|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * AMD Address Translation Library | 
|  | * | 
|  | * dehash.c : Functions to account for hashing bits | 
|  | * | 
|  | * Copyright (c) 2023, Advanced Micro Devices, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * Author: Yazen Ghannam <Yazen.Ghannam@amd.com> | 
|  | */ | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * Verify the interleave bits are correct in the different interleaving | 
|  | * settings. | 
|  | * | 
|  | * If @num_intlv_dies and/or @num_intlv_sockets are 1, it means the | 
|  | * respective interleaving is disabled. | 
|  | */ | 
|  | static inline bool map_bits_valid(struct addr_ctx *ctx, u8 bit1, u8 bit2, | 
|  | u8 num_intlv_dies, u8 num_intlv_sockets) | 
|  | { | 
|  | if (!(ctx->map.intlv_bit_pos == bit1 || ctx->map.intlv_bit_pos == bit2)) { | 
|  | pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ctx->map.num_intlv_dies > num_intlv_dies) { | 
|  | pr_debug("Invalid number of interleave dies: %u", ctx->map.num_intlv_dies); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ctx->map.num_intlv_sockets > num_intlv_sockets) { | 
|  | pr_debug("Invalid number of interleave sockets: %u", ctx->map.num_intlv_sockets); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int df2_dehash_addr(struct addr_ctx *ctx) | 
|  | { | 
|  | u8 hashed_bit, intlv_bit, intlv_bit_pos; | 
|  |  | 
|  | if (!map_bits_valid(ctx, 8, 9, 1, 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | intlv_bit_pos = ctx->map.intlv_bit_pos; | 
|  | intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(12), ctx->ret_addr); | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr); | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr); | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr); | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int df3_dehash_addr(struct addr_ctx *ctx) | 
|  | { | 
|  | bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G; | 
|  | u8 hashed_bit, intlv_bit, intlv_bit_pos; | 
|  |  | 
|  | if (!map_bits_valid(ctx, 8, 9, 1, 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | hash_ctl_64k = FIELD_GET(DF3_HASH_CTL_64K, ctx->map.ctl); | 
|  | hash_ctl_2M  = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl); | 
|  | hash_ctl_1G  = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl); | 
|  |  | 
|  | intlv_bit_pos = ctx->map.intlv_bit_pos; | 
|  | intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr); | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); | 
|  |  | 
|  | /* Calculation complete for 2 channels. Continue for 4 and 8 channels. */ | 
|  | if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH) | 
|  | return 0; | 
|  |  | 
|  | intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(12); | 
|  |  | 
|  | /* Calculation complete for 4 channels. Continue for 8 channels. */ | 
|  | if (ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH) | 
|  | return 0; | 
|  |  | 
|  | intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(13); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int df3_6chan_dehash_addr(struct addr_ctx *ctx) | 
|  | { | 
|  | u8 intlv_bit_pos = ctx->map.intlv_bit_pos; | 
|  | u8 hashed_bit, intlv_bit, num_intlv_bits; | 
|  | bool hash_ctl_2M, hash_ctl_1G; | 
|  |  | 
|  | if (ctx->map.intlv_mode != DF3_6CHAN) { | 
|  | atl_debug_on_bad_intlv_mode(ctx); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | num_intlv_bits = ilog2(ctx->map.num_intlv_chan) + 1; | 
|  |  | 
|  | hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl); | 
|  | hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl); | 
|  |  | 
|  | intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= !!(BIT_ULL(intlv_bit_pos + num_intlv_bits) & ctx->ret_addr); | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); | 
|  |  | 
|  | intlv_bit_pos++; | 
|  | intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); | 
|  |  | 
|  | intlv_bit_pos++; | 
|  | intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(intlv_bit_pos); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int df4_dehash_addr(struct addr_ctx *ctx) | 
|  | { | 
|  | bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G; | 
|  | u8 hashed_bit, intlv_bit; | 
|  |  | 
|  | if (!map_bits_valid(ctx, 8, 8, 1, 2)) | 
|  | return -EINVAL; | 
|  |  | 
|  | hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl); | 
|  | hash_ctl_2M  = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl); | 
|  | hash_ctl_1G  = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl); | 
|  |  | 
|  | intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (ctx->map.num_intlv_sockets == 1) | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr); | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(8); | 
|  |  | 
|  | /* | 
|  | * Hashing is possible with socket interleaving, so check the total number | 
|  | * of channels in the system rather than DRAM map interleaving mode. | 
|  | * | 
|  | * Calculation complete for 2 channels. Continue for 4, 8, and 16 channels. | 
|  | */ | 
|  | if (ctx->map.total_intlv_chan <= 2) | 
|  | return 0; | 
|  |  | 
|  | intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(12); | 
|  |  | 
|  | /* Calculation complete for 4 channels. Continue for 8 and 16 channels. */ | 
|  | if (ctx->map.total_intlv_chan <= 4) | 
|  | return 0; | 
|  |  | 
|  | intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(13); | 
|  |  | 
|  | /* Calculation complete for 8 channels. Continue for 16 channels. */ | 
|  | if (ctx->map.total_intlv_chan <= 8) | 
|  | return 0; | 
|  |  | 
|  | intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(14); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int df4p5_dehash_addr(struct addr_ctx *ctx) | 
|  | { | 
|  | bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T; | 
|  | u8 hashed_bit, intlv_bit; | 
|  | u64 rehash_vector; | 
|  |  | 
|  | if (!map_bits_valid(ctx, 8, 8, 1, 2)) | 
|  | return -EINVAL; | 
|  |  | 
|  | hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl); | 
|  | hash_ctl_2M  = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl); | 
|  | hash_ctl_1G  = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl); | 
|  | hash_ctl_1T  = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl); | 
|  |  | 
|  | /* | 
|  | * Generate a unique address to determine which bits | 
|  | * need to be dehashed. | 
|  | * | 
|  | * Start with a contiguous bitmask for the total | 
|  | * number of channels starting at bit 8. | 
|  | * | 
|  | * Then make a gap in the proper place based on | 
|  | * interleave mode. | 
|  | */ | 
|  | rehash_vector = ctx->map.total_intlv_chan - 1; | 
|  | rehash_vector <<= 8; | 
|  |  | 
|  | if (ctx->map.intlv_mode == DF4p5_NPS2_4CHAN_1K_HASH || | 
|  | ctx->map.intlv_mode == DF4p5_NPS1_8CHAN_1K_HASH || | 
|  | ctx->map.intlv_mode == DF4p5_NPS1_16CHAN_1K_HASH) | 
|  | rehash_vector = expand_bits(10, 2, rehash_vector); | 
|  | else | 
|  | rehash_vector = expand_bits(9, 3, rehash_vector); | 
|  |  | 
|  | if (rehash_vector & BIT_ULL(8)) { | 
|  | intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(40), ctx->ret_addr) & hash_ctl_1T; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(8); | 
|  | } | 
|  |  | 
|  | if (rehash_vector & BIT_ULL(9)) { | 
|  | intlv_bit = FIELD_GET(BIT_ULL(9), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(41), ctx->ret_addr) & hash_ctl_1T; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(9); | 
|  | } | 
|  |  | 
|  | if (rehash_vector & BIT_ULL(12)) { | 
|  | intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(42), ctx->ret_addr) & hash_ctl_1T; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(12); | 
|  | } | 
|  |  | 
|  | if (rehash_vector & BIT_ULL(13)) { | 
|  | intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(43), ctx->ret_addr) & hash_ctl_1T; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(13); | 
|  | } | 
|  |  | 
|  | if (rehash_vector & BIT_ULL(14)) { | 
|  | intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr); | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(20), ctx->ret_addr) & hash_ctl_64k; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(25), ctx->ret_addr) & hash_ctl_2M; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(34), ctx->ret_addr) & hash_ctl_1G; | 
|  | hashed_bit ^= FIELD_GET(BIT_ULL(44), ctx->ret_addr) & hash_ctl_1T; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(14); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MI300 hash bits | 
|  | *					  4K 64K  2M  1G  1T  1T | 
|  | * COH_ST_Select[0]	= XOR of addr{8,  12, 15, 22, 29, 36, 43} | 
|  | * COH_ST_Select[1]	= XOR of addr{9,  13, 16, 23, 30, 37, 44} | 
|  | * COH_ST_Select[2]	= XOR of addr{10, 14, 17, 24, 31, 38, 45} | 
|  | * COH_ST_Select[3]	= XOR of addr{11,     18, 25, 32, 39, 46} | 
|  | * COH_ST_Select[4]	= XOR of addr{14,     19, 26, 33, 40, 47} aka Stack | 
|  | * DieID[0]		= XOR of addr{12,     20, 27, 34, 41    } | 
|  | * DieID[1]		= XOR of addr{13,     21, 28, 35, 42    } | 
|  | */ | 
|  | static int mi300_dehash_addr(struct addr_ctx *ctx) | 
|  | { | 
|  | bool hash_ctl_4k, hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T; | 
|  | bool hashed_bit, intlv_bit, test_bit; | 
|  | u8 num_intlv_bits, base_bit, i; | 
|  |  | 
|  | if (!map_bits_valid(ctx, 8, 8, 4, 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | hash_ctl_4k  = FIELD_GET(DF4p5_HASH_CTL_4K, ctx->map.ctl); | 
|  | hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K,  ctx->map.ctl); | 
|  | hash_ctl_2M  = FIELD_GET(DF4_HASH_CTL_2M,   ctx->map.ctl); | 
|  | hash_ctl_1G  = FIELD_GET(DF4_HASH_CTL_1G,   ctx->map.ctl); | 
|  | hash_ctl_1T  = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl); | 
|  |  | 
|  | /* Channel bits */ | 
|  | num_intlv_bits = ilog2(ctx->map.num_intlv_chan); | 
|  |  | 
|  | for (i = 0; i < num_intlv_bits; i++) { | 
|  | base_bit = 8 + i; | 
|  |  | 
|  | /* COH_ST_Select[4] jumps to a base bit of 14. */ | 
|  | if (i == 4) | 
|  | base_bit = 14; | 
|  |  | 
|  | intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr; | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  |  | 
|  | /* 4k hash bit only applies to the first 3 bits. */ | 
|  | if (i <= 2) { | 
|  | test_bit    = BIT_ULL(12 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_4k; | 
|  | } | 
|  |  | 
|  | /* Use temporary 'test_bit' value to avoid Sparse warnings. */ | 
|  | test_bit    = BIT_ULL(15 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_64k; | 
|  | test_bit    = BIT_ULL(22 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_2M; | 
|  | test_bit    = BIT_ULL(29 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_1G; | 
|  | test_bit    = BIT_ULL(36 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_1T; | 
|  | test_bit    = BIT_ULL(43 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_1T; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(base_bit); | 
|  | } | 
|  |  | 
|  | /* Die bits */ | 
|  | num_intlv_bits = ilog2(ctx->map.num_intlv_dies); | 
|  |  | 
|  | for (i = 0; i < num_intlv_bits; i++) { | 
|  | base_bit = 12 + i; | 
|  |  | 
|  | intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr; | 
|  |  | 
|  | hashed_bit = intlv_bit; | 
|  |  | 
|  | test_bit    = BIT_ULL(20 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_64k; | 
|  | test_bit    = BIT_ULL(27 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_2M; | 
|  | test_bit    = BIT_ULL(34 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_1G; | 
|  | test_bit    = BIT_ULL(41 + i) & ctx->ret_addr; | 
|  | hashed_bit ^= test_bit & hash_ctl_1T; | 
|  |  | 
|  | if (hashed_bit != intlv_bit) | 
|  | ctx->ret_addr ^= BIT_ULL(base_bit); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dehash_address(struct addr_ctx *ctx) | 
|  | { | 
|  | switch (ctx->map.intlv_mode) { | 
|  | /* No hashing cases. */ | 
|  | case NONE: | 
|  | case NOHASH_2CHAN: | 
|  | case NOHASH_4CHAN: | 
|  | case NOHASH_8CHAN: | 
|  | case NOHASH_16CHAN: | 
|  | case NOHASH_32CHAN: | 
|  | /* Hashing bits handled earlier during CS ID calculation. */ | 
|  | case DF4_NPS4_3CHAN_HASH: | 
|  | case DF4_NPS2_5CHAN_HASH: | 
|  | case DF4_NPS2_6CHAN_HASH: | 
|  | case DF4_NPS1_10CHAN_HASH: | 
|  | case DF4_NPS1_12CHAN_HASH: | 
|  | case DF4p5_NPS2_6CHAN_1K_HASH: | 
|  | case DF4p5_NPS2_6CHAN_2K_HASH: | 
|  | case DF4p5_NPS1_10CHAN_1K_HASH: | 
|  | case DF4p5_NPS1_10CHAN_2K_HASH: | 
|  | case DF4p5_NPS1_12CHAN_1K_HASH: | 
|  | case DF4p5_NPS1_12CHAN_2K_HASH: | 
|  | case DF4p5_NPS0_24CHAN_1K_HASH: | 
|  | case DF4p5_NPS0_24CHAN_2K_HASH: | 
|  | /* No hash physical address bits, so nothing to do. */ | 
|  | case DF4p5_NPS4_3CHAN_1K_HASH: | 
|  | case DF4p5_NPS4_3CHAN_2K_HASH: | 
|  | case DF4p5_NPS2_5CHAN_1K_HASH: | 
|  | case DF4p5_NPS2_5CHAN_2K_HASH: | 
|  | return 0; | 
|  |  | 
|  | case DF2_2CHAN_HASH: | 
|  | return df2_dehash_addr(ctx); | 
|  |  | 
|  | case DF3_COD4_2CHAN_HASH: | 
|  | case DF3_COD2_4CHAN_HASH: | 
|  | case DF3_COD1_8CHAN_HASH: | 
|  | return df3_dehash_addr(ctx); | 
|  |  | 
|  | case DF3_6CHAN: | 
|  | return df3_6chan_dehash_addr(ctx); | 
|  |  | 
|  | case DF4_NPS4_2CHAN_HASH: | 
|  | case DF4_NPS2_4CHAN_HASH: | 
|  | case DF4_NPS1_8CHAN_HASH: | 
|  | return df4_dehash_addr(ctx); | 
|  |  | 
|  | case DF4p5_NPS4_2CHAN_1K_HASH: | 
|  | case DF4p5_NPS4_2CHAN_2K_HASH: | 
|  | case DF4p5_NPS2_4CHAN_2K_HASH: | 
|  | case DF4p5_NPS2_4CHAN_1K_HASH: | 
|  | case DF4p5_NPS1_8CHAN_1K_HASH: | 
|  | case DF4p5_NPS1_8CHAN_2K_HASH: | 
|  | case DF4p5_NPS1_16CHAN_1K_HASH: | 
|  | case DF4p5_NPS1_16CHAN_2K_HASH: | 
|  | return df4p5_dehash_addr(ctx); | 
|  |  | 
|  | case MI3_HASH_8CHAN: | 
|  | case MI3_HASH_16CHAN: | 
|  | case MI3_HASH_32CHAN: | 
|  | return mi300_dehash_addr(ctx); | 
|  |  | 
|  | default: | 
|  | atl_debug_on_bad_intlv_mode(ctx); | 
|  | return -EINVAL; | 
|  | } | 
|  | } |