|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * cacheinfo support - processor cache information via sysfs | 
|  | * | 
|  | * Based on arch/x86/kernel/cpu/intel_cacheinfo.c | 
|  | * Author: Sudeep Holla <sudeep.holla@arm.com> | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/cacheinfo.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/sysfs.h> | 
|  |  | 
|  | /* pointer to per cpu cacheinfo */ | 
|  | static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); | 
|  | #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu)) | 
|  | #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves) | 
|  | #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list) | 
|  | #define per_cpu_cacheinfo_idx(cpu, idx)		\ | 
|  | (per_cpu_cacheinfo(cpu) + (idx)) | 
|  |  | 
|  | /* Set if no cache information is found in DT/ACPI. */ | 
|  | static bool use_arch_info; | 
|  |  | 
|  | struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) | 
|  | { | 
|  | return ci_cacheinfo(cpu); | 
|  | } | 
|  |  | 
|  | static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, | 
|  | struct cacheinfo *sib_leaf) | 
|  | { | 
|  | /* | 
|  | * For non DT/ACPI systems, assume unique level 1 caches, | 
|  | * system-wide shared caches for all other levels. | 
|  | */ | 
|  | if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) || | 
|  | use_arch_info) | 
|  | return (this_leaf->level != 1) && (sib_leaf->level != 1); | 
|  |  | 
|  | if ((sib_leaf->attributes & CACHE_ID) && | 
|  | (this_leaf->attributes & CACHE_ID)) | 
|  | return sib_leaf->id == this_leaf->id; | 
|  |  | 
|  | return sib_leaf->fw_token == this_leaf->fw_token; | 
|  | } | 
|  |  | 
|  | bool last_level_cache_is_valid(unsigned int cpu) | 
|  | { | 
|  | struct cacheinfo *llc; | 
|  |  | 
|  | if (!cache_leaves(cpu)) | 
|  | return false; | 
|  |  | 
|  | llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); | 
|  |  | 
|  | return (llc->attributes & CACHE_ID) || !!llc->fw_token; | 
|  |  | 
|  | } | 
|  |  | 
|  | bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) | 
|  | { | 
|  | struct cacheinfo *llc_x, *llc_y; | 
|  |  | 
|  | if (!last_level_cache_is_valid(cpu_x) || | 
|  | !last_level_cache_is_valid(cpu_y)) | 
|  | return false; | 
|  |  | 
|  | llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); | 
|  | llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); | 
|  |  | 
|  | return cache_leaves_are_shared(llc_x, llc_y); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  |  | 
|  | static bool of_check_cache_nodes(struct device_node *np); | 
|  |  | 
|  | /* OF properties to query for a given cache type */ | 
|  | struct cache_type_info { | 
|  | const char *size_prop; | 
|  | const char *line_size_props[2]; | 
|  | const char *nr_sets_prop; | 
|  | }; | 
|  |  | 
|  | static const struct cache_type_info cache_type_info[] = { | 
|  | { | 
|  | .size_prop       = "cache-size", | 
|  | .line_size_props = { "cache-line-size", | 
|  | "cache-block-size", }, | 
|  | .nr_sets_prop    = "cache-sets", | 
|  | }, { | 
|  | .size_prop       = "i-cache-size", | 
|  | .line_size_props = { "i-cache-line-size", | 
|  | "i-cache-block-size", }, | 
|  | .nr_sets_prop    = "i-cache-sets", | 
|  | }, { | 
|  | .size_prop       = "d-cache-size", | 
|  | .line_size_props = { "d-cache-line-size", | 
|  | "d-cache-block-size", }, | 
|  | .nr_sets_prop    = "d-cache-sets", | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static inline int get_cacheinfo_idx(enum cache_type type) | 
|  | { | 
|  | if (type == CACHE_TYPE_UNIFIED) | 
|  | return 0; | 
|  | return type; | 
|  | } | 
|  |  | 
|  | static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) | 
|  | { | 
|  | const char *propname; | 
|  | int ct_idx; | 
|  |  | 
|  | ct_idx = get_cacheinfo_idx(this_leaf->type); | 
|  | propname = cache_type_info[ct_idx].size_prop; | 
|  |  | 
|  | of_property_read_u32(np, propname, &this_leaf->size); | 
|  | } | 
|  |  | 
|  | /* not cache_line_size() because that's a macro in include/linux/cache.h */ | 
|  | static void cache_get_line_size(struct cacheinfo *this_leaf, | 
|  | struct device_node *np) | 
|  | { | 
|  | int i, lim, ct_idx; | 
|  |  | 
|  | ct_idx = get_cacheinfo_idx(this_leaf->type); | 
|  | lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); | 
|  |  | 
|  | for (i = 0; i < lim; i++) { | 
|  | int ret; | 
|  | u32 line_size; | 
|  | const char *propname; | 
|  |  | 
|  | propname = cache_type_info[ct_idx].line_size_props[i]; | 
|  | ret = of_property_read_u32(np, propname, &line_size); | 
|  | if (!ret) { | 
|  | this_leaf->coherency_line_size = line_size; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) | 
|  | { | 
|  | const char *propname; | 
|  | int ct_idx; | 
|  |  | 
|  | ct_idx = get_cacheinfo_idx(this_leaf->type); | 
|  | propname = cache_type_info[ct_idx].nr_sets_prop; | 
|  |  | 
|  | of_property_read_u32(np, propname, &this_leaf->number_of_sets); | 
|  | } | 
|  |  | 
|  | static void cache_associativity(struct cacheinfo *this_leaf) | 
|  | { | 
|  | unsigned int line_size = this_leaf->coherency_line_size; | 
|  | unsigned int nr_sets = this_leaf->number_of_sets; | 
|  | unsigned int size = this_leaf->size; | 
|  |  | 
|  | /* | 
|  | * If the cache is fully associative, there is no need to | 
|  | * check the other properties. | 
|  | */ | 
|  | if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) | 
|  | this_leaf->ways_of_associativity = (size / nr_sets) / line_size; | 
|  | } | 
|  |  | 
|  | static bool cache_node_is_unified(struct cacheinfo *this_leaf, | 
|  | struct device_node *np) | 
|  | { | 
|  | return of_property_read_bool(np, "cache-unified"); | 
|  | } | 
|  |  | 
|  | static void cache_of_set_props(struct cacheinfo *this_leaf, | 
|  | struct device_node *np) | 
|  | { | 
|  | /* | 
|  | * init_cache_level must setup the cache level correctly | 
|  | * overriding the architecturally specified levels, so | 
|  | * if type is NONE at this stage, it should be unified | 
|  | */ | 
|  | if (this_leaf->type == CACHE_TYPE_NOCACHE && | 
|  | cache_node_is_unified(this_leaf, np)) | 
|  | this_leaf->type = CACHE_TYPE_UNIFIED; | 
|  | cache_size(this_leaf, np); | 
|  | cache_get_line_size(this_leaf, np); | 
|  | cache_nr_sets(this_leaf, np); | 
|  | cache_associativity(this_leaf); | 
|  | } | 
|  |  | 
|  | static int cache_setup_of_node(unsigned int cpu) | 
|  | { | 
|  | struct device_node *np, *prev; | 
|  | struct cacheinfo *this_leaf; | 
|  | unsigned int index = 0; | 
|  |  | 
|  | np = of_cpu_device_node_get(cpu); | 
|  | if (!np) { | 
|  | pr_err("Failed to find cpu%d device node\n", cpu); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | if (!of_check_cache_nodes(np)) { | 
|  | of_node_put(np); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | prev = np; | 
|  |  | 
|  | while (index < cache_leaves(cpu)) { | 
|  | this_leaf = per_cpu_cacheinfo_idx(cpu, index); | 
|  | if (this_leaf->level != 1) { | 
|  | np = of_find_next_cache_node(np); | 
|  | of_node_put(prev); | 
|  | prev = np; | 
|  | if (!np) | 
|  | break; | 
|  | } | 
|  | cache_of_set_props(this_leaf, np); | 
|  | this_leaf->fw_token = np; | 
|  | index++; | 
|  | } | 
|  |  | 
|  | of_node_put(np); | 
|  |  | 
|  | if (index != cache_leaves(cpu)) /* not all OF nodes populated */ | 
|  | return -ENOENT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool of_check_cache_nodes(struct device_node *np) | 
|  | { | 
|  | struct device_node *next; | 
|  |  | 
|  | if (of_property_present(np, "cache-size")   || | 
|  | of_property_present(np, "i-cache-size") || | 
|  | of_property_present(np, "d-cache-size") || | 
|  | of_property_present(np, "cache-unified")) | 
|  | return true; | 
|  |  | 
|  | next = of_find_next_cache_node(np); | 
|  | if (next) { | 
|  | of_node_put(next); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int of_count_cache_leaves(struct device_node *np) | 
|  | { | 
|  | unsigned int leaves = 0; | 
|  |  | 
|  | if (of_property_read_bool(np, "cache-size")) | 
|  | ++leaves; | 
|  | if (of_property_read_bool(np, "i-cache-size")) | 
|  | ++leaves; | 
|  | if (of_property_read_bool(np, "d-cache-size")) | 
|  | ++leaves; | 
|  |  | 
|  | if (!leaves) { | 
|  | /* The '[i-|d-|]cache-size' property is required, but | 
|  | * if absent, fallback on the 'cache-unified' property. | 
|  | */ | 
|  | if (of_property_read_bool(np, "cache-unified")) | 
|  | return 1; | 
|  | else | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | return leaves; | 
|  | } | 
|  |  | 
|  | int init_of_cache_level(unsigned int cpu) | 
|  | { | 
|  | struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); | 
|  | struct device_node *np = of_cpu_device_node_get(cpu); | 
|  | struct device_node *prev = NULL; | 
|  | unsigned int levels = 0, leaves, level; | 
|  |  | 
|  | if (!of_check_cache_nodes(np)) { | 
|  | of_node_put(np); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | leaves = of_count_cache_leaves(np); | 
|  | if (leaves > 0) | 
|  | levels = 1; | 
|  |  | 
|  | prev = np; | 
|  | while ((np = of_find_next_cache_node(np))) { | 
|  | of_node_put(prev); | 
|  | prev = np; | 
|  | if (!of_device_is_compatible(np, "cache")) | 
|  | goto err_out; | 
|  | if (of_property_read_u32(np, "cache-level", &level)) | 
|  | goto err_out; | 
|  | if (level <= levels) | 
|  | goto err_out; | 
|  |  | 
|  | leaves += of_count_cache_leaves(np); | 
|  | levels = level; | 
|  | } | 
|  |  | 
|  | of_node_put(np); | 
|  | this_cpu_ci->num_levels = levels; | 
|  | this_cpu_ci->num_leaves = leaves; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | of_node_put(np); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline int cache_setup_of_node(unsigned int cpu) { return 0; } | 
|  | int init_of_cache_level(unsigned int cpu) { return 0; } | 
|  | #endif | 
|  |  | 
|  | int __weak cache_setup_acpi(unsigned int cpu) | 
|  | { | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | unsigned int coherency_max_size; | 
|  |  | 
|  | static int cache_setup_properties(unsigned int cpu) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (of_have_populated_dt()) | 
|  | ret = cache_setup_of_node(cpu); | 
|  | else if (!acpi_disabled) | 
|  | ret = cache_setup_acpi(cpu); | 
|  |  | 
|  | // Assume there is no cache information available in DT/ACPI from now. | 
|  | if (ret && use_arch_cache_info()) | 
|  | use_arch_info = true; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cache_shared_cpu_map_setup(unsigned int cpu) | 
|  | { | 
|  | struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); | 
|  | struct cacheinfo *this_leaf, *sib_leaf; | 
|  | unsigned int index, sib_index; | 
|  | int ret = 0; | 
|  |  | 
|  | if (this_cpu_ci->cpu_map_populated) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * skip setting up cache properties if LLC is valid, just need | 
|  | * to update the shared cpu_map if the cache attributes were | 
|  | * populated early before all the cpus are brought online | 
|  | */ | 
|  | if (!last_level_cache_is_valid(cpu) && !use_arch_info) { | 
|  | ret = cache_setup_properties(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (index = 0; index < cache_leaves(cpu); index++) { | 
|  | unsigned int i; | 
|  |  | 
|  | this_leaf = per_cpu_cacheinfo_idx(cpu, index); | 
|  |  | 
|  | cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); | 
|  | for_each_online_cpu(i) { | 
|  | struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); | 
|  |  | 
|  | if (i == cpu || !sib_cpu_ci->info_list) | 
|  | continue;/* skip if itself or no cacheinfo */ | 
|  | for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) { | 
|  | sib_leaf = per_cpu_cacheinfo_idx(i, sib_index); | 
|  |  | 
|  | /* | 
|  | * Comparing cache IDs only makes sense if the leaves | 
|  | * belong to the same cache level of same type. Skip | 
|  | * the check if level and type do not match. | 
|  | */ | 
|  | if (sib_leaf->level != this_leaf->level || | 
|  | sib_leaf->type != this_leaf->type) | 
|  | continue; | 
|  |  | 
|  | if (cache_leaves_are_shared(this_leaf, sib_leaf)) { | 
|  | cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); | 
|  | cpumask_set_cpu(i, &this_leaf->shared_cpu_map); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* record the maximum cache line size */ | 
|  | if (this_leaf->coherency_line_size > coherency_max_size) | 
|  | coherency_max_size = this_leaf->coherency_line_size; | 
|  | } | 
|  |  | 
|  | /* shared_cpu_map is now populated for the cpu */ | 
|  | this_cpu_ci->cpu_map_populated = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cache_shared_cpu_map_remove(unsigned int cpu) | 
|  | { | 
|  | struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); | 
|  | struct cacheinfo *this_leaf, *sib_leaf; | 
|  | unsigned int sibling, index, sib_index; | 
|  |  | 
|  | for (index = 0; index < cache_leaves(cpu); index++) { | 
|  | this_leaf = per_cpu_cacheinfo_idx(cpu, index); | 
|  | for_each_cpu(sibling, &this_leaf->shared_cpu_map) { | 
|  | struct cpu_cacheinfo *sib_cpu_ci = | 
|  | get_cpu_cacheinfo(sibling); | 
|  |  | 
|  | if (sibling == cpu || !sib_cpu_ci->info_list) | 
|  | continue;/* skip if itself or no cacheinfo */ | 
|  |  | 
|  | for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) { | 
|  | sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index); | 
|  |  | 
|  | /* | 
|  | * Comparing cache IDs only makes sense if the leaves | 
|  | * belong to the same cache level of same type. Skip | 
|  | * the check if level and type do not match. | 
|  | */ | 
|  | if (sib_leaf->level != this_leaf->level || | 
|  | sib_leaf->type != this_leaf->type) | 
|  | continue; | 
|  |  | 
|  | if (cache_leaves_are_shared(this_leaf, sib_leaf)) { | 
|  | cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); | 
|  | cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* cpu is no longer populated in the shared map */ | 
|  | this_cpu_ci->cpu_map_populated = false; | 
|  | } | 
|  |  | 
|  | static void free_cache_attributes(unsigned int cpu) | 
|  | { | 
|  | if (!per_cpu_cacheinfo(cpu)) | 
|  | return; | 
|  |  | 
|  | cache_shared_cpu_map_remove(cpu); | 
|  | } | 
|  |  | 
|  | int __weak early_cache_level(unsigned int cpu) | 
|  | { | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | int __weak init_cache_level(unsigned int cpu) | 
|  | { | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | int __weak populate_cache_leaves(unsigned int cpu) | 
|  | { | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | int allocate_cache_info(int cpu) | 
|  | { | 
|  | per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), | 
|  | sizeof(struct cacheinfo), GFP_ATOMIC); | 
|  | if (!per_cpu_cacheinfo(cpu)) { | 
|  | cache_leaves(cpu) = 0; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int fetch_cache_info(unsigned int cpu) | 
|  | { | 
|  | struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); | 
|  | unsigned int levels = 0, split_levels = 0; | 
|  | int ret; | 
|  |  | 
|  | if (acpi_disabled) { | 
|  | ret = init_of_cache_level(cpu); | 
|  | } else { | 
|  | ret = acpi_get_cache_info(cpu, &levels, &split_levels); | 
|  | if (!ret) { | 
|  | this_cpu_ci->num_levels = levels; | 
|  | /* | 
|  | * This assumes that: | 
|  | * - there cannot be any split caches (data/instruction) | 
|  | *   above a unified cache | 
|  | * - data/instruction caches come by pair | 
|  | */ | 
|  | this_cpu_ci->num_leaves = levels + split_levels; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret || !cache_leaves(cpu)) { | 
|  | ret = early_cache_level(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!cache_leaves(cpu)) | 
|  | return -ENOENT; | 
|  |  | 
|  | this_cpu_ci->early_ci_levels = true; | 
|  | } | 
|  |  | 
|  | return allocate_cache_info(cpu); | 
|  | } | 
|  |  | 
|  | static inline int init_level_allocate_ci(unsigned int cpu) | 
|  | { | 
|  | unsigned int early_leaves = cache_leaves(cpu); | 
|  |  | 
|  | /* Since early initialization/allocation of the cacheinfo is allowed | 
|  | * via fetch_cache_info() and this also gets called as CPU hotplug | 
|  | * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped | 
|  | * as it will happen only once (the cacheinfo memory is never freed). | 
|  | * Just populate the cacheinfo. However, if the cacheinfo has been | 
|  | * allocated early through the arch-specific early_cache_level() call, | 
|  | * there is a chance the info is wrong (this can happen on arm64). In | 
|  | * that case, call init_cache_level() anyway to give the arch-specific | 
|  | * code a chance to make things right. | 
|  | */ | 
|  | if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels) | 
|  | return 0; | 
|  |  | 
|  | if (init_cache_level(cpu) || !cache_leaves(cpu)) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * Now that we have properly initialized the cache level info, make | 
|  | * sure we don't try to do that again the next time we are called | 
|  | * (e.g. as CPU hotplug callbacks). | 
|  | */ | 
|  | ci_cacheinfo(cpu)->early_ci_levels = false; | 
|  |  | 
|  | if (cache_leaves(cpu) <= early_leaves) | 
|  | return 0; | 
|  |  | 
|  | kfree(per_cpu_cacheinfo(cpu)); | 
|  | return allocate_cache_info(cpu); | 
|  | } | 
|  |  | 
|  | int detect_cache_attributes(unsigned int cpu) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = init_level_allocate_ci(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If LLC is valid the cache leaves were already populated so just go to | 
|  | * update the cpu map. | 
|  | */ | 
|  | if (!last_level_cache_is_valid(cpu)) { | 
|  | /* | 
|  | * populate_cache_leaves() may completely setup the cache leaves and | 
|  | * shared_cpu_map or it may leave it partially setup. | 
|  | */ | 
|  | ret = populate_cache_leaves(cpu); | 
|  | if (ret) | 
|  | goto free_ci; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For systems using DT for cache hierarchy, fw_token | 
|  | * and shared_cpu_map will be set up here only if they are | 
|  | * not populated already | 
|  | */ | 
|  | ret = cache_shared_cpu_map_setup(cpu); | 
|  | if (ret) { | 
|  | pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); | 
|  | goto free_ci; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_ci: | 
|  | free_cache_attributes(cpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* pointer to cpuX/cache device */ | 
|  | static DEFINE_PER_CPU(struct device *, ci_cache_dev); | 
|  | #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu)) | 
|  |  | 
|  | static cpumask_t cache_dev_map; | 
|  |  | 
|  | /* pointer to array of devices for cpuX/cache/indexY */ | 
|  | static DEFINE_PER_CPU(struct device **, ci_index_dev); | 
|  | #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu)) | 
|  | #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx]) | 
|  |  | 
|  | #define show_one(file_name, object)				\ | 
|  | static ssize_t file_name##_show(struct device *dev,		\ | 
|  | struct device_attribute *attr, char *buf)	\ | 
|  | {								\ | 
|  | struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\ | 
|  | return sysfs_emit(buf, "%u\n", this_leaf->object);	\ | 
|  | } | 
|  |  | 
|  | show_one(id, id); | 
|  | show_one(level, level); | 
|  | show_one(coherency_line_size, coherency_line_size); | 
|  | show_one(number_of_sets, number_of_sets); | 
|  | show_one(physical_line_partition, physical_line_partition); | 
|  | show_one(ways_of_associativity, ways_of_associativity); | 
|  |  | 
|  | static ssize_t size_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct cacheinfo *this_leaf = dev_get_drvdata(dev); | 
|  |  | 
|  | return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); | 
|  | } | 
|  |  | 
|  | static ssize_t shared_cpu_map_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct cacheinfo *this_leaf = dev_get_drvdata(dev); | 
|  | const struct cpumask *mask = &this_leaf->shared_cpu_map; | 
|  |  | 
|  | return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); | 
|  | } | 
|  |  | 
|  | static ssize_t shared_cpu_list_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct cacheinfo *this_leaf = dev_get_drvdata(dev); | 
|  | const struct cpumask *mask = &this_leaf->shared_cpu_map; | 
|  |  | 
|  | return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); | 
|  | } | 
|  |  | 
|  | static ssize_t type_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct cacheinfo *this_leaf = dev_get_drvdata(dev); | 
|  | const char *output; | 
|  |  | 
|  | switch (this_leaf->type) { | 
|  | case CACHE_TYPE_DATA: | 
|  | output = "Data"; | 
|  | break; | 
|  | case CACHE_TYPE_INST: | 
|  | output = "Instruction"; | 
|  | break; | 
|  | case CACHE_TYPE_UNIFIED: | 
|  | output = "Unified"; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return sysfs_emit(buf, "%s\n", output); | 
|  | } | 
|  |  | 
|  | static ssize_t allocation_policy_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct cacheinfo *this_leaf = dev_get_drvdata(dev); | 
|  | unsigned int ci_attr = this_leaf->attributes; | 
|  | const char *output; | 
|  |  | 
|  | if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) | 
|  | output = "ReadWriteAllocate"; | 
|  | else if (ci_attr & CACHE_READ_ALLOCATE) | 
|  | output = "ReadAllocate"; | 
|  | else if (ci_attr & CACHE_WRITE_ALLOCATE) | 
|  | output = "WriteAllocate"; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | return sysfs_emit(buf, "%s\n", output); | 
|  | } | 
|  |  | 
|  | static ssize_t write_policy_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct cacheinfo *this_leaf = dev_get_drvdata(dev); | 
|  | unsigned int ci_attr = this_leaf->attributes; | 
|  | int n = 0; | 
|  |  | 
|  | if (ci_attr & CACHE_WRITE_THROUGH) | 
|  | n = sysfs_emit(buf, "WriteThrough\n"); | 
|  | else if (ci_attr & CACHE_WRITE_BACK) | 
|  | n = sysfs_emit(buf, "WriteBack\n"); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR_RO(id); | 
|  | static DEVICE_ATTR_RO(level); | 
|  | static DEVICE_ATTR_RO(type); | 
|  | static DEVICE_ATTR_RO(coherency_line_size); | 
|  | static DEVICE_ATTR_RO(ways_of_associativity); | 
|  | static DEVICE_ATTR_RO(number_of_sets); | 
|  | static DEVICE_ATTR_RO(size); | 
|  | static DEVICE_ATTR_RO(allocation_policy); | 
|  | static DEVICE_ATTR_RO(write_policy); | 
|  | static DEVICE_ATTR_RO(shared_cpu_map); | 
|  | static DEVICE_ATTR_RO(shared_cpu_list); | 
|  | static DEVICE_ATTR_RO(physical_line_partition); | 
|  |  | 
|  | static struct attribute *cache_default_attrs[] = { | 
|  | &dev_attr_id.attr, | 
|  | &dev_attr_type.attr, | 
|  | &dev_attr_level.attr, | 
|  | &dev_attr_shared_cpu_map.attr, | 
|  | &dev_attr_shared_cpu_list.attr, | 
|  | &dev_attr_coherency_line_size.attr, | 
|  | &dev_attr_ways_of_associativity.attr, | 
|  | &dev_attr_number_of_sets.attr, | 
|  | &dev_attr_size.attr, | 
|  | &dev_attr_allocation_policy.attr, | 
|  | &dev_attr_write_policy.attr, | 
|  | &dev_attr_physical_line_partition.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static umode_t | 
|  | cache_default_attrs_is_visible(struct kobject *kobj, | 
|  | struct attribute *attr, int unused) | 
|  | { | 
|  | struct device *dev = kobj_to_dev(kobj); | 
|  | struct cacheinfo *this_leaf = dev_get_drvdata(dev); | 
|  | const struct cpumask *mask = &this_leaf->shared_cpu_map; | 
|  | umode_t mode = attr->mode; | 
|  |  | 
|  | if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_type.attr) && this_leaf->type) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_level.attr) && this_leaf->level) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_coherency_line_size.attr) && | 
|  | this_leaf->coherency_line_size) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_ways_of_associativity.attr) && | 
|  | this_leaf->size) /* allow 0 = full associativity */ | 
|  | return mode; | 
|  | if ((attr == &dev_attr_number_of_sets.attr) && | 
|  | this_leaf->number_of_sets) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_size.attr) && this_leaf->size) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_write_policy.attr) && | 
|  | (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_allocation_policy.attr) && | 
|  | (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) | 
|  | return mode; | 
|  | if ((attr == &dev_attr_physical_line_partition.attr) && | 
|  | this_leaf->physical_line_partition) | 
|  | return mode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct attribute_group cache_default_group = { | 
|  | .attrs = cache_default_attrs, | 
|  | .is_visible = cache_default_attrs_is_visible, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *cache_default_groups[] = { | 
|  | &cache_default_group, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *cache_private_groups[] = { | 
|  | &cache_default_group, | 
|  | NULL, /* Place holder for private group */ | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | const struct attribute_group * | 
|  | __weak cache_get_priv_group(struct cacheinfo *this_leaf) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static const struct attribute_group ** | 
|  | cache_get_attribute_groups(struct cacheinfo *this_leaf) | 
|  | { | 
|  | const struct attribute_group *priv_group = | 
|  | cache_get_priv_group(this_leaf); | 
|  |  | 
|  | if (!priv_group) | 
|  | return cache_default_groups; | 
|  |  | 
|  | if (!cache_private_groups[1]) | 
|  | cache_private_groups[1] = priv_group; | 
|  |  | 
|  | return cache_private_groups; | 
|  | } | 
|  |  | 
|  | /* Add/Remove cache interface for CPU device */ | 
|  | static void cpu_cache_sysfs_exit(unsigned int cpu) | 
|  | { | 
|  | int i; | 
|  | struct device *ci_dev; | 
|  |  | 
|  | if (per_cpu_index_dev(cpu)) { | 
|  | for (i = 0; i < cache_leaves(cpu); i++) { | 
|  | ci_dev = per_cache_index_dev(cpu, i); | 
|  | if (!ci_dev) | 
|  | continue; | 
|  | device_unregister(ci_dev); | 
|  | } | 
|  | kfree(per_cpu_index_dev(cpu)); | 
|  | per_cpu_index_dev(cpu) = NULL; | 
|  | } | 
|  | device_unregister(per_cpu_cache_dev(cpu)); | 
|  | per_cpu_cache_dev(cpu) = NULL; | 
|  | } | 
|  |  | 
|  | static int cpu_cache_sysfs_init(unsigned int cpu) | 
|  | { | 
|  | struct device *dev = get_cpu_device(cpu); | 
|  |  | 
|  | if (per_cpu_cacheinfo(cpu) == NULL) | 
|  | return -ENOENT; | 
|  |  | 
|  | per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); | 
|  | if (IS_ERR(per_cpu_cache_dev(cpu))) | 
|  | return PTR_ERR(per_cpu_cache_dev(cpu)); | 
|  |  | 
|  | /* Allocate all required memory */ | 
|  | per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), | 
|  | sizeof(struct device *), GFP_KERNEL); | 
|  | if (unlikely(per_cpu_index_dev(cpu) == NULL)) | 
|  | goto err_out; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | cpu_cache_sysfs_exit(cpu); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int cache_add_dev(unsigned int cpu) | 
|  | { | 
|  | unsigned int i; | 
|  | int rc; | 
|  | struct device *ci_dev, *parent; | 
|  | struct cacheinfo *this_leaf; | 
|  | const struct attribute_group **cache_groups; | 
|  |  | 
|  | rc = cpu_cache_sysfs_init(cpu); | 
|  | if (unlikely(rc < 0)) | 
|  | return rc; | 
|  |  | 
|  | parent = per_cpu_cache_dev(cpu); | 
|  | for (i = 0; i < cache_leaves(cpu); i++) { | 
|  | this_leaf = per_cpu_cacheinfo_idx(cpu, i); | 
|  | if (this_leaf->disable_sysfs) | 
|  | continue; | 
|  | if (this_leaf->type == CACHE_TYPE_NOCACHE) | 
|  | break; | 
|  | cache_groups = cache_get_attribute_groups(this_leaf); | 
|  | ci_dev = cpu_device_create(parent, this_leaf, cache_groups, | 
|  | "index%1u", i); | 
|  | if (IS_ERR(ci_dev)) { | 
|  | rc = PTR_ERR(ci_dev); | 
|  | goto err; | 
|  | } | 
|  | per_cache_index_dev(cpu, i) = ci_dev; | 
|  | } | 
|  | cpumask_set_cpu(cpu, &cache_dev_map); | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | cpu_cache_sysfs_exit(cpu); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the size of the per-CPU data cache slice.  This can be | 
|  | * used to estimate the size of the data cache slice that can be used | 
|  | * by one CPU under ideal circumstances.  UNIFIED caches are counted | 
|  | * in addition to DATA caches.  So, please consider code cache usage | 
|  | * when use the result. | 
|  | * | 
|  | * Because the cache inclusive/non-inclusive information isn't | 
|  | * available, we just use the size of the per-CPU slice of LLC to make | 
|  | * the result more predictable across architectures. | 
|  | */ | 
|  | static void update_per_cpu_data_slice_size_cpu(unsigned int cpu) | 
|  | { | 
|  | struct cpu_cacheinfo *ci; | 
|  | struct cacheinfo *llc; | 
|  | unsigned int nr_shared; | 
|  |  | 
|  | if (!last_level_cache_is_valid(cpu)) | 
|  | return; | 
|  |  | 
|  | ci = ci_cacheinfo(cpu); | 
|  | llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); | 
|  |  | 
|  | if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) | 
|  | return; | 
|  |  | 
|  | nr_shared = cpumask_weight(&llc->shared_cpu_map); | 
|  | if (nr_shared) | 
|  | ci->per_cpu_data_slice_size = llc->size / nr_shared; | 
|  | } | 
|  |  | 
|  | static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu) | 
|  | { | 
|  | unsigned int icpu; | 
|  |  | 
|  | for_each_online_cpu(icpu) { | 
|  | if (!cpu_online && icpu == cpu) | 
|  | continue; | 
|  | update_per_cpu_data_slice_size_cpu(icpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cacheinfo_cpu_online(unsigned int cpu) | 
|  | { | 
|  | int rc = detect_cache_attributes(cpu); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  | rc = cache_add_dev(cpu); | 
|  | if (rc) | 
|  | goto err; | 
|  | update_per_cpu_data_slice_size(true, cpu); | 
|  | setup_pcp_cacheinfo(); | 
|  | return 0; | 
|  | err: | 
|  | free_cache_attributes(cpu); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int cacheinfo_cpu_pre_down(unsigned int cpu) | 
|  | { | 
|  | if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) | 
|  | cpu_cache_sysfs_exit(cpu); | 
|  |  | 
|  | free_cache_attributes(cpu); | 
|  | update_per_cpu_data_slice_size(false, cpu); | 
|  | setup_pcp_cacheinfo(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init cacheinfo_sysfs_init(void) | 
|  | { | 
|  | return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, | 
|  | "base/cacheinfo:online", | 
|  | cacheinfo_cpu_online, cacheinfo_cpu_pre_down); | 
|  | } | 
|  | device_initcall(cacheinfo_sysfs_init); |