM's ABI is to report the effective MAXPHYADDR for the |
| * guest in PhysAddrSize (phys_as), and the maximum |
| * *addressable* GPA in GuestPhysAddrSize (g_phys_as). |
| * |
| * GuestPhysAddrSize is valid if and only if TDP is enabled, |
| * in which case the max GPA that can be addressed by KVM may |
| * be less than the max GPA that can be legally generated by |
| * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't |
| * support 5-level TDP. |
| */ |
| unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U); |
| unsigned int phys_as, g_phys_as; |
| |
| /* |
| * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as |
| * the guest operates in the same PA space as the host, i.e. |
| * reductions in MAXPHYADDR for memory encryption affect shadow |
| * paging, too. |
| * |
| * If TDP is enabled, use the raw bare metal MAXPHYADDR as |
| * reductions to the HPAs do not affect GPAs. The max |
| * addressable GPA is the same as the max effective GPA, except |
| * that it's capped at 48 bits if 5-level TDP isn't supported |
| * (hardware processes bits 51:48 only when walking the fifth |
| * level page table). |
| */ |
| if (!tdp_enabled) { |
| phys_as = boot_cpu_data.x86_phys_bits; |
| g_phys_as = 0; |
| } else { |
| phys_as = entry->eax & 0xff; |
| g_phys_as = phys_as; |
| if (kvm_mmu_get_max_tdp_level() < 5) |
| g_phys_as = min(g_phys_as, 48U); |
| } |
| |
| entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16); |
| entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8)); |
| entry->edx = 0; |
| cpuid_entry_override(entry, CPUID_8000_0008_EBX); |
| break; |
| } |
| case 0x8000000A: |
| if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| entry->eax = 1; /* SVM revision 1 */ |
| entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper |
| ASID emulation to nested SVM */ |
| entry->ecx = 0; /* Reserved */ |
| cpuid_entry_override(entry, CPUID_8000_000A_EDX); |
| break; |
| case 0x80000019: |
| entry->ecx = entry->edx = 0; |
| break; |
| case 0x8000001a: |
| entry->eax &= GENMASK(2, 0); |
| entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| case 0x8000001e: |
| /* Do not return host topology information. */ |
| entry->eax = entry->ebx = entry->ecx = 0; |
| entry->edx = 0; /* reserved */ |
| break; |
| case 0x8000001F: |
| if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| } else { |
| cpuid_entry_override(entry, CPUID_8000_001F_EAX); |
| /* Clear NumVMPL since KVM does not support VMPL. */ |
| entry->ebx &= ~GENMASK(31, 12); |
| /* |
| * Enumerate '0' for "PA bits reduction", the adjusted |
| * MAXPHYADDR is enumerated directly (see 0x80000008). |
| */ |
| entry->ebx &= ~GENMASK(11, 6); |
| } |
| break; |
| case 0x80000020: |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| case 0x80000021: |
| entry->ebx = entry->ecx = entry->edx = 0; |
| cpuid_entry_override(entry, CPUID_8000_0021_EAX); |
| break; |
| /* AMD Extended Performance Monitoring and Debug */ |
| case 0x80000022: { |
| union cpuid_0x80000022_ebx ebx = { }; |
| |
| entry->ecx = entry->edx = 0; |
| if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) { |
| entry->eax = entry->ebx = 0; |
| break; |
| } |
| |
| cpuid_entry_override(entry, CPUID_8000_0022_EAX); |
| |
| ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp; |
| entry->ebx = ebx.full; |
| break; |
| } |
| /*Add support for Centaur's CPUID instruction*/ |
| case 0xC0000000: |
| /*Just support up to 0xC0000004 now*/ |
| entry->eax = min(entry->eax, 0xC0000004); |
| break; |
| case 0xC0000001: |
| cpuid_entry_override(entry, CPUID_C000_0001_EDX); |
| break; |
| case 3: /* Processor serial number */ |
| case 5: /* MONITOR/MWAIT */ |
| case 0xC0000002: |
| case 0xC0000003: |
| case 0xC0000004: |
| default: |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| r = 0; |
| |
| out: |
| put_cpu(); |
| |
| return r; |
| } |
| |
| static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func, |
| unsigned int type) |
| { |
| if (type == KVM_GET_EMULATED_CPUID) |
| return __do_cpuid_func_emulated(array, func); |
| |
| return __do_cpuid_func(array, func); |
| } |
| |
| #define CENTAUR_CPUID_SIGNATURE 0xC0000000 |
| |
| static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func, |
| unsigned int type) |
| { |
| u32 limit; |
| int r; |
| |
| if (func == CENTAUR_CPUID_SIGNATURE && |
| boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR) |
| return 0; |
| |
| r = do_cpuid_func(array, func, type); |
| if (r) |
| return r; |
| |
| limit = array->entries[array->nent - 1].eax; |
| for (func = func + 1; func <= limit; ++func) { |
| r = do_cpuid_func(array, func, type); |
| if (r) |
| break; |
| } |
| |
| return r; |
| } |
| |
| static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, |
| __u32 num_entries, unsigned int ioctl_type) |
| { |
| int i; |
| __u32 pad[3]; |
| |
| if (ioctl_type != KVM_GET_EMULATED_CPUID) |
| return false; |
| |
| /* |
| * We want to make sure that ->padding is being passed clean from |
| * userspace in case we want to use it for something in the future. |
| * |
| * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we |
| * have to give ourselves satisfied only with the emulated side. /me |
| * sheds a tear. |
| */ |
| for (i = 0; i < num_entries; i++) { |
| if (copy_from_user(pad, entries[i].padding, sizeof(pad))) |
| return true; |
| |
| if (pad[0] || pad[1] || pad[2]) |
| return true; |
| } |
| return false; |
| } |
| |
| int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries, |
| unsigned int type) |
| { |
| static const u32 funcs[] = { |
| 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE, |
| }; |
| |
| struct kvm_cpuid_array array = { |
| .nent = 0, |
| }; |
| int r, i; |
| |
| if (cpuid->nent < 1) |
| return -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| cpuid->nent = KVM_MAX_CPUID_ENTRIES; |
| |
| if (sanity_check_entries(entries, cpuid->nent, type)) |
| return -EINVAL; |
| |
| array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL); |
| if (!array.entries) |
| return -ENOMEM; |
| |
| array.maxnent = cpuid->nent; |
| |
| for (i = 0; i < ARRAY_SIZE(funcs); i++) { |
| r = get_cpuid_func(&array, funcs[i], type); |
| if (r) |
| goto out_free; |
| } |
| cpuid->nent = array.nent; |
| |
| if (copy_to_user(entries, array.entries, |
| array.nent * sizeof(struct kvm_cpuid_entry2))) |
| r = -EFAULT; |
| |
| out_free: |
| kvfree(array.entries); |
| return r; |
| } |
| |
| /* |
| * Intel CPUID semantics treats any query for an out-of-range leaf as if the |
| * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics |
| * returns all zeroes for any undefined leaf, whether or not the leaf is in |
| * range. Centaur/VIA follows Intel semantics. |
| * |
| * A leaf is considered out-of-range if its function is higher than the maximum |
| * supported leaf of its associated class or if its associated class does not |
| * exist. |
| * |
| * There are three primary classes to be considered, with their respective |
| * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary |
| * class exists if a guest CPUID entry for its <base> leaf exists. For a given |
| * class, CPUID.<base>.EAX contains the max supported leaf for the class. |
| * |
| * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff |
| * - Hypervisor: 0x40000000 - 0x4fffffff |
| * - Extended: 0x80000000 - 0xbfffffff |
| * - Centaur: 0xc0000000 - 0xcfffffff |
| * |
| * The Hypervisor class is further subdivided into sub-classes that each act as |
| * their own independent class associated with a 0x100 byte range. E.g. if Qemu |
| * is advertising support for both HyperV and KVM, the resulting Hypervisor |
| * CPUID sub-classes are: |
| * |
| * - HyperV: 0x40000000 - 0x400000ff |
| * - KVM: 0x40000100 - 0x400001ff |
| */ |
| static struct kvm_cpuid_entry2 * |
| get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index) |
| { |
| struct kvm_cpuid_entry2 *basic, *class; |
| u32 function = *fn_ptr; |
| |
| basic = kvm_find_cpuid_entry(vcpu, 0); |
| if (!basic) |
| return NULL; |
| |
| if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) || |
| is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx)) |
| return NULL; |
| |
| if (function >= 0x40000000 && function <= 0x4fffffff) |
| class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00); |
| else if (function >= 0xc0000000) |
| class = kvm_find_cpuid_entry(vcpu, 0xc0000000); |
| else |
| class = kvm_find_cpuid_entry(vcpu, function & 0x80000000); |
| |
| if (class && function <= class->eax) |
| return NULL; |
| |
| /* |
| * Leaf specific adjustments are also applied when redirecting to the |
| * max basic entry, e.g. if the max basic leaf is 0xb but there is no |
| * entry for CPUID.0xb.index (see below), then the output value for EDX |
| * needs to be pulled from CPUID.0xb.1. |
| */ |
| *fn_ptr = basic->eax; |
| |
| /* |
| * The class does not exist or the requested function is out of range; |
| * the effective CPUID entry is the max basic leaf. Note, the index of |
| * the original requested leaf is observed! |
| */ |
| return kvm_find_cpuid_entry_index(vcpu, basic->eax, index); |
| } |
| |
| bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, |
| u32 *ecx, u32 *edx, bool exact_only) |
| { |
| u32 orig_function = *eax, function = *eax, index = *ecx; |
| struct kvm_cpuid_entry2 *entry; |
| bool exact, used_max_basic = false; |
| |
| if (vcpu->arch.cpuid_dynamic_bits_dirty) |
| kvm_update_cpuid_runtime(vcpu); |
| |
| entry = kvm_find_cpuid_entry_index(vcpu, function, index); |
| exact = !!entry; |
| |
| if (!entry && !exact_only) { |
| entry = get_out_of_range_cpuid_entry(vcpu, &function, index); |
| used_max_basic = !!entry; |
| } |
| |
| if (entry) { |
| *eax = entry->eax; |
| *ebx = entry->ebx; |
| *ecx = entry->ecx; |
| *edx = entry->edx; |
| if (function == 7 && index == 0) { |
| u64 data; |
| if ((*ebx & (feature_bit(RTM) | feature_bit(HLE))) && |
| !__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) && |
| (data & TSX_CTRL_CPUID_CLEAR)) |
| *ebx &= ~(feature_bit(RTM) | feature_bit(HLE)); |
| } else if (function == 0x80000007) { |
| if (kvm_hv_invtsc_suppressed(vcpu)) |
| *edx &= ~feature_bit(CONSTANT_TSC); |
| } else if (IS_ENABLED(CONFIG_KVM_XEN) && |
| kvm_xen_is_tsc_leaf(vcpu, function)) { |
| /* |
| * Update guest TSC frequency information if necessary. |
| * Ignore failures, there is no sane value that can be |
| * provided if KVM can't get the TSC frequency. |
| */ |
| if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) |
| kvm_guest_time_update(vcpu); |
| |
| if (index == 1) { |
| *ecx = vcpu->arch.pvclock_tsc_mul; |
| *edx = vcpu->arch.pvclock_tsc_shift; |
| } else if (index == 2) { |
| *eax = vcpu->arch.hw_tsc_khz; |
| } |
| } |
| } else { |
| *eax = *ebx = *ecx = *edx = 0; |
| /* |
| * When leaf 0BH or 1FH is defined, CL is pass-through |
| * and EDX is always the x2APIC ID, even for undefined |
| * subleaves. Index 1 will exist iff the leaf is |
| * implemented, so we pass through CL iff leaf 1 |
| * exists. EDX can be copied from any existing index. |
| */ |
| if (function == 0xb || function == 0x1f) { |
| entry = kvm_find_cpuid_entry_index(vcpu, function, 1); |
| if (entry) { |
| *ecx = index & 0xff; |
| *edx = entry->edx; |
| } |
| } |
| } |
| trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact, |
| used_max_basic); |
| return exact; |
| } |
| EXPORT_SYMBOL_GPL(kvm_cpuid); |
| |
| int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) |
| { |
| u32 eax, ebx, ecx, edx; |
| |
| if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) |
| return 1; |
| |
| eax = kvm_rax_read(vcpu); |
| ecx = kvm_rcx_read(vcpu); |
| kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false); |
| kvm_rax_write(vcpu, eax); |
| kvm_rbx_write(vcpu, ebx); |
| kvm_rcx_write(vcpu, ecx); |
| kvm_rdx_write(vcpu, edx); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |