|  | // SPDX-License-Identifier: MIT | 
|  | /* | 
|  | * Copyright © 2020 Intel Corporation | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string_helpers.h> | 
|  |  | 
|  | #include "i915_reg.h" | 
|  | #include "intel_atomic.h" | 
|  | #include "intel_crtc.h" | 
|  | #include "intel_cx0_phy.h" | 
|  | #include "intel_de.h" | 
|  | #include "intel_display.h" | 
|  | #include "intel_display_types.h" | 
|  | #include "intel_dpio_phy.h" | 
|  | #include "intel_dpll.h" | 
|  | #include "intel_lvds.h" | 
|  | #include "intel_lvds_regs.h" | 
|  | #include "intel_panel.h" | 
|  | #include "intel_pps.h" | 
|  | #include "intel_snps_phy.h" | 
|  | #include "vlv_sideband.h" | 
|  |  | 
|  | struct intel_dpll_funcs { | 
|  | int (*crtc_compute_clock)(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc); | 
|  | int (*crtc_get_shared_dpll)(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc); | 
|  | }; | 
|  |  | 
|  | struct intel_limit { | 
|  | struct { | 
|  | int min, max; | 
|  | } dot, vco, n, m, m1, m2, p, p1; | 
|  |  | 
|  | struct { | 
|  | int dot_limit; | 
|  | int p2_slow, p2_fast; | 
|  | } p2; | 
|  | }; | 
|  | static const struct intel_limit intel_limits_i8xx_dac = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 908000, .max = 1512000 }, | 
|  | .n = { .min = 2, .max = 16 }, | 
|  | .m = { .min = 96, .max = 140 }, | 
|  | .m1 = { .min = 18, .max = 26 }, | 
|  | .m2 = { .min = 6, .max = 16 }, | 
|  | .p = { .min = 4, .max = 128 }, | 
|  | .p1 = { .min = 2, .max = 33 }, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 4, .p2_fast = 2 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_i8xx_dvo = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 908000, .max = 1512000 }, | 
|  | .n = { .min = 2, .max = 16 }, | 
|  | .m = { .min = 96, .max = 140 }, | 
|  | .m1 = { .min = 18, .max = 26 }, | 
|  | .m2 = { .min = 6, .max = 16 }, | 
|  | .p = { .min = 4, .max = 128 }, | 
|  | .p1 = { .min = 2, .max = 33 }, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 4, .p2_fast = 4 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_i8xx_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 908000, .max = 1512000 }, | 
|  | .n = { .min = 2, .max = 16 }, | 
|  | .m = { .min = 96, .max = 140 }, | 
|  | .m1 = { .min = 18, .max = 26 }, | 
|  | .m2 = { .min = 6, .max = 16 }, | 
|  | .p = { .min = 4, .max = 128 }, | 
|  | .p1 = { .min = 1, .max = 6 }, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 14, .p2_fast = 7 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_i9xx_sdvo = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1400000, .max = 2800000 }, | 
|  | .n = { .min = 1, .max = 6 }, | 
|  | .m = { .min = 70, .max = 120 }, | 
|  | .m1 = { .min = 8, .max = 18 }, | 
|  | .m2 = { .min = 3, .max = 7 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 200000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_i9xx_lvds = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1400000, .max = 2800000 }, | 
|  | .n = { .min = 1, .max = 6 }, | 
|  | .m = { .min = 70, .max = 120 }, | 
|  | .m1 = { .min = 8, .max = 18 }, | 
|  | .m2 = { .min = 3, .max = 7 }, | 
|  | .p = { .min = 7, .max = 98 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 112000, | 
|  | .p2_slow = 14, .p2_fast = 7 }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static const struct intel_limit intel_limits_g4x_sdvo = { | 
|  | .dot = { .min = 25000, .max = 270000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000}, | 
|  | .n = { .min = 1, .max = 4 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 10, .max = 30 }, | 
|  | .p1 = { .min = 1, .max = 3}, | 
|  | .p2 = { .dot_limit = 270000, | 
|  | .p2_slow = 10, | 
|  | .p2_fast = 10 | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_g4x_hdmi = { | 
|  | .dot = { .min = 22000, .max = 400000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000}, | 
|  | .n = { .min = 1, .max = 4 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 16, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8}, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_g4x_single_channel_lvds = { | 
|  | .dot = { .min = 20000, .max = 115000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 0, | 
|  | .p2_slow = 14, .p2_fast = 14 | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { | 
|  | .dot = { .min = 80000, .max = 224000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 14, .max = 42 }, | 
|  | .p1 = { .min = 2, .max = 6 }, | 
|  | .p2 = { .dot_limit = 0, | 
|  | .p2_slow = 7, .p2_fast = 7 | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit pnv_limits_sdvo = { | 
|  | .dot = { .min = 20000, .max = 400000}, | 
|  | .vco = { .min = 1700000, .max = 3500000 }, | 
|  | /* Pineview's Ncounter is a ring counter */ | 
|  | .n = { .min = 3, .max = 6 }, | 
|  | .m = { .min = 2, .max = 256 }, | 
|  | /* Pineview only has one combined m divider, which we treat as m2. */ | 
|  | .m1 = { .min = 0, .max = 0 }, | 
|  | .m2 = { .min = 0, .max = 254 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 200000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit pnv_limits_lvds = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1700000, .max = 3500000 }, | 
|  | .n = { .min = 3, .max = 6 }, | 
|  | .m = { .min = 2, .max = 256 }, | 
|  | .m1 = { .min = 0, .max = 0 }, | 
|  | .m2 = { .min = 0, .max = 254 }, | 
|  | .p = { .min = 7, .max = 112 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 112000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | }; | 
|  |  | 
|  | /* Ironlake / Sandybridge | 
|  | * | 
|  | * We calculate clock using (register_value + 2) for N/M1/M2, so here | 
|  | * the range value for them is (actual_value - 2). | 
|  | */ | 
|  | static const struct intel_limit ilk_limits_dac = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 5 }, | 
|  | .m = { .min = 79, .max = 127 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit ilk_limits_single_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 118 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit ilk_limits_dual_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 127 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 14, .max = 56 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 7, .p2_fast = 7 }, | 
|  | }; | 
|  |  | 
|  | /* LVDS 100mhz refclk limits. */ | 
|  | static const struct intel_limit ilk_limits_single_lvds_100m = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 2 }, | 
|  | .m = { .min = 79, .max = 126 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit ilk_limits_dual_lvds_100m = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 126 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 14, .max = 42 }, | 
|  | .p1 = { .min = 2, .max = 6 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 7, .p2_fast = 7 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_vlv = { | 
|  | /* | 
|  | * These are based on the data rate limits (measured in fast clocks) | 
|  | * since those are the strictest limits we have. The fast | 
|  | * clock and actual rate limits are more relaxed, so checking | 
|  | * them would make no difference. | 
|  | */ | 
|  | .dot = { .min = 25000, .max = 270000 }, | 
|  | .vco = { .min = 4000000, .max = 6000000 }, | 
|  | .n = { .min = 1, .max = 7 }, | 
|  | .m1 = { .min = 2, .max = 3 }, | 
|  | .m2 = { .min = 11, .max = 156 }, | 
|  | .p1 = { .min = 2, .max = 3 }, | 
|  | .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_chv = { | 
|  | /* | 
|  | * These are based on the data rate limits (measured in fast clocks) | 
|  | * since those are the strictest limits we have.  The fast | 
|  | * clock and actual rate limits are more relaxed, so checking | 
|  | * them would make no difference. | 
|  | */ | 
|  | .dot = { .min = 25000, .max = 540000 }, | 
|  | .vco = { .min = 4800000, .max = 6480000 }, | 
|  | .n = { .min = 1, .max = 1 }, | 
|  | .m1 = { .min = 2, .max = 2 }, | 
|  | .m2 = { .min = 24 << 22, .max = 175 << 22 }, | 
|  | .p1 = { .min = 2, .max = 4 }, | 
|  | .p2 = {	.p2_slow = 1, .p2_fast = 14 }, | 
|  | }; | 
|  |  | 
|  | static const struct intel_limit intel_limits_bxt = { | 
|  | .dot = { .min = 25000, .max = 594000 }, | 
|  | .vco = { .min = 4800000, .max = 6700000 }, | 
|  | .n = { .min = 1, .max = 1 }, | 
|  | .m1 = { .min = 2, .max = 2 }, | 
|  | /* FIXME: find real m2 limits */ | 
|  | .m2 = { .min = 2 << 22, .max = 255 << 22 }, | 
|  | .p1 = { .min = 2, .max = 4 }, | 
|  | .p2 = { .p2_slow = 1, .p2_fast = 20 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Platform specific helpers to calculate the port PLL loopback- (clock.m), | 
|  | * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast | 
|  | * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. | 
|  | * The helpers' return value is the rate of the clock that is fed to the | 
|  | * display engine's pipe which can be the above fast dot clock rate or a | 
|  | * divided-down version of it. | 
|  | */ | 
|  | /* m1 is reserved as 0 in Pineview, n is a ring counter */ | 
|  | static int pnv_calc_dpll_params(int refclk, struct dpll *clock) | 
|  | { | 
|  | clock->m = clock->m2 + 2; | 
|  | clock->p = clock->p1 * clock->p2; | 
|  |  | 
|  | clock->vco = clock->n == 0 ? 0 : | 
|  | DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); | 
|  | clock->dot = clock->p == 0 ? 0 : | 
|  | DIV_ROUND_CLOSEST(clock->vco, clock->p); | 
|  |  | 
|  | return clock->dot; | 
|  | } | 
|  |  | 
|  | static u32 i9xx_dpll_compute_m(const struct dpll *dpll) | 
|  | { | 
|  | return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); | 
|  | } | 
|  |  | 
|  | int i9xx_calc_dpll_params(int refclk, struct dpll *clock) | 
|  | { | 
|  | clock->m = i9xx_dpll_compute_m(clock); | 
|  | clock->p = clock->p1 * clock->p2; | 
|  |  | 
|  | clock->vco = clock->n + 2 == 0 ? 0 : | 
|  | DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); | 
|  | clock->dot = clock->p == 0 ? 0 : | 
|  | DIV_ROUND_CLOSEST(clock->vco, clock->p); | 
|  |  | 
|  | return clock->dot; | 
|  | } | 
|  |  | 
|  | static int vlv_calc_dpll_params(int refclk, struct dpll *clock) | 
|  | { | 
|  | clock->m = clock->m1 * clock->m2; | 
|  | clock->p = clock->p1 * clock->p2 * 5; | 
|  |  | 
|  | clock->vco = clock->n == 0 ? 0 : | 
|  | DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); | 
|  | clock->dot = clock->p == 0 ? 0 : | 
|  | DIV_ROUND_CLOSEST(clock->vco, clock->p); | 
|  |  | 
|  | return clock->dot; | 
|  | } | 
|  |  | 
|  | int chv_calc_dpll_params(int refclk, struct dpll *clock) | 
|  | { | 
|  | clock->m = clock->m1 * clock->m2; | 
|  | clock->p = clock->p1 * clock->p2 * 5; | 
|  |  | 
|  | clock->vco = clock->n == 0 ? 0 : | 
|  | DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22); | 
|  | clock->dot = clock->p == 0 ? 0 : | 
|  | DIV_ROUND_CLOSEST(clock->vco, clock->p); | 
|  |  | 
|  | return clock->dot; | 
|  | } | 
|  |  | 
|  | static int i9xx_pll_refclk(struct drm_device *dev, | 
|  | const struct intel_crtc_state *pipe_config) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(dev); | 
|  | u32 dpll = pipe_config->dpll_hw_state.dpll; | 
|  |  | 
|  | if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) | 
|  | return dev_priv->display.vbt.lvds_ssc_freq; | 
|  | else if (HAS_PCH_SPLIT(dev_priv)) | 
|  | return 120000; | 
|  | else if (DISPLAY_VER(dev_priv) != 2) | 
|  | return 96000; | 
|  | else | 
|  | return 48000; | 
|  | } | 
|  |  | 
|  | /* Returns the clock of the currently programmed mode of the given pipe. */ | 
|  | void i9xx_crtc_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_state *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = to_i915(dev); | 
|  | u32 dpll = pipe_config->dpll_hw_state.dpll; | 
|  | u32 fp; | 
|  | struct dpll clock; | 
|  | int port_clock; | 
|  | int refclk = i9xx_pll_refclk(dev, pipe_config); | 
|  |  | 
|  | if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) | 
|  | fp = pipe_config->dpll_hw_state.fp0; | 
|  | else | 
|  | fp = pipe_config->dpll_hw_state.fp1; | 
|  |  | 
|  | clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; | 
|  | if (IS_PINEVIEW(dev_priv)) { | 
|  | clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; | 
|  | clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; | 
|  | } else { | 
|  | clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; | 
|  | clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; | 
|  | } | 
|  |  | 
|  | if (DISPLAY_VER(dev_priv) != 2) { | 
|  | if (IS_PINEVIEW(dev_priv)) | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); | 
|  | else | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT); | 
|  |  | 
|  | switch (dpll & DPLL_MODE_MASK) { | 
|  | case DPLLB_MODE_DAC_SERIAL: | 
|  | clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? | 
|  | 5 : 10; | 
|  | break; | 
|  | case DPLLB_MODE_LVDS: | 
|  | clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? | 
|  | 7 : 14; | 
|  | break; | 
|  | default: | 
|  | drm_dbg_kms(&dev_priv->drm, | 
|  | "Unknown DPLL mode %08x in programmed " | 
|  | "mode\n", (int)(dpll & DPLL_MODE_MASK)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (IS_PINEVIEW(dev_priv)) | 
|  | port_clock = pnv_calc_dpll_params(refclk, &clock); | 
|  | else | 
|  | port_clock = i9xx_calc_dpll_params(refclk, &clock); | 
|  | } else { | 
|  | enum pipe lvds_pipe; | 
|  |  | 
|  | if (IS_I85X(dev_priv) && | 
|  | intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) && | 
|  | lvds_pipe == crtc->pipe) { | 
|  | u32 lvds = intel_de_read(dev_priv, LVDS); | 
|  |  | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT); | 
|  |  | 
|  | if (lvds & LVDS_CLKB_POWER_UP) | 
|  | clock.p2 = 7; | 
|  | else | 
|  | clock.p2 = 14; | 
|  | } else { | 
|  | if (dpll & PLL_P1_DIVIDE_BY_TWO) | 
|  | clock.p1 = 2; | 
|  | else { | 
|  | clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; | 
|  | } | 
|  | if (dpll & PLL_P2_DIVIDE_BY_4) | 
|  | clock.p2 = 4; | 
|  | else | 
|  | clock.p2 = 2; | 
|  | } | 
|  |  | 
|  | port_clock = i9xx_calc_dpll_params(refclk, &clock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This value includes pixel_multiplier. We will use | 
|  | * port_clock to compute adjusted_mode.crtc_clock in the | 
|  | * encoder's get_config() function. | 
|  | */ | 
|  | pipe_config->port_clock = port_clock; | 
|  | } | 
|  |  | 
|  | void vlv_crtc_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_state *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = to_i915(dev); | 
|  | enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); | 
|  | struct dpll clock; | 
|  | u32 mdiv; | 
|  | int refclk = 100000; | 
|  |  | 
|  | /* In case of DSI, DPLL will not be used */ | 
|  | if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) | 
|  | return; | 
|  |  | 
|  | vlv_dpio_get(dev_priv); | 
|  | mdiv = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(crtc->pipe)); | 
|  | vlv_dpio_put(dev_priv); | 
|  |  | 
|  | clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; | 
|  | clock.m2 = mdiv & DPIO_M2DIV_MASK; | 
|  | clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; | 
|  | clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; | 
|  | clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; | 
|  |  | 
|  | pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); | 
|  | } | 
|  |  | 
|  | void chv_crtc_clock_get(struct intel_crtc *crtc, | 
|  | struct intel_crtc_state *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = to_i915(dev); | 
|  | enum dpio_channel port = vlv_pipe_to_channel(crtc->pipe); | 
|  | enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); | 
|  | struct dpll clock; | 
|  | u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; | 
|  | int refclk = 100000; | 
|  |  | 
|  | /* In case of DSI, DPLL will not be used */ | 
|  | if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) | 
|  | return; | 
|  |  | 
|  | vlv_dpio_get(dev_priv); | 
|  | cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(port)); | 
|  | pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(port)); | 
|  | pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(port)); | 
|  | pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(port)); | 
|  | pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(port)); | 
|  | vlv_dpio_put(dev_priv); | 
|  |  | 
|  | clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; | 
|  | clock.m2 = (pll_dw0 & 0xff) << 22; | 
|  | if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) | 
|  | clock.m2 |= pll_dw2 & 0x3fffff; | 
|  | clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; | 
|  | clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; | 
|  | clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; | 
|  |  | 
|  | pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns whether the given set of divisors are valid for a given refclk with | 
|  | * the given connectors. | 
|  | */ | 
|  | static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, | 
|  | const struct intel_limit *limit, | 
|  | const struct dpll *clock) | 
|  | { | 
|  | if (clock->n < limit->n.min || limit->n.max < clock->n) | 
|  | return false; | 
|  | if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) | 
|  | return false; | 
|  | if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) | 
|  | return false; | 
|  | if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) | 
|  | return false; | 
|  |  | 
|  | if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv)) | 
|  | if (clock->m1 <= clock->m2) | 
|  | return false; | 
|  |  | 
|  | if (!IS_LP(dev_priv)) { | 
|  | if (clock->p < limit->p.min || limit->p.max < clock->p) | 
|  | return false; | 
|  | if (clock->m < limit->m.min || limit->m.max < clock->m) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) | 
|  | return false; | 
|  | /* XXX: We may need to be checking "Dot clock" depending on the multiplier, | 
|  | * connector, etc., rather than just a single range. | 
|  | */ | 
|  | if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int | 
|  | i9xx_select_p2_div(const struct intel_limit *limit, | 
|  | const struct intel_crtc_state *crtc_state, | 
|  | int target) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { | 
|  | /* | 
|  | * For LVDS just rely on its current settings for dual-channel. | 
|  | * We haven't figured out how to reliably set up different | 
|  | * single/dual channel state, if we even can. | 
|  | */ | 
|  | if (intel_is_dual_link_lvds(dev_priv)) | 
|  | return limit->p2.p2_fast; | 
|  | else | 
|  | return limit->p2.p2_slow; | 
|  | } else { | 
|  | if (target < limit->p2.dot_limit) | 
|  | return limit->p2.p2_slow; | 
|  | else | 
|  | return limit->p2.p2_fast; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with the given | 
|  | * refclk, or FALSE. | 
|  | * | 
|  | * Target and reference clocks are specified in kHz. | 
|  | * | 
|  | * If match_clock is provided, then best_clock P divider must match the P | 
|  | * divider from @match_clock used for LVDS downclocking. | 
|  | */ | 
|  | static bool | 
|  | i9xx_find_best_dpll(const struct intel_limit *limit, | 
|  | struct intel_crtc_state *crtc_state, | 
|  | int target, int refclk, | 
|  | const struct dpll *match_clock, | 
|  | struct dpll *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc_state->uapi.crtc->dev; | 
|  | struct dpll clock; | 
|  | int err = target; | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); | 
|  |  | 
|  | for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; | 
|  | clock.m1++) { | 
|  | for (clock.m2 = limit->m2.min; | 
|  | clock.m2 <= limit->m2.max; clock.m2++) { | 
|  | if (clock.m2 >= clock.m1) | 
|  | break; | 
|  | for (clock.n = limit->n.min; | 
|  | clock.n <= limit->n.max; clock.n++) { | 
|  | for (clock.p1 = limit->p1.min; | 
|  | clock.p1 <= limit->p1.max; clock.p1++) { | 
|  | int this_err; | 
|  |  | 
|  | i9xx_calc_dpll_params(refclk, &clock); | 
|  | if (!intel_pll_is_valid(to_i915(dev), | 
|  | limit, | 
|  | &clock)) | 
|  | continue; | 
|  | if (match_clock && | 
|  | clock.p != match_clock->p) | 
|  | continue; | 
|  |  | 
|  | this_err = abs(clock.dot - target); | 
|  | if (this_err < err) { | 
|  | *best_clock = clock; | 
|  | err = this_err; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return (err != target); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with the given | 
|  | * refclk, or FALSE. | 
|  | * | 
|  | * Target and reference clocks are specified in kHz. | 
|  | * | 
|  | * If match_clock is provided, then best_clock P divider must match the P | 
|  | * divider from @match_clock used for LVDS downclocking. | 
|  | */ | 
|  | static bool | 
|  | pnv_find_best_dpll(const struct intel_limit *limit, | 
|  | struct intel_crtc_state *crtc_state, | 
|  | int target, int refclk, | 
|  | const struct dpll *match_clock, | 
|  | struct dpll *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc_state->uapi.crtc->dev; | 
|  | struct dpll clock; | 
|  | int err = target; | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); | 
|  |  | 
|  | for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; | 
|  | clock.m1++) { | 
|  | for (clock.m2 = limit->m2.min; | 
|  | clock.m2 <= limit->m2.max; clock.m2++) { | 
|  | for (clock.n = limit->n.min; | 
|  | clock.n <= limit->n.max; clock.n++) { | 
|  | for (clock.p1 = limit->p1.min; | 
|  | clock.p1 <= limit->p1.max; clock.p1++) { | 
|  | int this_err; | 
|  |  | 
|  | pnv_calc_dpll_params(refclk, &clock); | 
|  | if (!intel_pll_is_valid(to_i915(dev), | 
|  | limit, | 
|  | &clock)) | 
|  | continue; | 
|  | if (match_clock && | 
|  | clock.p != match_clock->p) | 
|  | continue; | 
|  |  | 
|  | this_err = abs(clock.dot - target); | 
|  | if (this_err < err) { | 
|  | *best_clock = clock; | 
|  | err = this_err; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return (err != target); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with the given | 
|  | * refclk, or FALSE. | 
|  | * | 
|  | * Target and reference clocks are specified in kHz. | 
|  | * | 
|  | * If match_clock is provided, then best_clock P divider must match the P | 
|  | * divider from @match_clock used for LVDS downclocking. | 
|  | */ | 
|  | static bool | 
|  | g4x_find_best_dpll(const struct intel_limit *limit, | 
|  | struct intel_crtc_state *crtc_state, | 
|  | int target, int refclk, | 
|  | const struct dpll *match_clock, | 
|  | struct dpll *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc_state->uapi.crtc->dev; | 
|  | struct dpll clock; | 
|  | int max_n; | 
|  | bool found = false; | 
|  | /* approximately equals target * 0.00585 */ | 
|  | int err_most = (target >> 8) + (target >> 9); | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); | 
|  |  | 
|  | max_n = limit->n.max; | 
|  | /* based on hardware requirement, prefer smaller n to precision */ | 
|  | for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { | 
|  | /* based on hardware requirement, prefere larger m1,m2 */ | 
|  | for (clock.m1 = limit->m1.max; | 
|  | clock.m1 >= limit->m1.min; clock.m1--) { | 
|  | for (clock.m2 = limit->m2.max; | 
|  | clock.m2 >= limit->m2.min; clock.m2--) { | 
|  | for (clock.p1 = limit->p1.max; | 
|  | clock.p1 >= limit->p1.min; clock.p1--) { | 
|  | int this_err; | 
|  |  | 
|  | i9xx_calc_dpll_params(refclk, &clock); | 
|  | if (!intel_pll_is_valid(to_i915(dev), | 
|  | limit, | 
|  | &clock)) | 
|  | continue; | 
|  |  | 
|  | this_err = abs(clock.dot - target); | 
|  | if (this_err < err_most) { | 
|  | *best_clock = clock; | 
|  | err_most = this_err; | 
|  | max_n = clock.n; | 
|  | found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the calculated PLL configuration is more optimal compared to the | 
|  | * best configuration and error found so far. Return the calculated error. | 
|  | */ | 
|  | static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, | 
|  | const struct dpll *calculated_clock, | 
|  | const struct dpll *best_clock, | 
|  | unsigned int best_error_ppm, | 
|  | unsigned int *error_ppm) | 
|  | { | 
|  | /* | 
|  | * For CHV ignore the error and consider only the P value. | 
|  | * Prefer a bigger P value based on HW requirements. | 
|  | */ | 
|  | if (IS_CHERRYVIEW(to_i915(dev))) { | 
|  | *error_ppm = 0; | 
|  |  | 
|  | return calculated_clock->p > best_clock->p; | 
|  | } | 
|  |  | 
|  | if (drm_WARN_ON_ONCE(dev, !target_freq)) | 
|  | return false; | 
|  |  | 
|  | *error_ppm = div_u64(1000000ULL * | 
|  | abs(target_freq - calculated_clock->dot), | 
|  | target_freq); | 
|  | /* | 
|  | * Prefer a better P value over a better (smaller) error if the error | 
|  | * is small. Ensure this preference for future configurations too by | 
|  | * setting the error to 0. | 
|  | */ | 
|  | if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { | 
|  | *error_ppm = 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return *error_ppm + 10 < best_error_ppm; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with the given | 
|  | * refclk, or FALSE. | 
|  | */ | 
|  | static bool | 
|  | vlv_find_best_dpll(const struct intel_limit *limit, | 
|  | struct intel_crtc_state *crtc_state, | 
|  | int target, int refclk, | 
|  | const struct dpll *match_clock, | 
|  | struct dpll *best_clock) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct dpll clock; | 
|  | unsigned int bestppm = 1000000; | 
|  | /* min update 19.2 MHz */ | 
|  | int max_n = min(limit->n.max, refclk / 19200); | 
|  | bool found = false; | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | /* based on hardware requirement, prefer smaller n to precision */ | 
|  | for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { | 
|  | for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { | 
|  | for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; | 
|  | clock.p2 -= clock.p2 > 10 ? 2 : 1) { | 
|  | clock.p = clock.p1 * clock.p2 * 5; | 
|  | /* based on hardware requirement, prefer bigger m1,m2 values */ | 
|  | for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { | 
|  | unsigned int ppm; | 
|  |  | 
|  | clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, | 
|  | refclk * clock.m1); | 
|  |  | 
|  | vlv_calc_dpll_params(refclk, &clock); | 
|  |  | 
|  | if (!intel_pll_is_valid(to_i915(dev), | 
|  | limit, | 
|  | &clock)) | 
|  | continue; | 
|  |  | 
|  | if (!vlv_PLL_is_optimal(dev, target, | 
|  | &clock, | 
|  | best_clock, | 
|  | bestppm, &ppm)) | 
|  | continue; | 
|  |  | 
|  | *best_clock = clock; | 
|  | bestppm = ppm; | 
|  | found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with the given | 
|  | * refclk, or FALSE. | 
|  | */ | 
|  | static bool | 
|  | chv_find_best_dpll(const struct intel_limit *limit, | 
|  | struct intel_crtc_state *crtc_state, | 
|  | int target, int refclk, | 
|  | const struct dpll *match_clock, | 
|  | struct dpll *best_clock) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | unsigned int best_error_ppm; | 
|  | struct dpll clock; | 
|  | u64 m2; | 
|  | int found = false; | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  | best_error_ppm = 1000000; | 
|  |  | 
|  | /* | 
|  | * Based on hardware doc, the n always set to 1, and m1 always | 
|  | * set to 2.  If requires to support 200Mhz refclk, we need to | 
|  | * revisit this because n may not 1 anymore. | 
|  | */ | 
|  | clock.n = 1; | 
|  | clock.m1 = 2; | 
|  |  | 
|  | for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { | 
|  | for (clock.p2 = limit->p2.p2_fast; | 
|  | clock.p2 >= limit->p2.p2_slow; | 
|  | clock.p2 -= clock.p2 > 10 ? 2 : 1) { | 
|  | unsigned int error_ppm; | 
|  |  | 
|  | clock.p = clock.p1 * clock.p2 * 5; | 
|  |  | 
|  | m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, | 
|  | refclk * clock.m1); | 
|  |  | 
|  | if (m2 > INT_MAX/clock.m1) | 
|  | continue; | 
|  |  | 
|  | clock.m2 = m2; | 
|  |  | 
|  | chv_calc_dpll_params(refclk, &clock); | 
|  |  | 
|  | if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) | 
|  | continue; | 
|  |  | 
|  | if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, | 
|  | best_error_ppm, &error_ppm)) | 
|  | continue; | 
|  |  | 
|  | *best_clock = clock; | 
|  | best_error_ppm = error_ppm; | 
|  | found = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, | 
|  | struct dpll *best_clock) | 
|  | { | 
|  | const struct intel_limit *limit = &intel_limits_bxt; | 
|  | int refclk = 100000; | 
|  |  | 
|  | return chv_find_best_dpll(limit, crtc_state, | 
|  | crtc_state->port_clock, refclk, | 
|  | NULL, best_clock); | 
|  | } | 
|  |  | 
|  | u32 i9xx_dpll_compute_fp(const struct dpll *dpll) | 
|  | { | 
|  | return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; | 
|  | } | 
|  |  | 
|  | static u32 pnv_dpll_compute_fp(const struct dpll *dpll) | 
|  | { | 
|  | return (1 << dpll->n) << 16 | dpll->m2; | 
|  | } | 
|  |  | 
|  | static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state, | 
|  | const struct dpll *clock, | 
|  | const struct dpll *reduced_clock) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | u32 fp, fp2; | 
|  |  | 
|  | if (IS_PINEVIEW(dev_priv)) { | 
|  | fp = pnv_dpll_compute_fp(clock); | 
|  | fp2 = pnv_dpll_compute_fp(reduced_clock); | 
|  | } else { | 
|  | fp = i9xx_dpll_compute_fp(clock); | 
|  | fp2 = i9xx_dpll_compute_fp(reduced_clock); | 
|  | } | 
|  |  | 
|  | crtc_state->dpll_hw_state.fp0 = fp; | 
|  | crtc_state->dpll_hw_state.fp1 = fp2; | 
|  | } | 
|  |  | 
|  | static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state, | 
|  | const struct dpll *clock, | 
|  | const struct dpll *reduced_clock) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | u32 dpll; | 
|  |  | 
|  | i9xx_update_pll_dividers(crtc_state, clock, reduced_clock); | 
|  |  | 
|  | dpll = DPLL_VGA_MODE_DIS; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) | 
|  | dpll |= DPLLB_MODE_LVDS; | 
|  | else | 
|  | dpll |= DPLLB_MODE_DAC_SERIAL; | 
|  |  | 
|  | if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || | 
|  | IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { | 
|  | dpll |= (crtc_state->pixel_multiplier - 1) | 
|  | << SDVO_MULTIPLIER_SHIFT_HIRES; | 
|  | } | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  |  | 
|  | if (intel_crtc_has_dp_encoder(crtc_state)) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  |  | 
|  | /* compute bitmask from p1 value */ | 
|  | if (IS_G4X(dev_priv)) { | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; | 
|  | } else if (IS_PINEVIEW(dev_priv)) { | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; | 
|  | WARN_ON(reduced_clock->p1 != clock->p1); | 
|  | } else { | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | WARN_ON(reduced_clock->p1 != clock->p1); | 
|  | } | 
|  |  | 
|  | switch (clock->p2) { | 
|  | case 5: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; | 
|  | break; | 
|  | case 7: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; | 
|  | break; | 
|  | case 10: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; | 
|  | break; | 
|  | case 14: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; | 
|  | break; | 
|  | } | 
|  | WARN_ON(reduced_clock->p2 != clock->p2); | 
|  |  | 
|  | if (DISPLAY_VER(dev_priv) >= 4) | 
|  | dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); | 
|  |  | 
|  | if (crtc_state->sdvo_tv_clock) | 
|  | dpll |= PLL_REF_INPUT_TVCLKINBC; | 
|  | else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv)) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  | crtc_state->dpll_hw_state.dpll = dpll; | 
|  |  | 
|  | if (DISPLAY_VER(dev_priv) >= 4) { | 
|  | u32 dpll_md = (crtc_state->pixel_multiplier - 1) | 
|  | << DPLL_MD_UDI_MULTIPLIER_SHIFT; | 
|  | crtc_state->dpll_hw_state.dpll_md = dpll_md; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state, | 
|  | const struct dpll *clock, | 
|  | const struct dpll *reduced_clock) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | u32 dpll; | 
|  |  | 
|  | i9xx_update_pll_dividers(crtc_state, clock, reduced_clock); | 
|  |  | 
|  | dpll = DPLL_VGA_MODE_DIS; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | } else { | 
|  | if (clock->p1 == 2) | 
|  | dpll |= PLL_P1_DIVIDE_BY_TWO; | 
|  | else | 
|  | dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | if (clock->p2 == 4) | 
|  | dpll |= PLL_P2_DIVIDE_BY_4; | 
|  | } | 
|  | WARN_ON(reduced_clock->p1 != clock->p1); | 
|  | WARN_ON(reduced_clock->p2 != clock->p2); | 
|  |  | 
|  | /* | 
|  | * Bspec: | 
|  | * "[Almador Errata}: For the correct operation of the muxed DVO pins | 
|  | *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, | 
|  | *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock | 
|  | *  Enable) must be set to “1” in both the DPLL A Control Register | 
|  | *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." | 
|  | * | 
|  | * For simplicity We simply keep both bits always enabled in | 
|  | * both DPLLS. The spec says we should disable the DVO 2X clock | 
|  | * when not needed, but this seems to work fine in practice. | 
|  | */ | 
|  | if (IS_I830(dev_priv) || | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) | 
|  | dpll |= DPLL_DVO_2X_MODE; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv)) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  | crtc_state->dpll_hw_state.dpll = dpll; | 
|  | } | 
|  |  | 
|  | static int hsw_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | struct intel_encoder *encoder = | 
|  | intel_get_crtc_new_encoder(state, crtc_state); | 
|  | int ret; | 
|  |  | 
|  | if (DISPLAY_VER(dev_priv) < 11 && | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) | 
|  | return 0; | 
|  |  | 
|  | ret = intel_compute_shared_dplls(state, crtc, encoder); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* FIXME this is a mess */ | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) | 
|  | return 0; | 
|  |  | 
|  | /* CRT dotclock is determined via other means */ | 
|  | if (!crtc_state->has_pch_encoder) | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | struct intel_encoder *encoder = | 
|  | intel_get_crtc_new_encoder(state, crtc_state); | 
|  |  | 
|  | if (DISPLAY_VER(dev_priv) < 11 && | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) | 
|  | return 0; | 
|  |  | 
|  | return intel_reserve_shared_dplls(state, crtc, encoder); | 
|  | } | 
|  |  | 
|  | static int dg2_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | struct intel_encoder *encoder = | 
|  | intel_get_crtc_new_encoder(state, crtc_state); | 
|  | int ret; | 
|  |  | 
|  | ret = intel_mpllb_calc_state(crtc_state, encoder); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mtl_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | struct intel_encoder *encoder = | 
|  | intel_get_crtc_new_encoder(state, crtc_state); | 
|  | int ret; | 
|  |  | 
|  | ret = intel_cx0pll_calc_state(crtc_state, encoder); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* TODO: Do the readback via intel_compute_shared_dplls() */ | 
|  | crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->cx0pll_state); | 
|  |  | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor) | 
|  | { | 
|  | return dpll->m < factor * dpll->n; | 
|  | } | 
|  |  | 
|  | static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state, | 
|  | const struct dpll *clock, | 
|  | const struct dpll *reduced_clock) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | u32 fp, fp2; | 
|  | int factor; | 
|  |  | 
|  | /* Enable autotuning of the PLL clock (if permissible) */ | 
|  | factor = 21; | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { | 
|  | if ((intel_panel_use_ssc(dev_priv) && | 
|  | dev_priv->display.vbt.lvds_ssc_freq == 100000) || | 
|  | (HAS_PCH_IBX(dev_priv) && | 
|  | intel_is_dual_link_lvds(dev_priv))) | 
|  | factor = 25; | 
|  | } else if (crtc_state->sdvo_tv_clock) { | 
|  | factor = 20; | 
|  | } | 
|  |  | 
|  | fp = i9xx_dpll_compute_fp(clock); | 
|  | if (ilk_needs_fb_cb_tune(clock, factor)) | 
|  | fp |= FP_CB_TUNE; | 
|  |  | 
|  | fp2 = i9xx_dpll_compute_fp(reduced_clock); | 
|  | if (ilk_needs_fb_cb_tune(reduced_clock, factor)) | 
|  | fp2 |= FP_CB_TUNE; | 
|  |  | 
|  | crtc_state->dpll_hw_state.fp0 = fp; | 
|  | crtc_state->dpll_hw_state.fp1 = fp2; | 
|  | } | 
|  |  | 
|  | static void ilk_compute_dpll(struct intel_crtc_state *crtc_state, | 
|  | const struct dpll *clock, | 
|  | const struct dpll *reduced_clock) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | u32 dpll; | 
|  |  | 
|  | ilk_update_pll_dividers(crtc_state, clock, reduced_clock); | 
|  |  | 
|  | dpll = 0; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) | 
|  | dpll |= DPLLB_MODE_LVDS; | 
|  | else | 
|  | dpll |= DPLLB_MODE_DAC_SERIAL; | 
|  |  | 
|  | dpll |= (crtc_state->pixel_multiplier - 1) | 
|  | << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  |  | 
|  | if (intel_crtc_has_dp_encoder(crtc_state)) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  |  | 
|  | /* | 
|  | * The high speed IO clock is only really required for | 
|  | * SDVO/HDMI/DP, but we also enable it for CRT to make it | 
|  | * possible to share the DPLL between CRT and HDMI. Enabling | 
|  | * the clock needlessly does no real harm, except use up a | 
|  | * bit of power potentially. | 
|  | * | 
|  | * We'll limit this to IVB with 3 pipes, since it has only two | 
|  | * DPLLs and so DPLL sharing is the only way to get three pipes | 
|  | * driving PCH ports at the same time. On SNB we could do this, | 
|  | * and potentially avoid enabling the second DPLL, but it's not | 
|  | * clear if it''s a win or loss power wise. No point in doing | 
|  | * this on ILK at all since it has a fixed DPLL<->pipe mapping. | 
|  | */ | 
|  | if (INTEL_NUM_PIPES(dev_priv) == 3 && | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) | 
|  | dpll |= DPLL_SDVO_HIGH_SPEED; | 
|  |  | 
|  | /* compute bitmask from p1 value */ | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | /* also FPA1 */ | 
|  | dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; | 
|  |  | 
|  | switch (clock->p2) { | 
|  | case 5: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; | 
|  | break; | 
|  | case 7: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; | 
|  | break; | 
|  | case 10: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; | 
|  | break; | 
|  | case 14: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; | 
|  | break; | 
|  | } | 
|  | WARN_ON(reduced_clock->p2 != clock->p2); | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv)) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  |  | 
|  | crtc_state->dpll_hw_state.dpll = dpll; | 
|  | } | 
|  |  | 
|  | static int ilk_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | const struct intel_limit *limit; | 
|  | int refclk = 120000; | 
|  | int ret; | 
|  |  | 
|  | /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ | 
|  | if (!crtc_state->has_pch_encoder) | 
|  | return 0; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_panel_use_ssc(dev_priv)) { | 
|  | drm_dbg_kms(&dev_priv->drm, | 
|  | "using SSC reference clock of %d kHz\n", | 
|  | dev_priv->display.vbt.lvds_ssc_freq); | 
|  | refclk = dev_priv->display.vbt.lvds_ssc_freq; | 
|  | } | 
|  |  | 
|  | if (intel_is_dual_link_lvds(dev_priv)) { | 
|  | if (refclk == 100000) | 
|  | limit = &ilk_limits_dual_lvds_100m; | 
|  | else | 
|  | limit = &ilk_limits_dual_lvds; | 
|  | } else { | 
|  | if (refclk == 100000) | 
|  | limit = &ilk_limits_single_lvds_100m; | 
|  | else | 
|  | limit = &ilk_limits_single_lvds; | 
|  | } | 
|  | } else { | 
|  | limit = &ilk_limits_dac; | 
|  | } | 
|  |  | 
|  | if (!crtc_state->clock_set && | 
|  | !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, | 
|  | refclk, NULL, &crtc_state->dpll)) | 
|  | return -EINVAL; | 
|  |  | 
|  | i9xx_calc_dpll_params(refclk, &crtc_state->dpll); | 
|  |  | 
|  | ilk_compute_dpll(crtc_state, &crtc_state->dpll, | 
|  | &crtc_state->dpll); | 
|  |  | 
|  | ret = intel_compute_shared_dplls(state, crtc, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | crtc_state->port_clock = crtc_state->dpll.dot; | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  |  | 
|  | /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ | 
|  | if (!crtc_state->has_pch_encoder) | 
|  | return 0; | 
|  |  | 
|  | return intel_reserve_shared_dplls(state, crtc, NULL); | 
|  | } | 
|  |  | 
|  | void vlv_compute_dpll(struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  |  | 
|  | crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | | 
|  | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; | 
|  | if (crtc->pipe != PIPE_A) | 
|  | crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; | 
|  |  | 
|  | /* DPLL not used with DSI, but still need the rest set up */ | 
|  | if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) | 
|  | crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | | 
|  | DPLL_EXT_BUFFER_ENABLE_VLV; | 
|  |  | 
|  | crtc_state->dpll_hw_state.dpll_md = | 
|  | (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; | 
|  | } | 
|  |  | 
|  | void chv_compute_dpll(struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  |  | 
|  | crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | | 
|  | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; | 
|  | if (crtc->pipe != PIPE_A) | 
|  | crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; | 
|  |  | 
|  | /* DPLL not used with DSI, but still need the rest set up */ | 
|  | if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) | 
|  | crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; | 
|  |  | 
|  | crtc_state->dpll_hw_state.dpll_md = | 
|  | (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; | 
|  | } | 
|  |  | 
|  | static int chv_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | const struct intel_limit *limit = &intel_limits_chv; | 
|  | int refclk = 100000; | 
|  |  | 
|  | if (!crtc_state->clock_set && | 
|  | !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, | 
|  | refclk, NULL, &crtc_state->dpll)) | 
|  | return -EINVAL; | 
|  |  | 
|  | chv_calc_dpll_params(refclk, &crtc_state->dpll); | 
|  |  | 
|  | chv_compute_dpll(crtc_state); | 
|  |  | 
|  | /* FIXME this is a mess */ | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) | 
|  | return 0; | 
|  |  | 
|  | crtc_state->port_clock = crtc_state->dpll.dot; | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vlv_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | const struct intel_limit *limit = &intel_limits_vlv; | 
|  | int refclk = 100000; | 
|  |  | 
|  | if (!crtc_state->clock_set && | 
|  | !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, | 
|  | refclk, NULL, &crtc_state->dpll)) | 
|  | return -EINVAL; | 
|  |  | 
|  | vlv_calc_dpll_params(refclk, &crtc_state->dpll); | 
|  |  | 
|  | vlv_compute_dpll(crtc_state); | 
|  |  | 
|  | /* FIXME this is a mess */ | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) | 
|  | return 0; | 
|  |  | 
|  | crtc_state->port_clock = crtc_state->dpll.dot; | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int g4x_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | const struct intel_limit *limit; | 
|  | int refclk = 96000; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_panel_use_ssc(dev_priv)) { | 
|  | refclk = dev_priv->display.vbt.lvds_ssc_freq; | 
|  | drm_dbg_kms(&dev_priv->drm, | 
|  | "using SSC reference clock of %d kHz\n", | 
|  | refclk); | 
|  | } | 
|  |  | 
|  | if (intel_is_dual_link_lvds(dev_priv)) | 
|  | limit = &intel_limits_g4x_dual_channel_lvds; | 
|  | else | 
|  | limit = &intel_limits_g4x_single_channel_lvds; | 
|  | } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { | 
|  | limit = &intel_limits_g4x_hdmi; | 
|  | } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { | 
|  | limit = &intel_limits_g4x_sdvo; | 
|  | } else { | 
|  | /* The option is for other outputs */ | 
|  | limit = &intel_limits_i9xx_sdvo; | 
|  | } | 
|  |  | 
|  | if (!crtc_state->clock_set && | 
|  | !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, | 
|  | refclk, NULL, &crtc_state->dpll)) | 
|  | return -EINVAL; | 
|  |  | 
|  | i9xx_calc_dpll_params(refclk, &crtc_state->dpll); | 
|  |  | 
|  | i9xx_compute_dpll(crtc_state, &crtc_state->dpll, | 
|  | &crtc_state->dpll); | 
|  |  | 
|  | crtc_state->port_clock = crtc_state->dpll.dot; | 
|  | /* FIXME this is a mess */ | 
|  | if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pnv_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | const struct intel_limit *limit; | 
|  | int refclk = 96000; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_panel_use_ssc(dev_priv)) { | 
|  | refclk = dev_priv->display.vbt.lvds_ssc_freq; | 
|  | drm_dbg_kms(&dev_priv->drm, | 
|  | "using SSC reference clock of %d kHz\n", | 
|  | refclk); | 
|  | } | 
|  |  | 
|  | limit = &pnv_limits_lvds; | 
|  | } else { | 
|  | limit = &pnv_limits_sdvo; | 
|  | } | 
|  |  | 
|  | if (!crtc_state->clock_set && | 
|  | !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, | 
|  | refclk, NULL, &crtc_state->dpll)) | 
|  | return -EINVAL; | 
|  |  | 
|  | pnv_calc_dpll_params(refclk, &crtc_state->dpll); | 
|  |  | 
|  | i9xx_compute_dpll(crtc_state, &crtc_state->dpll, | 
|  | &crtc_state->dpll); | 
|  |  | 
|  | crtc_state->port_clock = crtc_state->dpll.dot; | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int i9xx_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | const struct intel_limit *limit; | 
|  | int refclk = 96000; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_panel_use_ssc(dev_priv)) { | 
|  | refclk = dev_priv->display.vbt.lvds_ssc_freq; | 
|  | drm_dbg_kms(&dev_priv->drm, | 
|  | "using SSC reference clock of %d kHz\n", | 
|  | refclk); | 
|  | } | 
|  |  | 
|  | limit = &intel_limits_i9xx_lvds; | 
|  | } else { | 
|  | limit = &intel_limits_i9xx_sdvo; | 
|  | } | 
|  |  | 
|  | if (!crtc_state->clock_set && | 
|  | !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, | 
|  | refclk, NULL, &crtc_state->dpll)) | 
|  | return -EINVAL; | 
|  |  | 
|  | i9xx_calc_dpll_params(refclk, &crtc_state->dpll); | 
|  |  | 
|  | i9xx_compute_dpll(crtc_state, &crtc_state->dpll, | 
|  | &crtc_state->dpll); | 
|  |  | 
|  | crtc_state->port_clock = crtc_state->dpll.dot; | 
|  | /* FIXME this is a mess */ | 
|  | if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int i8xx_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | const struct intel_limit *limit; | 
|  | int refclk = 48000; | 
|  |  | 
|  | if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_panel_use_ssc(dev_priv)) { | 
|  | refclk = dev_priv->display.vbt.lvds_ssc_freq; | 
|  | drm_dbg_kms(&dev_priv->drm, | 
|  | "using SSC reference clock of %d kHz\n", | 
|  | refclk); | 
|  | } | 
|  |  | 
|  | limit = &intel_limits_i8xx_lvds; | 
|  | } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { | 
|  | limit = &intel_limits_i8xx_dvo; | 
|  | } else { | 
|  | limit = &intel_limits_i8xx_dac; | 
|  | } | 
|  |  | 
|  | if (!crtc_state->clock_set && | 
|  | !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, | 
|  | refclk, NULL, &crtc_state->dpll)) | 
|  | return -EINVAL; | 
|  |  | 
|  | i9xx_calc_dpll_params(refclk, &crtc_state->dpll); | 
|  |  | 
|  | i8xx_compute_dpll(crtc_state, &crtc_state->dpll, | 
|  | &crtc_state->dpll); | 
|  |  | 
|  | crtc_state->port_clock = crtc_state->dpll.dot; | 
|  | crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct intel_dpll_funcs mtl_dpll_funcs = { | 
|  | .crtc_compute_clock = mtl_crtc_compute_clock, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs dg2_dpll_funcs = { | 
|  | .crtc_compute_clock = dg2_crtc_compute_clock, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs hsw_dpll_funcs = { | 
|  | .crtc_compute_clock = hsw_crtc_compute_clock, | 
|  | .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs ilk_dpll_funcs = { | 
|  | .crtc_compute_clock = ilk_crtc_compute_clock, | 
|  | .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs chv_dpll_funcs = { | 
|  | .crtc_compute_clock = chv_crtc_compute_clock, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs vlv_dpll_funcs = { | 
|  | .crtc_compute_clock = vlv_crtc_compute_clock, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs g4x_dpll_funcs = { | 
|  | .crtc_compute_clock = g4x_crtc_compute_clock, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs pnv_dpll_funcs = { | 
|  | .crtc_compute_clock = pnv_crtc_compute_clock, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs i9xx_dpll_funcs = { | 
|  | .crtc_compute_clock = i9xx_crtc_compute_clock, | 
|  | }; | 
|  |  | 
|  | static const struct intel_dpll_funcs i8xx_dpll_funcs = { | 
|  | .crtc_compute_clock = i8xx_crtc_compute_clock, | 
|  | }; | 
|  |  | 
|  | int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *i915 = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | int ret; | 
|  |  | 
|  | drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); | 
|  |  | 
|  | memset(&crtc_state->dpll_hw_state, 0, | 
|  | sizeof(crtc_state->dpll_hw_state)); | 
|  |  | 
|  | if (!crtc_state->hw.enable) | 
|  | return 0; | 
|  |  | 
|  | ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc); | 
|  | if (ret) { | 
|  | drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n", | 
|  | crtc->base.base.id, crtc->base.name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state, | 
|  | struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *i915 = to_i915(state->base.dev); | 
|  | struct intel_crtc_state *crtc_state = | 
|  | intel_atomic_get_new_crtc_state(state, crtc); | 
|  | int ret; | 
|  |  | 
|  | drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); | 
|  | drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll); | 
|  |  | 
|  | if (!crtc_state->hw.enable || crtc_state->shared_dpll) | 
|  | return 0; | 
|  |  | 
|  | if (!i915->display.funcs.dpll->crtc_get_shared_dpll) | 
|  | return 0; | 
|  |  | 
|  | ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc); | 
|  | if (ret) { | 
|  | drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n", | 
|  | crtc->base.base.id, crtc->base.name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | if (DISPLAY_VER(dev_priv) >= 14) | 
|  | dev_priv->display.funcs.dpll = &mtl_dpll_funcs; | 
|  | else if (IS_DG2(dev_priv)) | 
|  | dev_priv->display.funcs.dpll = &dg2_dpll_funcs; | 
|  | else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv)) | 
|  | dev_priv->display.funcs.dpll = &hsw_dpll_funcs; | 
|  | else if (HAS_PCH_SPLIT(dev_priv)) | 
|  | dev_priv->display.funcs.dpll = &ilk_dpll_funcs; | 
|  | else if (IS_CHERRYVIEW(dev_priv)) | 
|  | dev_priv->display.funcs.dpll = &chv_dpll_funcs; | 
|  | else if (IS_VALLEYVIEW(dev_priv)) | 
|  | dev_priv->display.funcs.dpll = &vlv_dpll_funcs; | 
|  | else if (IS_G4X(dev_priv)) | 
|  | dev_priv->display.funcs.dpll = &g4x_dpll_funcs; | 
|  | else if (IS_PINEVIEW(dev_priv)) | 
|  | dev_priv->display.funcs.dpll = &pnv_dpll_funcs; | 
|  | else if (DISPLAY_VER(dev_priv) != 2) | 
|  | dev_priv->display.funcs.dpll = &i9xx_dpll_funcs; | 
|  | else | 
|  | dev_priv->display.funcs.dpll = &i8xx_dpll_funcs; | 
|  | } | 
|  |  | 
|  | static bool i9xx_has_pps(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | if (IS_I830(dev_priv)) | 
|  | return false; | 
|  |  | 
|  | return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); | 
|  | } | 
|  |  | 
|  | void i9xx_enable_pll(const struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | u32 dpll = crtc_state->dpll_hw_state.dpll; | 
|  | enum pipe pipe = crtc->pipe; | 
|  | int i; | 
|  |  | 
|  | assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); | 
|  |  | 
|  | /* PLL is protected by panel, make sure we can write it */ | 
|  | if (i9xx_has_pps(dev_priv)) | 
|  | assert_pps_unlocked(dev_priv, pipe); | 
|  |  | 
|  | intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0); | 
|  | intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1); | 
|  |  | 
|  | /* | 
|  | * Apparently we need to have VGA mode enabled prior to changing | 
|  | * the P1/P2 dividers. Otherwise the DPLL will keep using the old | 
|  | * dividers, even though the register value does change. | 
|  | */ | 
|  | intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); | 
|  | intel_de_write(dev_priv, DPLL(pipe), dpll); | 
|  |  | 
|  | /* Wait for the clocks to stabilize. */ | 
|  | intel_de_posting_read(dev_priv, DPLL(pipe)); | 
|  | udelay(150); | 
|  |  | 
|  | if (DISPLAY_VER(dev_priv) >= 4) { | 
|  | intel_de_write(dev_priv, DPLL_MD(pipe), | 
|  | crtc_state->dpll_hw_state.dpll_md); | 
|  | } else { | 
|  | /* The pixel multiplier can only be updated once the | 
|  | * DPLL is enabled and the clocks are stable. | 
|  | * | 
|  | * So write it again. | 
|  | */ | 
|  | intel_de_write(dev_priv, DPLL(pipe), dpll); | 
|  | } | 
|  |  | 
|  | /* We do this three times for luck */ | 
|  | for (i = 0; i < 3; i++) { | 
|  | intel_de_write(dev_priv, DPLL(pipe), dpll); | 
|  | intel_de_posting_read(dev_priv, DPLL(pipe)); | 
|  | udelay(150); /* wait for warmup */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, | 
|  | enum dpio_phy phy) | 
|  | { | 
|  | u32 reg_val; | 
|  |  | 
|  | /* | 
|  | * PLLB opamp always calibrates to max value of 0x3f, force enable it | 
|  | * and set it to a reasonable value instead. | 
|  | */ | 
|  | reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW9(1)); | 
|  | reg_val &= 0xffffff00; | 
|  | reg_val |= 0x00000030; | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9(1), reg_val); | 
|  |  | 
|  | reg_val = vlv_dpio_read(dev_priv, phy, VLV_REF_DW13); | 
|  | reg_val &= 0x00ffffff; | 
|  | reg_val |= 0x8c000000; | 
|  | vlv_dpio_write(dev_priv, phy, VLV_REF_DW13, reg_val); | 
|  |  | 
|  | reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW9(1)); | 
|  | reg_val &= 0xffffff00; | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9(1), reg_val); | 
|  |  | 
|  | reg_val = vlv_dpio_read(dev_priv, phy, VLV_REF_DW13); | 
|  | reg_val &= 0x00ffffff; | 
|  | reg_val |= 0xb0000000; | 
|  | vlv_dpio_write(dev_priv, phy, VLV_REF_DW13, reg_val); | 
|  | } | 
|  |  | 
|  | static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); | 
|  | enum pipe pipe = crtc->pipe; | 
|  | u32 mdiv; | 
|  | u32 bestn, bestm1, bestm2, bestp1, bestp2; | 
|  | u32 coreclk, reg_val; | 
|  |  | 
|  | vlv_dpio_get(dev_priv); | 
|  |  | 
|  | bestn = crtc_state->dpll.n; | 
|  | bestm1 = crtc_state->dpll.m1; | 
|  | bestm2 = crtc_state->dpll.m2; | 
|  | bestp1 = crtc_state->dpll.p1; | 
|  | bestp2 = crtc_state->dpll.p2; | 
|  |  | 
|  | /* See eDP HDMI DPIO driver vbios notes doc */ | 
|  |  | 
|  | /* PLL B needs special handling */ | 
|  | if (pipe == PIPE_B) | 
|  | vlv_pllb_recal_opamp(dev_priv, phy); | 
|  |  | 
|  | /* Set up Tx target for periodic Rcomp update */ | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9_BCAST, 0x0100000f); | 
|  |  | 
|  | /* Disable target IRef on PLL */ | 
|  | reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW8(pipe)); | 
|  | reg_val &= 0x00ffffff; | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW8(pipe), reg_val); | 
|  |  | 
|  | /* Disable fast lock */ | 
|  | vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610); | 
|  |  | 
|  | /* Set idtafcrecal before PLL is enabled */ | 
|  | mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); | 
|  | mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); | 
|  | mdiv |= ((bestn << DPIO_N_SHIFT)); | 
|  | mdiv |= (1 << DPIO_K_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, | 
|  | * but we don't support that). | 
|  | * Note: don't use the DAC post divider as it seems unstable. | 
|  | */ | 
|  | mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(pipe), mdiv); | 
|  |  | 
|  | mdiv |= DPIO_ENABLE_CALIBRATION; | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(pipe), mdiv); | 
|  |  | 
|  | /* Set HBR and RBR LPF coefficients */ | 
|  | if (crtc_state->port_clock == 162000 || | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) || | 
|  | intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW10(pipe), | 
|  | 0x009f0003); | 
|  | else | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW10(pipe), | 
|  | 0x00d0000f); | 
|  |  | 
|  | if (intel_crtc_has_dp_encoder(crtc_state)) { | 
|  | /* Use SSC source */ | 
|  | if (pipe == PIPE_A) | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe), | 
|  | 0x0df40000); | 
|  | else | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe), | 
|  | 0x0df70000); | 
|  | } else { /* HDMI or VGA */ | 
|  | /* Use bend source */ | 
|  | if (pipe == PIPE_A) | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe), | 
|  | 0x0df70000); | 
|  | else | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe), | 
|  | 0x0df40000); | 
|  | } | 
|  |  | 
|  | coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(pipe)); | 
|  | coreclk = (coreclk & 0x0000ff00) | 0x01c00000; | 
|  | if (intel_crtc_has_dp_encoder(crtc_state)) | 
|  | coreclk |= 0x01000000; | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(pipe), coreclk); | 
|  |  | 
|  | vlv_dpio_write(dev_priv, phy, VLV_PLL_DW11(pipe), 0x87871000); | 
|  |  | 
|  | vlv_dpio_put(dev_priv); | 
|  | } | 
|  |  | 
|  | static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | enum pipe pipe = crtc->pipe; | 
|  |  | 
|  | intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll); | 
|  | intel_de_posting_read(dev_priv, DPLL(pipe)); | 
|  | udelay(150); | 
|  |  | 
|  | if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) | 
|  | drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); | 
|  | } | 
|  |  | 
|  | void vlv_enable_pll(const struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | enum pipe pipe = crtc->pipe; | 
|  |  | 
|  | assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); | 
|  |  | 
|  | /* PLL is protected by panel, make sure we can write it */ | 
|  | assert_pps_unlocked(dev_priv, pipe); | 
|  |  | 
|  | /* Enable Refclk */ | 
|  | intel_de_write(dev_priv, DPLL(pipe), | 
|  | crtc_state->dpll_hw_state.dpll & | 
|  | ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); | 
|  |  | 
|  | if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) { | 
|  | vlv_prepare_pll(crtc_state); | 
|  | _vlv_enable_pll(crtc_state); | 
|  | } | 
|  |  | 
|  | intel_de_write(dev_priv, DPLL_MD(pipe), | 
|  | crtc_state->dpll_hw_state.dpll_md); | 
|  | intel_de_posting_read(dev_priv, DPLL_MD(pipe)); | 
|  | } | 
|  |  | 
|  | static void chv_prepare_pll(const struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | enum pipe pipe = crtc->pipe; | 
|  | enum dpio_channel port = vlv_pipe_to_channel(pipe); | 
|  | enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); | 
|  | u32 loopfilter, tribuf_calcntr; | 
|  | u32 bestm2, bestp1, bestp2, bestm2_frac; | 
|  | u32 dpio_val; | 
|  | int vco; | 
|  |  | 
|  | bestm2_frac = crtc_state->dpll.m2 & 0x3fffff; | 
|  | bestm2 = crtc_state->dpll.m2 >> 22; | 
|  | bestp1 = crtc_state->dpll.p1; | 
|  | bestp2 = crtc_state->dpll.p2; | 
|  | vco = crtc_state->dpll.vco; | 
|  | dpio_val = 0; | 
|  | loopfilter = 0; | 
|  |  | 
|  | vlv_dpio_get(dev_priv); | 
|  |  | 
|  | /* p1 and p2 divider */ | 
|  | vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(port), | 
|  | 5 << DPIO_CHV_S1_DIV_SHIFT | | 
|  | bestp1 << DPIO_CHV_P1_DIV_SHIFT | | 
|  | bestp2 << DPIO_CHV_P2_DIV_SHIFT | | 
|  | 1 << DPIO_CHV_K_DIV_SHIFT); | 
|  |  | 
|  | /* Feedback post-divider - m2 */ | 
|  | vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(port), bestm2); | 
|  |  | 
|  | /* Feedback refclk divider - n and m1 */ | 
|  | vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(port), | 
|  | DPIO_CHV_M1_DIV_BY_2 | | 
|  | 1 << DPIO_CHV_N_DIV_SHIFT); | 
|  |  | 
|  | /* M2 fraction division */ | 
|  | vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(port), bestm2_frac); | 
|  |  | 
|  | /* M2 fraction division enable */ | 
|  | dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(port)); | 
|  | dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); | 
|  | dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); | 
|  | if (bestm2_frac) | 
|  | dpio_val |= DPIO_CHV_FRAC_DIV_EN; | 
|  | vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(port), dpio_val); | 
|  |  | 
|  | /* Program digital lock detect threshold */ | 
|  | dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(port)); | 
|  | dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | | 
|  | DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); | 
|  | dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); | 
|  | if (!bestm2_frac) | 
|  | dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; | 
|  | vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(port), dpio_val); | 
|  |  | 
|  | /* Loop filter */ | 
|  | if (vco == 5400000) { | 
|  | loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); | 
|  | loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); | 
|  | loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); | 
|  | tribuf_calcntr = 0x9; | 
|  | } else if (vco <= 6200000) { | 
|  | loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); | 
|  | loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); | 
|  | loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); | 
|  | tribuf_calcntr = 0x9; | 
|  | } else if (vco <= 6480000) { | 
|  | loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); | 
|  | loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); | 
|  | loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); | 
|  | tribuf_calcntr = 0x8; | 
|  | } else { | 
|  | /* Not supported. Apply the same limits as in the max case */ | 
|  | loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); | 
|  | loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); | 
|  | loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); | 
|  | tribuf_calcntr = 0; | 
|  | } | 
|  | vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(port), loopfilter); | 
|  |  | 
|  | dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(port)); | 
|  | dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; | 
|  | dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); | 
|  | vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(port), dpio_val); | 
|  |  | 
|  | /* AFC Recal */ | 
|  | vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port), | 
|  | vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port)) | | 
|  | DPIO_AFC_RECAL); | 
|  |  | 
|  | vlv_dpio_put(dev_priv); | 
|  | } | 
|  |  | 
|  | static void _chv_enable_pll(const struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | enum pipe pipe = crtc->pipe; | 
|  | enum dpio_channel port = vlv_pipe_to_channel(pipe); | 
|  | enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); | 
|  | u32 tmp; | 
|  |  | 
|  | vlv_dpio_get(dev_priv); | 
|  |  | 
|  | /* Enable back the 10bit clock to display controller */ | 
|  | tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port)); | 
|  | tmp |= DPIO_DCLKP_EN; | 
|  | vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port), tmp); | 
|  |  | 
|  | vlv_dpio_put(dev_priv); | 
|  |  | 
|  | /* | 
|  | * Need to wait > 100ns between dclkp clock enable bit and PLL enable. | 
|  | */ | 
|  | udelay(1); | 
|  |  | 
|  | /* Enable PLL */ | 
|  | intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll); | 
|  |  | 
|  | /* Check PLL is locked */ | 
|  | if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) | 
|  | drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); | 
|  | } | 
|  |  | 
|  | void chv_enable_pll(const struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | enum pipe pipe = crtc->pipe; | 
|  |  | 
|  | assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); | 
|  |  | 
|  | /* PLL is protected by panel, make sure we can write it */ | 
|  | assert_pps_unlocked(dev_priv, pipe); | 
|  |  | 
|  | /* Enable Refclk and SSC */ | 
|  | intel_de_write(dev_priv, DPLL(pipe), | 
|  | crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); | 
|  |  | 
|  | if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) { | 
|  | chv_prepare_pll(crtc_state); | 
|  | _chv_enable_pll(crtc_state); | 
|  | } | 
|  |  | 
|  | if (pipe != PIPE_A) { | 
|  | /* | 
|  | * WaPixelRepeatModeFixForC0:chv | 
|  | * | 
|  | * DPLLCMD is AWOL. Use chicken bits to propagate | 
|  | * the value from DPLLBMD to either pipe B or C. | 
|  | */ | 
|  | intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); | 
|  | intel_de_write(dev_priv, DPLL_MD(PIPE_B), | 
|  | crtc_state->dpll_hw_state.dpll_md); | 
|  | intel_de_write(dev_priv, CBR4_VLV, 0); | 
|  | dev_priv->display.state.chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md; | 
|  |  | 
|  | /* | 
|  | * DPLLB VGA mode also seems to cause problems. | 
|  | * We should always have it disabled. | 
|  | */ | 
|  | drm_WARN_ON(&dev_priv->drm, | 
|  | (intel_de_read(dev_priv, DPLL(PIPE_B)) & | 
|  | DPLL_VGA_MODE_DIS) == 0); | 
|  | } else { | 
|  | intel_de_write(dev_priv, DPLL_MD(pipe), | 
|  | crtc_state->dpll_hw_state.dpll_md); | 
|  | intel_de_posting_read(dev_priv, DPLL_MD(pipe)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vlv_force_pll_on - forcibly enable just the PLL | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe PLL to enable | 
|  | * @dpll: PLL configuration | 
|  | * | 
|  | * Enable the PLL for @pipe using the supplied @dpll config. To be used | 
|  | * in cases where we need the PLL enabled even when @pipe is not going to | 
|  | * be enabled. | 
|  | */ | 
|  | int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, | 
|  | const struct dpll *dpll) | 
|  | { | 
|  | struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); | 
|  | struct intel_crtc_state *crtc_state; | 
|  |  | 
|  | crtc_state = intel_crtc_state_alloc(crtc); | 
|  | if (!crtc_state) | 
|  | return -ENOMEM; | 
|  |  | 
|  | crtc_state->cpu_transcoder = (enum transcoder)pipe; | 
|  | crtc_state->pixel_multiplier = 1; | 
|  | crtc_state->dpll = *dpll; | 
|  | crtc_state->output_types = BIT(INTEL_OUTPUT_EDP); | 
|  |  | 
|  | if (IS_CHERRYVIEW(dev_priv)) { | 
|  | chv_compute_dpll(crtc_state); | 
|  | chv_enable_pll(crtc_state); | 
|  | } else { | 
|  | vlv_compute_dpll(crtc_state); | 
|  | vlv_enable_pll(crtc_state); | 
|  | } | 
|  |  | 
|  | intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* Make sure the pipe isn't still relying on us */ | 
|  | assert_transcoder_disabled(dev_priv, (enum transcoder)pipe); | 
|  |  | 
|  | val = DPLL_INTEGRATED_REF_CLK_VLV | | 
|  | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; | 
|  | if (pipe != PIPE_A) | 
|  | val |= DPLL_INTEGRATED_CRI_CLK_VLV; | 
|  |  | 
|  | intel_de_write(dev_priv, DPLL(pipe), val); | 
|  | intel_de_posting_read(dev_priv, DPLL(pipe)); | 
|  | } | 
|  |  | 
|  | void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) | 
|  | { | 
|  | enum dpio_channel port = vlv_pipe_to_channel(pipe); | 
|  | enum dpio_phy phy = vlv_pipe_to_phy(pipe); | 
|  | u32 val; | 
|  |  | 
|  | /* Make sure the pipe isn't still relying on us */ | 
|  | assert_transcoder_disabled(dev_priv, (enum transcoder)pipe); | 
|  |  | 
|  | val = DPLL_SSC_REF_CLK_CHV | | 
|  | DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; | 
|  | if (pipe != PIPE_A) | 
|  | val |= DPLL_INTEGRATED_CRI_CLK_VLV; | 
|  |  | 
|  | intel_de_write(dev_priv, DPLL(pipe), val); | 
|  | intel_de_posting_read(dev_priv, DPLL(pipe)); | 
|  |  | 
|  | vlv_dpio_get(dev_priv); | 
|  |  | 
|  | /* Disable 10bit clock to display controller */ | 
|  | val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port)); | 
|  | val &= ~DPIO_DCLKP_EN; | 
|  | vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port), val); | 
|  |  | 
|  | vlv_dpio_put(dev_priv); | 
|  | } | 
|  |  | 
|  | void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) | 
|  | { | 
|  | struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); | 
|  | struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); | 
|  | enum pipe pipe = crtc->pipe; | 
|  |  | 
|  | /* Don't disable pipe or pipe PLLs if needed */ | 
|  | if (IS_I830(dev_priv)) | 
|  | return; | 
|  |  | 
|  | /* Make sure the pipe isn't still relying on us */ | 
|  | assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); | 
|  |  | 
|  | intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); | 
|  | intel_de_posting_read(dev_priv, DPLL(pipe)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * vlv_force_pll_off - forcibly disable just the PLL | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe PLL to disable | 
|  | * | 
|  | * Disable the PLL for @pipe. To be used in cases where we need | 
|  | * the PLL enabled even when @pipe is not going to be enabled. | 
|  | */ | 
|  | void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) | 
|  | { | 
|  | if (IS_CHERRYVIEW(dev_priv)) | 
|  | chv_disable_pll(dev_priv, pipe); | 
|  | else | 
|  | vlv_disable_pll(dev_priv, pipe); | 
|  | } | 
|  |  | 
|  | /* Only for pre-ILK configs */ | 
|  | static void assert_pll(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | bool cur_state; | 
|  |  | 
|  | cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE; | 
|  | I915_STATE_WARN(dev_priv, cur_state != state, | 
|  | "PLL state assertion failure (expected %s, current %s)\n", | 
|  | str_on_off(state), str_on_off(cur_state)); | 
|  | } | 
|  |  | 
|  | void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe) | 
|  | { | 
|  | assert_pll(i915, pipe, true); | 
|  | } | 
|  |  | 
|  | void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe) | 
|  | { | 
|  | assert_pll(i915, pipe, false); | 
|  | } |