|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * SMP initialisation and IPI support | 
|  | * Based on arch/arm/kernel/smp.c | 
|  | * | 
|  | * Copyright (C) 2012 ARM Ltd. | 
|  | */ | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/arm_sdei.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/hotplug.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/irqchip/arm-gic-v3.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/irq_work.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/kgdb.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/nmi.h> | 
|  |  | 
|  | #include <asm/alternative.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/cpu_ops.h> | 
|  | #include <asm/daifflags.h> | 
|  | #include <asm/kvm_mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/smp_plat.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/virt.h> | 
|  |  | 
|  | #include <trace/events/ipi.h> | 
|  |  | 
|  | DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_number); | 
|  |  | 
|  | /* | 
|  | * as from 2.5, kernels no longer have an init_tasks structure | 
|  | * so we need some other way of telling a new secondary core | 
|  | * where to place its SVC stack | 
|  | */ | 
|  | struct secondary_data secondary_data; | 
|  | /* Number of CPUs which aren't online, but looping in kernel text. */ | 
|  | static int cpus_stuck_in_kernel; | 
|  |  | 
|  | enum ipi_msg_type { | 
|  | IPI_RESCHEDULE, | 
|  | IPI_CALL_FUNC, | 
|  | IPI_CPU_STOP, | 
|  | IPI_CPU_CRASH_STOP, | 
|  | IPI_TIMER, | 
|  | IPI_IRQ_WORK, | 
|  | NR_IPI, | 
|  | /* | 
|  | * Any enum >= NR_IPI and < MAX_IPI is special and not tracable | 
|  | * with trace_ipi_* | 
|  | */ | 
|  | IPI_CPU_BACKTRACE = NR_IPI, | 
|  | IPI_KGDB_ROUNDUP, | 
|  | MAX_IPI | 
|  | }; | 
|  |  | 
|  | static int ipi_irq_base __ro_after_init; | 
|  | static int nr_ipi __ro_after_init = NR_IPI; | 
|  | static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init; | 
|  |  | 
|  | static void ipi_setup(int cpu); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void ipi_teardown(int cpu); | 
|  | static int op_cpu_kill(unsigned int cpu); | 
|  | #else | 
|  | static inline int op_cpu_kill(unsigned int cpu) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Boot a secondary CPU, and assign it the specified idle task. | 
|  | * This also gives us the initial stack to use for this CPU. | 
|  | */ | 
|  | static int boot_secondary(unsigned int cpu, struct task_struct *idle) | 
|  | { | 
|  | const struct cpu_operations *ops = get_cpu_ops(cpu); | 
|  |  | 
|  | if (ops->cpu_boot) | 
|  | return ops->cpu_boot(cpu); | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static DECLARE_COMPLETION(cpu_running); | 
|  |  | 
|  | int __cpu_up(unsigned int cpu, struct task_struct *idle) | 
|  | { | 
|  | int ret; | 
|  | long status; | 
|  |  | 
|  | /* | 
|  | * We need to tell the secondary core where to find its stack and the | 
|  | * page tables. | 
|  | */ | 
|  | secondary_data.task = idle; | 
|  | update_cpu_boot_status(CPU_MMU_OFF); | 
|  |  | 
|  | /* Now bring the CPU into our world */ | 
|  | ret = boot_secondary(cpu, idle); | 
|  | if (ret) { | 
|  | pr_err("CPU%u: failed to boot: %d\n", cpu, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CPU was successfully started, wait for it to come online or | 
|  | * time out. | 
|  | */ | 
|  | wait_for_completion_timeout(&cpu_running, | 
|  | msecs_to_jiffies(5000)); | 
|  | if (cpu_online(cpu)) | 
|  | return 0; | 
|  |  | 
|  | pr_crit("CPU%u: failed to come online\n", cpu); | 
|  | secondary_data.task = NULL; | 
|  | status = READ_ONCE(secondary_data.status); | 
|  | if (status == CPU_MMU_OFF) | 
|  | status = READ_ONCE(__early_cpu_boot_status); | 
|  |  | 
|  | switch (status & CPU_BOOT_STATUS_MASK) { | 
|  | default: | 
|  | pr_err("CPU%u: failed in unknown state : 0x%lx\n", | 
|  | cpu, status); | 
|  | cpus_stuck_in_kernel++; | 
|  | break; | 
|  | case CPU_KILL_ME: | 
|  | if (!op_cpu_kill(cpu)) { | 
|  | pr_crit("CPU%u: died during early boot\n", cpu); | 
|  | break; | 
|  | } | 
|  | pr_crit("CPU%u: may not have shut down cleanly\n", cpu); | 
|  | fallthrough; | 
|  | case CPU_STUCK_IN_KERNEL: | 
|  | pr_crit("CPU%u: is stuck in kernel\n", cpu); | 
|  | if (status & CPU_STUCK_REASON_52_BIT_VA) | 
|  | pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); | 
|  | if (status & CPU_STUCK_REASON_NO_GRAN) { | 
|  | pr_crit("CPU%u: does not support %luK granule\n", | 
|  | cpu, PAGE_SIZE / SZ_1K); | 
|  | } | 
|  | cpus_stuck_in_kernel++; | 
|  | break; | 
|  | case CPU_PANIC_KERNEL: | 
|  | panic("CPU%u detected unsupported configuration\n", cpu); | 
|  | } | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static void init_gic_priority_masking(void) | 
|  | { | 
|  | u32 cpuflags; | 
|  |  | 
|  | if (WARN_ON(!gic_enable_sre())) | 
|  | return; | 
|  |  | 
|  | cpuflags = read_sysreg(daif); | 
|  |  | 
|  | WARN_ON(!(cpuflags & PSR_I_BIT)); | 
|  | WARN_ON(!(cpuflags & PSR_F_BIT)); | 
|  |  | 
|  | gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the secondary CPU boot entry.  We're using this CPUs | 
|  | * idle thread stack, but a set of temporary page tables. | 
|  | */ | 
|  | asmlinkage notrace void secondary_start_kernel(void) | 
|  | { | 
|  | u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; | 
|  | struct mm_struct *mm = &init_mm; | 
|  | const struct cpu_operations *ops; | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * All kernel threads share the same mm context; grab a | 
|  | * reference and switch to it. | 
|  | */ | 
|  | mmgrab(mm); | 
|  | current->active_mm = mm; | 
|  |  | 
|  | /* | 
|  | * TTBR0 is only used for the identity mapping at this stage. Make it | 
|  | * point to zero page to avoid speculatively fetching new entries. | 
|  | */ | 
|  | cpu_uninstall_idmap(); | 
|  |  | 
|  | if (system_uses_irq_prio_masking()) | 
|  | init_gic_priority_masking(); | 
|  |  | 
|  | rcutree_report_cpu_starting(cpu); | 
|  | trace_hardirqs_off(); | 
|  |  | 
|  | /* | 
|  | * If the system has established the capabilities, make sure | 
|  | * this CPU ticks all of those. If it doesn't, the CPU will | 
|  | * fail to come online. | 
|  | */ | 
|  | check_local_cpu_capabilities(); | 
|  |  | 
|  | ops = get_cpu_ops(cpu); | 
|  | if (ops->cpu_postboot) | 
|  | ops->cpu_postboot(); | 
|  |  | 
|  | /* | 
|  | * Log the CPU info before it is marked online and might get read. | 
|  | */ | 
|  | cpuinfo_store_cpu(); | 
|  | store_cpu_topology(cpu); | 
|  |  | 
|  | /* | 
|  | * Enable GIC and timers. | 
|  | */ | 
|  | notify_cpu_starting(cpu); | 
|  |  | 
|  | ipi_setup(cpu); | 
|  |  | 
|  | numa_add_cpu(cpu); | 
|  |  | 
|  | /* | 
|  | * OK, now it's safe to let the boot CPU continue.  Wait for | 
|  | * the CPU migration code to notice that the CPU is online | 
|  | * before we continue. | 
|  | */ | 
|  | pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", | 
|  | cpu, (unsigned long)mpidr, | 
|  | read_cpuid_id()); | 
|  | update_cpu_boot_status(CPU_BOOT_SUCCESS); | 
|  | set_cpu_online(cpu, true); | 
|  | complete(&cpu_running); | 
|  |  | 
|  | local_daif_restore(DAIF_PROCCTX); | 
|  |  | 
|  | /* | 
|  | * OK, it's off to the idle thread for us | 
|  | */ | 
|  | cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static int op_cpu_disable(unsigned int cpu) | 
|  | { | 
|  | const struct cpu_operations *ops = get_cpu_ops(cpu); | 
|  |  | 
|  | /* | 
|  | * If we don't have a cpu_die method, abort before we reach the point | 
|  | * of no return. CPU0 may not have an cpu_ops, so test for it. | 
|  | */ | 
|  | if (!ops || !ops->cpu_die) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* | 
|  | * We may need to abort a hot unplug for some other mechanism-specific | 
|  | * reason. | 
|  | */ | 
|  | if (ops->cpu_disable) | 
|  | return ops->cpu_disable(cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __cpu_disable runs on the processor to be shutdown. | 
|  | */ | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | int ret; | 
|  |  | 
|  | ret = op_cpu_disable(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | remove_cpu_topology(cpu); | 
|  | numa_remove_cpu(cpu); | 
|  |  | 
|  | /* | 
|  | * Take this CPU offline.  Once we clear this, we can't return, | 
|  | * and we must not schedule until we're ready to give up the cpu. | 
|  | */ | 
|  | set_cpu_online(cpu, false); | 
|  | ipi_teardown(cpu); | 
|  |  | 
|  | /* | 
|  | * OK - migrate IRQs away from this CPU | 
|  | */ | 
|  | irq_migrate_all_off_this_cpu(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int op_cpu_kill(unsigned int cpu) | 
|  | { | 
|  | const struct cpu_operations *ops = get_cpu_ops(cpu); | 
|  |  | 
|  | /* | 
|  | * If we have no means of synchronising with the dying CPU, then assume | 
|  | * that it is really dead. We can only wait for an arbitrary length of | 
|  | * time and hope that it's dead, so let's skip the wait and just hope. | 
|  | */ | 
|  | if (!ops->cpu_kill) | 
|  | return 0; | 
|  |  | 
|  | return ops->cpu_kill(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called on the thread which is asking for a CPU to be shutdown after the | 
|  | * shutdown completed. | 
|  | */ | 
|  | void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | pr_debug("CPU%u: shutdown\n", cpu); | 
|  |  | 
|  | /* | 
|  | * Now that the dying CPU is beyond the point of no return w.r.t. | 
|  | * in-kernel synchronisation, try to get the firwmare to help us to | 
|  | * verify that it has really left the kernel before we consider | 
|  | * clobbering anything it might still be using. | 
|  | */ | 
|  | err = op_cpu_kill(cpu); | 
|  | if (err) | 
|  | pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from the idle thread for the CPU which has been shutdown. | 
|  | * | 
|  | */ | 
|  | void __noreturn cpu_die(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | const struct cpu_operations *ops = get_cpu_ops(cpu); | 
|  |  | 
|  | idle_task_exit(); | 
|  |  | 
|  | local_daif_mask(); | 
|  |  | 
|  | /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */ | 
|  | cpuhp_ap_report_dead(); | 
|  |  | 
|  | /* | 
|  | * Actually shutdown the CPU. This must never fail. The specific hotplug | 
|  | * mechanism must perform all required cache maintenance to ensure that | 
|  | * no dirty lines are lost in the process of shutting down the CPU. | 
|  | */ | 
|  | ops->cpu_die(cpu); | 
|  |  | 
|  | BUG(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __cpu_try_die(int cpu) | 
|  | { | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | const struct cpu_operations *ops = get_cpu_ops(cpu); | 
|  |  | 
|  | if (ops && ops->cpu_die) | 
|  | ops->cpu_die(cpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kill the calling secondary CPU, early in bringup before it is turned | 
|  | * online. | 
|  | */ | 
|  | void __noreturn cpu_die_early(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | pr_crit("CPU%d: will not boot\n", cpu); | 
|  |  | 
|  | /* Mark this CPU absent */ | 
|  | set_cpu_present(cpu, 0); | 
|  | rcutree_report_cpu_dead(); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { | 
|  | update_cpu_boot_status(CPU_KILL_ME); | 
|  | __cpu_try_die(cpu); | 
|  | } | 
|  |  | 
|  | update_cpu_boot_status(CPU_STUCK_IN_KERNEL); | 
|  |  | 
|  | cpu_park_loop(); | 
|  | } | 
|  |  | 
|  | static void __init hyp_mode_check(void) | 
|  | { | 
|  | if (is_hyp_mode_available()) | 
|  | pr_info("CPU: All CPU(s) started at EL2\n"); | 
|  | else if (is_hyp_mode_mismatched()) | 
|  | WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, | 
|  | "CPU: CPUs started in inconsistent modes"); | 
|  | else | 
|  | pr_info("CPU: All CPU(s) started at EL1\n"); | 
|  | if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { | 
|  | kvm_compute_layout(); | 
|  | kvm_apply_hyp_relocations(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init smp_cpus_done(unsigned int max_cpus) | 
|  | { | 
|  | pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); | 
|  | hyp_mode_check(); | 
|  | setup_system_features(); | 
|  | setup_user_features(); | 
|  | mark_linear_text_alias_ro(); | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_boot_cpu(void) | 
|  | { | 
|  | /* | 
|  | * The runtime per-cpu areas have been allocated by | 
|  | * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be | 
|  | * freed shortly, so we must move over to the runtime per-cpu area. | 
|  | */ | 
|  | set_my_cpu_offset(per_cpu_offset(smp_processor_id())); | 
|  |  | 
|  | cpuinfo_store_boot_cpu(); | 
|  | setup_boot_cpu_features(); | 
|  |  | 
|  | /* Conditionally switch to GIC PMR for interrupt masking */ | 
|  | if (system_uses_irq_prio_masking()) | 
|  | init_gic_priority_masking(); | 
|  |  | 
|  | kasan_init_hw_tags(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Duplicate MPIDRs are a recipe for disaster. Scan all initialized | 
|  | * entries and check for duplicates. If any is found just ignore the | 
|  | * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid | 
|  | * matching valid MPIDR values. | 
|  | */ | 
|  | static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 1; (i < cpu) && (i < NR_CPUS); i++) | 
|  | if (cpu_logical_map(i) == hwid) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize cpu operations for a logical cpu and | 
|  | * set it in the possible mask on success | 
|  | */ | 
|  | static int __init smp_cpu_setup(int cpu) | 
|  | { | 
|  | const struct cpu_operations *ops; | 
|  |  | 
|  | if (init_cpu_ops(cpu)) | 
|  | return -ENODEV; | 
|  |  | 
|  | ops = get_cpu_ops(cpu); | 
|  | if (ops->cpu_init(cpu)) | 
|  | return -ENODEV; | 
|  |  | 
|  | set_cpu_possible(cpu, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool bootcpu_valid __initdata; | 
|  | static unsigned int cpu_count = 1; | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; | 
|  |  | 
|  | struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) | 
|  | { | 
|  | return &cpu_madt_gicc[cpu]; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); | 
|  |  | 
|  | /* | 
|  | * acpi_map_gic_cpu_interface - parse processor MADT entry | 
|  | * | 
|  | * Carry out sanity checks on MADT processor entry and initialize | 
|  | * cpu_logical_map on success | 
|  | */ | 
|  | static void __init | 
|  | acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) | 
|  | { | 
|  | u64 hwid = processor->arm_mpidr; | 
|  |  | 
|  | if (!acpi_gicc_is_usable(processor)) { | 
|  | pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { | 
|  | pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_mpidr_duplicate(cpu_count, hwid)) { | 
|  | pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check if GICC structure of boot CPU is available in the MADT */ | 
|  | if (cpu_logical_map(0) == hwid) { | 
|  | if (bootcpu_valid) { | 
|  | pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", | 
|  | hwid); | 
|  | return; | 
|  | } | 
|  | bootcpu_valid = true; | 
|  | cpu_madt_gicc[0] = *processor; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cpu_count >= NR_CPUS) | 
|  | return; | 
|  |  | 
|  | /* map the logical cpu id to cpu MPIDR */ | 
|  | set_cpu_logical_map(cpu_count, hwid); | 
|  |  | 
|  | cpu_madt_gicc[cpu_count] = *processor; | 
|  |  | 
|  | /* | 
|  | * Set-up the ACPI parking protocol cpu entries | 
|  | * while initializing the cpu_logical_map to | 
|  | * avoid parsing MADT entries multiple times for | 
|  | * nothing (ie a valid cpu_logical_map entry should | 
|  | * contain a valid parking protocol data set to | 
|  | * initialize the cpu if the parking protocol is | 
|  | * the only available enable method). | 
|  | */ | 
|  | acpi_set_mailbox_entry(cpu_count, processor); | 
|  |  | 
|  | cpu_count++; | 
|  | } | 
|  |  | 
|  | static int __init | 
|  | acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, | 
|  | const unsigned long end) | 
|  | { | 
|  | struct acpi_madt_generic_interrupt *processor; | 
|  |  | 
|  | processor = (struct acpi_madt_generic_interrupt *)header; | 
|  | if (BAD_MADT_GICC_ENTRY(processor, end)) | 
|  | return -EINVAL; | 
|  |  | 
|  | acpi_table_print_madt_entry(&header->common); | 
|  |  | 
|  | acpi_map_gic_cpu_interface(processor); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init acpi_parse_and_init_cpus(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * do a walk of MADT to determine how many CPUs | 
|  | * we have including disabled CPUs, and get information | 
|  | * we need for SMP init. | 
|  | */ | 
|  | acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, | 
|  | acpi_parse_gic_cpu_interface, 0); | 
|  |  | 
|  | /* | 
|  | * In ACPI, SMP and CPU NUMA information is provided in separate | 
|  | * static tables, namely the MADT and the SRAT. | 
|  | * | 
|  | * Thus, it is simpler to first create the cpu logical map through | 
|  | * an MADT walk and then map the logical cpus to their node ids | 
|  | * as separate steps. | 
|  | */ | 
|  | acpi_map_cpus_to_nodes(); | 
|  |  | 
|  | for (i = 0; i < nr_cpu_ids; i++) | 
|  | early_map_cpu_to_node(i, acpi_numa_get_nid(i)); | 
|  | } | 
|  | #else | 
|  | #define acpi_parse_and_init_cpus(...)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Enumerate the possible CPU set from the device tree and build the | 
|  | * cpu logical map array containing MPIDR values related to logical | 
|  | * cpus. Assumes that cpu_logical_map(0) has already been initialized. | 
|  | */ | 
|  | static void __init of_parse_and_init_cpus(void) | 
|  | { | 
|  | struct device_node *dn; | 
|  |  | 
|  | for_each_of_cpu_node(dn) { | 
|  | u64 hwid = of_get_cpu_hwid(dn, 0); | 
|  |  | 
|  | if (hwid & ~MPIDR_HWID_BITMASK) | 
|  | goto next; | 
|  |  | 
|  | if (is_mpidr_duplicate(cpu_count, hwid)) { | 
|  | pr_err("%pOF: duplicate cpu reg properties in the DT\n", | 
|  | dn); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The numbering scheme requires that the boot CPU | 
|  | * must be assigned logical id 0. Record it so that | 
|  | * the logical map built from DT is validated and can | 
|  | * be used. | 
|  | */ | 
|  | if (hwid == cpu_logical_map(0)) { | 
|  | if (bootcpu_valid) { | 
|  | pr_err("%pOF: duplicate boot cpu reg property in DT\n", | 
|  | dn); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | bootcpu_valid = true; | 
|  | early_map_cpu_to_node(0, of_node_to_nid(dn)); | 
|  |  | 
|  | /* | 
|  | * cpu_logical_map has already been | 
|  | * initialized and the boot cpu doesn't need | 
|  | * the enable-method so continue without | 
|  | * incrementing cpu. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (cpu_count >= NR_CPUS) | 
|  | goto next; | 
|  |  | 
|  | pr_debug("cpu logical map 0x%llx\n", hwid); | 
|  | set_cpu_logical_map(cpu_count, hwid); | 
|  |  | 
|  | early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); | 
|  | next: | 
|  | cpu_count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enumerate the possible CPU set from the device tree or ACPI and build the | 
|  | * cpu logical map array containing MPIDR values related to logical | 
|  | * cpus. Assumes that cpu_logical_map(0) has already been initialized. | 
|  | */ | 
|  | void __init smp_init_cpus(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (acpi_disabled) | 
|  | of_parse_and_init_cpus(); | 
|  | else | 
|  | acpi_parse_and_init_cpus(); | 
|  |  | 
|  | if (cpu_count > nr_cpu_ids) | 
|  | pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", | 
|  | cpu_count, nr_cpu_ids); | 
|  |  | 
|  | if (!bootcpu_valid) { | 
|  | pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to set the cpu_logical_map entries before enabling | 
|  | * the cpus so that cpu processor description entries (DT cpu nodes | 
|  | * and ACPI MADT entries) can be retrieved by matching the cpu hwid | 
|  | * with entries in cpu_logical_map while initializing the cpus. | 
|  | * If the cpu set-up fails, invalidate the cpu_logical_map entry. | 
|  | */ | 
|  | for (i = 1; i < nr_cpu_ids; i++) { | 
|  | if (cpu_logical_map(i) != INVALID_HWID) { | 
|  | if (smp_cpu_setup(i)) | 
|  | set_cpu_logical_map(i, INVALID_HWID); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | const struct cpu_operations *ops; | 
|  | int err; | 
|  | unsigned int cpu; | 
|  | unsigned int this_cpu; | 
|  |  | 
|  | init_cpu_topology(); | 
|  |  | 
|  | this_cpu = smp_processor_id(); | 
|  | store_cpu_topology(this_cpu); | 
|  | numa_store_cpu_info(this_cpu); | 
|  | numa_add_cpu(this_cpu); | 
|  |  | 
|  | /* | 
|  | * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set | 
|  | * secondary CPUs present. | 
|  | */ | 
|  | if (max_cpus == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Initialise the present map (which describes the set of CPUs | 
|  | * actually populated at the present time) and release the | 
|  | * secondaries from the bootloader. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  |  | 
|  | per_cpu(cpu_number, cpu) = cpu; | 
|  |  | 
|  | if (cpu == smp_processor_id()) | 
|  | continue; | 
|  |  | 
|  | ops = get_cpu_ops(cpu); | 
|  | if (!ops) | 
|  | continue; | 
|  |  | 
|  | err = ops->cpu_prepare(cpu); | 
|  | if (err) | 
|  | continue; | 
|  |  | 
|  | set_cpu_present(cpu, true); | 
|  | numa_store_cpu_info(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *ipi_types[NR_IPI] __tracepoint_string = { | 
|  | [IPI_RESCHEDULE]	= "Rescheduling interrupts", | 
|  | [IPI_CALL_FUNC]		= "Function call interrupts", | 
|  | [IPI_CPU_STOP]		= "CPU stop interrupts", | 
|  | [IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts", | 
|  | [IPI_TIMER]		= "Timer broadcast interrupts", | 
|  | [IPI_IRQ_WORK]		= "IRQ work interrupts", | 
|  | }; | 
|  |  | 
|  | static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); | 
|  |  | 
|  | unsigned long irq_err_count; | 
|  |  | 
|  | int arch_show_interrupts(struct seq_file *p, int prec) | 
|  | { | 
|  | unsigned int cpu, i; | 
|  |  | 
|  | for (i = 0; i < NR_IPI; i++) { | 
|  | seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, | 
|  | prec >= 4 ? " " : ""); | 
|  | for_each_online_cpu(cpu) | 
|  | seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); | 
|  | seq_printf(p, "      %s\n", ipi_types[i]); | 
|  | } | 
|  |  | 
|  | seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void arch_send_call_function_ipi_mask(const struct cpumask *mask) | 
|  | { | 
|  | smp_cross_call(mask, IPI_CALL_FUNC); | 
|  | } | 
|  |  | 
|  | void arch_send_call_function_single_ipi(int cpu) | 
|  | { | 
|  | smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IRQ_WORK | 
|  | void arch_irq_work_raise(void) | 
|  | { | 
|  | smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void __noreturn local_cpu_stop(void) | 
|  | { | 
|  | set_cpu_online(smp_processor_id(), false); | 
|  |  | 
|  | local_daif_mask(); | 
|  | sdei_mask_local_cpu(); | 
|  | cpu_park_loop(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to implement panic_smp_self_stop() for parallel panic() calls, so | 
|  | * that cpu_online_mask gets correctly updated and smp_send_stop() can skip | 
|  | * CPUs that have already stopped themselves. | 
|  | */ | 
|  | void __noreturn panic_smp_self_stop(void) | 
|  | { | 
|  | local_cpu_stop(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_CORE | 
|  | static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); | 
|  | #endif | 
|  |  | 
|  | static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) | 
|  | { | 
|  | #ifdef CONFIG_KEXEC_CORE | 
|  | crash_save_cpu(regs, cpu); | 
|  |  | 
|  | atomic_dec(&waiting_for_crash_ipi); | 
|  |  | 
|  | local_irq_disable(); | 
|  | sdei_mask_local_cpu(); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) | 
|  | __cpu_try_die(cpu); | 
|  |  | 
|  | /* just in case */ | 
|  | cpu_park_loop(); | 
|  | #else | 
|  | BUG(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void arm64_backtrace_ipi(cpumask_t *mask) | 
|  | { | 
|  | __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); | 
|  | } | 
|  |  | 
|  | void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu) | 
|  | { | 
|  | /* | 
|  | * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name, | 
|  | * nothing about it truly needs to be implemented using an NMI, it's | 
|  | * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi() | 
|  | * returned false our backtrace attempt will just use a regular IPI. | 
|  | */ | 
|  | nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KGDB | 
|  | void kgdb_roundup_cpus(void) | 
|  | { | 
|  | int this_cpu = raw_smp_processor_id(); | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | /* No need to roundup ourselves */ | 
|  | if (cpu == this_cpu) | 
|  | continue; | 
|  |  | 
|  | __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Main handler for inter-processor interrupts | 
|  | */ | 
|  | static void do_handle_IPI(int ipinr) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | if ((unsigned)ipinr < NR_IPI) | 
|  | trace_ipi_entry(ipi_types[ipinr]); | 
|  |  | 
|  | switch (ipinr) { | 
|  | case IPI_RESCHEDULE: | 
|  | scheduler_ipi(); | 
|  | break; | 
|  |  | 
|  | case IPI_CALL_FUNC: | 
|  | generic_smp_call_function_interrupt(); | 
|  | break; | 
|  |  | 
|  | case IPI_CPU_STOP: | 
|  | local_cpu_stop(); | 
|  | break; | 
|  |  | 
|  | case IPI_CPU_CRASH_STOP: | 
|  | if (IS_ENABLED(CONFIG_KEXEC_CORE)) { | 
|  | ipi_cpu_crash_stop(cpu, get_irq_regs()); | 
|  |  | 
|  | unreachable(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | 
|  | case IPI_TIMER: | 
|  | tick_receive_broadcast(); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_IRQ_WORK | 
|  | case IPI_IRQ_WORK: | 
|  | irq_work_run(); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case IPI_CPU_BACKTRACE: | 
|  | /* | 
|  | * NOTE: in some cases this _won't_ be NMI context. See the | 
|  | * comment in arch_trigger_cpumask_backtrace(). | 
|  | */ | 
|  | nmi_cpu_backtrace(get_irq_regs()); | 
|  | break; | 
|  |  | 
|  | case IPI_KGDB_ROUNDUP: | 
|  | kgdb_nmicallback(cpu, get_irq_regs()); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((unsigned)ipinr < NR_IPI) | 
|  | trace_ipi_exit(ipi_types[ipinr]); | 
|  | } | 
|  |  | 
|  | static irqreturn_t ipi_handler(int irq, void *data) | 
|  | { | 
|  | do_handle_IPI(irq - ipi_irq_base); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) | 
|  | { | 
|  | trace_ipi_raise(target, ipi_types[ipinr]); | 
|  | __ipi_send_mask(ipi_desc[ipinr], target); | 
|  | } | 
|  |  | 
|  | static bool ipi_should_be_nmi(enum ipi_msg_type ipi) | 
|  | { | 
|  | if (!system_uses_irq_prio_masking()) | 
|  | return false; | 
|  |  | 
|  | switch (ipi) { | 
|  | case IPI_CPU_STOP: | 
|  | case IPI_CPU_CRASH_STOP: | 
|  | case IPI_CPU_BACKTRACE: | 
|  | case IPI_KGDB_ROUNDUP: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ipi_setup(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (WARN_ON_ONCE(!ipi_irq_base)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < nr_ipi; i++) { | 
|  | if (ipi_should_be_nmi(i)) { | 
|  | prepare_percpu_nmi(ipi_irq_base + i); | 
|  | enable_percpu_nmi(ipi_irq_base + i, 0); | 
|  | } else { | 
|  | enable_percpu_irq(ipi_irq_base + i, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void ipi_teardown(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (WARN_ON_ONCE(!ipi_irq_base)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < nr_ipi; i++) { | 
|  | if (ipi_should_be_nmi(i)) { | 
|  | disable_percpu_nmi(ipi_irq_base + i); | 
|  | teardown_percpu_nmi(ipi_irq_base + i); | 
|  | } else { | 
|  | disable_percpu_irq(ipi_irq_base + i); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init set_smp_ipi_range(int ipi_base, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | WARN_ON(n < MAX_IPI); | 
|  | nr_ipi = min(n, MAX_IPI); | 
|  |  | 
|  | for (i = 0; i < nr_ipi; i++) { | 
|  | int err; | 
|  |  | 
|  | if (ipi_should_be_nmi(i)) { | 
|  | err = request_percpu_nmi(ipi_base + i, ipi_handler, | 
|  | "IPI", &cpu_number); | 
|  | WARN(err, "Could not request IPI %d as NMI, err=%d\n", | 
|  | i, err); | 
|  | } else { | 
|  | err = request_percpu_irq(ipi_base + i, ipi_handler, | 
|  | "IPI", &cpu_number); | 
|  | WARN(err, "Could not request IPI %d as IRQ, err=%d\n", | 
|  | i, err); | 
|  | } | 
|  |  | 
|  | ipi_desc[i] = irq_to_desc(ipi_base + i); | 
|  | irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); | 
|  | } | 
|  |  | 
|  | ipi_irq_base = ipi_base; | 
|  |  | 
|  | /* Setup the boot CPU immediately */ | 
|  | ipi_setup(smp_processor_id()); | 
|  | } | 
|  |  | 
|  | void arch_smp_send_reschedule(int cpu) | 
|  | { | 
|  | smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL | 
|  | void arch_send_wakeup_ipi(unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * We use a scheduler IPI to wake the CPU as this avoids the need for a | 
|  | * dedicated IPI and we can safely handle spurious scheduler IPIs. | 
|  | */ | 
|  | smp_send_reschedule(cpu); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | 
|  | void tick_broadcast(const struct cpumask *mask) | 
|  | { | 
|  | smp_cross_call(mask, IPI_TIMER); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The number of CPUs online, not counting this CPU (which may not be | 
|  | * fully online and so not counted in num_online_cpus()). | 
|  | */ | 
|  | static inline unsigned int num_other_online_cpus(void) | 
|  | { | 
|  | unsigned int this_cpu_online = cpu_online(smp_processor_id()); | 
|  |  | 
|  | return num_online_cpus() - this_cpu_online; | 
|  | } | 
|  |  | 
|  | void smp_send_stop(void) | 
|  | { | 
|  | unsigned long timeout; | 
|  |  | 
|  | if (num_other_online_cpus()) { | 
|  | cpumask_t mask; | 
|  |  | 
|  | cpumask_copy(&mask, cpu_online_mask); | 
|  | cpumask_clear_cpu(smp_processor_id(), &mask); | 
|  |  | 
|  | if (system_state <= SYSTEM_RUNNING) | 
|  | pr_crit("SMP: stopping secondary CPUs\n"); | 
|  | smp_cross_call(&mask, IPI_CPU_STOP); | 
|  | } | 
|  |  | 
|  | /* Wait up to one second for other CPUs to stop */ | 
|  | timeout = USEC_PER_SEC; | 
|  | while (num_other_online_cpus() && timeout--) | 
|  | udelay(1); | 
|  |  | 
|  | if (num_other_online_cpus()) | 
|  | pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", | 
|  | cpumask_pr_args(cpu_online_mask)); | 
|  |  | 
|  | sdei_mask_local_cpu(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_CORE | 
|  | void crash_smp_send_stop(void) | 
|  | { | 
|  | static int cpus_stopped; | 
|  | cpumask_t mask; | 
|  | unsigned long timeout; | 
|  |  | 
|  | /* | 
|  | * This function can be called twice in panic path, but obviously | 
|  | * we execute this only once. | 
|  | */ | 
|  | if (cpus_stopped) | 
|  | return; | 
|  |  | 
|  | cpus_stopped = 1; | 
|  |  | 
|  | /* | 
|  | * If this cpu is the only one alive at this point in time, online or | 
|  | * not, there are no stop messages to be sent around, so just back out. | 
|  | */ | 
|  | if (num_other_online_cpus() == 0) | 
|  | goto skip_ipi; | 
|  |  | 
|  | cpumask_copy(&mask, cpu_online_mask); | 
|  | cpumask_clear_cpu(smp_processor_id(), &mask); | 
|  |  | 
|  | atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); | 
|  |  | 
|  | pr_crit("SMP: stopping secondary CPUs\n"); | 
|  | smp_cross_call(&mask, IPI_CPU_CRASH_STOP); | 
|  |  | 
|  | /* Wait up to one second for other CPUs to stop */ | 
|  | timeout = USEC_PER_SEC; | 
|  | while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) | 
|  | udelay(1); | 
|  |  | 
|  | if (atomic_read(&waiting_for_crash_ipi) > 0) | 
|  | pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", | 
|  | cpumask_pr_args(&mask)); | 
|  |  | 
|  | skip_ipi: | 
|  | sdei_mask_local_cpu(); | 
|  | sdei_handler_abort(); | 
|  | } | 
|  |  | 
|  | bool smp_crash_stop_failed(void) | 
|  | { | 
|  | return (atomic_read(&waiting_for_crash_ipi) > 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool have_cpu_die(void) | 
|  | { | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | int any_cpu = raw_smp_processor_id(); | 
|  | const struct cpu_operations *ops = get_cpu_ops(any_cpu); | 
|  |  | 
|  | if (ops && ops->cpu_die) | 
|  | return true; | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool cpus_are_stuck_in_kernel(void) | 
|  | { | 
|  | bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); | 
|  |  | 
|  | return !!cpus_stuck_in_kernel || smp_spin_tables || | 
|  | is_protected_kvm_enabled(); | 
|  | } |