|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  linux/fs/ext4/inode.c | 
|  | * | 
|  | * Copyright (C) 1992, 1993, 1994, 1995 | 
|  | * Remy Card (card@masi.ibp.fr) | 
|  | * Laboratoire MASI - Institut Blaise Pascal | 
|  | * Universite Pierre et Marie Curie (Paris VI) | 
|  | * | 
|  | *  from | 
|  | * | 
|  | *  linux/fs/minix/inode.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  64-bit file support on 64-bit platforms by Jakub Jelinek | 
|  | *	(jj@sunsite.ms.mff.cuni.cz) | 
|  | * | 
|  | *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/printk.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/iomap.h> | 
|  | #include <linux/iversion.h> | 
|  |  | 
|  | #include "ext4_jbd2.h" | 
|  | #include "xattr.h" | 
|  | #include "acl.h" | 
|  | #include "truncate.h" | 
|  |  | 
|  | #include <trace/events/ext4.h> | 
|  |  | 
|  | static void ext4_journalled_zero_new_buffers(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct folio *folio, | 
|  | unsigned from, unsigned to); | 
|  |  | 
|  | static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | __u32 csum; | 
|  | __u16 dummy_csum = 0; | 
|  | int offset = offsetof(struct ext4_inode, i_checksum_lo); | 
|  | unsigned int csum_size = sizeof(dummy_csum); | 
|  |  | 
|  | csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); | 
|  | csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); | 
|  | offset += csum_size; | 
|  | csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, | 
|  | EXT4_GOOD_OLD_INODE_SIZE - offset); | 
|  |  | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
|  | offset = offsetof(struct ext4_inode, i_checksum_hi); | 
|  | csum = ext4_chksum(sbi, csum, (__u8 *)raw + | 
|  | EXT4_GOOD_OLD_INODE_SIZE, | 
|  | offset - EXT4_GOOD_OLD_INODE_SIZE); | 
|  | if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { | 
|  | csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, | 
|  | csum_size); | 
|  | offset += csum_size; | 
|  | } | 
|  | csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, | 
|  | EXT4_INODE_SIZE(inode->i_sb) - offset); | 
|  | } | 
|  |  | 
|  | return csum; | 
|  | } | 
|  |  | 
|  | static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | __u32 provided, calculated; | 
|  |  | 
|  | if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != | 
|  | cpu_to_le32(EXT4_OS_LINUX) || | 
|  | !ext4_has_feature_metadata_csum(inode->i_sb)) | 
|  | return 1; | 
|  |  | 
|  | provided = le16_to_cpu(raw->i_checksum_lo); | 
|  | calculated = ext4_inode_csum(inode, raw, ei); | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
|  | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) | 
|  | provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; | 
|  | else | 
|  | calculated &= 0xFFFF; | 
|  |  | 
|  | return provided == calculated; | 
|  | } | 
|  |  | 
|  | void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | __u32 csum; | 
|  |  | 
|  | if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != | 
|  | cpu_to_le32(EXT4_OS_LINUX) || | 
|  | !ext4_has_feature_metadata_csum(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | csum = ext4_inode_csum(inode, raw, ei); | 
|  | raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
|  | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) | 
|  | raw->i_checksum_hi = cpu_to_le16(csum >> 16); | 
|  | } | 
|  |  | 
|  | static inline int ext4_begin_ordered_truncate(struct inode *inode, | 
|  | loff_t new_size) | 
|  | { | 
|  | trace_ext4_begin_ordered_truncate(inode, new_size); | 
|  | /* | 
|  | * If jinode is zero, then we never opened the file for | 
|  | * writing, so there's no need to call | 
|  | * jbd2_journal_begin_ordered_truncate() since there's no | 
|  | * outstanding writes we need to flush. | 
|  | */ | 
|  | if (!EXT4_I(inode)->jinode) | 
|  | return 0; | 
|  | return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), | 
|  | EXT4_I(inode)->jinode, | 
|  | new_size); | 
|  | } | 
|  |  | 
|  | static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, | 
|  | int pextents); | 
|  |  | 
|  | /* | 
|  | * Test whether an inode is a fast symlink. | 
|  | * A fast symlink has its symlink data stored in ext4_inode_info->i_data. | 
|  | */ | 
|  | int ext4_inode_is_fast_symlink(struct inode *inode) | 
|  | { | 
|  | if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { | 
|  | int ea_blocks = EXT4_I(inode)->i_file_acl ? | 
|  | EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return 0; | 
|  |  | 
|  | return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); | 
|  | } | 
|  | return S_ISLNK(inode->i_mode) && inode->i_size && | 
|  | (inode->i_size < EXT4_N_BLOCKS * 4); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called at the last iput() if i_nlink is zero. | 
|  | */ | 
|  | void ext4_evict_inode(struct inode *inode) | 
|  | { | 
|  | handle_t *handle; | 
|  | int err; | 
|  | /* | 
|  | * Credits for final inode cleanup and freeing: | 
|  | * sb + inode (ext4_orphan_del()), block bitmap, group descriptor | 
|  | * (xattr block freeing), bitmap, group descriptor (inode freeing) | 
|  | */ | 
|  | int extra_credits = 6; | 
|  | struct ext4_xattr_inode_array *ea_inode_array = NULL; | 
|  | bool freeze_protected = false; | 
|  |  | 
|  | trace_ext4_evict_inode(inode); | 
|  |  | 
|  | dax_break_layout_final(inode); | 
|  |  | 
|  | if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) | 
|  | ext4_evict_ea_inode(inode); | 
|  | if (inode->i_nlink) { | 
|  | truncate_inode_pages_final(&inode->i_data); | 
|  |  | 
|  | goto no_delete; | 
|  | } | 
|  |  | 
|  | if (is_bad_inode(inode)) | 
|  | goto no_delete; | 
|  | dquot_initialize(inode); | 
|  |  | 
|  | if (ext4_should_order_data(inode)) | 
|  | ext4_begin_ordered_truncate(inode, 0); | 
|  | truncate_inode_pages_final(&inode->i_data); | 
|  |  | 
|  | /* | 
|  | * For inodes with journalled data, transaction commit could have | 
|  | * dirtied the inode. And for inodes with dioread_nolock, unwritten | 
|  | * extents converting worker could merge extents and also have dirtied | 
|  | * the inode. Flush worker is ignoring it because of I_FREEING flag but | 
|  | * we still need to remove the inode from the writeback lists. | 
|  | */ | 
|  | if (!list_empty_careful(&inode->i_io_list)) | 
|  | inode_io_list_del(inode); | 
|  |  | 
|  | /* | 
|  | * Protect us against freezing - iput() caller didn't have to have any | 
|  | * protection against it. When we are in a running transaction though, | 
|  | * we are already protected against freezing and we cannot grab further | 
|  | * protection due to lock ordering constraints. | 
|  | */ | 
|  | if (!ext4_journal_current_handle()) { | 
|  | sb_start_intwrite(inode->i_sb); | 
|  | freeze_protected = true; | 
|  | } | 
|  |  | 
|  | if (!IS_NOQUOTA(inode)) | 
|  | extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); | 
|  |  | 
|  | /* | 
|  | * Block bitmap, group descriptor, and inode are accounted in both | 
|  | * ext4_blocks_for_truncate() and extra_credits. So subtract 3. | 
|  | */ | 
|  | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, | 
|  | ext4_blocks_for_truncate(inode) + extra_credits - 3); | 
|  | if (IS_ERR(handle)) { | 
|  | ext4_std_error(inode->i_sb, PTR_ERR(handle)); | 
|  | /* | 
|  | * If we're going to skip the normal cleanup, we still need to | 
|  | * make sure that the in-core orphan linked list is properly | 
|  | * cleaned up. | 
|  | */ | 
|  | ext4_orphan_del(NULL, inode); | 
|  | if (freeze_protected) | 
|  | sb_end_intwrite(inode->i_sb); | 
|  | goto no_delete; | 
|  | } | 
|  |  | 
|  | if (IS_SYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  |  | 
|  | /* | 
|  | * Set inode->i_size to 0 before calling ext4_truncate(). We need | 
|  | * special handling of symlinks here because i_size is used to | 
|  | * determine whether ext4_inode_info->i_data contains symlink data or | 
|  | * block mappings. Setting i_size to 0 will remove its fast symlink | 
|  | * status. Erase i_data so that it becomes a valid empty block map. | 
|  | */ | 
|  | if (ext4_inode_is_fast_symlink(inode)) | 
|  | memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); | 
|  | inode->i_size = 0; | 
|  | err = ext4_mark_inode_dirty(handle, inode); | 
|  | if (err) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "couldn't mark inode dirty (err %d)", err); | 
|  | goto stop_handle; | 
|  | } | 
|  | if (inode->i_blocks) { | 
|  | err = ext4_truncate(inode); | 
|  | if (err) { | 
|  | ext4_error_err(inode->i_sb, -err, | 
|  | "couldn't truncate inode %lu (err %d)", | 
|  | inode->i_ino, err); | 
|  | goto stop_handle; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remove xattr references. */ | 
|  | err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, | 
|  | extra_credits); | 
|  | if (err) { | 
|  | ext4_warning(inode->i_sb, "xattr delete (err %d)", err); | 
|  | stop_handle: | 
|  | ext4_journal_stop(handle); | 
|  | ext4_orphan_del(NULL, inode); | 
|  | if (freeze_protected) | 
|  | sb_end_intwrite(inode->i_sb); | 
|  | ext4_xattr_inode_array_free(ea_inode_array); | 
|  | goto no_delete; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kill off the orphan record which ext4_truncate created. | 
|  | * AKPM: I think this can be inside the above `if'. | 
|  | * Note that ext4_orphan_del() has to be able to cope with the | 
|  | * deletion of a non-existent orphan - this is because we don't | 
|  | * know if ext4_truncate() actually created an orphan record. | 
|  | * (Well, we could do this if we need to, but heck - it works) | 
|  | */ | 
|  | ext4_orphan_del(handle, inode); | 
|  | EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds(); | 
|  |  | 
|  | /* | 
|  | * One subtle ordering requirement: if anything has gone wrong | 
|  | * (transaction abort, IO errors, whatever), then we can still | 
|  | * do these next steps (the fs will already have been marked as | 
|  | * having errors), but we can't free the inode if the mark_dirty | 
|  | * fails. | 
|  | */ | 
|  | if (ext4_mark_inode_dirty(handle, inode)) | 
|  | /* If that failed, just do the required in-core inode clear. */ | 
|  | ext4_clear_inode(inode); | 
|  | else | 
|  | ext4_free_inode(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | if (freeze_protected) | 
|  | sb_end_intwrite(inode->i_sb); | 
|  | ext4_xattr_inode_array_free(ea_inode_array); | 
|  | return; | 
|  | no_delete: | 
|  | /* | 
|  | * Check out some where else accidentally dirty the evicting inode, | 
|  | * which may probably cause inode use-after-free issues later. | 
|  | */ | 
|  | WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); | 
|  |  | 
|  | if (!list_empty(&EXT4_I(inode)->i_fc_list)) | 
|  | ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); | 
|  | ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_QUOTA | 
|  | qsize_t *ext4_get_reserved_space(struct inode *inode) | 
|  | { | 
|  | return &EXT4_I(inode)->i_reserved_quota; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Called with i_data_sem down, which is important since we can call | 
|  | * ext4_discard_preallocations() from here. | 
|  | */ | 
|  | void ext4_da_update_reserve_space(struct inode *inode, | 
|  | int used, int quota_claim) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  |  | 
|  | spin_lock(&ei->i_block_reservation_lock); | 
|  | trace_ext4_da_update_reserve_space(inode, used, quota_claim); | 
|  | if (unlikely(used > ei->i_reserved_data_blocks)) { | 
|  | ext4_warning(inode->i_sb, "%s: ino %lu, used %d " | 
|  | "with only %d reserved data blocks", | 
|  | __func__, inode->i_ino, used, | 
|  | ei->i_reserved_data_blocks); | 
|  | WARN_ON(1); | 
|  | used = ei->i_reserved_data_blocks; | 
|  | } | 
|  |  | 
|  | /* Update per-inode reservations */ | 
|  | ei->i_reserved_data_blocks -= used; | 
|  | percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); | 
|  |  | 
|  | spin_unlock(&ei->i_block_reservation_lock); | 
|  |  | 
|  | /* Update quota subsystem for data blocks */ | 
|  | if (quota_claim) | 
|  | dquot_claim_block(inode, EXT4_C2B(sbi, used)); | 
|  | else { | 
|  | /* | 
|  | * We did fallocate with an offset that is already delayed | 
|  | * allocated. So on delayed allocated writeback we should | 
|  | * not re-claim the quota for fallocated blocks. | 
|  | */ | 
|  | dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have done all the pending block allocations and if | 
|  | * there aren't any writers on the inode, we can discard the | 
|  | * inode's preallocations. | 
|  | */ | 
|  | if ((ei->i_reserved_data_blocks == 0) && | 
|  | !inode_is_open_for_write(inode)) | 
|  | ext4_discard_preallocations(inode); | 
|  | } | 
|  |  | 
|  | static int __check_block_validity(struct inode *inode, const char *func, | 
|  | unsigned int line, | 
|  | struct ext4_map_blocks *map) | 
|  | { | 
|  | journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; | 
|  |  | 
|  | if (journal && inode == journal->j_inode) | 
|  | return 0; | 
|  |  | 
|  | if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { | 
|  | ext4_error_inode(inode, func, line, map->m_pblk, | 
|  | "lblock %lu mapped to illegal pblock %llu " | 
|  | "(length %d)", (unsigned long) map->m_lblk, | 
|  | map->m_pblk, map->m_len); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, | 
|  | ext4_lblk_t len) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) | 
|  | return fscrypt_zeroout_range(inode, lblk, pblk, len); | 
|  |  | 
|  | ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define check_block_validity(inode, map)	\ | 
|  | __check_block_validity((inode), __func__, __LINE__, (map)) | 
|  |  | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | static void ext4_map_blocks_es_recheck(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_map_blocks *es_map, | 
|  | struct ext4_map_blocks *map, | 
|  | int flags) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | map->m_flags = 0; | 
|  | /* | 
|  | * There is a race window that the result is not the same. | 
|  | * e.g. xfstests #223 when dioread_nolock enables.  The reason | 
|  | * is that we lookup a block mapping in extent status tree with | 
|  | * out taking i_data_sem.  So at the time the unwritten extent | 
|  | * could be converted. | 
|  | */ | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
|  | retval = ext4_ext_map_blocks(handle, inode, map, 0); | 
|  | } else { | 
|  | retval = ext4_ind_map_blocks(handle, inode, map, 0); | 
|  | } | 
|  | up_read((&EXT4_I(inode)->i_data_sem)); | 
|  |  | 
|  | /* | 
|  | * We don't check m_len because extent will be collpased in status | 
|  | * tree.  So the m_len might not equal. | 
|  | */ | 
|  | if (es_map->m_lblk != map->m_lblk || | 
|  | es_map->m_flags != map->m_flags || | 
|  | es_map->m_pblk != map->m_pblk) { | 
|  | printk("ES cache assertion failed for inode: %lu " | 
|  | "es_cached ex [%d/%d/%llu/%x] != " | 
|  | "found ex [%d/%d/%llu/%x] retval %d flags %x\n", | 
|  | inode->i_ino, es_map->m_lblk, es_map->m_len, | 
|  | es_map->m_pblk, es_map->m_flags, map->m_lblk, | 
|  | map->m_len, map->m_pblk, map->m_flags, | 
|  | retval, flags); | 
|  | } | 
|  | } | 
|  | #endif /* ES_AGGRESSIVE_TEST */ | 
|  |  | 
|  | static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, | 
|  | struct ext4_map_blocks *map) | 
|  | { | 
|  | unsigned int status; | 
|  | int retval; | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | retval = ext4_ext_map_blocks(handle, inode, map, 0); | 
|  | else | 
|  | retval = ext4_ind_map_blocks(handle, inode, map, 0); | 
|  |  | 
|  | if (retval <= 0) | 
|  | return retval; | 
|  |  | 
|  | if (unlikely(retval != map->m_len)) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "ES len assertion failed for inode " | 
|  | "%lu: retval %d != map->m_len %d", | 
|  | inode->i_ino, retval, map->m_len); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | status = map->m_flags & EXT4_MAP_UNWRITTEN ? | 
|  | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; | 
|  | ext4_es_insert_extent(inode, map->m_lblk, map->m_len, | 
|  | map->m_pblk, status, false); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, | 
|  | struct ext4_map_blocks *map, int flags) | 
|  | { | 
|  | struct extent_status es; | 
|  | unsigned int status; | 
|  | int err, retval = 0; | 
|  |  | 
|  | /* | 
|  | * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE | 
|  | * indicates that the blocks and quotas has already been | 
|  | * checked when the data was copied into the page cache. | 
|  | */ | 
|  | if (map->m_flags & EXT4_MAP_DELAYED) | 
|  | flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; | 
|  |  | 
|  | /* | 
|  | * Here we clear m_flags because after allocating an new extent, | 
|  | * it will be set again. | 
|  | */ | 
|  | map->m_flags &= ~EXT4_MAP_FLAGS; | 
|  |  | 
|  | /* | 
|  | * We need to check for EXT4 here because migrate could have | 
|  | * changed the inode type in between. | 
|  | */ | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
|  | retval = ext4_ext_map_blocks(handle, inode, map, flags); | 
|  | } else { | 
|  | retval = ext4_ind_map_blocks(handle, inode, map, flags); | 
|  |  | 
|  | /* | 
|  | * We allocated new blocks which will result in i_data's | 
|  | * format changing. Force the migrate to fail by clearing | 
|  | * migrate flags. | 
|  | */ | 
|  | if (retval > 0 && map->m_flags & EXT4_MAP_NEW) | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); | 
|  | } | 
|  | if (retval <= 0) | 
|  | return retval; | 
|  |  | 
|  | if (unlikely(retval != map->m_len)) { | 
|  | ext4_warning(inode->i_sb, | 
|  | "ES len assertion failed for inode %lu: " | 
|  | "retval %d != map->m_len %d", | 
|  | inode->i_ino, retval, map->m_len); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to zeroout blocks before inserting them into extent | 
|  | * status tree. Otherwise someone could look them up there and | 
|  | * use them before they are really zeroed. We also have to | 
|  | * unmap metadata before zeroing as otherwise writeback can | 
|  | * overwrite zeros with stale data from block device. | 
|  | */ | 
|  | if (flags & EXT4_GET_BLOCKS_ZERO && | 
|  | map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { | 
|  | err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk, | 
|  | map->m_len); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the extent has been zeroed out, we don't need to update | 
|  | * extent status tree. | 
|  | */ | 
|  | if (flags & EXT4_GET_BLOCKS_PRE_IO && | 
|  | ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { | 
|  | if (ext4_es_is_written(&es)) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | status = map->m_flags & EXT4_MAP_UNWRITTEN ? | 
|  | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; | 
|  | ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk, | 
|  | status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The ext4_map_blocks() function tries to look up the requested blocks, | 
|  | * and returns if the blocks are already mapped. | 
|  | * | 
|  | * Otherwise it takes the write lock of the i_data_sem and allocate blocks | 
|  | * and store the allocated blocks in the result buffer head and mark it | 
|  | * mapped. | 
|  | * | 
|  | * If file type is extents based, it will call ext4_ext_map_blocks(), | 
|  | * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping | 
|  | * based files | 
|  | * | 
|  | * On success, it returns the number of blocks being mapped or allocated. | 
|  | * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are | 
|  | * pre-allocated and unwritten, the resulting @map is marked as unwritten. | 
|  | * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. | 
|  | * | 
|  | * It returns 0 if plain look up failed (blocks have not been allocated), in | 
|  | * that case, @map is returned as unmapped but we still do fill map->m_len to | 
|  | * indicate the length of a hole starting at map->m_lblk. | 
|  | * | 
|  | * It returns the error in case of allocation failure. | 
|  | */ | 
|  | int ext4_map_blocks(handle_t *handle, struct inode *inode, | 
|  | struct ext4_map_blocks *map, int flags) | 
|  | { | 
|  | struct extent_status es; | 
|  | int retval; | 
|  | int ret = 0; | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | struct ext4_map_blocks orig_map; | 
|  |  | 
|  | memcpy(&orig_map, map, sizeof(*map)); | 
|  | #endif | 
|  |  | 
|  | map->m_flags = 0; | 
|  | ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", | 
|  | flags, map->m_len, (unsigned long) map->m_lblk); | 
|  |  | 
|  | /* | 
|  | * ext4_map_blocks returns an int, and m_len is an unsigned int | 
|  | */ | 
|  | if (unlikely(map->m_len > INT_MAX)) | 
|  | map->m_len = INT_MAX; | 
|  |  | 
|  | /* We can handle the block number less than EXT_MAX_BLOCKS */ | 
|  | if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | /* Lookup extent status tree firstly */ | 
|  | if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && | 
|  | ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { | 
|  | if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { | 
|  | map->m_pblk = ext4_es_pblock(&es) + | 
|  | map->m_lblk - es.es_lblk; | 
|  | map->m_flags |= ext4_es_is_written(&es) ? | 
|  | EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; | 
|  | retval = es.es_len - (map->m_lblk - es.es_lblk); | 
|  | if (retval > map->m_len) | 
|  | retval = map->m_len; | 
|  | map->m_len = retval; | 
|  | } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { | 
|  | map->m_pblk = 0; | 
|  | map->m_flags |= ext4_es_is_delayed(&es) ? | 
|  | EXT4_MAP_DELAYED : 0; | 
|  | retval = es.es_len - (map->m_lblk - es.es_lblk); | 
|  | if (retval > map->m_len) | 
|  | retval = map->m_len; | 
|  | map->m_len = retval; | 
|  | retval = 0; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) | 
|  | return retval; | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | ext4_map_blocks_es_recheck(handle, inode, map, | 
|  | &orig_map, flags); | 
|  | #endif | 
|  | goto found; | 
|  | } | 
|  | /* | 
|  | * In the query cache no-wait mode, nothing we can do more if we | 
|  | * cannot find extent in the cache. | 
|  | */ | 
|  | if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Try to see if we can get the block without requesting a new | 
|  | * file system block. | 
|  | */ | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | retval = ext4_map_query_blocks(handle, inode, map); | 
|  | up_read((&EXT4_I(inode)->i_data_sem)); | 
|  |  | 
|  | found: | 
|  | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { | 
|  | ret = check_block_validity(inode, map); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* If it is only a block(s) look up */ | 
|  | if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Returns if the blocks have already allocated | 
|  | * | 
|  | * Note that if blocks have been preallocated | 
|  | * ext4_ext_map_blocks() returns with buffer head unmapped | 
|  | */ | 
|  | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) | 
|  | /* | 
|  | * If we need to convert extent to unwritten | 
|  | * we continue and do the actual work in | 
|  | * ext4_ext_map_blocks() | 
|  | */ | 
|  | if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * New blocks allocate and/or writing to unwritten extent | 
|  | * will possibly result in updating i_data, so we take | 
|  | * the write lock of i_data_sem, and call get_block() | 
|  | * with create == 1 flag. | 
|  | */ | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | retval = ext4_map_create_blocks(handle, inode, map, flags); | 
|  | up_write((&EXT4_I(inode)->i_data_sem)); | 
|  | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { | 
|  | ret = check_block_validity(inode, map); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Inodes with freshly allocated blocks where contents will be | 
|  | * visible after transaction commit must be on transaction's | 
|  | * ordered data list. | 
|  | */ | 
|  | if (map->m_flags & EXT4_MAP_NEW && | 
|  | !(map->m_flags & EXT4_MAP_UNWRITTEN) && | 
|  | !(flags & EXT4_GET_BLOCKS_ZERO) && | 
|  | !ext4_is_quota_file(inode) && | 
|  | ext4_should_order_data(inode)) { | 
|  | loff_t start_byte = | 
|  | (loff_t)map->m_lblk << inode->i_blkbits; | 
|  | loff_t length = (loff_t)map->m_len << inode->i_blkbits; | 
|  |  | 
|  | if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) | 
|  | ret = ext4_jbd2_inode_add_wait(handle, inode, | 
|  | start_byte, length); | 
|  | else | 
|  | ret = ext4_jbd2_inode_add_write(handle, inode, | 
|  | start_byte, length); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || | 
|  | map->m_flags & EXT4_MAP_MAPPED)) | 
|  | ext4_fc_track_range(handle, inode, map->m_lblk, | 
|  | map->m_lblk + map->m_len - 1); | 
|  | if (retval < 0) | 
|  | ext_debug(inode, "failed with err %d\n", retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages | 
|  | * we have to be careful as someone else may be manipulating b_state as well. | 
|  | */ | 
|  | static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) | 
|  | { | 
|  | unsigned long old_state; | 
|  | unsigned long new_state; | 
|  |  | 
|  | flags &= EXT4_MAP_FLAGS; | 
|  |  | 
|  | /* Dummy buffer_head? Set non-atomically. */ | 
|  | if (!bh->b_folio) { | 
|  | bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * Someone else may be modifying b_state. Be careful! This is ugly but | 
|  | * once we get rid of using bh as a container for mapping information | 
|  | * to pass to / from get_block functions, this can go away. | 
|  | */ | 
|  | old_state = READ_ONCE(bh->b_state); | 
|  | do { | 
|  | new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; | 
|  | } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); | 
|  | } | 
|  |  | 
|  | static int _ext4_get_block(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh, int flags) | 
|  | { | 
|  | struct ext4_map_blocks map; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return -ERANGE; | 
|  |  | 
|  | map.m_lblk = iblock; | 
|  | map.m_len = bh->b_size >> inode->i_blkbits; | 
|  |  | 
|  | ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, | 
|  | flags); | 
|  | if (ret > 0) { | 
|  | map_bh(bh, inode->i_sb, map.m_pblk); | 
|  | ext4_update_bh_state(bh, map.m_flags); | 
|  | bh->b_size = inode->i_sb->s_blocksize * map.m_len; | 
|  | ret = 0; | 
|  | } else if (ret == 0) { | 
|  | /* hole case, need to fill in bh->b_size */ | 
|  | bh->b_size = inode->i_sb->s_blocksize * map.m_len; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ext4_get_block(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh, int create) | 
|  | { | 
|  | return _ext4_get_block(inode, iblock, bh, | 
|  | create ? EXT4_GET_BLOCKS_CREATE : 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get block function used when preparing for buffered write if we require | 
|  | * creating an unwritten extent if blocks haven't been allocated.  The extent | 
|  | * will be converted to written after the IO is complete. | 
|  | */ | 
|  | int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh_result, int create) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", | 
|  | inode->i_ino, create); | 
|  | ret = _ext4_get_block(inode, iblock, bh_result, | 
|  | EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); | 
|  |  | 
|  | /* | 
|  | * If the buffer is marked unwritten, mark it as new to make sure it is | 
|  | * zeroed out correctly in case of partial writes. Otherwise, there is | 
|  | * a chance of stale data getting exposed. | 
|  | */ | 
|  | if (ret == 0 && buffer_unwritten(bh_result)) | 
|  | set_buffer_new(bh_result); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Maximum number of blocks we map for direct IO at once. */ | 
|  | #define DIO_MAX_BLOCKS 4096 | 
|  |  | 
|  | /* | 
|  | * `handle' can be NULL if create is zero | 
|  | */ | 
|  | struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, | 
|  | ext4_lblk_t block, int map_flags) | 
|  | { | 
|  | struct ext4_map_blocks map; | 
|  | struct buffer_head *bh; | 
|  | int create = map_flags & EXT4_GET_BLOCKS_CREATE; | 
|  | bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; | 
|  | int err; | 
|  |  | 
|  | ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) | 
|  | || handle != NULL || create == 0); | 
|  | ASSERT(create == 0 || !nowait); | 
|  |  | 
|  | map.m_lblk = block; | 
|  | map.m_len = 1; | 
|  | err = ext4_map_blocks(handle, inode, &map, map_flags); | 
|  |  | 
|  | if (err == 0) | 
|  | return create ? ERR_PTR(-ENOSPC) : NULL; | 
|  | if (err < 0) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | if (nowait) | 
|  | return sb_find_get_block(inode->i_sb, map.m_pblk); | 
|  |  | 
|  | /* | 
|  | * Since bh could introduce extra ref count such as referred by | 
|  | * journal_head etc. Try to avoid using __GFP_MOVABLE here | 
|  | * as it may fail the migration when journal_head remains. | 
|  | */ | 
|  | bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk, | 
|  | inode->i_sb->s_blocksize); | 
|  |  | 
|  | if (unlikely(!bh)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | if (map.m_flags & EXT4_MAP_NEW) { | 
|  | ASSERT(create != 0); | 
|  | ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) | 
|  | || (handle != NULL)); | 
|  |  | 
|  | /* | 
|  | * Now that we do not always journal data, we should | 
|  | * keep in mind whether this should always journal the | 
|  | * new buffer as metadata.  For now, regular file | 
|  | * writes use ext4_get_block instead, so it's not a | 
|  | * problem. | 
|  | */ | 
|  | lock_buffer(bh); | 
|  | BUFFER_TRACE(bh, "call get_create_access"); | 
|  | err = ext4_journal_get_create_access(handle, inode->i_sb, bh, | 
|  | EXT4_JTR_NONE); | 
|  | if (unlikely(err)) { | 
|  | unlock_buffer(bh); | 
|  | goto errout; | 
|  | } | 
|  | if (!buffer_uptodate(bh)) { | 
|  | memset(bh->b_data, 0, inode->i_sb->s_blocksize); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | unlock_buffer(bh); | 
|  | BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
|  | err = ext4_handle_dirty_metadata(handle, inode, bh); | 
|  | if (unlikely(err)) | 
|  | goto errout; | 
|  | } else | 
|  | BUFFER_TRACE(bh, "not a new buffer"); | 
|  | return bh; | 
|  | errout: | 
|  | brelse(bh); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, | 
|  | ext4_lblk_t block, int map_flags) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | int ret; | 
|  |  | 
|  | bh = ext4_getblk(handle, inode, block, map_flags); | 
|  | if (IS_ERR(bh)) | 
|  | return bh; | 
|  | if (!bh || ext4_buffer_uptodate(bh)) | 
|  | return bh; | 
|  |  | 
|  | ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); | 
|  | if (ret) { | 
|  | put_bh(bh); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return bh; | 
|  | } | 
|  |  | 
|  | /* Read a contiguous batch of blocks. */ | 
|  | int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, | 
|  | bool wait, struct buffer_head **bhs) | 
|  | { | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < bh_count; i++) { | 
|  | bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); | 
|  | if (IS_ERR(bhs[i])) { | 
|  | err = PTR_ERR(bhs[i]); | 
|  | bh_count = i; | 
|  | goto out_brelse; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < bh_count; i++) | 
|  | /* Note that NULL bhs[i] is valid because of holes. */ | 
|  | if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) | 
|  | ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); | 
|  |  | 
|  | if (!wait) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < bh_count; i++) | 
|  | if (bhs[i]) | 
|  | wait_on_buffer(bhs[i]); | 
|  |  | 
|  | for (i = 0; i < bh_count; i++) { | 
|  | if (bhs[i] && !buffer_uptodate(bhs[i])) { | 
|  | err = -EIO; | 
|  | goto out_brelse; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out_brelse: | 
|  | for (i = 0; i < bh_count; i++) { | 
|  | brelse(bhs[i]); | 
|  | bhs[i] = NULL; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, | 
|  | struct buffer_head *head, | 
|  | unsigned from, | 
|  | unsigned to, | 
|  | int *partial, | 
|  | int (*fn)(handle_t *handle, struct inode *inode, | 
|  | struct buffer_head *bh)) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | unsigned block_start, block_end; | 
|  | unsigned blocksize = head->b_size; | 
|  | int err, ret = 0; | 
|  | struct buffer_head *next; | 
|  |  | 
|  | for (bh = head, block_start = 0; | 
|  | ret == 0 && (bh != head || !block_start); | 
|  | block_start = block_end, bh = next) { | 
|  | next = bh->b_this_page; | 
|  | block_end = block_start + blocksize; | 
|  | if (block_end <= from || block_start >= to) { | 
|  | if (partial && !buffer_uptodate(bh)) | 
|  | *partial = 1; | 
|  | continue; | 
|  | } | 
|  | err = (*fn)(handle, inode, bh); | 
|  | if (!ret) | 
|  | ret = err; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for handling dirtying of journalled data. We also mark the folio as | 
|  | * dirty so that writeback code knows about this page (and inode) contains | 
|  | * dirty data. ext4_writepages() then commits appropriate transaction to | 
|  | * make data stable. | 
|  | */ | 
|  | static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) | 
|  | { | 
|  | folio_mark_dirty(bh->b_folio); | 
|  | return ext4_handle_dirty_metadata(handle, NULL, bh); | 
|  | } | 
|  |  | 
|  | int do_journal_get_write_access(handle_t *handle, struct inode *inode, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | if (!buffer_mapped(bh) || buffer_freed(bh)) | 
|  | return 0; | 
|  | BUFFER_TRACE(bh, "get write access"); | 
|  | return ext4_journal_get_write_access(handle, inode->i_sb, bh, | 
|  | EXT4_JTR_NONE); | 
|  | } | 
|  |  | 
|  | int ext4_block_write_begin(handle_t *handle, struct folio *folio, | 
|  | loff_t pos, unsigned len, | 
|  | get_block_t *get_block) | 
|  | { | 
|  | unsigned from = pos & (PAGE_SIZE - 1); | 
|  | unsigned to = from + len; | 
|  | struct inode *inode = folio->mapping->host; | 
|  | unsigned block_start, block_end; | 
|  | sector_t block; | 
|  | int err = 0; | 
|  | unsigned blocksize = inode->i_sb->s_blocksize; | 
|  | unsigned bbits; | 
|  | struct buffer_head *bh, *head, *wait[2]; | 
|  | int nr_wait = 0; | 
|  | int i; | 
|  | bool should_journal_data = ext4_should_journal_data(inode); | 
|  |  | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  | BUG_ON(from > PAGE_SIZE); | 
|  | BUG_ON(to > PAGE_SIZE); | 
|  | BUG_ON(from > to); | 
|  |  | 
|  | head = folio_buffers(folio); | 
|  | if (!head) | 
|  | head = create_empty_buffers(folio, blocksize, 0); | 
|  | bbits = ilog2(blocksize); | 
|  | block = (sector_t)folio->index << (PAGE_SHIFT - bbits); | 
|  |  | 
|  | for (bh = head, block_start = 0; bh != head || !block_start; | 
|  | block++, block_start = block_end, bh = bh->b_this_page) { | 
|  | block_end = block_start + blocksize; | 
|  | if (block_end <= from || block_start >= to) { | 
|  | if (folio_test_uptodate(folio)) { | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (buffer_new(bh)) | 
|  | clear_buffer_new(bh); | 
|  | if (!buffer_mapped(bh)) { | 
|  | WARN_ON(bh->b_size != blocksize); | 
|  | err = get_block(inode, block, bh, 1); | 
|  | if (err) | 
|  | break; | 
|  | if (buffer_new(bh)) { | 
|  | /* | 
|  | * We may be zeroing partial buffers or all new | 
|  | * buffers in case of failure. Prepare JBD2 for | 
|  | * that. | 
|  | */ | 
|  | if (should_journal_data) | 
|  | do_journal_get_write_access(handle, | 
|  | inode, bh); | 
|  | if (folio_test_uptodate(folio)) { | 
|  | /* | 
|  | * Unlike __block_write_begin() we leave | 
|  | * dirtying of new uptodate buffers to | 
|  | * ->write_end() time or | 
|  | * folio_zero_new_buffers(). | 
|  | */ | 
|  | set_buffer_uptodate(bh); | 
|  | continue; | 
|  | } | 
|  | if (block_end > to || block_start < from) | 
|  | folio_zero_segments(folio, to, | 
|  | block_end, | 
|  | block_start, from); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (folio_test_uptodate(folio)) { | 
|  | set_buffer_uptodate(bh); | 
|  | continue; | 
|  | } | 
|  | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | 
|  | !buffer_unwritten(bh) && | 
|  | (block_start < from || block_end > to)) { | 
|  | ext4_read_bh_lock(bh, 0, false); | 
|  | wait[nr_wait++] = bh; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If we issued read requests, let them complete. | 
|  | */ | 
|  | for (i = 0; i < nr_wait; i++) { | 
|  | wait_on_buffer(wait[i]); | 
|  | if (!buffer_uptodate(wait[i])) | 
|  | err = -EIO; | 
|  | } | 
|  | if (unlikely(err)) { | 
|  | if (should_journal_data) | 
|  | ext4_journalled_zero_new_buffers(handle, inode, folio, | 
|  | from, to); | 
|  | else | 
|  | folio_zero_new_buffers(folio, from, to); | 
|  | } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { | 
|  | for (i = 0; i < nr_wait; i++) { | 
|  | int err2; | 
|  |  | 
|  | err2 = fscrypt_decrypt_pagecache_blocks(folio, | 
|  | blocksize, bh_offset(wait[i])); | 
|  | if (err2) { | 
|  | clear_buffer_uptodate(wait[i]); | 
|  | err = err2; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To preserve ordering, it is essential that the hole instantiation and | 
|  | * the data write be encapsulated in a single transaction.  We cannot | 
|  | * close off a transaction and start a new one between the ext4_get_block() | 
|  | * and the ext4_write_end().  So doing the jbd2_journal_start at the start of | 
|  | * ext4_write_begin() is the right place. | 
|  | */ | 
|  | static int ext4_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, | 
|  | struct folio **foliop, void **fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | int ret, needed_blocks; | 
|  | handle_t *handle; | 
|  | int retries = 0; | 
|  | struct folio *folio; | 
|  | pgoff_t index; | 
|  | unsigned from, to; | 
|  |  | 
|  | ret = ext4_emergency_state(inode->i_sb); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | trace_ext4_write_begin(inode, pos, len); | 
|  | /* | 
|  | * Reserve one block more for addition to orphan list in case | 
|  | * we allocate blocks but write fails for some reason | 
|  | */ | 
|  | needed_blocks = ext4_writepage_trans_blocks(inode) + 1; | 
|  | index = pos >> PAGE_SHIFT; | 
|  | from = pos & (PAGE_SIZE - 1); | 
|  | to = from + len; | 
|  |  | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { | 
|  | ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, | 
|  | foliop); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __filemap_get_folio() can take a long time if the | 
|  | * system is thrashing due to memory pressure, or if the folio | 
|  | * is being written back.  So grab it first before we start | 
|  | * the transaction handle.  This also allows us to allocate | 
|  | * the folio (if needed) without using GFP_NOFS. | 
|  | */ | 
|  | retry_grab: | 
|  | folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, | 
|  | mapping_gfp_mask(mapping)); | 
|  | if (IS_ERR(folio)) | 
|  | return PTR_ERR(folio); | 
|  | /* | 
|  | * The same as page allocation, we prealloc buffer heads before | 
|  | * starting the handle. | 
|  | */ | 
|  | if (!folio_buffers(folio)) | 
|  | create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); | 
|  |  | 
|  | folio_unlock(folio); | 
|  |  | 
|  | retry_journal: | 
|  | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); | 
|  | if (IS_ERR(handle)) { | 
|  | folio_put(folio); | 
|  | return PTR_ERR(handle); | 
|  | } | 
|  |  | 
|  | folio_lock(folio); | 
|  | if (folio->mapping != mapping) { | 
|  | /* The folio got truncated from under us */ | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | ext4_journal_stop(handle); | 
|  | goto retry_grab; | 
|  | } | 
|  | /* In case writeback began while the folio was unlocked */ | 
|  | folio_wait_stable(folio); | 
|  |  | 
|  | if (ext4_should_dioread_nolock(inode)) | 
|  | ret = ext4_block_write_begin(handle, folio, pos, len, | 
|  | ext4_get_block_unwritten); | 
|  | else | 
|  | ret = ext4_block_write_begin(handle, folio, pos, len, | 
|  | ext4_get_block); | 
|  | if (!ret && ext4_should_journal_data(inode)) { | 
|  | ret = ext4_walk_page_buffers(handle, inode, | 
|  | folio_buffers(folio), from, to, | 
|  | NULL, do_journal_get_write_access); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | bool extended = (pos + len > inode->i_size) && | 
|  | !ext4_verity_in_progress(inode); | 
|  |  | 
|  | folio_unlock(folio); | 
|  | /* | 
|  | * ext4_block_write_begin may have instantiated a few blocks | 
|  | * outside i_size.  Trim these off again. Don't need | 
|  | * i_size_read because we hold i_rwsem. | 
|  | * | 
|  | * Add inode to orphan list in case we crash before | 
|  | * truncate finishes | 
|  | */ | 
|  | if (extended && ext4_can_truncate(inode)) | 
|  | ext4_orphan_add(handle, inode); | 
|  |  | 
|  | ext4_journal_stop(handle); | 
|  | if (extended) { | 
|  | ext4_truncate_failed_write(inode); | 
|  | /* | 
|  | * If truncate failed early the inode might | 
|  | * still be on the orphan list; we need to | 
|  | * make sure the inode is removed from the | 
|  | * orphan list in that case. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  | } | 
|  |  | 
|  | if (ret == -ENOSPC && | 
|  | ext4_should_retry_alloc(inode->i_sb, &retries)) | 
|  | goto retry_journal; | 
|  | folio_put(folio); | 
|  | return ret; | 
|  | } | 
|  | *foliop = folio; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* For write_end() in data=journal mode */ | 
|  | static int write_end_fn(handle_t *handle, struct inode *inode, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | int ret; | 
|  | if (!buffer_mapped(bh) || buffer_freed(bh)) | 
|  | return 0; | 
|  | set_buffer_uptodate(bh); | 
|  | ret = ext4_dirty_journalled_data(handle, bh); | 
|  | clear_buffer_meta(bh); | 
|  | clear_buffer_prio(bh); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to pick up the new inode size which generic_commit_write gave us | 
|  | * `file' can be NULL - eg, when called from page_symlink(). | 
|  | * | 
|  | * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata | 
|  | * buffers are managed internally. | 
|  | */ | 
|  | static int ext4_write_end(struct file *file, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct folio *folio, void *fsdata) | 
|  | { | 
|  | handle_t *handle = ext4_journal_current_handle(); | 
|  | struct inode *inode = mapping->host; | 
|  | loff_t old_size = inode->i_size; | 
|  | int ret = 0, ret2; | 
|  | int i_size_changed = 0; | 
|  | bool verity = ext4_verity_in_progress(inode); | 
|  |  | 
|  | trace_ext4_write_end(inode, pos, len, copied); | 
|  |  | 
|  | if (ext4_has_inline_data(inode) && | 
|  | ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) | 
|  | return ext4_write_inline_data_end(inode, pos, len, copied, | 
|  | folio); | 
|  |  | 
|  | copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); | 
|  | /* | 
|  | * it's important to update i_size while still holding folio lock: | 
|  | * page writeout could otherwise come in and zero beyond i_size. | 
|  | * | 
|  | * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree | 
|  | * blocks are being written past EOF, so skip the i_size update. | 
|  | */ | 
|  | if (!verity) | 
|  | i_size_changed = ext4_update_inode_size(inode, pos + copied); | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | if (old_size < pos && !verity) { | 
|  | pagecache_isize_extended(inode, old_size, pos); | 
|  | ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); | 
|  | } | 
|  | /* | 
|  | * Don't mark the inode dirty under folio lock. First, it unnecessarily | 
|  | * makes the holding time of folio lock longer. Second, it forces lock | 
|  | * ordering of folio lock and transaction start for journaling | 
|  | * filesystems. | 
|  | */ | 
|  | if (i_size_changed) | 
|  | ret = ext4_mark_inode_dirty(handle, inode); | 
|  |  | 
|  | if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) | 
|  | /* if we have allocated more blocks and copied | 
|  | * less. We will have blocks allocated outside | 
|  | * inode->i_size. So truncate them | 
|  | */ | 
|  | ext4_orphan_add(handle, inode); | 
|  |  | 
|  | ret2 = ext4_journal_stop(handle); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  |  | 
|  | if (pos + len > inode->i_size && !verity) { | 
|  | ext4_truncate_failed_write(inode); | 
|  | /* | 
|  | * If truncate failed early the inode might still be | 
|  | * on the orphan list; we need to make sure the inode | 
|  | * is removed from the orphan list in that case. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  | } | 
|  |  | 
|  | return ret ? ret : copied; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a private version of folio_zero_new_buffers() which doesn't | 
|  | * set the buffer to be dirty, since in data=journalled mode we need | 
|  | * to call ext4_dirty_journalled_data() instead. | 
|  | */ | 
|  | static void ext4_journalled_zero_new_buffers(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct folio *folio, | 
|  | unsigned from, unsigned to) | 
|  | { | 
|  | unsigned int block_start = 0, block_end; | 
|  | struct buffer_head *head, *bh; | 
|  |  | 
|  | bh = head = folio_buffers(folio); | 
|  | do { | 
|  | block_end = block_start + bh->b_size; | 
|  | if (buffer_new(bh)) { | 
|  | if (block_end > from && block_start < to) { | 
|  | if (!folio_test_uptodate(folio)) { | 
|  | unsigned start, size; | 
|  |  | 
|  | start = max(from, block_start); | 
|  | size = min(to, block_end) - start; | 
|  |  | 
|  | folio_zero_range(folio, start, size); | 
|  | } | 
|  | clear_buffer_new(bh); | 
|  | write_end_fn(handle, inode, bh); | 
|  | } | 
|  | } | 
|  | block_start = block_end; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | } | 
|  |  | 
|  | static int ext4_journalled_write_end(struct file *file, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct folio *folio, void *fsdata) | 
|  | { | 
|  | handle_t *handle = ext4_journal_current_handle(); | 
|  | struct inode *inode = mapping->host; | 
|  | loff_t old_size = inode->i_size; | 
|  | int ret = 0, ret2; | 
|  | int partial = 0; | 
|  | unsigned from, to; | 
|  | int size_changed = 0; | 
|  | bool verity = ext4_verity_in_progress(inode); | 
|  |  | 
|  | trace_ext4_journalled_write_end(inode, pos, len, copied); | 
|  | from = pos & (PAGE_SIZE - 1); | 
|  | to = from + len; | 
|  |  | 
|  | BUG_ON(!ext4_handle_valid(handle)); | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return ext4_write_inline_data_end(inode, pos, len, copied, | 
|  | folio); | 
|  |  | 
|  | if (unlikely(copied < len) && !folio_test_uptodate(folio)) { | 
|  | copied = 0; | 
|  | ext4_journalled_zero_new_buffers(handle, inode, folio, | 
|  | from, to); | 
|  | } else { | 
|  | if (unlikely(copied < len)) | 
|  | ext4_journalled_zero_new_buffers(handle, inode, folio, | 
|  | from + copied, to); | 
|  | ret = ext4_walk_page_buffers(handle, inode, | 
|  | folio_buffers(folio), | 
|  | from, from + copied, &partial, | 
|  | write_end_fn); | 
|  | if (!partial) | 
|  | folio_mark_uptodate(folio); | 
|  | } | 
|  | if (!verity) | 
|  | size_changed = ext4_update_inode_size(inode, pos + copied); | 
|  | EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | if (old_size < pos && !verity) { | 
|  | pagecache_isize_extended(inode, old_size, pos); | 
|  | ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size); | 
|  | } | 
|  |  | 
|  | if (size_changed) { | 
|  | ret2 = ext4_mark_inode_dirty(handle, inode); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  | } | 
|  |  | 
|  | if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) | 
|  | /* if we have allocated more blocks and copied | 
|  | * less. We will have blocks allocated outside | 
|  | * inode->i_size. So truncate them | 
|  | */ | 
|  | ext4_orphan_add(handle, inode); | 
|  |  | 
|  | ret2 = ext4_journal_stop(handle); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  | if (pos + len > inode->i_size && !verity) { | 
|  | ext4_truncate_failed_write(inode); | 
|  | /* | 
|  | * If truncate failed early the inode might still be | 
|  | * on the orphan list; we need to make sure the inode | 
|  | * is removed from the orphan list in that case. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  | } | 
|  |  | 
|  | return ret ? ret : copied; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve space for 'nr_resv' clusters | 
|  | */ | 
|  | static int ext4_da_reserve_space(struct inode *inode, int nr_resv) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We will charge metadata quota at writeout time; this saves | 
|  | * us from metadata over-estimation, though we may go over by | 
|  | * a small amount in the end.  Here we just reserve for data. | 
|  | */ | 
|  | ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spin_lock(&ei->i_block_reservation_lock); | 
|  | if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { | 
|  | spin_unlock(&ei->i_block_reservation_lock); | 
|  | dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); | 
|  | return -ENOSPC; | 
|  | } | 
|  | ei->i_reserved_data_blocks += nr_resv; | 
|  | trace_ext4_da_reserve_space(inode, nr_resv); | 
|  | spin_unlock(&ei->i_block_reservation_lock); | 
|  |  | 
|  | return 0;       /* success */ | 
|  | } | 
|  |  | 
|  | void ext4_da_release_space(struct inode *inode, int to_free) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  |  | 
|  | if (!to_free) | 
|  | return;		/* Nothing to release, exit */ | 
|  |  | 
|  | spin_lock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  |  | 
|  | trace_ext4_da_release_space(inode, to_free); | 
|  | if (unlikely(to_free > ei->i_reserved_data_blocks)) { | 
|  | /* | 
|  | * if there aren't enough reserved blocks, then the | 
|  | * counter is messed up somewhere.  Since this | 
|  | * function is called from invalidate page, it's | 
|  | * harmless to return without any action. | 
|  | */ | 
|  | ext4_warning(inode->i_sb, "ext4_da_release_space: " | 
|  | "ino %lu, to_free %d with only %d reserved " | 
|  | "data blocks", inode->i_ino, to_free, | 
|  | ei->i_reserved_data_blocks); | 
|  | WARN_ON(1); | 
|  | to_free = ei->i_reserved_data_blocks; | 
|  | } | 
|  | ei->i_reserved_data_blocks -= to_free; | 
|  |  | 
|  | /* update fs dirty data blocks counter */ | 
|  | percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); | 
|  |  | 
|  | spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
|  |  | 
|  | dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delayed allocation stuff | 
|  | */ | 
|  |  | 
|  | struct mpage_da_data { | 
|  | /* These are input fields for ext4_do_writepages() */ | 
|  | struct inode *inode; | 
|  | struct writeback_control *wbc; | 
|  | unsigned int can_map:1;	/* Can writepages call map blocks? */ | 
|  |  | 
|  | /* These are internal state of ext4_do_writepages() */ | 
|  | pgoff_t first_page;	/* The first page to write */ | 
|  | pgoff_t next_page;	/* Current page to examine */ | 
|  | pgoff_t last_page;	/* Last page to examine */ | 
|  | /* | 
|  | * Extent to map - this can be after first_page because that can be | 
|  | * fully mapped. We somewhat abuse m_flags to store whether the extent | 
|  | * is delalloc or unwritten. | 
|  | */ | 
|  | struct ext4_map_blocks map; | 
|  | struct ext4_io_submit io_submit;	/* IO submission data */ | 
|  | unsigned int do_map:1; | 
|  | unsigned int scanned_until_end:1; | 
|  | unsigned int journalled_more_data:1; | 
|  | }; | 
|  |  | 
|  | static void mpage_release_unused_pages(struct mpage_da_data *mpd, | 
|  | bool invalidate) | 
|  | { | 
|  | unsigned nr, i; | 
|  | pgoff_t index, end; | 
|  | struct folio_batch fbatch; | 
|  | struct inode *inode = mpd->inode; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  |  | 
|  | /* This is necessary when next_page == 0. */ | 
|  | if (mpd->first_page >= mpd->next_page) | 
|  | return; | 
|  |  | 
|  | mpd->scanned_until_end = 0; | 
|  | index = mpd->first_page; | 
|  | end   = mpd->next_page - 1; | 
|  | if (invalidate) { | 
|  | ext4_lblk_t start, last; | 
|  | start = index << (PAGE_SHIFT - inode->i_blkbits); | 
|  | last = end << (PAGE_SHIFT - inode->i_blkbits); | 
|  |  | 
|  | /* | 
|  | * avoid racing with extent status tree scans made by | 
|  | * ext4_insert_delayed_block() | 
|  | */ | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_es_remove_extent(inode, start, last - start + 1); | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | } | 
|  |  | 
|  | folio_batch_init(&fbatch); | 
|  | while (index <= end) { | 
|  | nr = filemap_get_folios(mapping, &index, end, &fbatch); | 
|  | if (nr == 0) | 
|  | break; | 
|  | for (i = 0; i < nr; i++) { | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  |  | 
|  | if (folio->index < mpd->first_page) | 
|  | continue; | 
|  | if (folio_next_index(folio) - 1 > end) | 
|  | continue; | 
|  | BUG_ON(!folio_test_locked(folio)); | 
|  | BUG_ON(folio_test_writeback(folio)); | 
|  | if (invalidate) { | 
|  | if (folio_mapped(folio)) | 
|  | folio_clear_dirty_for_io(folio); | 
|  | block_invalidate_folio(folio, 0, | 
|  | folio_size(folio)); | 
|  | folio_clear_uptodate(folio); | 
|  | } | 
|  | folio_unlock(folio); | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ext4_print_free_blocks(struct inode *inode) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  |  | 
|  | ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", | 
|  | EXT4_C2B(EXT4_SB(inode->i_sb), | 
|  | ext4_count_free_clusters(sb))); | 
|  | ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); | 
|  | ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", | 
|  | (long long) EXT4_C2B(EXT4_SB(sb), | 
|  | percpu_counter_sum(&sbi->s_freeclusters_counter))); | 
|  | ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", | 
|  | (long long) EXT4_C2B(EXT4_SB(sb), | 
|  | percpu_counter_sum(&sbi->s_dirtyclusters_counter))); | 
|  | ext4_msg(sb, KERN_CRIT, "Block reservation details"); | 
|  | ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", | 
|  | ei->i_reserved_data_blocks); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether the cluster containing lblk has been allocated or has | 
|  | * delalloc reservation. | 
|  | * | 
|  | * Returns 0 if the cluster doesn't have either, 1 if it has delalloc | 
|  | * reservation, 2 if it's already been allocated, negative error code on | 
|  | * failure. | 
|  | */ | 
|  | static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | int ret; | 
|  |  | 
|  | /* Has delalloc reservation? */ | 
|  | if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk)) | 
|  | return 1; | 
|  |  | 
|  | /* Already been allocated? */ | 
|  | if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) | 
|  | return 2; | 
|  | ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0) | 
|  | return 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents | 
|  | *                              status tree, incrementing the reserved | 
|  | *                              cluster/block count or making pending | 
|  | *                              reservations where needed | 
|  | * | 
|  | * @inode - file containing the newly added block | 
|  | * @lblk - start logical block to be added | 
|  | * @len - length of blocks to be added | 
|  | * | 
|  | * Returns 0 on success, negative error code on failure. | 
|  | */ | 
|  | static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, | 
|  | ext4_lblk_t len) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | int ret; | 
|  | bool lclu_allocated = false; | 
|  | bool end_allocated = false; | 
|  | ext4_lblk_t resv_clu; | 
|  | ext4_lblk_t end = lblk + len - 1; | 
|  |  | 
|  | /* | 
|  | * If the cluster containing lblk or end is shared with a delayed, | 
|  | * written, or unwritten extent in a bigalloc file system, it's | 
|  | * already been accounted for and does not need to be reserved. | 
|  | * A pending reservation must be made for the cluster if it's | 
|  | * shared with a written or unwritten extent and doesn't already | 
|  | * have one.  Written and unwritten extents can be purged from the | 
|  | * extents status tree if the system is under memory pressure, so | 
|  | * it's necessary to examine the extent tree if a search of the | 
|  | * extents status tree doesn't get a match. | 
|  | */ | 
|  | if (sbi->s_cluster_ratio == 1) { | 
|  | ret = ext4_da_reserve_space(inode, len); | 
|  | if (ret != 0)   /* ENOSPC */ | 
|  | return ret; | 
|  | } else {   /* bigalloc */ | 
|  | resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; | 
|  |  | 
|  | ret = ext4_clu_alloc_state(inode, lblk); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0) { | 
|  | resv_clu--; | 
|  | lclu_allocated = (ret == 2); | 
|  | } | 
|  |  | 
|  | if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { | 
|  | ret = ext4_clu_alloc_state(inode, end); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret > 0) { | 
|  | resv_clu--; | 
|  | end_allocated = (ret == 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (resv_clu) { | 
|  | ret = ext4_da_reserve_space(inode, resv_clu); | 
|  | if (ret != 0)   /* ENOSPC */ | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, | 
|  | end_allocated); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Looks up the requested blocks and sets the delalloc extent map. | 
|  | * First try to look up for the extent entry that contains the requested | 
|  | * blocks in the extent status tree without i_data_sem, then try to look | 
|  | * up for the ondisk extent mapping with i_data_sem in read mode, | 
|  | * finally hold i_data_sem in write mode, looks up again and add a | 
|  | * delalloc extent entry if it still couldn't find any extent. Pass out | 
|  | * the mapped extent through @map and return 0 on success. | 
|  | */ | 
|  | static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) | 
|  | { | 
|  | struct extent_status es; | 
|  | int retval; | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | struct ext4_map_blocks orig_map; | 
|  |  | 
|  | memcpy(&orig_map, map, sizeof(*map)); | 
|  | #endif | 
|  |  | 
|  | map->m_flags = 0; | 
|  | ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, | 
|  | (unsigned long) map->m_lblk); | 
|  |  | 
|  | /* Lookup extent status tree firstly */ | 
|  | if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { | 
|  | map->m_len = min_t(unsigned int, map->m_len, | 
|  | es.es_len - (map->m_lblk - es.es_lblk)); | 
|  |  | 
|  | if (ext4_es_is_hole(&es)) | 
|  | goto add_delayed; | 
|  |  | 
|  | found: | 
|  | /* | 
|  | * Delayed extent could be allocated by fallocate. | 
|  | * So we need to check it. | 
|  | */ | 
|  | if (ext4_es_is_delayed(&es)) { | 
|  | map->m_flags |= EXT4_MAP_DELAYED; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; | 
|  | if (ext4_es_is_written(&es)) | 
|  | map->m_flags |= EXT4_MAP_MAPPED; | 
|  | else if (ext4_es_is_unwritten(&es)) | 
|  | map->m_flags |= EXT4_MAP_UNWRITTEN; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | #ifdef ES_AGGRESSIVE_TEST | 
|  | ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to see if we can get the block without requesting a new | 
|  | * file system block. | 
|  | */ | 
|  | down_read(&EXT4_I(inode)->i_data_sem); | 
|  | if (ext4_has_inline_data(inode)) | 
|  | retval = 0; | 
|  | else | 
|  | retval = ext4_map_query_blocks(NULL, inode, map); | 
|  | up_read(&EXT4_I(inode)->i_data_sem); | 
|  | if (retval) | 
|  | return retval < 0 ? retval : 0; | 
|  |  | 
|  | add_delayed: | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | /* | 
|  | * Page fault path (ext4_page_mkwrite does not take i_rwsem) | 
|  | * and fallocate path (no folio lock) can race. Make sure we | 
|  | * lookup the extent status tree here again while i_data_sem | 
|  | * is held in write mode, before inserting a new da entry in | 
|  | * the extent status tree. | 
|  | */ | 
|  | if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { | 
|  | map->m_len = min_t(unsigned int, map->m_len, | 
|  | es.es_len - (map->m_lblk - es.es_lblk)); | 
|  |  | 
|  | if (!ext4_es_is_hole(&es)) { | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | goto found; | 
|  | } | 
|  | } else if (!ext4_has_inline_data(inode)) { | 
|  | retval = ext4_map_query_blocks(NULL, inode, map); | 
|  | if (retval) { | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | return retval < 0 ? retval : 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | map->m_flags |= EXT4_MAP_DELAYED; | 
|  | retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a special get_block_t callback which is used by | 
|  | * ext4_da_write_begin().  It will either return mapped block or | 
|  | * reserve space for a single block. | 
|  | * | 
|  | * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. | 
|  | * We also have b_blocknr = -1 and b_bdev initialized properly | 
|  | * | 
|  | * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. | 
|  | * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev | 
|  | * initialized properly. | 
|  | */ | 
|  | int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, | 
|  | struct buffer_head *bh, int create) | 
|  | { | 
|  | struct ext4_map_blocks map; | 
|  | sector_t invalid_block = ~((sector_t) 0xffff); | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(create == 0); | 
|  | BUG_ON(bh->b_size != inode->i_sb->s_blocksize); | 
|  |  | 
|  | if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) | 
|  | invalid_block = ~0; | 
|  |  | 
|  | map.m_lblk = iblock; | 
|  | map.m_len = 1; | 
|  |  | 
|  | /* | 
|  | * first, we need to know whether the block is allocated already | 
|  | * preallocated blocks are unmapped but should treated | 
|  | * the same as allocated blocks. | 
|  | */ | 
|  | ret = ext4_da_map_blocks(inode, &map); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (map.m_flags & EXT4_MAP_DELAYED) { | 
|  | map_bh(bh, inode->i_sb, invalid_block); | 
|  | set_buffer_new(bh); | 
|  | set_buffer_delay(bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | map_bh(bh, inode->i_sb, map.m_pblk); | 
|  | ext4_update_bh_state(bh, map.m_flags); | 
|  |  | 
|  | if (buffer_unwritten(bh)) { | 
|  | /* A delayed write to unwritten bh should be marked | 
|  | * new and mapped.  Mapped ensures that we don't do | 
|  | * get_block multiple times when we write to the same | 
|  | * offset and new ensures that we do proper zero out | 
|  | * for partial write. | 
|  | */ | 
|  | set_buffer_new(bh); | 
|  | set_buffer_mapped(bh); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) | 
|  | { | 
|  | mpd->first_page += folio_nr_pages(folio); | 
|  | folio_unlock(folio); | 
|  | } | 
|  |  | 
|  | static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) | 
|  | { | 
|  | size_t len; | 
|  | loff_t size; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(folio->index != mpd->first_page); | 
|  | folio_clear_dirty_for_io(folio); | 
|  | /* | 
|  | * We have to be very careful here!  Nothing protects writeback path | 
|  | * against i_size changes and the page can be writeably mapped into | 
|  | * page tables. So an application can be growing i_size and writing | 
|  | * data through mmap while writeback runs. folio_clear_dirty_for_io() | 
|  | * write-protects our page in page tables and the page cannot get | 
|  | * written to again until we release folio lock. So only after | 
|  | * folio_clear_dirty_for_io() we are safe to sample i_size for | 
|  | * ext4_bio_write_folio() to zero-out tail of the written page. We rely | 
|  | * on the barrier provided by folio_test_clear_dirty() in | 
|  | * folio_clear_dirty_for_io() to make sure i_size is really sampled only | 
|  | * after page tables are updated. | 
|  | */ | 
|  | size = i_size_read(mpd->inode); | 
|  | len = folio_size(folio); | 
|  | if (folio_pos(folio) + len > size && | 
|  | !ext4_verity_in_progress(mpd->inode)) | 
|  | len = size & (len - 1); | 
|  | err = ext4_bio_write_folio(&mpd->io_submit, folio, len); | 
|  | if (!err) | 
|  | mpd->wbc->nr_to_write--; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) | 
|  |  | 
|  | /* | 
|  | * mballoc gives us at most this number of blocks... | 
|  | * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). | 
|  | * The rest of mballoc seems to handle chunks up to full group size. | 
|  | */ | 
|  | #define MAX_WRITEPAGES_EXTENT_LEN 2048 | 
|  |  | 
|  | /* | 
|  | * mpage_add_bh_to_extent - try to add bh to extent of blocks to map | 
|  | * | 
|  | * @mpd - extent of blocks | 
|  | * @lblk - logical number of the block in the file | 
|  | * @bh - buffer head we want to add to the extent | 
|  | * | 
|  | * The function is used to collect contig. blocks in the same state. If the | 
|  | * buffer doesn't require mapping for writeback and we haven't started the | 
|  | * extent of buffers to map yet, the function returns 'true' immediately - the | 
|  | * caller can write the buffer right away. Otherwise the function returns true | 
|  | * if the block has been added to the extent, false if the block couldn't be | 
|  | * added. | 
|  | */ | 
|  | static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | struct ext4_map_blocks *map = &mpd->map; | 
|  |  | 
|  | /* Buffer that doesn't need mapping for writeback? */ | 
|  | if (!buffer_dirty(bh) || !buffer_mapped(bh) || | 
|  | (!buffer_delay(bh) && !buffer_unwritten(bh))) { | 
|  | /* So far no extent to map => we write the buffer right away */ | 
|  | if (map->m_len == 0) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* First block in the extent? */ | 
|  | if (map->m_len == 0) { | 
|  | /* We cannot map unless handle is started... */ | 
|  | if (!mpd->do_map) | 
|  | return false; | 
|  | map->m_lblk = lblk; | 
|  | map->m_len = 1; | 
|  | map->m_flags = bh->b_state & BH_FLAGS; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Don't go larger than mballoc is willing to allocate */ | 
|  | if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) | 
|  | return false; | 
|  |  | 
|  | /* Can we merge the block to our big extent? */ | 
|  | if (lblk == map->m_lblk + map->m_len && | 
|  | (bh->b_state & BH_FLAGS) == map->m_flags) { | 
|  | map->m_len++; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_process_page_bufs - submit page buffers for IO or add them to extent | 
|  | * | 
|  | * @mpd - extent of blocks for mapping | 
|  | * @head - the first buffer in the page | 
|  | * @bh - buffer we should start processing from | 
|  | * @lblk - logical number of the block in the file corresponding to @bh | 
|  | * | 
|  | * Walk through page buffers from @bh upto @head (exclusive) and either submit | 
|  | * the page for IO if all buffers in this page were mapped and there's no | 
|  | * accumulated extent of buffers to map or add buffers in the page to the | 
|  | * extent of buffers to map. The function returns 1 if the caller can continue | 
|  | * by processing the next page, 0 if it should stop adding buffers to the | 
|  | * extent to map because we cannot extend it anymore. It can also return value | 
|  | * < 0 in case of error during IO submission. | 
|  | */ | 
|  | static int mpage_process_page_bufs(struct mpage_da_data *mpd, | 
|  | struct buffer_head *head, | 
|  | struct buffer_head *bh, | 
|  | ext4_lblk_t lblk) | 
|  | { | 
|  | struct inode *inode = mpd->inode; | 
|  | int err; | 
|  | ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) | 
|  | >> inode->i_blkbits; | 
|  |  | 
|  | if (ext4_verity_in_progress(inode)) | 
|  | blocks = EXT_MAX_BLOCKS; | 
|  |  | 
|  | do { | 
|  | BUG_ON(buffer_locked(bh)); | 
|  |  | 
|  | if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { | 
|  | /* Found extent to map? */ | 
|  | if (mpd->map.m_len) | 
|  | return 0; | 
|  | /* Buffer needs mapping and handle is not started? */ | 
|  | if (!mpd->do_map) | 
|  | return 0; | 
|  | /* Everything mapped so far and we hit EOF */ | 
|  | break; | 
|  | } | 
|  | } while (lblk++, (bh = bh->b_this_page) != head); | 
|  | /* So far everything mapped? Submit the page for IO. */ | 
|  | if (mpd->map.m_len == 0) { | 
|  | err = mpage_submit_folio(mpd, head->b_folio); | 
|  | if (err < 0) | 
|  | return err; | 
|  | mpage_folio_done(mpd, head->b_folio); | 
|  | } | 
|  | if (lblk >= blocks) { | 
|  | mpd->scanned_until_end = 1; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_process_folio - update folio buffers corresponding to changed extent | 
|  | *			 and may submit fully mapped page for IO | 
|  | * @mpd: description of extent to map, on return next extent to map | 
|  | * @folio: Contains these buffers. | 
|  | * @m_lblk: logical block mapping. | 
|  | * @m_pblk: corresponding physical mapping. | 
|  | * @map_bh: determines on return whether this page requires any further | 
|  | *		  mapping or not. | 
|  | * | 
|  | * Scan given folio buffers corresponding to changed extent and update buffer | 
|  | * state according to new extent state. | 
|  | * We map delalloc buffers to their physical location, clear unwritten bits. | 
|  | * If the given folio is not fully mapped, we update @mpd to the next extent in | 
|  | * the given folio that needs mapping & return @map_bh as true. | 
|  | */ | 
|  | static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, | 
|  | ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, | 
|  | bool *map_bh) | 
|  | { | 
|  | struct buffer_head *head, *bh; | 
|  | ext4_io_end_t *io_end = mpd->io_submit.io_end; | 
|  | ext4_lblk_t lblk = *m_lblk; | 
|  | ext4_fsblk_t pblock = *m_pblk; | 
|  | int err = 0; | 
|  | int blkbits = mpd->inode->i_blkbits; | 
|  | ssize_t io_end_size = 0; | 
|  | struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); | 
|  |  | 
|  | bh = head = folio_buffers(folio); | 
|  | do { | 
|  | if (lblk < mpd->map.m_lblk) | 
|  | continue; | 
|  | if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { | 
|  | /* | 
|  | * Buffer after end of mapped extent. | 
|  | * Find next buffer in the folio to map. | 
|  | */ | 
|  | mpd->map.m_len = 0; | 
|  | mpd->map.m_flags = 0; | 
|  | io_end_vec->size += io_end_size; | 
|  |  | 
|  | err = mpage_process_page_bufs(mpd, head, bh, lblk); | 
|  | if (err > 0) | 
|  | err = 0; | 
|  | if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { | 
|  | io_end_vec = ext4_alloc_io_end_vec(io_end); | 
|  | if (IS_ERR(io_end_vec)) { | 
|  | err = PTR_ERR(io_end_vec); | 
|  | goto out; | 
|  | } | 
|  | io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; | 
|  | } | 
|  | *map_bh = true; | 
|  | goto out; | 
|  | } | 
|  | if (buffer_delay(bh)) { | 
|  | clear_buffer_delay(bh); | 
|  | bh->b_blocknr = pblock++; | 
|  | } | 
|  | clear_buffer_unwritten(bh); | 
|  | io_end_size += (1 << blkbits); | 
|  | } while (lblk++, (bh = bh->b_this_page) != head); | 
|  |  | 
|  | io_end_vec->size += io_end_size; | 
|  | *map_bh = false; | 
|  | out: | 
|  | *m_lblk = lblk; | 
|  | *m_pblk = pblock; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_map_buffers - update buffers corresponding to changed extent and | 
|  | *		       submit fully mapped pages for IO | 
|  | * | 
|  | * @mpd - description of extent to map, on return next extent to map | 
|  | * | 
|  | * Scan buffers corresponding to changed extent (we expect corresponding pages | 
|  | * to be already locked) and update buffer state according to new extent state. | 
|  | * We map delalloc buffers to their physical location, clear unwritten bits, | 
|  | * and mark buffers as uninit when we perform writes to unwritten extents | 
|  | * and do extent conversion after IO is finished. If the last page is not fully | 
|  | * mapped, we update @map to the next extent in the last page that needs | 
|  | * mapping. Otherwise we submit the page for IO. | 
|  | */ | 
|  | static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) | 
|  | { | 
|  | struct folio_batch fbatch; | 
|  | unsigned nr, i; | 
|  | struct inode *inode = mpd->inode; | 
|  | int bpp_bits = PAGE_SHIFT - inode->i_blkbits; | 
|  | pgoff_t start, end; | 
|  | ext4_lblk_t lblk; | 
|  | ext4_fsblk_t pblock; | 
|  | int err; | 
|  | bool map_bh = false; | 
|  |  | 
|  | start = mpd->map.m_lblk >> bpp_bits; | 
|  | end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; | 
|  | lblk = start << bpp_bits; | 
|  | pblock = mpd->map.m_pblk; | 
|  |  | 
|  | folio_batch_init(&fbatch); | 
|  | while (start <= end) { | 
|  | nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); | 
|  | if (nr == 0) | 
|  | break; | 
|  | for (i = 0; i < nr; i++) { | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  |  | 
|  | err = mpage_process_folio(mpd, folio, &lblk, &pblock, | 
|  | &map_bh); | 
|  | /* | 
|  | * If map_bh is true, means page may require further bh | 
|  | * mapping, or maybe the page was submitted for IO. | 
|  | * So we return to call further extent mapping. | 
|  | */ | 
|  | if (err < 0 || map_bh) | 
|  | goto out; | 
|  | /* Page fully mapped - let IO run! */ | 
|  | err = mpage_submit_folio(mpd, folio); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | mpage_folio_done(mpd, folio); | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | } | 
|  | /* Extent fully mapped and matches with page boundary. We are done. */ | 
|  | mpd->map.m_len = 0; | 
|  | mpd->map.m_flags = 0; | 
|  | return 0; | 
|  | out: | 
|  | folio_batch_release(&fbatch); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) | 
|  | { | 
|  | struct inode *inode = mpd->inode; | 
|  | struct ext4_map_blocks *map = &mpd->map; | 
|  | int get_blocks_flags; | 
|  | int err, dioread_nolock; | 
|  |  | 
|  | trace_ext4_da_write_pages_extent(inode, map); | 
|  | /* | 
|  | * Call ext4_map_blocks() to allocate any delayed allocation blocks, or | 
|  | * to convert an unwritten extent to be initialized (in the case | 
|  | * where we have written into one or more preallocated blocks).  It is | 
|  | * possible that we're going to need more metadata blocks than | 
|  | * previously reserved. However we must not fail because we're in | 
|  | * writeback and there is nothing we can do about it so it might result | 
|  | * in data loss.  So use reserved blocks to allocate metadata if | 
|  | * possible. | 
|  | */ | 
|  | get_blocks_flags = EXT4_GET_BLOCKS_CREATE | | 
|  | EXT4_GET_BLOCKS_METADATA_NOFAIL | | 
|  | EXT4_GET_BLOCKS_IO_SUBMIT; | 
|  | dioread_nolock = ext4_should_dioread_nolock(inode); | 
|  | if (dioread_nolock) | 
|  | get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; | 
|  |  | 
|  | err = ext4_map_blocks(handle, inode, map, get_blocks_flags); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { | 
|  | if (!mpd->io_submit.io_end->handle && | 
|  | ext4_handle_valid(handle)) { | 
|  | mpd->io_submit.io_end->handle = handle->h_rsv_handle; | 
|  | handle->h_rsv_handle = NULL; | 
|  | } | 
|  | ext4_set_io_unwritten_flag(mpd->io_submit.io_end); | 
|  | } | 
|  |  | 
|  | BUG_ON(map->m_len == 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length | 
|  | *				 mpd->len and submit pages underlying it for IO | 
|  | * | 
|  | * @handle - handle for journal operations | 
|  | * @mpd - extent to map | 
|  | * @give_up_on_write - we set this to true iff there is a fatal error and there | 
|  | *                     is no hope of writing the data. The caller should discard | 
|  | *                     dirty pages to avoid infinite loops. | 
|  | * | 
|  | * The function maps extent starting at mpd->lblk of length mpd->len. If it is | 
|  | * delayed, blocks are allocated, if it is unwritten, we may need to convert | 
|  | * them to initialized or split the described range from larger unwritten | 
|  | * extent. Note that we need not map all the described range since allocation | 
|  | * can return less blocks or the range is covered by more unwritten extents. We | 
|  | * cannot map more because we are limited by reserved transaction credits. On | 
|  | * the other hand we always make sure that the last touched page is fully | 
|  | * mapped so that it can be written out (and thus forward progress is | 
|  | * guaranteed). After mapping we submit all mapped pages for IO. | 
|  | */ | 
|  | static int mpage_map_and_submit_extent(handle_t *handle, | 
|  | struct mpage_da_data *mpd, | 
|  | bool *give_up_on_write) | 
|  | { | 
|  | struct inode *inode = mpd->inode; | 
|  | struct ext4_map_blocks *map = &mpd->map; | 
|  | int err; | 
|  | loff_t disksize; | 
|  | int progress = 0; | 
|  | ext4_io_end_t *io_end = mpd->io_submit.io_end; | 
|  | struct ext4_io_end_vec *io_end_vec; | 
|  |  | 
|  | io_end_vec = ext4_alloc_io_end_vec(io_end); | 
|  | if (IS_ERR(io_end_vec)) | 
|  | return PTR_ERR(io_end_vec); | 
|  | io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; | 
|  | do { | 
|  | err = mpage_map_one_extent(handle, mpd); | 
|  | if (err < 0) { | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | if (ext4_emergency_state(sb)) | 
|  | goto invalidate_dirty_pages; | 
|  | /* | 
|  | * Let the uper layers retry transient errors. | 
|  | * In the case of ENOSPC, if ext4_count_free_blocks() | 
|  | * is non-zero, a commit should free up blocks. | 
|  | */ | 
|  | if ((err == -ENOMEM) || | 
|  | (err == -ENOSPC && ext4_count_free_clusters(sb))) { | 
|  | if (progress) | 
|  | goto update_disksize; | 
|  | return err; | 
|  | } | 
|  | ext4_msg(sb, KERN_CRIT, | 
|  | "Delayed block allocation failed for " | 
|  | "inode %lu at logical offset %llu with" | 
|  | " max blocks %u with error %d", | 
|  | inode->i_ino, | 
|  | (unsigned long long)map->m_lblk, | 
|  | (unsigned)map->m_len, -err); | 
|  | ext4_msg(sb, KERN_CRIT, | 
|  | "This should not happen!! Data will " | 
|  | "be lost\n"); | 
|  | if (err == -ENOSPC) | 
|  | ext4_print_free_blocks(inode); | 
|  | invalidate_dirty_pages: | 
|  | *give_up_on_write = true; | 
|  | return err; | 
|  | } | 
|  | progress = 1; | 
|  | /* | 
|  | * Update buffer state, submit mapped pages, and get us new | 
|  | * extent to map | 
|  | */ | 
|  | err = mpage_map_and_submit_buffers(mpd); | 
|  | if (err < 0) | 
|  | goto update_disksize; | 
|  | } while (map->m_len); | 
|  |  | 
|  | update_disksize: | 
|  | /* | 
|  | * Update on-disk size after IO is submitted.  Races with | 
|  | * truncate are avoided by checking i_size under i_data_sem. | 
|  | */ | 
|  | disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; | 
|  | if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { | 
|  | int err2; | 
|  | loff_t i_size; | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | i_size = i_size_read(inode); | 
|  | if (disksize > i_size) | 
|  | disksize = i_size; | 
|  | if (disksize > EXT4_I(inode)->i_disksize) | 
|  | EXT4_I(inode)->i_disksize = disksize; | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | err2 = ext4_mark_inode_dirty(handle, inode); | 
|  | if (err2) { | 
|  | ext4_error_err(inode->i_sb, -err2, | 
|  | "Failed to mark inode %lu dirty", | 
|  | inode->i_ino); | 
|  | } | 
|  | if (!err) | 
|  | err = err2; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the total number of credits to reserve for one writepages | 
|  | * iteration. This is called from ext4_writepages(). We map an extent of | 
|  | * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping | 
|  | * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + | 
|  | * bpp - 1 blocks in bpp different extents. | 
|  | */ | 
|  | static int ext4_da_writepages_trans_blocks(struct inode *inode) | 
|  | { | 
|  | int bpp = ext4_journal_blocks_per_page(inode); | 
|  |  | 
|  | return ext4_meta_trans_blocks(inode, | 
|  | MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); | 
|  | } | 
|  |  | 
|  | static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, | 
|  | size_t len) | 
|  | { | 
|  | struct buffer_head *page_bufs = folio_buffers(folio); | 
|  | struct inode *inode = folio->mapping->host; | 
|  | int ret, err; | 
|  |  | 
|  | ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, | 
|  | NULL, do_journal_get_write_access); | 
|  | err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, | 
|  | NULL, write_end_fn); | 
|  | if (ret == 0) | 
|  | ret = err; | 
|  | err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); | 
|  | if (ret == 0) | 
|  | ret = err; | 
|  | EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mpage_journal_page_buffers(handle_t *handle, | 
|  | struct mpage_da_data *mpd, | 
|  | struct folio *folio) | 
|  | { | 
|  | struct inode *inode = mpd->inode; | 
|  | loff_t size = i_size_read(inode); | 
|  | size_t len = folio_size(folio); | 
|  |  | 
|  | folio_clear_checked(folio); | 
|  | mpd->wbc->nr_to_write--; | 
|  |  | 
|  | if (folio_pos(folio) + len > size && | 
|  | !ext4_verity_in_progress(inode)) | 
|  | len = size & (len - 1); | 
|  |  | 
|  | return ext4_journal_folio_buffers(handle, folio, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages | 
|  | * 				 needing mapping, submit mapped pages | 
|  | * | 
|  | * @mpd - where to look for pages | 
|  | * | 
|  | * Walk dirty pages in the mapping. If they are fully mapped, submit them for | 
|  | * IO immediately. If we cannot map blocks, we submit just already mapped | 
|  | * buffers in the page for IO and keep page dirty. When we can map blocks and | 
|  | * we find a page which isn't mapped we start accumulating extent of buffers | 
|  | * underlying these pages that needs mapping (formed by either delayed or | 
|  | * unwritten buffers). We also lock the pages containing these buffers. The | 
|  | * extent found is returned in @mpd structure (starting at mpd->lblk with | 
|  | * length mpd->len blocks). | 
|  | * | 
|  | * Note that this function can attach bios to one io_end structure which are | 
|  | * neither logically nor physically contiguous. Although it may seem as an | 
|  | * unnecessary complication, it is actually inevitable in blocksize < pagesize | 
|  | * case as we need to track IO to all buffers underlying a page in one io_end. | 
|  | */ | 
|  | static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) | 
|  | { | 
|  | struct address_space *mapping = mpd->inode->i_mapping; | 
|  | struct folio_batch fbatch; | 
|  | unsigned int nr_folios; | 
|  | pgoff_t index = mpd->first_page; | 
|  | pgoff_t end = mpd->last_page; | 
|  | xa_mark_t tag; | 
|  | int i, err = 0; | 
|  | int blkbits = mpd->inode->i_blkbits; | 
|  | ext4_lblk_t lblk; | 
|  | struct buffer_head *head; | 
|  | handle_t *handle = NULL; | 
|  | int bpp = ext4_journal_blocks_per_page(mpd->inode); | 
|  |  | 
|  | if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) | 
|  | tag = PAGECACHE_TAG_TOWRITE; | 
|  | else | 
|  | tag = PAGECACHE_TAG_DIRTY; | 
|  |  | 
|  | mpd->map.m_len = 0; | 
|  | mpd->next_page = index; | 
|  | if (ext4_should_journal_data(mpd->inode)) { | 
|  | handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, | 
|  | bpp); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  | } | 
|  | folio_batch_init(&fbatch); | 
|  | while (index <= end) { | 
|  | nr_folios = filemap_get_folios_tag(mapping, &index, end, | 
|  | tag, &fbatch); | 
|  | if (nr_folios == 0) | 
|  | break; | 
|  |  | 
|  | for (i = 0; i < nr_folios; i++) { | 
|  | struct folio *folio = fbatch.folios[i]; | 
|  |  | 
|  | /* | 
|  | * Accumulated enough dirty pages? This doesn't apply | 
|  | * to WB_SYNC_ALL mode. For integrity sync we have to | 
|  | * keep going because someone may be concurrently | 
|  | * dirtying pages, and we might have synced a lot of | 
|  | * newly appeared dirty pages, but have not synced all | 
|  | * of the old dirty pages. | 
|  | */ | 
|  | if (mpd->wbc->sync_mode == WB_SYNC_NONE && | 
|  | mpd->wbc->nr_to_write <= | 
|  | mpd->map.m_len >> (PAGE_SHIFT - blkbits)) | 
|  | goto out; | 
|  |  | 
|  | /* If we can't merge this page, we are done. */ | 
|  | if (mpd->map.m_len > 0 && mpd->next_page != folio->index) | 
|  | goto out; | 
|  |  | 
|  | if (handle) { | 
|  | err = ext4_journal_ensure_credits(handle, bpp, | 
|  | 0); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | folio_lock(folio); | 
|  | /* | 
|  | * If the page is no longer dirty, or its mapping no | 
|  | * longer corresponds to inode we are writing (which | 
|  | * means it has been truncated or invalidated), or the | 
|  | * page is already under writeback and we are not doing | 
|  | * a data integrity writeback, skip the page | 
|  | */ | 
|  | if (!folio_test_dirty(folio) || | 
|  | (folio_test_writeback(folio) && | 
|  | (mpd->wbc->sync_mode == WB_SYNC_NONE)) || | 
|  | unlikely(folio->mapping != mapping)) { | 
|  | folio_unlock(folio); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | folio_wait_writeback(folio); | 
|  | BUG_ON(folio_test_writeback(folio)); | 
|  |  | 
|  | /* | 
|  | * Should never happen but for buggy code in | 
|  | * other subsystems that call | 
|  | * set_page_dirty() without properly warning | 
|  | * the file system first.  See [1] for more | 
|  | * information. | 
|  | * | 
|  | * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz | 
|  | */ | 
|  | if (!folio_buffers(folio)) { | 
|  | ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); | 
|  | folio_clear_dirty(folio); | 
|  | folio_unlock(folio); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (mpd->map.m_len == 0) | 
|  | mpd->first_page = folio->index; | 
|  | mpd->next_page = folio_next_index(folio); | 
|  | /* | 
|  | * Writeout when we cannot modify metadata is simple. | 
|  | * Just submit the page. For data=journal mode we | 
|  | * first handle writeout of the page for checkpoint and | 
|  | * only after that handle delayed page dirtying. This | 
|  | * makes sure current data is checkpointed to the final | 
|  | * location before possibly journalling it again which | 
|  | * is desirable when the page is frequently dirtied | 
|  | * through a pin. | 
|  | */ | 
|  | if (!mpd->can_map) { | 
|  | err = mpage_submit_folio(mpd, folio); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | /* Pending dirtying of journalled data? */ | 
|  | if (folio_test_checked(folio)) { | 
|  | err = mpage_journal_page_buffers(handle, | 
|  | mpd, folio); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | mpd->journalled_more_data = 1; | 
|  | } | 
|  | mpage_folio_done(mpd, folio); | 
|  | } else { | 
|  | /* Add all dirty buffers to mpd */ | 
|  | lblk = ((ext4_lblk_t)folio->index) << | 
|  | (PAGE_SHIFT - blkbits); | 
|  | head = folio_buffers(folio); | 
|  | err = mpage_process_page_bufs(mpd, head, head, | 
|  | lblk); | 
|  | if (err <= 0) | 
|  | goto out; | 
|  | err = 0; | 
|  | } | 
|  | } | 
|  | folio_batch_release(&fbatch); | 
|  | cond_resched(); | 
|  | } | 
|  | mpd->scanned_until_end = 1; | 
|  | if (handle) | 
|  | ext4_journal_stop(handle); | 
|  | return 0; | 
|  | out: | 
|  | folio_batch_release(&fbatch); | 
|  | if (handle) | 
|  | ext4_journal_stop(handle); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ext4_do_writepages(struct mpage_da_data *mpd) | 
|  | { | 
|  | struct writeback_control *wbc = mpd->wbc; | 
|  | pgoff_t	writeback_index = 0; | 
|  | long nr_to_write = wbc->nr_to_write; | 
|  | int range_whole = 0; | 
|  | int cycled = 1; | 
|  | handle_t *handle = NULL; | 
|  | struct inode *inode = mpd->inode; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | int needed_blocks, rsv_blocks = 0, ret = 0; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); | 
|  | struct blk_plug plug; | 
|  | bool give_up_on_write = false; | 
|  |  | 
|  | trace_ext4_writepages(inode, wbc); | 
|  |  | 
|  | /* | 
|  | * No pages to write? This is mainly a kludge to avoid starting | 
|  | * a transaction for special inodes like journal inode on last iput() | 
|  | * because that could violate lock ordering on umount | 
|  | */ | 
|  | if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | 
|  | goto out_writepages; | 
|  |  | 
|  | /* | 
|  | * If the filesystem has aborted, it is read-only, so return | 
|  | * right away instead of dumping stack traces later on that | 
|  | * will obscure the real source of the problem.  We test | 
|  | * fs shutdown state instead of sb->s_flag's SB_RDONLY because | 
|  | * the latter could be true if the filesystem is mounted | 
|  | * read-only, and in that case, ext4_writepages should | 
|  | * *never* be called, so if that ever happens, we would want | 
|  | * the stack trace. | 
|  | */ | 
|  | ret = ext4_emergency_state(mapping->host->i_sb); | 
|  | if (unlikely(ret)) | 
|  | goto out_writepages; | 
|  |  | 
|  | /* | 
|  | * If we have inline data and arrive here, it means that | 
|  | * we will soon create the block for the 1st page, so | 
|  | * we'd better clear the inline data here. | 
|  | */ | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | /* Just inode will be modified... */ | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | goto out_writepages; | 
|  | } | 
|  | BUG_ON(ext4_test_inode_state(inode, | 
|  | EXT4_STATE_MAY_INLINE_DATA)); | 
|  | ext4_destroy_inline_data(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * data=journal mode does not do delalloc so we just need to writeout / | 
|  | * journal already mapped buffers. On the other hand we need to commit | 
|  | * transaction to make data stable. We expect all the data to be | 
|  | * already in the journal (the only exception are DMA pinned pages | 
|  | * dirtied behind our back) so we commit transaction here and run the | 
|  | * writeback loop to checkpoint them. The checkpointing is not actually | 
|  | * necessary to make data persistent *but* quite a few places (extent | 
|  | * shifting operations, fsverity, ...) depend on being able to drop | 
|  | * pagecache pages after calling filemap_write_and_wait() and for that | 
|  | * checkpointing needs to happen. | 
|  | */ | 
|  | if (ext4_should_journal_data(inode)) { | 
|  | mpd->can_map = 0; | 
|  | if (wbc->sync_mode == WB_SYNC_ALL) | 
|  | ext4_fc_commit(sbi->s_journal, | 
|  | EXT4_I(inode)->i_datasync_tid); | 
|  | } | 
|  | mpd->journalled_more_data = 0; | 
|  |  | 
|  | if (ext4_should_dioread_nolock(inode)) { | 
|  | /* | 
|  | * We may need to convert up to one extent per block in | 
|  | * the page and we may dirty the inode. | 
|  | */ | 
|  | rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, | 
|  | PAGE_SIZE >> inode->i_blkbits); | 
|  | } | 
|  |  | 
|  | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
|  | range_whole = 1; | 
|  |  | 
|  | if (wbc->range_cyclic) { | 
|  | writeback_index = mapping->writeback_index; | 
|  | if (writeback_index) | 
|  | cycled = 0; | 
|  | mpd->first_page = writeback_index; | 
|  | mpd->last_page = -1; | 
|  | } else { | 
|  | mpd->first_page = wbc->range_start >> PAGE_SHIFT; | 
|  | mpd->last_page = wbc->range_end >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | ext4_io_submit_init(&mpd->io_submit, wbc); | 
|  | retry: | 
|  | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
|  | tag_pages_for_writeback(mapping, mpd->first_page, | 
|  | mpd->last_page); | 
|  | blk_start_plug(&plug); | 
|  |  | 
|  | /* | 
|  | * First writeback pages that don't need mapping - we can avoid | 
|  | * starting a transaction unnecessarily and also avoid being blocked | 
|  | * in the block layer on device congestion while having transaction | 
|  | * started. | 
|  | */ | 
|  | mpd->do_map = 0; | 
|  | mpd->scanned_until_end = 0; | 
|  | mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); | 
|  | if (!mpd->io_submit.io_end) { | 
|  | ret = -ENOMEM; | 
|  | goto unplug; | 
|  | } | 
|  | ret = mpage_prepare_extent_to_map(mpd); | 
|  | /* Unlock pages we didn't use */ | 
|  | mpage_release_unused_pages(mpd, false); | 
|  | /* Submit prepared bio */ | 
|  | ext4_io_submit(&mpd->io_submit); | 
|  | ext4_put_io_end_defer(mpd->io_submit.io_end); | 
|  | mpd->io_submit.io_end = NULL; | 
|  | if (ret < 0) | 
|  | goto unplug; | 
|  |  | 
|  | while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { | 
|  | /* For each extent of pages we use new io_end */ | 
|  | mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); | 
|  | if (!mpd->io_submit.io_end) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!mpd->can_map); | 
|  | /* | 
|  | * We have two constraints: We find one extent to map and we | 
|  | * must always write out whole page (makes a difference when | 
|  | * blocksize < pagesize) so that we don't block on IO when we | 
|  | * try to write out the rest of the page. Journalled mode is | 
|  | * not supported by delalloc. | 
|  | */ | 
|  | BUG_ON(ext4_should_journal_data(inode)); | 
|  | needed_blocks = ext4_da_writepages_trans_blocks(inode); | 
|  |  | 
|  | /* start a new transaction */ | 
|  | handle = ext4_journal_start_with_reserve(inode, | 
|  | EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " | 
|  | "%ld pages, ino %lu; err %d", __func__, | 
|  | wbc->nr_to_write, inode->i_ino, ret); | 
|  | /* Release allocated io_end */ | 
|  | ext4_put_io_end(mpd->io_submit.io_end); | 
|  | mpd->io_submit.io_end = NULL; | 
|  | break; | 
|  | } | 
|  | mpd->do_map = 1; | 
|  |  | 
|  | trace_ext4_da_write_pages(inode, mpd->first_page, wbc); | 
|  | ret = mpage_prepare_extent_to_map(mpd); | 
|  | if (!ret && mpd->map.m_len) | 
|  | ret = mpage_map_and_submit_extent(handle, mpd, | 
|  | &give_up_on_write); | 
|  | /* | 
|  | * Caution: If the handle is synchronous, | 
|  | * ext4_journal_stop() can wait for transaction commit | 
|  | * to finish which may depend on writeback of pages to | 
|  | * complete or on page lock to be released.  In that | 
|  | * case, we have to wait until after we have | 
|  | * submitted all the IO, released page locks we hold, | 
|  | * and dropped io_end reference (for extent conversion | 
|  | * to be able to complete) before stopping the handle. | 
|  | */ | 
|  | if (!ext4_handle_valid(handle) || handle->h_sync == 0) { | 
|  | ext4_journal_stop(handle); | 
|  | handle = NULL; | 
|  | mpd->do_map = 0; | 
|  | } | 
|  | /* Unlock pages we didn't use */ | 
|  | mpage_release_unused_pages(mpd, give_up_on_write); | 
|  | /* Submit prepared bio */ | 
|  | ext4_io_submit(&mpd->io_submit); | 
|  |  | 
|  | /* | 
|  | * Drop our io_end reference we got from init. We have | 
|  | * to be careful and use deferred io_end finishing if | 
|  | * we are still holding the transaction as we can | 
|  | * release the last reference to io_end which may end | 
|  | * up doing unwritten extent conversion. | 
|  | */ | 
|  | if (handle) { | 
|  | ext4_put_io_end_defer(mpd->io_submit.io_end); | 
|  | ext4_journal_stop(handle); | 
|  | } else | 
|  | ext4_put_io_end(mpd->io_submit.io_end); | 
|  | mpd->io_submit.io_end = NULL; | 
|  |  | 
|  | if (ret == -ENOSPC && sbi->s_journal) { | 
|  | /* | 
|  | * Commit the transaction which would | 
|  | * free blocks released in the transaction | 
|  | * and try again | 
|  | */ | 
|  | jbd2_journal_force_commit_nested(sbi->s_journal); | 
|  | ret = 0; | 
|  | continue; | 
|  | } | 
|  | /* Fatal error - ENOMEM, EIO... */ | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | unplug: | 
|  | blk_finish_plug(&plug); | 
|  | if (!ret && !cycled && wbc->nr_to_write > 0) { | 
|  | cycled = 1; | 
|  | mpd->last_page = writeback_index - 1; | 
|  | mpd->first_page = 0; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* Update index */ | 
|  | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) | 
|  | /* | 
|  | * Set the writeback_index so that range_cyclic | 
|  | * mode will write it back later | 
|  | */ | 
|  | mapping->writeback_index = mpd->first_page; | 
|  |  | 
|  | out_writepages: | 
|  | trace_ext4_writepages_result(inode, wbc, ret, | 
|  | nr_to_write - wbc->nr_to_write); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext4_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct super_block *sb = mapping->host->i_sb; | 
|  | struct mpage_da_data mpd = { | 
|  | .inode = mapping->host, | 
|  | .wbc = wbc, | 
|  | .can_map = 1, | 
|  | }; | 
|  | int ret; | 
|  | int alloc_ctx; | 
|  |  | 
|  | ret = ext4_emergency_state(sb); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | alloc_ctx = ext4_writepages_down_read(sb); | 
|  | ret = ext4_do_writepages(&mpd); | 
|  | /* | 
|  | * For data=journal writeback we could have come across pages marked | 
|  | * for delayed dirtying (PageChecked) which were just added to the | 
|  | * running transaction. Try once more to get them to stable storage. | 
|  | */ | 
|  | if (!ret && mpd.journalled_more_data) | 
|  | ret = ext4_do_writepages(&mpd); | 
|  | ext4_writepages_up_read(sb, alloc_ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_ALL, | 
|  | .nr_to_write = LONG_MAX, | 
|  | .range_start = jinode->i_dirty_start, | 
|  | .range_end = jinode->i_dirty_end, | 
|  | }; | 
|  | struct mpage_da_data mpd = { | 
|  | .inode = jinode->i_vfs_inode, | 
|  | .wbc = &wbc, | 
|  | .can_map = 0, | 
|  | }; | 
|  | return ext4_do_writepages(&mpd); | 
|  | } | 
|  |  | 
|  | static int ext4_dax_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | int ret; | 
|  | long nr_to_write = wbc->nr_to_write; | 
|  | struct inode *inode = mapping->host; | 
|  | int alloc_ctx; | 
|  |  | 
|  | ret = ext4_emergency_state(inode->i_sb); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | alloc_ctx = ext4_writepages_down_read(inode->i_sb); | 
|  | trace_ext4_writepages(inode, wbc); | 
|  |  | 
|  | ret = dax_writeback_mapping_range(mapping, | 
|  | EXT4_SB(inode->i_sb)->s_daxdev, wbc); | 
|  | trace_ext4_writepages_result(inode, wbc, ret, | 
|  | nr_to_write - wbc->nr_to_write); | 
|  | ext4_writepages_up_read(inode->i_sb, alloc_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext4_nonda_switch(struct super_block *sb) | 
|  | { | 
|  | s64 free_clusters, dirty_clusters; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  |  | 
|  | /* | 
|  | * switch to non delalloc mode if we are running low | 
|  | * on free block. The free block accounting via percpu | 
|  | * counters can get slightly wrong with percpu_counter_batch getting | 
|  | * accumulated on each CPU without updating global counters | 
|  | * Delalloc need an accurate free block accounting. So switch | 
|  | * to non delalloc when we are near to error range. | 
|  | */ | 
|  | free_clusters = | 
|  | percpu_counter_read_positive(&sbi->s_freeclusters_counter); | 
|  | dirty_clusters = | 
|  | percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); | 
|  | /* | 
|  | * Start pushing delalloc when 1/2 of free blocks are dirty. | 
|  | */ | 
|  | if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) | 
|  | try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); | 
|  |  | 
|  | if (2 * free_clusters < 3 * dirty_clusters || | 
|  | free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { | 
|  | /* | 
|  | * free block count is less than 150% of dirty blocks | 
|  | * or free blocks is less than watermark | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_da_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, | 
|  | struct folio **foliop, void **fsdata) | 
|  | { | 
|  | int ret, retries = 0; | 
|  | struct folio *folio; | 
|  | pgoff_t index; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | ret = ext4_emergency_state(inode->i_sb); | 
|  | if (unlikely(ret)) | 
|  | return ret; | 
|  |  | 
|  | index = pos >> PAGE_SHIFT; | 
|  |  | 
|  | if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { | 
|  | *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; | 
|  | return ext4_write_begin(file, mapping, pos, | 
|  | len, foliop, fsdata); | 
|  | } | 
|  | *fsdata = (void *)0; | 
|  | trace_ext4_da_write_begin(inode, pos, len); | 
|  |  | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { | 
|  | ret = ext4_generic_write_inline_data(mapping, inode, pos, len, | 
|  | foliop, fsdata, true); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 1) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | retry: | 
|  | folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, | 
|  | mapping_gfp_mask(mapping)); | 
|  | if (IS_ERR(folio)) | 
|  | return PTR_ERR(folio); | 
|  |  | 
|  | ret = ext4_block_write_begin(NULL, folio, pos, len, | 
|  | ext4_da_get_block_prep); | 
|  | if (ret < 0) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | /* | 
|  | * block_write_begin may have instantiated a few blocks | 
|  | * outside i_size.  Trim these off again. Don't need | 
|  | * i_size_read because we hold inode lock. | 
|  | */ | 
|  | if (pos + len > inode->i_size) | 
|  | ext4_truncate_failed_write(inode); | 
|  |  | 
|  | if (ret == -ENOSPC && | 
|  | ext4_should_retry_alloc(inode->i_sb, &retries)) | 
|  | goto retry; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *foliop = folio; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we should update i_disksize | 
|  | * when write to the end of file but not require block allocation | 
|  | */ | 
|  | static int ext4_da_should_update_i_disksize(struct folio *folio, | 
|  | unsigned long offset) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | struct inode *inode = folio->mapping->host; | 
|  | unsigned int idx; | 
|  | int i; | 
|  |  | 
|  | bh = folio_buffers(folio); | 
|  | idx = offset >> inode->i_blkbits; | 
|  |  | 
|  | for (i = 0; i < idx; i++) | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ext4_da_do_write_end(struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct folio *folio) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | loff_t old_size = inode->i_size; | 
|  | bool disksize_changed = false; | 
|  | loff_t new_i_size, zero_len = 0; | 
|  | handle_t *handle; | 
|  |  | 
|  | if (unlikely(!folio_buffers(folio))) { | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | return -EIO; | 
|  | } | 
|  | /* | 
|  | * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES | 
|  | * flag, which all that's needed to trigger page writeback. | 
|  | */ | 
|  | copied = block_write_end(NULL, mapping, pos, len, copied, | 
|  | folio, NULL); | 
|  | new_i_size = pos + copied; | 
|  |  | 
|  | /* | 
|  | * It's important to update i_size while still holding folio lock, | 
|  | * because folio writeout could otherwise come in and zero beyond | 
|  | * i_size. | 
|  | * | 
|  | * Since we are holding inode lock, we are sure i_disksize <= | 
|  | * i_size. We also know that if i_disksize < i_size, there are | 
|  | * delalloc writes pending in the range up to i_size. If the end of | 
|  | * the current write is <= i_size, there's no need to touch | 
|  | * i_disksize since writeback will push i_disksize up to i_size | 
|  | * eventually. If the end of the current write is > i_size and | 
|  | * inside an allocated block which ext4_da_should_update_i_disksize() | 
|  | * checked, we need to update i_disksize here as certain | 
|  | * ext4_writepages() paths not allocating blocks and update i_disksize. | 
|  | */ | 
|  | if (new_i_size > inode->i_size) { | 
|  | unsigned long end; | 
|  |  | 
|  | i_size_write(inode, new_i_size); | 
|  | end = (new_i_size - 1) & (PAGE_SIZE - 1); | 
|  | if (copied && ext4_da_should_update_i_disksize(folio, end)) { | 
|  | ext4_update_i_disksize(inode, new_i_size); | 
|  | disksize_changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | if (pos > old_size) { | 
|  | pagecache_isize_extended(inode, old_size, pos); | 
|  | zero_len = pos - old_size; | 
|  | } | 
|  |  | 
|  | if (!disksize_changed && !zero_len) | 
|  | return copied; | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  | if (zero_len) | 
|  | ext4_zero_partial_blocks(handle, inode, old_size, zero_len); | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  |  | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | static int ext4_da_write_end(struct file *file, | 
|  | struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct folio *folio, void *fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | int write_mode = (int)(unsigned long)fsdata; | 
|  |  | 
|  | if (write_mode == FALL_BACK_TO_NONDELALLOC) | 
|  | return ext4_write_end(file, mapping, pos, | 
|  | len, copied, folio, fsdata); | 
|  |  | 
|  | trace_ext4_da_write_end(inode, pos, len, copied); | 
|  |  | 
|  | if (write_mode != CONVERT_INLINE_DATA && | 
|  | ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && | 
|  | ext4_has_inline_data(inode)) | 
|  | return ext4_write_inline_data_end(inode, pos, len, copied, | 
|  | folio); | 
|  |  | 
|  | if (unlikely(copied < len) && !folio_test_uptodate(folio)) | 
|  | copied = 0; | 
|  |  | 
|  | return ext4_da_do_write_end(mapping, pos, len, copied, folio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force all delayed allocation blocks to be allocated for a given inode. | 
|  | */ | 
|  | int ext4_alloc_da_blocks(struct inode *inode) | 
|  | { | 
|  | trace_ext4_alloc_da_blocks(inode); | 
|  |  | 
|  | if (!EXT4_I(inode)->i_reserved_data_blocks) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We do something simple for now.  The filemap_flush() will | 
|  | * also start triggering a write of the data blocks, which is | 
|  | * not strictly speaking necessary (and for users of | 
|  | * laptop_mode, not even desirable).  However, to do otherwise | 
|  | * would require replicating code paths in: | 
|  | * | 
|  | * ext4_writepages() -> | 
|  | *    write_cache_pages() ---> (via passed in callback function) | 
|  | *        __mpage_da_writepage() --> | 
|  | *           mpage_add_bh_to_extent() | 
|  | *           mpage_da_map_blocks() | 
|  | * | 
|  | * The problem is that write_cache_pages(), located in | 
|  | * mm/page-writeback.c, marks pages clean in preparation for | 
|  | * doing I/O, which is not desirable if we're not planning on | 
|  | * doing I/O at all. | 
|  | * | 
|  | * We could call write_cache_pages(), and then redirty all of | 
|  | * the pages by calling redirty_page_for_writepage() but that | 
|  | * would be ugly in the extreme.  So instead we would need to | 
|  | * replicate parts of the code in the above functions, | 
|  | * simplifying them because we wouldn't actually intend to | 
|  | * write out the pages, but rather only collect contiguous | 
|  | * logical block extents, call the multi-block allocator, and | 
|  | * then update the buffer heads with the block allocations. | 
|  | * | 
|  | * For now, though, we'll cheat by calling filemap_flush(), | 
|  | * which will map the blocks, and start the I/O, but not | 
|  | * actually wait for the I/O to complete. | 
|  | */ | 
|  | return filemap_flush(inode->i_mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bmap() is special.  It gets used by applications such as lilo and by | 
|  | * the swapper to find the on-disk block of a specific piece of data. | 
|  | * | 
|  | * Naturally, this is dangerous if the block concerned is still in the | 
|  | * journal.  If somebody makes a swapfile on an ext4 data-journaling | 
|  | * filesystem and enables swap, then they may get a nasty shock when the | 
|  | * data getting swapped to that swapfile suddenly gets overwritten by | 
|  | * the original zero's written out previously to the journal and | 
|  | * awaiting writeback in the kernel's buffer cache. | 
|  | * | 
|  | * So, if we see any bmap calls here on a modified, data-journaled file, | 
|  | * take extra steps to flush any blocks which might be in the cache. | 
|  | */ | 
|  | static sector_t ext4_bmap(struct address_space *mapping, sector_t block) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | sector_t ret = 0; | 
|  |  | 
|  | inode_lock_shared(inode); | 
|  | /* | 
|  | * We can get here for an inline file via the FIBMAP ioctl | 
|  | */ | 
|  | if (ext4_has_inline_data(inode)) | 
|  | goto out; | 
|  |  | 
|  | if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && | 
|  | (test_opt(inode->i_sb, DELALLOC) || | 
|  | ext4_should_journal_data(inode))) { | 
|  | /* | 
|  | * With delalloc or journalled data we want to sync the file so | 
|  | * that we can make sure we allocate blocks for file and data | 
|  | * is in place for the user to see it | 
|  | */ | 
|  | filemap_write_and_wait(mapping); | 
|  | } | 
|  |  | 
|  | ret = iomap_bmap(mapping, block, &ext4_iomap_ops); | 
|  |  | 
|  | out: | 
|  | inode_unlock_shared(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext4_read_folio(struct file *file, struct folio *folio) | 
|  | { | 
|  | int ret = -EAGAIN; | 
|  | struct inode *inode = folio->mapping->host; | 
|  |  | 
|  | trace_ext4_read_folio(inode, folio); | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) | 
|  | ret = ext4_readpage_inline(inode, folio); | 
|  |  | 
|  | if (ret == -EAGAIN) | 
|  | return ext4_mpage_readpages(inode, NULL, folio); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ext4_readahead(struct readahead_control *rac) | 
|  | { | 
|  | struct inode *inode = rac->mapping->host; | 
|  |  | 
|  | /* If the file has inline data, no need to do readahead. */ | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return; | 
|  |  | 
|  | ext4_mpage_readpages(inode, rac, NULL); | 
|  | } | 
|  |  | 
|  | static void ext4_invalidate_folio(struct folio *folio, size_t offset, | 
|  | size_t length) | 
|  | { | 
|  | trace_ext4_invalidate_folio(folio, offset, length); | 
|  |  | 
|  | /* No journalling happens on data buffers when this function is used */ | 
|  | WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); | 
|  |  | 
|  | block_invalidate_folio(folio, offset, length); | 
|  | } | 
|  |  | 
|  | static int __ext4_journalled_invalidate_folio(struct folio *folio, | 
|  | size_t offset, size_t length) | 
|  | { | 
|  | journal_t *journal = EXT4_JOURNAL(folio->mapping->host); | 
|  |  | 
|  | trace_ext4_journalled_invalidate_folio(folio, offset, length); | 
|  |  | 
|  | /* | 
|  | * If it's a full truncate we just forget about the pending dirtying | 
|  | */ | 
|  | if (offset == 0 && length == folio_size(folio)) | 
|  | folio_clear_checked(folio); | 
|  |  | 
|  | return jbd2_journal_invalidate_folio(journal, folio, offset, length); | 
|  | } | 
|  |  | 
|  | /* Wrapper for aops... */ | 
|  | static void ext4_journalled_invalidate_folio(struct folio *folio, | 
|  | size_t offset, | 
|  | size_t length) | 
|  | { | 
|  | WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); | 
|  | } | 
|  |  | 
|  | static bool ext4_release_folio(struct folio *folio, gfp_t wait) | 
|  | { | 
|  | struct inode *inode = folio->mapping->host; | 
|  | journal_t *journal = EXT4_JOURNAL(inode); | 
|  |  | 
|  | trace_ext4_release_folio(inode, folio); | 
|  |  | 
|  | /* Page has dirty journalled data -> cannot release */ | 
|  | if (folio_test_checked(folio)) | 
|  | return false; | 
|  | if (journal) | 
|  | return jbd2_journal_try_to_free_buffers(journal, folio); | 
|  | else | 
|  | return try_to_free_buffers(folio); | 
|  | } | 
|  |  | 
|  | static bool ext4_inode_datasync_dirty(struct inode *inode) | 
|  | { | 
|  | journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; | 
|  |  | 
|  | if (journal) { | 
|  | if (jbd2_transaction_committed(journal, | 
|  | EXT4_I(inode)->i_datasync_tid)) | 
|  | return false; | 
|  | if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) | 
|  | return !list_empty(&EXT4_I(inode)->i_fc_list); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Any metadata buffers to write? */ | 
|  | if (!list_empty(&inode->i_mapping->i_private_list)) | 
|  | return true; | 
|  | return inode->i_state & I_DIRTY_DATASYNC; | 
|  | } | 
|  |  | 
|  | static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, | 
|  | struct ext4_map_blocks *map, loff_t offset, | 
|  | loff_t length, unsigned int flags) | 
|  | { | 
|  | u8 blkbits = inode->i_blkbits; | 
|  |  | 
|  | /* | 
|  | * Writes that span EOF might trigger an I/O size update on completion, | 
|  | * so consider them to be dirty for the purpose of O_DSYNC, even if | 
|  | * there is no other metadata changes being made or are pending. | 
|  | */ | 
|  | iomap->flags = 0; | 
|  | if (ext4_inode_datasync_dirty(inode) || | 
|  | offset + length > i_size_read(inode)) | 
|  | iomap->flags |= IOMAP_F_DIRTY; | 
|  |  | 
|  | if (map->m_flags & EXT4_MAP_NEW) | 
|  | iomap->flags |= IOMAP_F_NEW; | 
|  |  | 
|  | /* HW-offload atomics are always used */ | 
|  | if (flags & IOMAP_ATOMIC) | 
|  | iomap->flags |= IOMAP_F_ATOMIC_BIO; | 
|  |  | 
|  | if (flags & IOMAP_DAX) | 
|  | iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; | 
|  | else | 
|  | iomap->bdev = inode->i_sb->s_bdev; | 
|  | iomap->offset = (u64) map->m_lblk << blkbits; | 
|  | iomap->length = (u64) map->m_len << blkbits; | 
|  |  | 
|  | if ((map->m_flags & EXT4_MAP_MAPPED) && | 
|  | !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | iomap->flags |= IOMAP_F_MERGED; | 
|  |  | 
|  | /* | 
|  | * Flags passed to ext4_map_blocks() for direct I/O writes can result | 
|  | * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits | 
|  | * set. In order for any allocated unwritten extents to be converted | 
|  | * into written extents correctly within the ->end_io() handler, we | 
|  | * need to ensure that the iomap->type is set appropriately. Hence, the | 
|  | * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has | 
|  | * been set first. | 
|  | */ | 
|  | if (map->m_flags & EXT4_MAP_UNWRITTEN) { | 
|  | iomap->type = IOMAP_UNWRITTEN; | 
|  | iomap->addr = (u64) map->m_pblk << blkbits; | 
|  | if (flags & IOMAP_DAX) | 
|  | iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; | 
|  | } else if (map->m_flags & EXT4_MAP_MAPPED) { | 
|  | iomap->type = IOMAP_MAPPED; | 
|  | iomap->addr = (u64) map->m_pblk << blkbits; | 
|  | if (flags & IOMAP_DAX) | 
|  | iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; | 
|  | } else if (map->m_flags & EXT4_MAP_DELAYED) { | 
|  | iomap->type = IOMAP_DELALLOC; | 
|  | iomap->addr = IOMAP_NULL_ADDR; | 
|  | } else { | 
|  | iomap->type = IOMAP_HOLE; | 
|  | iomap->addr = IOMAP_NULL_ADDR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, | 
|  | unsigned int flags) | 
|  | { | 
|  | handle_t *handle; | 
|  | u8 blkbits = inode->i_blkbits; | 
|  | int ret, dio_credits, m_flags = 0, retries = 0; | 
|  |  | 
|  | /* | 
|  | * Trim the mapping request to the maximum value that we can map at | 
|  | * once for direct I/O. | 
|  | */ | 
|  | if (map->m_len > DIO_MAX_BLOCKS) | 
|  | map->m_len = DIO_MAX_BLOCKS; | 
|  | dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Either we allocate blocks and then don't get an unwritten extent, so | 
|  | * in that case we have reserved enough credits. Or, the blocks are | 
|  | * already allocated and unwritten. In that case, the extent conversion | 
|  | * fits into the credits as well. | 
|  | */ | 
|  | handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  |  | 
|  | /* | 
|  | * DAX and direct I/O are the only two operations that are currently | 
|  | * supported with IOMAP_WRITE. | 
|  | */ | 
|  | WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); | 
|  | if (flags & IOMAP_DAX) | 
|  | m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; | 
|  | /* | 
|  | * We use i_size instead of i_disksize here because delalloc writeback | 
|  | * can complete at any point during the I/O and subsequently push the | 
|  | * i_disksize out to i_size. This could be beyond where direct I/O is | 
|  | * happening and thus expose allocated blocks to direct I/O reads. | 
|  | */ | 
|  | else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) | 
|  | m_flags = EXT4_GET_BLOCKS_CREATE; | 
|  | else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; | 
|  |  | 
|  | ret = ext4_map_blocks(handle, inode, map, m_flags); | 
|  |  | 
|  | /* | 
|  | * We cannot fill holes in indirect tree based inodes as that could | 
|  | * expose stale data in the case of a crash. Use the magic error code | 
|  | * to fallback to buffered I/O. | 
|  | */ | 
|  | if (!m_flags && !ret) | 
|  | ret = -ENOTBLK; | 
|  |  | 
|  | ext4_journal_stop(handle); | 
|  | if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
|  | goto retry; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, | 
|  | unsigned flags, struct iomap *iomap, struct iomap *srcmap) | 
|  | { | 
|  | int ret; | 
|  | struct ext4_map_blocks map; | 
|  | u8 blkbits = inode->i_blkbits; | 
|  |  | 
|  | if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (WARN_ON_ONCE(ext4_has_inline_data(inode))) | 
|  | return -ERANGE; | 
|  |  | 
|  | /* | 
|  | * Calculate the first and last logical blocks respectively. | 
|  | */ | 
|  | map.m_lblk = offset >> blkbits; | 
|  | map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, | 
|  | EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; | 
|  |  | 
|  | if (flags & IOMAP_WRITE) { | 
|  | /* | 
|  | * We check here if the blocks are already allocated, then we | 
|  | * don't need to start a journal txn and we can directly return | 
|  | * the mapping information. This could boost performance | 
|  | * especially in multi-threaded overwrite requests. | 
|  | */ | 
|  | if (offset + length <= i_size_read(inode)) { | 
|  | ret = ext4_map_blocks(NULL, inode, &map, 0); | 
|  | if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) | 
|  | goto out; | 
|  | } | 
|  | ret = ext4_iomap_alloc(inode, &map, flags); | 
|  | } else { | 
|  | ret = ext4_map_blocks(NULL, inode, &map, 0); | 
|  | } | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | out: | 
|  | /* | 
|  | * When inline encryption is enabled, sometimes I/O to an encrypted file | 
|  | * has to be broken up to guarantee DUN contiguity.  Handle this by | 
|  | * limiting the length of the mapping returned. | 
|  | */ | 
|  | map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); | 
|  |  | 
|  | ext4_set_iomap(inode, iomap, &map, offset, length, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, | 
|  | loff_t length, unsigned flags, struct iomap *iomap, | 
|  | struct iomap *srcmap) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Even for writes we don't need to allocate blocks, so just pretend | 
|  | * we are reading to save overhead of starting a transaction. | 
|  | */ | 
|  | flags &= ~IOMAP_WRITE; | 
|  | ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); | 
|  | WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written) | 
|  | { | 
|  | /* must be a directio to fall back to buffered */ | 
|  | if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != | 
|  | (IOMAP_WRITE | IOMAP_DIRECT)) | 
|  | return false; | 
|  |  | 
|  | /* atomic writes are all-or-nothing */ | 
|  | if (flags & IOMAP_ATOMIC) | 
|  | return false; | 
|  |  | 
|  | /* can only try again if we wrote nothing */ | 
|  | return written == 0; | 
|  | } | 
|  |  | 
|  | static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, | 
|  | ssize_t written, unsigned flags, struct iomap *iomap) | 
|  | { | 
|  | /* | 
|  | * Check to see whether an error occurred while writing out the data to | 
|  | * the allocated blocks. If so, return the magic error code for | 
|  | * non-atomic write so that we fallback to buffered I/O and attempt to | 
|  | * complete the remainder of the I/O. | 
|  | * For non-atomic writes, any blocks that may have been | 
|  | * allocated in preparation for the direct I/O will be reused during | 
|  | * buffered I/O. For atomic write, we never fallback to buffered-io. | 
|  | */ | 
|  | if (ext4_want_directio_fallback(flags, written)) | 
|  | return -ENOTBLK; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct iomap_ops ext4_iomap_ops = { | 
|  | .iomap_begin		= ext4_iomap_begin, | 
|  | .iomap_end		= ext4_iomap_end, | 
|  | }; | 
|  |  | 
|  | const struct iomap_ops ext4_iomap_overwrite_ops = { | 
|  | .iomap_begin		= ext4_iomap_overwrite_begin, | 
|  | .iomap_end		= ext4_iomap_end, | 
|  | }; | 
|  |  | 
|  | static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, | 
|  | loff_t length, unsigned int flags, | 
|  | struct iomap *iomap, struct iomap *srcmap) | 
|  | { | 
|  | int ret; | 
|  | struct ext4_map_blocks map; | 
|  | u8 blkbits = inode->i_blkbits; | 
|  |  | 
|  | if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | ret = ext4_inline_data_iomap(inode, iomap); | 
|  | if (ret != -EAGAIN) { | 
|  | if (ret == 0 && offset >= iomap->length) | 
|  | ret = -ENOENT; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the first and last logical block respectively. | 
|  | */ | 
|  | map.m_lblk = offset >> blkbits; | 
|  | map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, | 
|  | EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; | 
|  |  | 
|  | /* | 
|  | * Fiemap callers may call for offset beyond s_bitmap_maxbytes. | 
|  | * So handle it here itself instead of querying ext4_map_blocks(). | 
|  | * Since ext4_map_blocks() will warn about it and will return | 
|  | * -EIO error. | 
|  | */ | 
|  | if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  |  | 
|  | if (offset >= sbi->s_bitmap_maxbytes) { | 
|  | map.m_flags = 0; | 
|  | goto set_iomap; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = ext4_map_blocks(NULL, inode, &map, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | set_iomap: | 
|  | ext4_set_iomap(inode, iomap, &map, offset, length, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct iomap_ops ext4_iomap_report_ops = { | 
|  | .iomap_begin = ext4_iomap_begin_report, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * For data=journal mode, folio should be marked dirty only when it was | 
|  | * writeably mapped. When that happens, it was already attached to the | 
|  | * transaction and marked as jbddirty (we take care of this in | 
|  | * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings | 
|  | * so we should have nothing to do here, except for the case when someone | 
|  | * had the page pinned and dirtied the page through this pin (e.g. by doing | 
|  | * direct IO to it). In that case we'd need to attach buffers here to the | 
|  | * transaction but we cannot due to lock ordering.  We cannot just dirty the | 
|  | * folio and leave attached buffers clean, because the buffers' dirty state is | 
|  | * "definitive".  We cannot just set the buffers dirty or jbddirty because all | 
|  | * the journalling code will explode.  So what we do is to mark the folio | 
|  | * "pending dirty" and next time ext4_writepages() is called, attach buffers | 
|  | * to the transaction appropriately. | 
|  | */ | 
|  | static bool ext4_journalled_dirty_folio(struct address_space *mapping, | 
|  | struct folio *folio) | 
|  | { | 
|  | WARN_ON_ONCE(!folio_buffers(folio)); | 
|  | if (folio_maybe_dma_pinned(folio)) | 
|  | folio_set_checked(folio); | 
|  | return filemap_dirty_folio(mapping, folio); | 
|  | } | 
|  |  | 
|  | static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) | 
|  | { | 
|  | WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); | 
|  | WARN_ON_ONCE(!folio_buffers(folio)); | 
|  | return block_dirty_folio(mapping, folio); | 
|  | } | 
|  |  | 
|  | static int ext4_iomap_swap_activate(struct swap_info_struct *sis, | 
|  | struct file *file, sector_t *span) | 
|  | { | 
|  | return iomap_swapfile_activate(sis, file, span, | 
|  | &ext4_iomap_report_ops); | 
|  | } | 
|  |  | 
|  | static const struct address_space_operations ext4_aops = { | 
|  | .read_folio		= ext4_read_folio, | 
|  | .readahead		= ext4_readahead, | 
|  | .writepages		= ext4_writepages, | 
|  | .write_begin		= ext4_write_begin, | 
|  | .write_end		= ext4_write_end, | 
|  | .dirty_folio		= ext4_dirty_folio, | 
|  | .bmap			= ext4_bmap, | 
|  | .invalidate_folio	= ext4_invalidate_folio, | 
|  | .release_folio		= ext4_release_folio, | 
|  | .migrate_folio		= buffer_migrate_folio, | 
|  | .is_partially_uptodate  = block_is_partially_uptodate, | 
|  | .error_remove_folio	= generic_error_remove_folio, | 
|  | .swap_activate		= ext4_iomap_swap_activate, | 
|  | }; | 
|  |  | 
|  | static const struct address_space_operations ext4_journalled_aops = { | 
|  | .read_folio		= ext4_read_folio, | 
|  | .readahead		= ext4_readahead, | 
|  | .writepages		= ext4_writepages, | 
|  | .write_begin		= ext4_write_begin, | 
|  | .write_end		= ext4_journalled_write_end, | 
|  | .dirty_folio		= ext4_journalled_dirty_folio, | 
|  | .bmap			= ext4_bmap, | 
|  | .invalidate_folio	= ext4_journalled_invalidate_folio, | 
|  | .release_folio		= ext4_release_folio, | 
|  | .migrate_folio		= buffer_migrate_folio_norefs, | 
|  | .is_partially_uptodate  = block_is_partially_uptodate, | 
|  | .error_remove_folio	= generic_error_remove_folio, | 
|  | .swap_activate		= ext4_iomap_swap_activate, | 
|  | }; | 
|  |  | 
|  | static const struct address_space_operations ext4_da_aops = { | 
|  | .read_folio		= ext4_read_folio, | 
|  | .readahead		= ext4_readahead, | 
|  | .writepages		= ext4_writepages, | 
|  | .write_begin		= ext4_da_write_begin, | 
|  | .write_end		= ext4_da_write_end, | 
|  | .dirty_folio		= ext4_dirty_folio, | 
|  | .bmap			= ext4_bmap, | 
|  | .invalidate_folio	= ext4_invalidate_folio, | 
|  | .release_folio		= ext4_release_folio, | 
|  | .migrate_folio		= buffer_migrate_folio, | 
|  | .is_partially_uptodate  = block_is_partially_uptodate, | 
|  | .error_remove_folio	= generic_error_remove_folio, | 
|  | .swap_activate		= ext4_iomap_swap_activate, | 
|  | }; | 
|  |  | 
|  | static const struct address_space_operations ext4_dax_aops = { | 
|  | .writepages		= ext4_dax_writepages, | 
|  | .dirty_folio		= noop_dirty_folio, | 
|  | .bmap			= ext4_bmap, | 
|  | .swap_activate		= ext4_iomap_swap_activate, | 
|  | }; | 
|  |  | 
|  | void ext4_set_aops(struct inode *inode) | 
|  | { | 
|  | switch (ext4_inode_journal_mode(inode)) { | 
|  | case EXT4_INODE_ORDERED_DATA_MODE: | 
|  | case EXT4_INODE_WRITEBACK_DATA_MODE: | 
|  | break; | 
|  | case EXT4_INODE_JOURNAL_DATA_MODE: | 
|  | inode->i_mapping->a_ops = &ext4_journalled_aops; | 
|  | return; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | if (IS_DAX(inode)) | 
|  | inode->i_mapping->a_ops = &ext4_dax_aops; | 
|  | else if (test_opt(inode->i_sb, DELALLOC)) | 
|  | inode->i_mapping->a_ops = &ext4_da_aops; | 
|  | else | 
|  | inode->i_mapping->a_ops = &ext4_aops; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we can't skip an unwritten buffer even though it usually reads zero | 
|  | * because it might have data in pagecache (eg, if called from ext4_zero_range, | 
|  | * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a | 
|  | * racing writeback can come later and flush the stale pagecache to disk. | 
|  | */ | 
|  | static int __ext4_block_zero_page_range(handle_t *handle, | 
|  | struct address_space *mapping, loff_t from, loff_t length) | 
|  | { | 
|  | ext4_fsblk_t index = from >> PAGE_SHIFT; | 
|  | unsigned offset = from & (PAGE_SIZE-1); | 
|  | unsigned blocksize, pos; | 
|  | ext4_lblk_t iblock; | 
|  | struct inode *inode = mapping->host; | 
|  | struct buffer_head *bh; | 
|  | struct folio *folio; | 
|  | int err = 0; | 
|  |  | 
|  | folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, | 
|  | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, | 
|  | mapping_gfp_constraint(mapping, ~__GFP_FS)); | 
|  | if (IS_ERR(folio)) | 
|  | return PTR_ERR(folio); | 
|  |  | 
|  | blocksize = inode->i_sb->s_blocksize; | 
|  |  | 
|  | iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); | 
|  |  | 
|  | bh = folio_buffers(folio); | 
|  | if (!bh) | 
|  | bh = create_empty_buffers(folio, blocksize, 0); | 
|  |  | 
|  | /* Find the buffer that contains "offset" */ | 
|  | pos = blocksize; | 
|  | while (offset >= pos) { | 
|  | bh = bh->b_this_page; | 
|  | iblock++; | 
|  | pos += blocksize; | 
|  | } | 
|  | if (buffer_freed(bh)) { | 
|  | BUFFER_TRACE(bh, "freed: skip"); | 
|  | goto unlock; | 
|  | } | 
|  | if (!buffer_mapped(bh)) { | 
|  | BUFFER_TRACE(bh, "unmapped"); | 
|  | ext4_get_block(inode, iblock, bh, 0); | 
|  | /* unmapped? It's a hole - nothing to do */ | 
|  | if (!buffer_mapped(bh)) { | 
|  | BUFFER_TRACE(bh, "still unmapped"); | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ok, it's mapped. Make sure it's up-to-date */ | 
|  | if (folio_test_uptodate(folio)) | 
|  | set_buffer_uptodate(bh); | 
|  |  | 
|  | if (!buffer_uptodate(bh)) { | 
|  | err = ext4_read_bh_lock(bh, 0, true); | 
|  | if (err) | 
|  | goto unlock; | 
|  | if (fscrypt_inode_uses_fs_layer_crypto(inode)) { | 
|  | /* We expect the key to be set. */ | 
|  | BUG_ON(!fscrypt_has_encryption_key(inode)); | 
|  | err = fscrypt_decrypt_pagecache_blocks(folio, | 
|  | blocksize, | 
|  | bh_offset(bh)); | 
|  | if (err) { | 
|  | clear_buffer_uptodate(bh); | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ext4_should_journal_data(inode)) { | 
|  | BUFFER_TRACE(bh, "get write access"); | 
|  | err = ext4_journal_get_write_access(handle, inode->i_sb, bh, | 
|  | EXT4_JTR_NONE); | 
|  | if (err) | 
|  | goto unlock; | 
|  | } | 
|  | folio_zero_range(folio, offset, length); | 
|  | BUFFER_TRACE(bh, "zeroed end of block"); | 
|  |  | 
|  | if (ext4_should_journal_data(inode)) { | 
|  | err = ext4_dirty_journalled_data(handle, bh); | 
|  | } else { | 
|  | err = 0; | 
|  | mark_buffer_dirty(bh); | 
|  | if (ext4_should_order_data(inode)) | 
|  | err = ext4_jbd2_inode_add_write(handle, inode, from, | 
|  | length); | 
|  | } | 
|  |  | 
|  | unlock: | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_block_zero_page_range() zeros out a mapping of length 'length' | 
|  | * starting from file offset 'from'.  The range to be zero'd must | 
|  | * be contained with in one block.  If the specified range exceeds | 
|  | * the end of the block it will be shortened to end of the block | 
|  | * that corresponds to 'from' | 
|  | */ | 
|  | static int ext4_block_zero_page_range(handle_t *handle, | 
|  | struct address_space *mapping, loff_t from, loff_t length) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | unsigned offset = from & (PAGE_SIZE-1); | 
|  | unsigned blocksize = inode->i_sb->s_blocksize; | 
|  | unsigned max = blocksize - (offset & (blocksize - 1)); | 
|  |  | 
|  | /* | 
|  | * correct length if it does not fall between | 
|  | * 'from' and the end of the block | 
|  | */ | 
|  | if (length > max || length < 0) | 
|  | length = max; | 
|  |  | 
|  | if (IS_DAX(inode)) { | 
|  | return dax_zero_range(inode, from, length, NULL, | 
|  | &ext4_iomap_ops); | 
|  | } | 
|  | return __ext4_block_zero_page_range(handle, mapping, from, length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_block_truncate_page() zeroes out a mapping from file offset `from' | 
|  | * up to the end of the block which corresponds to `from'. | 
|  | * This required during truncate. We need to physically zero the tail end | 
|  | * of that block so it doesn't yield old data if the file is later grown. | 
|  | */ | 
|  | static int ext4_block_truncate_page(handle_t *handle, | 
|  | struct address_space *mapping, loff_t from) | 
|  | { | 
|  | unsigned offset = from & (PAGE_SIZE-1); | 
|  | unsigned length; | 
|  | unsigned blocksize; | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | /* If we are processing an encrypted inode during orphan list handling */ | 
|  | if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) | 
|  | return 0; | 
|  |  | 
|  | blocksize = inode->i_sb->s_blocksize; | 
|  | length = blocksize - (offset & (blocksize - 1)); | 
|  |  | 
|  | return ext4_block_zero_page_range(handle, mapping, from, length); | 
|  | } | 
|  |  | 
|  | int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, | 
|  | loff_t lstart, loff_t length) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | unsigned partial_start, partial_end; | 
|  | ext4_fsblk_t start, end; | 
|  | loff_t byte_end = (lstart + length - 1); | 
|  | int err = 0; | 
|  |  | 
|  | partial_start = lstart & (sb->s_blocksize - 1); | 
|  | partial_end = byte_end & (sb->s_blocksize - 1); | 
|  |  | 
|  | start = lstart >> sb->s_blocksize_bits; | 
|  | end = byte_end >> sb->s_blocksize_bits; | 
|  |  | 
|  | /* Handle partial zero within the single block */ | 
|  | if (start == end && | 
|  | (partial_start || (partial_end != sb->s_blocksize - 1))) { | 
|  | err = ext4_block_zero_page_range(handle, mapping, | 
|  | lstart, length); | 
|  | return err; | 
|  | } | 
|  | /* Handle partial zero out on the start of the range */ | 
|  | if (partial_start) { | 
|  | err = ext4_block_zero_page_range(handle, mapping, | 
|  | lstart, sb->s_blocksize); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | /* Handle partial zero out on the end of the range */ | 
|  | if (partial_end != sb->s_blocksize - 1) | 
|  | err = ext4_block_zero_page_range(handle, mapping, | 
|  | byte_end - partial_end, | 
|  | partial_end + 1); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ext4_can_truncate(struct inode *inode) | 
|  | { | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | return 1; | 
|  | if (S_ISDIR(inode->i_mode)) | 
|  | return 1; | 
|  | if (S_ISLNK(inode->i_mode)) | 
|  | return !ext4_inode_is_fast_symlink(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to make sure i_disksize gets properly updated before we truncate | 
|  | * page cache due to hole punching or zero range. Otherwise i_disksize update | 
|  | * can get lost as it may have been postponed to submission of writeback but | 
|  | * that will never happen after we truncate page cache. | 
|  | */ | 
|  | int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, | 
|  | loff_t len) | 
|  | { | 
|  | handle_t *handle; | 
|  | int ret; | 
|  |  | 
|  | loff_t size = i_size_read(inode); | 
|  |  | 
|  | WARN_ON(!inode_is_locked(inode)); | 
|  | if (offset > size || offset + len < size) | 
|  | return 0; | 
|  |  | 
|  | if (EXT4_I(inode)->i_disksize >= size) | 
|  | return 0; | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  | ext4_update_i_disksize(inode, size); | 
|  | ret = ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void ext4_truncate_folio(struct inode *inode, | 
|  | loff_t start, loff_t end) | 
|  | { | 
|  | unsigned long blocksize = i_blocksize(inode); | 
|  | struct folio *folio; | 
|  |  | 
|  | /* Nothing to be done if no complete block needs to be truncated. */ | 
|  | if (round_up(start, blocksize) >= round_down(end, blocksize)) | 
|  | return; | 
|  |  | 
|  | folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT); | 
|  | if (IS_ERR(folio)) | 
|  | return; | 
|  |  | 
|  | if (folio_mkclean(folio)) | 
|  | folio_mark_dirty(folio); | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | int ext4_truncate_page_cache_block_range(struct inode *inode, | 
|  | loff_t start, loff_t end) | 
|  | { | 
|  | unsigned long blocksize = i_blocksize(inode); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * For journalled data we need to write (and checkpoint) pages | 
|  | * before discarding page cache to avoid inconsitent data on disk | 
|  | * in case of crash before freeing or unwritten converting trans | 
|  | * is committed. | 
|  | */ | 
|  | if (ext4_should_journal_data(inode)) { | 
|  | ret = filemap_write_and_wait_range(inode->i_mapping, start, | 
|  | end - 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto truncate_pagecache; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the block size is less than the page size, the file's mapped | 
|  | * blocks within one page could be freed or converted to unwritten. | 
|  | * So it's necessary to remove writable userspace mappings, and then | 
|  | * ext4_page_mkwrite() can be called during subsequent write access | 
|  | * to these partial folios. | 
|  | */ | 
|  | if (!IS_ALIGNED(start | end, PAGE_SIZE) && | 
|  | blocksize < PAGE_SIZE && start < inode->i_size) { | 
|  | loff_t page_boundary = round_up(start, PAGE_SIZE); | 
|  |  | 
|  | ext4_truncate_folio(inode, start, min(page_boundary, end)); | 
|  | if (end > page_boundary) | 
|  | ext4_truncate_folio(inode, | 
|  | round_down(end, PAGE_SIZE), end); | 
|  | } | 
|  |  | 
|  | truncate_pagecache: | 
|  | truncate_pagecache_range(inode, start, end - 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ext4_wait_dax_page(struct inode *inode) | 
|  | { | 
|  | filemap_invalidate_unlock(inode->i_mapping); | 
|  | schedule(); | 
|  | filemap_invalidate_lock(inode->i_mapping); | 
|  | } | 
|  |  | 
|  | int ext4_break_layouts(struct inode *inode) | 
|  | { | 
|  | if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) | 
|  | return -EINVAL; | 
|  |  | 
|  | return dax_break_layout_inode(inode, ext4_wait_dax_page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_punch_hole: punches a hole in a file by releasing the blocks | 
|  | * associated with the given offset and length | 
|  | * | 
|  | * @inode:  File inode | 
|  | * @offset: The offset where the hole will begin | 
|  | * @len:    The length of the hole | 
|  | * | 
|  | * Returns: 0 on success or negative on failure | 
|  | */ | 
|  |  | 
|  | int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct super_block *sb = inode->i_sb; | 
|  | ext4_lblk_t start_lblk, end_lblk; | 
|  | loff_t max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; | 
|  | loff_t end = offset + length; | 
|  | handle_t *handle; | 
|  | unsigned int credits; | 
|  | int ret; | 
|  |  | 
|  | trace_ext4_punch_hole(inode, offset, length, 0); | 
|  | WARN_ON_ONCE(!inode_is_locked(inode)); | 
|  |  | 
|  | /* No need to punch hole beyond i_size */ | 
|  | if (offset >= inode->i_size) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the hole extends beyond i_size, set the hole to end after | 
|  | * the page that contains i_size, and also make sure that the hole | 
|  | * within one block before last range. | 
|  | */ | 
|  | if (end > inode->i_size) | 
|  | end = round_up(inode->i_size, PAGE_SIZE); | 
|  | if (end > max_end) | 
|  | end = max_end; | 
|  | length = end - offset; | 
|  |  | 
|  | /* | 
|  | * Attach jinode to inode for jbd2 if we do any zeroing of partial | 
|  | * block. | 
|  | */ | 
|  | if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { | 
|  | ret = ext4_inode_attach_jinode(inode); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | ret = ext4_update_disksize_before_punch(inode, offset, length); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Now release the pages and zero block aligned part of pages*/ | 
|  | ret = ext4_truncate_page_cache_block_range(inode, offset, end); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | credits = ext4_writepage_trans_blocks(inode); | 
|  | else | 
|  | credits = ext4_blocks_for_truncate(inode); | 
|  | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = PTR_ERR(handle); | 
|  | ext4_std_error(sb, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = ext4_zero_partial_blocks(handle, inode, offset, length); | 
|  | if (ret) | 
|  | goto out_handle; | 
|  |  | 
|  | /* If there are blocks to remove, do it */ | 
|  | start_lblk = EXT4_B_TO_LBLK(inode, offset); | 
|  | end_lblk = end >> inode->i_blkbits; | 
|  |  | 
|  | if (end_lblk > start_lblk) { | 
|  | ext4_lblk_t hole_len = end_lblk - start_lblk; | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_discard_preallocations(inode); | 
|  |  | 
|  | ext4_es_remove_extent(inode, start_lblk, hole_len); | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | ret = ext4_ext_remove_space(inode, start_lblk, | 
|  | end_lblk - 1); | 
|  | else | 
|  | ret = ext4_ind_remove_space(handle, inode, start_lblk, | 
|  | end_lblk); | 
|  | if (ret) { | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | goto out_handle; | 
|  | } | 
|  |  | 
|  | ext4_es_insert_extent(inode, start_lblk, hole_len, ~0, | 
|  | EXTENT_STATUS_HOLE, 0); | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | } | 
|  | ext4_fc_track_range(handle, inode, start_lblk, end_lblk); | 
|  |  | 
|  | ret = ext4_mark_inode_dirty(handle, inode); | 
|  | if (unlikely(ret)) | 
|  | goto out_handle; | 
|  |  | 
|  | ext4_update_inode_fsync_trans(handle, inode, 1); | 
|  | if (IS_SYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  | out_handle: | 
|  | ext4_journal_stop(handle); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ext4_inode_attach_jinode(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct jbd2_inode *jinode; | 
|  |  | 
|  | if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) | 
|  | return 0; | 
|  |  | 
|  | jinode = jbd2_alloc_inode(GFP_KERNEL); | 
|  | spin_lock(&inode->i_lock); | 
|  | if (!ei->jinode) { | 
|  | if (!jinode) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  | ei->jinode = jinode; | 
|  | jbd2_journal_init_jbd_inode(ei->jinode, inode); | 
|  | jinode = NULL; | 
|  | } | 
|  | spin_unlock(&inode->i_lock); | 
|  | if (unlikely(jinode != NULL)) | 
|  | jbd2_free_inode(jinode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_truncate() | 
|  | * | 
|  | * We block out ext4_get_block() block instantiations across the entire | 
|  | * transaction, and VFS/VM ensures that ext4_truncate() cannot run | 
|  | * simultaneously on behalf of the same inode. | 
|  | * | 
|  | * As we work through the truncate and commit bits of it to the journal there | 
|  | * is one core, guiding principle: the file's tree must always be consistent on | 
|  | * disk.  We must be able to restart the truncate after a crash. | 
|  | * | 
|  | * The file's tree may be transiently inconsistent in memory (although it | 
|  | * probably isn't), but whenever we close off and commit a journal transaction, | 
|  | * the contents of (the filesystem + the journal) must be consistent and | 
|  | * restartable.  It's pretty simple, really: bottom up, right to left (although | 
|  | * left-to-right works OK too). | 
|  | * | 
|  | * Note that at recovery time, journal replay occurs *before* the restart of | 
|  | * truncate against the orphan inode list. | 
|  | * | 
|  | * The committed inode has the new, desired i_size (which is the same as | 
|  | * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see | 
|  | * that this inode's truncate did not complete and it will again call | 
|  | * ext4_truncate() to have another go.  So there will be instantiated blocks | 
|  | * to the right of the truncation point in a crashed ext4 filesystem.  But | 
|  | * that's fine - as long as they are linked from the inode, the post-crash | 
|  | * ext4_truncate() run will find them and release them. | 
|  | */ | 
|  | int ext4_truncate(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | unsigned int credits; | 
|  | int err = 0, err2; | 
|  | handle_t *handle; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  |  | 
|  | /* | 
|  | * There is a possibility that we're either freeing the inode | 
|  | * or it's a completely new inode. In those cases we might not | 
|  | * have i_rwsem locked because it's not necessary. | 
|  | */ | 
|  | if (!(inode->i_state & (I_NEW|I_FREEING))) | 
|  | WARN_ON(!inode_is_locked(inode)); | 
|  | trace_ext4_truncate_enter(inode); | 
|  |  | 
|  | if (!ext4_can_truncate(inode)) | 
|  | goto out_trace; | 
|  |  | 
|  | if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) | 
|  | ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); | 
|  |  | 
|  | if (ext4_has_inline_data(inode)) { | 
|  | int has_inline = 1; | 
|  |  | 
|  | err = ext4_inline_data_truncate(inode, &has_inline); | 
|  | if (err || has_inline) | 
|  | goto out_trace; | 
|  | } | 
|  |  | 
|  | /* If we zero-out tail of the page, we have to create jinode for jbd2 */ | 
|  | if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { | 
|  | err = ext4_inode_attach_jinode(inode); | 
|  | if (err) | 
|  | goto out_trace; | 
|  | } | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | credits = ext4_writepage_trans_blocks(inode); | 
|  | else | 
|  | credits = ext4_blocks_for_truncate(inode); | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
|  | if (IS_ERR(handle)) { | 
|  | err = PTR_ERR(handle); | 
|  | goto out_trace; | 
|  | } | 
|  |  | 
|  | if (inode->i_size & (inode->i_sb->s_blocksize - 1)) | 
|  | ext4_block_truncate_page(handle, mapping, inode->i_size); | 
|  |  | 
|  | /* | 
|  | * We add the inode to the orphan list, so that if this | 
|  | * truncate spans multiple transactions, and we crash, we will | 
|  | * resume the truncate when the filesystem recovers.  It also | 
|  | * marks the inode dirty, to catch the new size. | 
|  | * | 
|  | * Implication: the file must always be in a sane, consistent | 
|  | * truncatable state while each transaction commits. | 
|  | */ | 
|  | err = ext4_orphan_add(handle, inode); | 
|  | if (err) | 
|  | goto out_stop; | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  |  | 
|  | ext4_discard_preallocations(inode); | 
|  |  | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | err = ext4_ext_truncate(handle, inode); | 
|  | else | 
|  | ext4_ind_truncate(handle, inode); | 
|  |  | 
|  | up_write(&ei->i_data_sem); | 
|  | if (err) | 
|  | goto out_stop; | 
|  |  | 
|  | if (IS_SYNC(inode)) | 
|  | ext4_handle_sync(handle); | 
|  |  | 
|  | out_stop: | 
|  | /* | 
|  | * If this was a simple ftruncate() and the file will remain alive, | 
|  | * then we need to clear up the orphan record which we created above. | 
|  | * However, if this was a real unlink then we were called by | 
|  | * ext4_evict_inode(), and we allow that function to clean up the | 
|  | * orphan info for us. | 
|  | */ | 
|  | if (inode->i_nlink) | 
|  | ext4_orphan_del(handle, inode); | 
|  |  | 
|  | inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); | 
|  | err2 = ext4_mark_inode_dirty(handle, inode); | 
|  | if (unlikely(err2 && !err)) | 
|  | err = err2; | 
|  | ext4_journal_stop(handle); | 
|  |  | 
|  | out_trace: | 
|  | trace_ext4_truncate_exit(inode); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline u64 ext4_inode_peek_iversion(const struct inode *inode) | 
|  | { | 
|  | if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) | 
|  | return inode_peek_iversion_raw(inode); | 
|  | else | 
|  | return inode_peek_iversion(inode); | 
|  | } | 
|  |  | 
|  | static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | struct inode *inode = &(ei->vfs_inode); | 
|  | u64 i_blocks = READ_ONCE(inode->i_blocks); | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | if (i_blocks <= ~0U) { | 
|  | /* | 
|  | * i_blocks can be represented in a 32 bit variable | 
|  | * as multiple of 512 bytes | 
|  | */ | 
|  | raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
|  | raw_inode->i_blocks_high = 0; | 
|  | ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This should never happen since sb->s_maxbytes should not have | 
|  | * allowed this, sb->s_maxbytes was set according to the huge_file | 
|  | * feature in ext4_fill_super(). | 
|  | */ | 
|  | if (!ext4_has_feature_huge_file(sb)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | if (i_blocks <= 0xffffffffffffULL) { | 
|  | /* | 
|  | * i_blocks can be represented in a 48 bit variable | 
|  | * as multiple of 512 bytes | 
|  | */ | 
|  | raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
|  | raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); | 
|  | ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
|  | } else { | 
|  | ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
|  | /* i_block is stored in file system block size */ | 
|  | i_blocks = i_blocks >> (inode->i_blkbits - 9); | 
|  | raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
|  | raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | uid_t i_uid; | 
|  | gid_t i_gid; | 
|  | projid_t i_projid; | 
|  | int block; | 
|  | int err; | 
|  |  | 
|  | err = ext4_inode_blocks_set(raw_inode, ei); | 
|  |  | 
|  | raw_inode->i_mode = cpu_to_le16(inode->i_mode); | 
|  | i_uid = i_uid_read(inode); | 
|  | i_gid = i_gid_read(inode); | 
|  | i_projid = from_kprojid(&init_user_ns, ei->i_projid); | 
|  | if (!(test_opt(inode->i_sb, NO_UID32))) { | 
|  | raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); | 
|  | raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); | 
|  | /* | 
|  | * Fix up interoperability with old kernels. Otherwise, | 
|  | * old inodes get re-used with the upper 16 bits of the | 
|  | * uid/gid intact. | 
|  | */ | 
|  | if (ei->i_dtime && list_empty(&ei->i_orphan)) { | 
|  | raw_inode->i_uid_high = 0; | 
|  | raw_inode->i_gid_high = 0; | 
|  | } else { | 
|  | raw_inode->i_uid_high = | 
|  | cpu_to_le16(high_16_bits(i_uid)); | 
|  | raw_inode->i_gid_high = | 
|  | cpu_to_le16(high_16_bits(i_gid)); | 
|  | } | 
|  | } else { | 
|  | raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); | 
|  | raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); | 
|  | raw_inode->i_uid_high = 0; | 
|  | raw_inode->i_gid_high = 0; | 
|  | } | 
|  | raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); | 
|  |  | 
|  | EXT4_INODE_SET_CTIME(inode, raw_inode); | 
|  | EXT4_INODE_SET_MTIME(inode, raw_inode); | 
|  | EXT4_INODE_SET_ATIME(inode, raw_inode); | 
|  | EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); | 
|  |  | 
|  | raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); | 
|  | raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); | 
|  | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) | 
|  | raw_inode->i_file_acl_high = | 
|  | cpu_to_le16(ei->i_file_acl >> 32); | 
|  | raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); | 
|  | ext4_isize_set(raw_inode, ei->i_disksize); | 
|  |  | 
|  | raw_inode->i_generation = cpu_to_le32(inode->i_generation); | 
|  | if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { | 
|  | if (old_valid_dev(inode->i_rdev)) { | 
|  | raw_inode->i_block[0] = | 
|  | cpu_to_le32(old_encode_dev(inode->i_rdev)); | 
|  | raw_inode->i_block[1] = 0; | 
|  | } else { | 
|  | raw_inode->i_block[0] = 0; | 
|  | raw_inode->i_block[1] = | 
|  | cpu_to_le32(new_encode_dev(inode->i_rdev)); | 
|  | raw_inode->i_block[2] = 0; | 
|  | } | 
|  | } else if (!ext4_has_inline_data(inode)) { | 
|  | for (block = 0; block < EXT4_N_BLOCKS; block++) | 
|  | raw_inode->i_block[block] = ei->i_data[block]; | 
|  | } | 
|  |  | 
|  | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { | 
|  | u64 ivers = ext4_inode_peek_iversion(inode); | 
|  |  | 
|  | raw_inode->i_disk_version = cpu_to_le32(ivers); | 
|  | if (ei->i_extra_isize) { | 
|  | if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) | 
|  | raw_inode->i_version_hi = | 
|  | cpu_to_le32(ivers >> 32); | 
|  | raw_inode->i_extra_isize = | 
|  | cpu_to_le16(ei->i_extra_isize); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i_projid != EXT4_DEF_PROJID && | 
|  | !ext4_has_feature_project(inode->i_sb)) | 
|  | err = err ?: -EFSCORRUPTED; | 
|  |  | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
|  | EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) | 
|  | raw_inode->i_projid = cpu_to_le32(i_projid); | 
|  |  | 
|  | ext4_inode_csum_set(inode, raw_inode, ei); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_get_inode_loc returns with an extra refcount against the inode's | 
|  | * underlying buffer_head on success. If we pass 'inode' and it does not | 
|  | * have in-inode xattr, we have all inode data in memory that is needed | 
|  | * to recreate the on-disk version of this inode. | 
|  | */ | 
|  | static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, | 
|  | struct inode *inode, struct ext4_iloc *iloc, | 
|  | ext4_fsblk_t *ret_block) | 
|  | { | 
|  | struct ext4_group_desc	*gdp; | 
|  | struct buffer_head	*bh; | 
|  | ext4_fsblk_t		block; | 
|  | struct blk_plug		plug; | 
|  | int			inodes_per_block, inode_offset; | 
|  |  | 
|  | iloc->bh = NULL; | 
|  | if (ino < EXT4_ROOT_INO || | 
|  | ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); | 
|  | gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); | 
|  | if (!gdp) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * Figure out the offset within the block group inode table | 
|  | */ | 
|  | inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; | 
|  | inode_offset = ((ino - 1) % | 
|  | EXT4_INODES_PER_GROUP(sb)); | 
|  | iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); | 
|  |  | 
|  | block = ext4_inode_table(sb, gdp); | 
|  | if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || | 
|  | (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { | 
|  | ext4_error(sb, "Invalid inode table block %llu in " | 
|  | "block_group %u", block, iloc->block_group); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | block += (inode_offset / inodes_per_block); | 
|  |  | 
|  | bh = sb_getblk(sb, block); | 
|  | if (unlikely(!bh)) | 
|  | return -ENOMEM; | 
|  | if (ext4_buffer_uptodate(bh)) | 
|  | goto has_buffer; | 
|  |  | 
|  | lock_buffer(bh); | 
|  | if (ext4_buffer_uptodate(bh)) { | 
|  | /* Someone brought it uptodate while we waited */ | 
|  | unlock_buffer(bh); | 
|  | goto has_buffer; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have all information of the inode in memory and this | 
|  | * is the only valid inode in the block, we need not read the | 
|  | * block. | 
|  | */ | 
|  | if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { | 
|  | struct buffer_head *bitmap_bh; | 
|  | int i, start; | 
|  |  | 
|  | start = inode_offset & ~(inodes_per_block - 1); | 
|  |  | 
|  | /* Is the inode bitmap in cache? */ | 
|  | bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); | 
|  | if (unlikely(!bitmap_bh)) | 
|  | goto make_io; | 
|  |  | 
|  | /* | 
|  | * If the inode bitmap isn't in cache then the | 
|  | * optimisation may end up performing two reads instead | 
|  | * of one, so skip it. | 
|  | */ | 
|  | if (!buffer_uptodate(bitmap_bh)) { | 
|  | brelse(bitmap_bh); | 
|  | goto make_io; | 
|  | } | 
|  | for (i = start; i < start + inodes_per_block; i++) { | 
|  | if (i == inode_offset) | 
|  | continue; | 
|  | if (ext4_test_bit(i, bitmap_bh->b_data)) | 
|  | break; | 
|  | } | 
|  | brelse(bitmap_bh); | 
|  | if (i == start + inodes_per_block) { | 
|  | struct ext4_inode *raw_inode = | 
|  | (struct ext4_inode *) (bh->b_data + iloc->offset); | 
|  |  | 
|  | /* all other inodes are free, so skip I/O */ | 
|  | memset(bh->b_data, 0, bh->b_size); | 
|  | if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) | 
|  | ext4_fill_raw_inode(inode, raw_inode); | 
|  | set_buffer_uptodate(bh); | 
|  | unlock_buffer(bh); | 
|  | goto has_buffer; | 
|  | } | 
|  | } | 
|  |  | 
|  | make_io: | 
|  | /* | 
|  | * If we need to do any I/O, try to pre-readahead extra | 
|  | * blocks from the inode table. | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  | if (EXT4_SB(sb)->s_inode_readahead_blks) { | 
|  | ext4_fsblk_t b, end, table; | 
|  | unsigned num; | 
|  | __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; | 
|  |  | 
|  | table = ext4_inode_table(sb, gdp); | 
|  | /* s_inode_readahead_blks is always a power of 2 */ | 
|  | b = block & ~((ext4_fsblk_t) ra_blks - 1); | 
|  | if (table > b) | 
|  | b = table; | 
|  | end = b + ra_blks; | 
|  | num = EXT4_INODES_PER_GROUP(sb); | 
|  | if (ext4_has_group_desc_csum(sb)) | 
|  | num -= ext4_itable_unused_count(sb, gdp); | 
|  | table += num / inodes_per_block; | 
|  | if (end > table) | 
|  | end = table; | 
|  | while (b <= end) | 
|  | ext4_sb_breadahead_unmovable(sb, b++); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are other valid inodes in the buffer, this inode | 
|  | * has in-inode xattrs, or we don't have this inode in memory. | 
|  | * Read the block from disk. | 
|  | */ | 
|  | trace_ext4_load_inode(sb, ino); | 
|  | ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, | 
|  | ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); | 
|  | blk_finish_plug(&plug); | 
|  | wait_on_buffer(bh); | 
|  | if (!buffer_uptodate(bh)) { | 
|  | if (ret_block) | 
|  | *ret_block = block; | 
|  | brelse(bh); | 
|  | return -EIO; | 
|  | } | 
|  | has_buffer: | 
|  | iloc->bh = bh; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __ext4_get_inode_loc_noinmem(struct inode *inode, | 
|  | struct ext4_iloc *iloc) | 
|  | { | 
|  | ext4_fsblk_t err_blk = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, | 
|  | &err_blk); | 
|  |  | 
|  | if (ret == -EIO) | 
|  | ext4_error_inode_block(inode, err_blk, EIO, | 
|  | "unable to read itable block"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) | 
|  | { | 
|  | ext4_fsblk_t err_blk = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, | 
|  | &err_blk); | 
|  |  | 
|  | if (ret == -EIO) | 
|  | ext4_error_inode_block(inode, err_blk, EIO, | 
|  | "unable to read itable block"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, | 
|  | struct ext4_iloc *iloc) | 
|  | { | 
|  | return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); | 
|  | } | 
|  |  | 
|  | static bool ext4_should_enable_dax(struct inode *inode) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  |  | 
|  | if (test_opt2(inode->i_sb, DAX_NEVER)) | 
|  | return false; | 
|  | if (!S_ISREG(inode->i_mode)) | 
|  | return false; | 
|  | if (ext4_should_journal_data(inode)) | 
|  | return false; | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return false; | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) | 
|  | return false; | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) | 
|  | return false; | 
|  | if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) | 
|  | return false; | 
|  | if (test_opt(inode->i_sb, DAX_ALWAYS)) | 
|  | return true; | 
|  |  | 
|  | return ext4_test_inode_flag(inode, EXT4_INODE_DAX); | 
|  | } | 
|  |  | 
|  | void ext4_set_inode_flags(struct inode *inode, bool init) | 
|  | { | 
|  | unsigned int flags = EXT4_I(inode)->i_flags; | 
|  | unsigned int new_fl = 0; | 
|  |  | 
|  | WARN_ON_ONCE(IS_DAX(inode) && init); | 
|  |  | 
|  | if (flags & EXT4_SYNC_FL) | 
|  | new_fl |= S_SYNC; | 
|  | if (flags & EXT4_APPEND_FL) | 
|  | new_fl |= S_APPEND; | 
|  | if (flags & EXT4_IMMUTABLE_FL) | 
|  | new_fl |= S_IMMUTABLE; | 
|  | if (flags & EXT4_NOATIME_FL) | 
|  | new_fl |= S_NOATIME; | 
|  | if (flags & EXT4_DIRSYNC_FL) | 
|  | new_fl |= S_DIRSYNC; | 
|  |  | 
|  | /* Because of the way inode_set_flags() works we must preserve S_DAX | 
|  | * here if already set. */ | 
|  | new_fl |= (inode->i_flags & S_DAX); | 
|  | if (init && ext4_should_enable_dax(inode)) | 
|  | new_fl |= S_DAX; | 
|  |  | 
|  | if (flags & EXT4_ENCRYPT_FL) | 
|  | new_fl |= S_ENCRYPTED; | 
|  | if (flags & EXT4_CASEFOLD_FL) | 
|  | new_fl |= S_CASEFOLD; | 
|  | if (flags & EXT4_VERITY_FL) | 
|  | new_fl |= S_VERITY; | 
|  | inode_set_flags(inode, new_fl, | 
|  | S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| | 
|  | S_ENCRYPTED|S_CASEFOLD|S_VERITY); | 
|  | } | 
|  |  | 
|  | static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | blkcnt_t i_blocks ; | 
|  | struct inode *inode = &(ei->vfs_inode); | 
|  | struct super_block *sb = inode->i_sb; | 
|  |  | 
|  | if (ext4_has_feature_huge_file(sb)) { | 
|  | /* we are using combined 48 bit field */ | 
|  | i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | | 
|  | le32_to_cpu(raw_inode->i_blocks_lo); | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { | 
|  | /* i_blocks represent file system block size */ | 
|  | return i_blocks  << (inode->i_blkbits - 9); | 
|  | } else { | 
|  | return i_blocks; | 
|  | } | 
|  | } else { | 
|  | return le32_to_cpu(raw_inode->i_blocks_lo); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int ext4_iget_extra_inode(struct inode *inode, | 
|  | struct ext4_inode *raw_inode, | 
|  | struct ext4_inode_info *ei) | 
|  | { | 
|  | __le32 *magic = (void *)raw_inode + | 
|  | EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; | 
|  |  | 
|  | if (EXT4_INODE_HAS_XATTR_SPACE(inode)  && | 
|  | *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { | 
|  | int err; | 
|  |  | 
|  | err = xattr_check_inode(inode, IHDR(inode, raw_inode), | 
|  | ITAIL(inode, raw_inode)); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | ext4_set_inode_state(inode, EXT4_STATE_XATTR); | 
|  | err = ext4_find_inline_data_nolock(inode); | 
|  | if (!err && ext4_has_inline_data(inode)) | 
|  | ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); | 
|  | return err; | 
|  | } else | 
|  | EXT4_I(inode)->i_inline_off = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ext4_get_projid(struct inode *inode, kprojid_t *projid) | 
|  | { | 
|  | if (!ext4_has_feature_project(inode->i_sb)) | 
|  | return -EOPNOTSUPP; | 
|  | *projid = EXT4_I(inode)->i_projid; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of | 
|  | * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag | 
|  | * set. | 
|  | */ | 
|  | static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) | 
|  | { | 
|  | if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) | 
|  | inode_set_iversion_raw(inode, val); | 
|  | else | 
|  | inode_set_iversion_queried(inode, val); | 
|  | } | 
|  |  | 
|  | static int check_igot_inode(struct inode *inode, ext4_iget_flags flags, | 
|  | const char *function, unsigned int line) | 
|  | { | 
|  | const char *err_str; | 
|  |  | 
|  | if (flags & EXT4_IGET_EA_INODE) { | 
|  | if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { | 
|  | err_str = "missing EA_INODE flag"; | 
|  | goto error; | 
|  | } | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || | 
|  | EXT4_I(inode)->i_file_acl) { | 
|  | err_str = "ea_inode with extended attributes"; | 
|  | goto error; | 
|  | } | 
|  | } else { | 
|  | if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { | 
|  | /* | 
|  | * open_by_handle_at() could provide an old inode number | 
|  | * that has since been reused for an ea_inode; this does | 
|  | * not indicate filesystem corruption | 
|  | */ | 
|  | if (flags & EXT4_IGET_HANDLE) | 
|  | return -ESTALE; | 
|  | err_str = "unexpected EA_INODE flag"; | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { | 
|  | err_str = "unexpected bad inode w/o EXT4_IGET_BAD"; | 
|  | goto error; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | ext4_error_inode(inode, function, line, 0, err_str); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, | 
|  | ext4_iget_flags flags, const char *function, | 
|  | unsigned int line) | 
|  | { | 
|  | struct ext4_iloc iloc; | 
|  | struct ext4_inode *raw_inode; | 
|  | struct ext4_inode_info *ei; | 
|  | struct ext4_super_block *es = EXT4_SB(sb)->s_es; | 
|  | struct inode *inode; | 
|  | journal_t *journal = EXT4_SB(sb)->s_journal; | 
|  | long ret; | 
|  | loff_t size; | 
|  | int block; | 
|  | uid_t i_uid; | 
|  | gid_t i_gid; | 
|  | projid_t i_projid; | 
|  |  | 
|  | if ((!(flags & EXT4_IGET_SPECIAL) && | 
|  | ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || | 
|  | ino == le32_to_cpu(es->s_usr_quota_inum) || | 
|  | ino == le32_to_cpu(es->s_grp_quota_inum) || | 
|  | ino == le32_to_cpu(es->s_prj_quota_inum) || | 
|  | ino == le32_to_cpu(es->s_orphan_file_inum))) || | 
|  | (ino < EXT4_ROOT_INO) || | 
|  | (ino > le32_to_cpu(es->s_inodes_count))) { | 
|  | if (flags & EXT4_IGET_HANDLE) | 
|  | return ERR_PTR(-ESTALE); | 
|  | __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, | 
|  | "inode #%lu: comm %s: iget: illegal inode #", | 
|  | ino, current->comm); | 
|  | return ERR_PTR(-EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | inode = iget_locked(sb, ino); | 
|  | if (!inode) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | if (!(inode->i_state & I_NEW)) { | 
|  | ret = check_igot_inode(inode, flags, function, line); | 
|  | if (ret) { | 
|  | iput(inode); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | ei = EXT4_I(inode); | 
|  | iloc.bh = NULL; | 
|  |  | 
|  | ret = __ext4_get_inode_loc_noinmem(inode, &iloc); | 
|  | if (ret < 0) | 
|  | goto bad_inode; | 
|  | raw_inode = ext4_raw_inode(&iloc); | 
|  |  | 
|  | if ((flags & EXT4_IGET_HANDLE) && | 
|  | (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { | 
|  | ret = -ESTALE; | 
|  | goto bad_inode; | 
|  | } | 
|  |  | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
|  | ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); | 
|  | if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > | 
|  | EXT4_INODE_SIZE(inode->i_sb) || | 
|  | (ei->i_extra_isize & 3)) { | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "iget: bad extra_isize %u " | 
|  | "(inode size %u)", | 
|  | ei->i_extra_isize, | 
|  | EXT4_INODE_SIZE(inode->i_sb)); | 
|  | ret = -EFSCORRUPTED; | 
|  | goto bad_inode; | 
|  | } | 
|  | } else | 
|  | ei->i_extra_isize = 0; | 
|  |  | 
|  | /* Precompute checksum seed for inode metadata */ | 
|  | if (ext4_has_feature_metadata_csum(sb)) { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | __u32 csum; | 
|  | __le32 inum = cpu_to_le32(inode->i_ino); | 
|  | __le32 gen = raw_inode->i_generation; | 
|  | csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, | 
|  | sizeof(inum)); | 
|  | ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, | 
|  | sizeof(gen)); | 
|  | } | 
|  |  | 
|  | if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || | 
|  | ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && | 
|  | (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { | 
|  | ext4_error_inode_err(inode, function, line, 0, | 
|  | EFSBADCRC, "iget: checksum invalid"); | 
|  | ret = -EFSBADCRC; | 
|  | goto bad_inode; | 
|  | } | 
|  |  | 
|  | inode->i_mode = le16_to_cpu(raw_inode->i_mode); | 
|  | i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); | 
|  | i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); | 
|  | if (ext4_has_feature_project(sb) && | 
|  | EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
|  | EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) | 
|  | i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); | 
|  | else | 
|  | i_projid = EXT4_DEF_PROJID; | 
|  |  | 
|  | if (!(test_opt(inode->i_sb, NO_UID32))) { | 
|  | i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; | 
|  | i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; | 
|  | } | 
|  | i_uid_write(inode, i_uid); | 
|  | i_gid_write(inode, i_gid); | 
|  | ei->i_projid = make_kprojid(&init_user_ns, i_projid); | 
|  | set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); | 
|  |  | 
|  | ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */ | 
|  | ei->i_inline_off = 0; | 
|  | ei->i_dir_start_lookup = 0; | 
|  | ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); | 
|  | /* We now have enough fields to check if the inode was active or not. | 
|  | * This is needed because nfsd might try to access dead inodes | 
|  | * the test is that same one that e2fsck uses | 
|  | * NeilBrown 1999oct15 | 
|  | */ | 
|  | if (inode->i_nlink == 0) { | 
|  | if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || | 
|  | !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && | 
|  | ino != EXT4_BOOT_LOADER_INO) { | 
|  | /* this inode is deleted or unallocated */ | 
|  | if (flags & EXT4_IGET_SPECIAL) { | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "iget: special inode unallocated"); | 
|  | ret = -EFSCORRUPTED; | 
|  | } else | 
|  | ret = -ESTALE; | 
|  | goto bad_inode; | 
|  | } | 
|  | /* The only unlinked inodes we let through here have | 
|  | * valid i_mode and are being read by the orphan | 
|  | * recovery code: that's fine, we're about to complete | 
|  | * the process of deleting those. | 
|  | * OR it is the EXT4_BOOT_LOADER_INO which is | 
|  | * not initialized on a new filesystem. */ | 
|  | } | 
|  | ei->i_flags = le32_to_cpu(raw_inode->i_flags); | 
|  | ext4_set_inode_flags(inode, true); | 
|  | inode->i_blocks = ext4_inode_blocks(raw_inode, ei); | 
|  | ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); | 
|  | if (ext4_has_feature_64bit(sb)) | 
|  | ei->i_file_acl |= | 
|  | ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; | 
|  | inode->i_size = ext4_isize(sb, raw_inode); | 
|  | if ((size = i_size_read(inode)) < 0) { | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "iget: bad i_size value: %lld", size); | 
|  | ret = -EFSCORRUPTED; | 
|  | goto bad_inode; | 
|  | } | 
|  | /* | 
|  | * If dir_index is not enabled but there's dir with INDEX flag set, | 
|  | * we'd normally treat htree data as empty space. But with metadata | 
|  | * checksumming that corrupts checksums so forbid that. | 
|  | */ | 
|  | if (!ext4_has_feature_dir_index(sb) && | 
|  | ext4_has_feature_metadata_csum(sb) && | 
|  | ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "iget: Dir with htree data on filesystem without dir_index feature."); | 
|  | ret = -EFSCORRUPTED; | 
|  | goto bad_inode; | 
|  | } | 
|  | ei->i_disksize = inode->i_size; | 
|  | #ifdef CONFIG_QUOTA | 
|  | ei->i_reserved_quota = 0; | 
|  | #endif | 
|  | inode->i_generation = le32_to_cpu(raw_inode->i_generation); | 
|  | ei->i_block_group = iloc.block_group; | 
|  | ei->i_last_alloc_group = ~0; | 
|  | /* | 
|  | * NOTE! The in-memory inode i_data array is in little-endian order | 
|  | * even on big-endian machines: we do NOT byteswap the block numbers! | 
|  | */ | 
|  | for (block = 0; block < EXT4_N_BLOCKS; block++) | 
|  | ei->i_data[block] = raw_inode->i_block[block]; | 
|  | INIT_LIST_HEAD(&ei->i_orphan); | 
|  | ext4_fc_init_inode(&ei->vfs_inode); | 
|  |  | 
|  | /* | 
|  | * Set transaction id's of transactions that have to be committed | 
|  | * to finish f[data]sync. We set them to currently running transaction | 
|  | * as we cannot be sure that the inode or some of its metadata isn't | 
|  | * part of the transaction - the inode could have been reclaimed and | 
|  | * now it is reread from disk. | 
|  | */ | 
|  | if (journal) { | 
|  | transaction_t *transaction; | 
|  | tid_t tid; | 
|  |  | 
|  | read_lock(&journal->j_state_lock); | 
|  | if (journal->j_running_transaction) | 
|  | transaction = journal->j_running_transaction; | 
|  | else | 
|  | transaction = journal->j_committing_transaction; | 
|  | if (transaction) | 
|  | tid = transaction->t_tid; | 
|  | else | 
|  | tid = journal->j_commit_sequence; | 
|  | read_unlock(&journal->j_state_lock); | 
|  | ei->i_sync_tid = tid; | 
|  | ei->i_datasync_tid = tid; | 
|  | } | 
|  |  | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
|  | if (ei->i_extra_isize == 0) { | 
|  | /* The extra space is currently unused. Use it. */ | 
|  | BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); | 
|  | ei->i_extra_isize = sizeof(struct ext4_inode) - | 
|  | EXT4_GOOD_OLD_INODE_SIZE; | 
|  | } else { | 
|  | ret = ext4_iget_extra_inode(inode, raw_inode, ei); | 
|  | if (ret) | 
|  | goto bad_inode; | 
|  | } | 
|  | } | 
|  |  | 
|  | EXT4_INODE_GET_CTIME(inode, raw_inode); | 
|  | EXT4_INODE_GET_ATIME(inode, raw_inode); | 
|  | EXT4_INODE_GET_MTIME(inode, raw_inode); | 
|  | EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); | 
|  |  | 
|  | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { | 
|  | u64 ivers = le32_to_cpu(raw_inode->i_disk_version); | 
|  |  | 
|  | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
|  | if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) | 
|  | ivers |= | 
|  | (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; | 
|  | } | 
|  | ext4_inode_set_iversion_queried(inode, ivers); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | if (ei->i_file_acl && | 
|  | !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "iget: bad extended attribute block %llu", | 
|  | ei->i_file_acl); | 
|  | ret = -EFSCORRUPTED; | 
|  | goto bad_inode; | 
|  | } else if (!ext4_has_inline_data(inode)) { | 
|  | /* validate the block references in the inode */ | 
|  | if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && | 
|  | (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
|  | (S_ISLNK(inode->i_mode) && | 
|  | !ext4_inode_is_fast_symlink(inode)))) { | 
|  | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
|  | ret = ext4_ext_check_inode(inode); | 
|  | else | 
|  | ret = ext4_ind_check_inode(inode); | 
|  | } | 
|  | } | 
|  | if (ret) | 
|  | goto bad_inode; | 
|  |  | 
|  | if (S_ISREG(inode->i_mode)) { | 
|  | inode->i_op = &ext4_file_inode_operations; | 
|  | inode->i_fop = &ext4_file_operations; | 
|  | ext4_set_aops(inode); | 
|  | } else if (S_ISDIR(inode->i_mode)) { | 
|  | inode->i_op = &ext4_dir_inode_operations; | 
|  | inode->i_fop = &ext4_dir_operations; | 
|  | } else if (S_ISLNK(inode->i_mode)) { | 
|  | /* VFS does not allow setting these so must be corruption */ | 
|  | if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "iget: immutable or append flags " | 
|  | "not allowed on symlinks"); | 
|  | ret = -EFSCORRUPTED; | 
|  | goto bad_inode; | 
|  | } | 
|  | if (IS_ENCRYPTED(inode)) { | 
|  | inode->i_op = &ext4_encrypted_symlink_inode_operations; | 
|  | } else if (ext4_inode_is_fast_symlink(inode)) { | 
|  | inode->i_op = &ext4_fast_symlink_inode_operations; | 
|  | if (inode->i_size == 0 || | 
|  | inode->i_size >= sizeof(ei->i_data) || | 
|  | strnlen((char *)ei->i_data, inode->i_size + 1) != | 
|  | inode->i_size) { | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "invalid fast symlink length %llu", | 
|  | (unsigned long long)inode->i_size); | 
|  | ret = -EFSCORRUPTED; | 
|  | goto bad_inode; | 
|  | } | 
|  | inode_set_cached_link(inode, (char *)ei->i_data, | 
|  | inode->i_size); | 
|  | } else { | 
|  | inode->i_op = &ext4_symlink_inode_operations; | 
|  | } | 
|  | } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || | 
|  | S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { | 
|  | inode->i_op = &ext4_special_inode_operations; | 
|  | if (raw_inode->i_block[0]) | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); | 
|  | else | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); | 
|  | } else if (ino == EXT4_BOOT_LOADER_INO) { | 
|  | make_bad_inode(inode); | 
|  | } else { | 
|  | ret = -EFSCORRUPTED; | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "iget: bogus i_mode (%o)", inode->i_mode); | 
|  | goto bad_inode; | 
|  | } | 
|  | if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { | 
|  | ext4_error_inode(inode, function, line, 0, | 
|  | "casefold flag without casefold feature"); | 
|  | ret = -EFSCORRUPTED; | 
|  | goto bad_inode; | 
|  | } | 
|  | ret = check_igot_inode(inode, flags, function, line); | 
|  | /* | 
|  | * -ESTALE here means there is nothing inherently wrong with the inode, | 
|  | * it's just not an inode we can return for an fhandle lookup. | 
|  | */ | 
|  | if (ret == -ESTALE) { | 
|  | brelse(iloc.bh); | 
|  | unlock_new_inode(inode); | 
|  | iput(inode); | 
|  | return ERR_PTR(-ESTALE); | 
|  | } | 
|  | if (ret) | 
|  | goto bad_inode; | 
|  | brelse(iloc.bh); | 
|  |  | 
|  | unlock_new_inode(inode); | 
|  | return inode; | 
|  |  | 
|  | bad_inode: | 
|  | brelse(iloc.bh); | 
|  | iget_failed(inode); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void __ext4_update_other_inode_time(struct super_block *sb, | 
|  | unsigned long orig_ino, | 
|  | unsigned long ino, | 
|  | struct ext4_inode *raw_inode) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = find_inode_by_ino_rcu(sb, ino); | 
|  | if (!inode) | 
|  | return; | 
|  |  | 
|  | if (!inode_is_dirtytime_only(inode)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | if (inode_is_dirtytime_only(inode)) { | 
|  | struct ext4_inode_info	*ei = EXT4_I(inode); | 
|  |  | 
|  | inode->i_state &= ~I_DIRTY_TIME; | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | spin_lock(&ei->i_raw_lock); | 
|  | EXT4_INODE_SET_CTIME(inode, raw_inode); | 
|  | EXT4_INODE_SET_MTIME(inode, raw_inode); | 
|  | EXT4_INODE_SET_ATIME(inode, raw_inode); | 
|  | ext4_inode_csum_set(inode, raw_inode, ei); | 
|  | spin_unlock(&ei->i_raw_lock); | 
|  | trace_ext4_other_inode_update_time(inode, orig_ino); | 
|  | return; | 
|  | } | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Opportunistically update the other time fields for other inodes in | 
|  | * the same inode table block. | 
|  | */ | 
|  | static void ext4_update_other_inodes_time(struct super_block *sb, | 
|  | unsigned long orig_ino, char *buf) | 
|  | { | 
|  | unsigned long ino; | 
|  | int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; | 
|  | int inode_size = EXT4_INODE_SIZE(sb); | 
|  |  | 
|  | /* | 
|  | * Calculate the first inode in the inode table block.  Inode | 
|  | * numbers are one-based.  That is, the first inode in a block | 
|  | * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). | 
|  | */ | 
|  | ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { | 
|  | if (ino == orig_ino) | 
|  | continue; | 
|  | __ext4_update_other_inode_time(sb, orig_ino, ino, | 
|  | (struct ext4_inode *)buf); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Post the struct inode info into an on-disk inode location in the | 
|  | * buffer-cache.  This gobbles the caller's reference to the | 
|  | * buffer_head in the inode location struct. | 
|  | * | 
|  | * The caller must have write access to iloc->bh. | 
|  | */ | 
|  | static int ext4_do_update_inode(handle_t *handle, | 
|  | struct inode *inode, | 
|  | struct ext4_iloc *iloc) | 
|  | { | 
|  | struct ext4_inode *raw_inode = ext4_raw_inode(iloc); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct buffer_head *bh = iloc->bh; | 
|  | struct super_block *sb = inode->i_sb; | 
|  | int err; | 
|  | int need_datasync = 0, set_large_file = 0; | 
|  |  | 
|  | spin_lock(&ei->i_raw_lock); | 
|  |  | 
|  | /* | 
|  | * For fields not tracked in the in-memory inode, initialise them | 
|  | * to zero for new inodes. | 
|  | */ | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) | 
|  | memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); | 
|  |  | 
|  | if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) | 
|  | need_datasync = 1; | 
|  | if (ei->i_disksize > 0x7fffffffULL) { | 
|  | if (!ext4_has_feature_large_file(sb) || | 
|  | EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) | 
|  | set_large_file = 1; | 
|  | } | 
|  |  | 
|  | err = ext4_fill_raw_inode(inode, raw_inode); | 
|  | spin_unlock(&ei->i_raw_lock); | 
|  | if (err) { | 
|  | EXT4_ERROR_INODE(inode, "corrupted inode contents"); | 
|  | goto out_brelse; | 
|  | } | 
|  |  | 
|  | if (inode->i_sb->s_flags & SB_LAZYTIME) | 
|  | ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, | 
|  | bh->b_data); | 
|  |  | 
|  | BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, bh); | 
|  | if (err) | 
|  | goto out_error; | 
|  | ext4_clear_inode_state(inode, EXT4_STATE_NEW); | 
|  | if (set_large_file) { | 
|  | BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); | 
|  | err = ext4_journal_get_write_access(handle, sb, | 
|  | EXT4_SB(sb)->s_sbh, | 
|  | EXT4_JTR_NONE); | 
|  | if (err) | 
|  | goto out_error; | 
|  | lock_buffer(EXT4_SB(sb)->s_sbh); | 
|  | ext4_set_feature_large_file(sb); | 
|  | ext4_superblock_csum_set(sb); | 
|  | unlock_buffer(EXT4_SB(sb)->s_sbh); | 
|  | ext4_handle_sync(handle); | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, | 
|  | EXT4_SB(sb)->s_sbh); | 
|  | } | 
|  | ext4_update_inode_fsync_trans(handle, inode, need_datasync); | 
|  | out_error: | 
|  | ext4_std_error(inode->i_sb, err); | 
|  | out_brelse: | 
|  | brelse(bh); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_write_inode() | 
|  | * | 
|  | * We are called from a few places: | 
|  | * | 
|  | * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. | 
|  | *   Here, there will be no transaction running. We wait for any running | 
|  | *   transaction to commit. | 
|  | * | 
|  | * - Within flush work (sys_sync(), kupdate and such). | 
|  | *   We wait on commit, if told to. | 
|  | * | 
|  | * - Within iput_final() -> write_inode_now() | 
|  | *   We wait on commit, if told to. | 
|  | * | 
|  | * In all cases it is actually safe for us to return without doing anything, | 
|  | * because the inode has been copied into a raw inode buffer in | 
|  | * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL | 
|  | * writeback. | 
|  | * | 
|  | * Note that we are absolutely dependent upon all inode dirtiers doing the | 
|  | * right thing: they *must* call mark_inode_dirty() after dirtying info in | 
|  | * which we are interested. | 
|  | * | 
|  | * It would be a bug for them to not do this.  The code: | 
|  | * | 
|  | *	mark_inode_dirty(inode) | 
|  | *	stuff(); | 
|  | *	inode->i_size = expr; | 
|  | * | 
|  | * is in error because write_inode() could occur while `stuff()' is running, | 
|  | * and the new i_size will be lost.  Plus the inode will no longer be on the | 
|  | * superblock's dirty inode list. | 
|  | */ | 
|  | int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) | 
|  | return 0; | 
|  |  | 
|  | err = ext4_emergency_state(inode->i_sb); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | if (EXT4_SB(inode->i_sb)->s_journal) { | 
|  | if (ext4_journal_current_handle()) { | 
|  | ext4_debug("called recursively, non-PF_MEMALLOC!\n"); | 
|  | dump_stack(); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to force transaction in WB_SYNC_NONE mode. Also | 
|  | * ext4_sync_fs() will force the commit after everything is | 
|  | * written. | 
|  | */ | 
|  | if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) | 
|  | return 0; | 
|  |  | 
|  | err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, | 
|  | EXT4_I(inode)->i_sync_tid); | 
|  | } else { | 
|  | struct ext4_iloc iloc; | 
|  |  | 
|  | err = __ext4_get_inode_loc_noinmem(inode, &iloc); | 
|  | if (err) | 
|  | return err; | 
|  | /* | 
|  | * sync(2) will flush the whole buffer cache. No need to do | 
|  | * it here separately for each inode. | 
|  | */ | 
|  | if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) | 
|  | sync_dirty_buffer(iloc.bh); | 
|  | if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { | 
|  | ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, | 
|  | "IO error syncing inode"); | 
|  | err = -EIO; | 
|  | } | 
|  | brelse(iloc.bh); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate | 
|  | * buffers that are attached to a folio straddling i_size and are undergoing | 
|  | * commit. In that case we have to wait for commit to finish and try again. | 
|  | */ | 
|  | static void ext4_wait_for_tail_page_commit(struct inode *inode) | 
|  | { | 
|  | unsigned offset; | 
|  | journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; | 
|  | tid_t commit_tid; | 
|  | int ret; | 
|  | bool has_transaction; | 
|  |  | 
|  | offset = inode->i_size & (PAGE_SIZE - 1); | 
|  | /* | 
|  | * If the folio is fully truncated, we don't need to wait for any commit | 
|  | * (and we even should not as __ext4_journalled_invalidate_folio() may | 
|  | * strip all buffers from the folio but keep the folio dirty which can then | 
|  | * confuse e.g. concurrent ext4_writepages() seeing dirty folio without | 
|  | * buffers). Also we don't need to wait for any commit if all buffers in | 
|  | * the folio remain valid. This is most beneficial for the common case of | 
|  | * blocksize == PAGESIZE. | 
|  | */ | 
|  | if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) | 
|  | return; | 
|  | while (1) { | 
|  | struct folio *folio = filemap_lock_folio(inode->i_mapping, | 
|  | inode->i_size >> PAGE_SHIFT); | 
|  | if (IS_ERR(folio)) | 
|  | return; | 
|  | ret = __ext4_journalled_invalidate_folio(folio, offset, | 
|  | folio_size(folio) - offset); | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | if (ret != -EBUSY) | 
|  | return; | 
|  | has_transaction = false; | 
|  | read_lock(&journal->j_state_lock); | 
|  | if (journal->j_committing_transaction) { | 
|  | commit_tid = journal->j_committing_transaction->t_tid; | 
|  | has_transaction = true; | 
|  | } | 
|  | read_unlock(&journal->j_state_lock); | 
|  | if (has_transaction) | 
|  | jbd2_log_wait_commit(journal, commit_tid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_setattr() | 
|  | * | 
|  | * Called from notify_change. | 
|  | * | 
|  | * We want to trap VFS attempts to truncate the file as soon as | 
|  | * possible.  In particular, we want to make sure that when the VFS | 
|  | * shrinks i_size, we put the inode on the orphan list and modify | 
|  | * i_disksize immediately, so that during the subsequent flushing of | 
|  | * dirty pages and freeing of disk blocks, we can guarantee that any | 
|  | * commit will leave the blocks being flushed in an unused state on | 
|  | * disk.  (On recovery, the inode will get truncated and the blocks will | 
|  | * be freed, so we have a strong guarantee that no future commit will | 
|  | * leave these blocks visible to the user.) | 
|  | * | 
|  | * Another thing we have to assure is that if we are in ordered mode | 
|  | * and inode is still attached to the committing transaction, we must | 
|  | * we start writeout of all the dirty pages which are being truncated. | 
|  | * This way we are sure that all the data written in the previous | 
|  | * transaction are already on disk (truncate waits for pages under | 
|  | * writeback). | 
|  | * | 
|  | * Called with inode->i_rwsem down. | 
|  | */ | 
|  | int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, | 
|  | struct iattr *attr) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  | int error, rc = 0; | 
|  | int orphan = 0; | 
|  | const unsigned int ia_valid = attr->ia_valid; | 
|  | bool inc_ivers = true; | 
|  |  | 
|  | error = ext4_emergency_state(inode->i_sb); | 
|  | if (unlikely(error)) | 
|  | return error; | 
|  |  | 
|  | if (unlikely(IS_IMMUTABLE(inode))) | 
|  | return -EPERM; | 
|  |  | 
|  | if (unlikely(IS_APPEND(inode) && | 
|  | (ia_valid & (ATTR_MODE | ATTR_UID | | 
|  | ATTR_GID | ATTR_TIMES_SET)))) | 
|  | return -EPERM; | 
|  |  | 
|  | error = setattr_prepare(idmap, dentry, attr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = fscrypt_prepare_setattr(dentry, attr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = fsverity_prepare_setattr(dentry, attr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (is_quota_modification(idmap, inode, attr)) { | 
|  | error = dquot_initialize(inode); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (i_uid_needs_update(idmap, attr, inode) || | 
|  | i_gid_needs_update(idmap, attr, inode)) { | 
|  | handle_t *handle; | 
|  |  | 
|  | /* (user+group)*(old+new) structure, inode write (sb, | 
|  | * inode block, ? - but truncate inode update has it) */ | 
|  | handle = ext4_journal_start(inode, EXT4_HT_QUOTA, | 
|  | (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + | 
|  | EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); | 
|  | if (IS_ERR(handle)) { | 
|  | error = PTR_ERR(handle); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* dquot_transfer() calls back ext4_get_inode_usage() which | 
|  | * counts xattr inode references. | 
|  | */ | 
|  | down_read(&EXT4_I(inode)->xattr_sem); | 
|  | error = dquot_transfer(idmap, inode, attr); | 
|  | up_read(&EXT4_I(inode)->xattr_sem); | 
|  |  | 
|  | if (error) { | 
|  | ext4_journal_stop(handle); | 
|  | return error; | 
|  | } | 
|  | /* Update corresponding info in inode so that everything is in | 
|  | * one transaction */ | 
|  | i_uid_update(idmap, attr, inode); | 
|  | i_gid_update(idmap, attr, inode); | 
|  | error = ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | if (unlikely(error)) { | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (attr->ia_valid & ATTR_SIZE) { | 
|  | handle_t *handle; | 
|  | loff_t oldsize = inode->i_size; | 
|  | loff_t old_disksize; | 
|  | int shrink = (attr->ia_size < inode->i_size); | 
|  |  | 
|  | if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  |  | 
|  | if (attr->ia_size > sbi->s_bitmap_maxbytes) { | 
|  | return -EFBIG; | 
|  | } | 
|  | } | 
|  | if (!S_ISREG(inode->i_mode)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (attr->ia_size == inode->i_size) | 
|  | inc_ivers = false; | 
|  |  | 
|  | if (shrink) { | 
|  | if (ext4_should_order_data(inode)) { | 
|  | error = ext4_begin_ordered_truncate(inode, | 
|  | attr->ia_size); | 
|  | if (error) | 
|  | goto err_out; | 
|  | } | 
|  | /* | 
|  | * Blocks are going to be removed from the inode. Wait | 
|  | * for dio in flight. | 
|  | */ | 
|  | inode_dio_wait(inode); | 
|  | } | 
|  |  | 
|  | filemap_invalidate_lock(inode->i_mapping); | 
|  |  | 
|  | rc = ext4_break_layouts(inode); | 
|  | if (rc) { | 
|  | filemap_invalidate_unlock(inode->i_mapping); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | if (attr->ia_size != inode->i_size) { | 
|  | /* attach jbd2 jinode for EOF folio tail zeroing */ | 
|  | if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || | 
|  | oldsize & (inode->i_sb->s_blocksize - 1)) { | 
|  | error = ext4_inode_attach_jinode(inode); | 
|  | if (error) | 
|  | goto out_mmap_sem; | 
|  | } | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); | 
|  | if (IS_ERR(handle)) { | 
|  | error = PTR_ERR(handle); | 
|  | goto out_mmap_sem; | 
|  | } | 
|  | if (ext4_handle_valid(handle) && shrink) { | 
|  | error = ext4_orphan_add(handle, inode); | 
|  | orphan = 1; | 
|  | } | 
|  | /* | 
|  | * Update c/mtime and tail zero the EOF folio on | 
|  | * truncate up. ext4_truncate() handles the shrink case | 
|  | * below. | 
|  | */ | 
|  | if (!shrink) { | 
|  | inode_set_mtime_to_ts(inode, | 
|  | inode_set_ctime_current(inode)); | 
|  | if (oldsize & (inode->i_sb->s_blocksize - 1)) | 
|  | ext4_block_truncate_page(handle, | 
|  | inode->i_mapping, oldsize); | 
|  | } | 
|  |  | 
|  | if (shrink) | 
|  | ext4_fc_track_range(handle, inode, | 
|  | (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> | 
|  | inode->i_sb->s_blocksize_bits, | 
|  | EXT_MAX_BLOCKS - 1); | 
|  | else | 
|  | ext4_fc_track_range( | 
|  | handle, inode, | 
|  | (oldsize > 0 ? oldsize - 1 : oldsize) >> | 
|  | inode->i_sb->s_blocksize_bits, | 
|  | (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> | 
|  | inode->i_sb->s_blocksize_bits); | 
|  |  | 
|  | down_write(&EXT4_I(inode)->i_data_sem); | 
|  | old_disksize = EXT4_I(inode)->i_disksize; | 
|  | EXT4_I(inode)->i_disksize = attr->ia_size; | 
|  | rc = ext4_mark_inode_dirty(handle, inode); | 
|  | if (!error) | 
|  | error = rc; | 
|  | /* | 
|  | * We have to update i_size under i_data_sem together | 
|  | * with i_disksize to avoid races with writeback code | 
|  | * running ext4_wb_update_i_disksize(). | 
|  | */ | 
|  | if (!error) | 
|  | i_size_write(inode, attr->ia_size); | 
|  | else | 
|  | EXT4_I(inode)->i_disksize = old_disksize; | 
|  | up_write(&EXT4_I(inode)->i_data_sem); | 
|  | ext4_journal_stop(handle); | 
|  | if (error) | 
|  | goto out_mmap_sem; | 
|  | if (!shrink) { | 
|  | pagecache_isize_extended(inode, oldsize, | 
|  | inode->i_size); | 
|  | } else if (ext4_should_journal_data(inode)) { | 
|  | ext4_wait_for_tail_page_commit(inode); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Truncate pagecache after we've waited for commit | 
|  | * in data=journal mode to make pages freeable. | 
|  | */ | 
|  | truncate_pagecache(inode, inode->i_size); | 
|  | /* | 
|  | * Call ext4_truncate() even if i_size didn't change to | 
|  | * truncate possible preallocated blocks. | 
|  | */ | 
|  | if (attr->ia_size <= oldsize) { | 
|  | rc = ext4_truncate(inode); | 
|  | if (rc) | 
|  | error = rc; | 
|  | } | 
|  | out_mmap_sem: | 
|  | filemap_invalidate_unlock(inode->i_mapping); | 
|  | } | 
|  |  | 
|  | if (!error) { | 
|  | if (inc_ivers) | 
|  | inode_inc_iversion(inode); | 
|  | setattr_copy(idmap, inode, attr); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the call to ext4_truncate failed to get a transaction handle at | 
|  | * all, we need to clean up the in-core orphan list manually. | 
|  | */ | 
|  | if (orphan && inode->i_nlink) | 
|  | ext4_orphan_del(NULL, inode); | 
|  |  | 
|  | if (!error && (ia_valid & ATTR_MODE)) | 
|  | rc = posix_acl_chmod(idmap, dentry, inode->i_mode); | 
|  |  | 
|  | err_out: | 
|  | if  (error) | 
|  | ext4_std_error(inode->i_sb, error); | 
|  | if (!error) | 
|  | error = rc; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | u32 ext4_dio_alignment(struct inode *inode) | 
|  | { | 
|  | if (fsverity_active(inode)) | 
|  | return 0; | 
|  | if (ext4_should_journal_data(inode)) | 
|  | return 0; | 
|  | if (ext4_has_inline_data(inode)) | 
|  | return 0; | 
|  | if (IS_ENCRYPTED(inode)) { | 
|  | if (!fscrypt_dio_supported(inode)) | 
|  | return 0; | 
|  | return i_blocksize(inode); | 
|  | } | 
|  | return 1; /* use the iomap defaults */ | 
|  | } | 
|  |  | 
|  | int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, | 
|  | struct kstat *stat, u32 request_mask, unsigned int query_flags) | 
|  | { | 
|  | struct inode *inode = d_inode(path->dentry); | 
|  | struct ext4_inode *raw_inode; | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | unsigned int flags; | 
|  |  | 
|  | if ((request_mask & STATX_BTIME) && | 
|  | EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { | 
|  | stat->result_mask |= STATX_BTIME; | 
|  | stat->btime.tv_sec = ei->i_crtime.tv_sec; | 
|  | stat->btime.tv_nsec = ei->i_crtime.tv_nsec; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the DIO alignment restrictions if requested.  We only return | 
|  | * this information when requested, since on encrypted files it might | 
|  | * take a fair bit of work to get if the file wasn't opened recently. | 
|  | */ | 
|  | if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { | 
|  | u32 dio_align = ext4_dio_alignment(inode); | 
|  |  | 
|  | stat->result_mask |= STATX_DIOALIGN; | 
|  | if (dio_align == 1) { | 
|  | struct block_device *bdev = inode->i_sb->s_bdev; | 
|  |  | 
|  | /* iomap defaults */ | 
|  | stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; | 
|  | stat->dio_offset_align = bdev_logical_block_size(bdev); | 
|  | } else { | 
|  | stat->dio_mem_align = dio_align; | 
|  | stat->dio_offset_align = dio_align; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | unsigned int awu_min = 0, awu_max = 0; | 
|  |  | 
|  | if (ext4_inode_can_atomic_write(inode)) { | 
|  | awu_min = sbi->s_awu_min; | 
|  | awu_max = sbi->s_awu_max; | 
|  | } | 
|  |  | 
|  | generic_fill_statx_atomic_writes(stat, awu_min, awu_max); | 
|  | } | 
|  |  | 
|  | flags = ei->i_flags & EXT4_FL_USER_VISIBLE; | 
|  | if (flags & EXT4_APPEND_FL) | 
|  | stat->attributes |= STATX_ATTR_APPEND; | 
|  | if (flags & EXT4_COMPR_FL) | 
|  | stat->attributes |= STATX_ATTR_COMPRESSED; | 
|  | if (flags & EXT4_ENCRYPT_FL) | 
|  | stat->attributes |= STATX_ATTR_ENCRYPTED; | 
|  | if (flags & EXT4_IMMUTABLE_FL) | 
|  | stat->attributes |= STATX_ATTR_IMMUTABLE; | 
|  | if (flags & EXT4_NODUMP_FL) | 
|  | stat->attributes |= STATX_ATTR_NODUMP; | 
|  | if (flags & EXT4_VERITY_FL) | 
|  | stat->attributes |= STATX_ATTR_VERITY; | 
|  |  | 
|  | stat->attributes_mask |= (STATX_ATTR_APPEND | | 
|  | STATX_ATTR_COMPRESSED | | 
|  | STATX_ATTR_ENCRYPTED | | 
|  | STATX_ATTR_IMMUTABLE | | 
|  | STATX_ATTR_NODUMP | | 
|  | STATX_ATTR_VERITY); | 
|  |  | 
|  | generic_fillattr(idmap, request_mask, inode, stat); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ext4_file_getattr(struct mnt_idmap *idmap, | 
|  | const struct path *path, struct kstat *stat, | 
|  | u32 request_mask, unsigned int query_flags) | 
|  | { | 
|  | struct inode *inode = d_inode(path->dentry); | 
|  | u64 delalloc_blocks; | 
|  |  | 
|  | ext4_getattr(idmap, path, stat, request_mask, query_flags); | 
|  |  | 
|  | /* | 
|  | * If there is inline data in the inode, the inode will normally not | 
|  | * have data blocks allocated (it may have an external xattr block). | 
|  | * Report at least one sector for such files, so tools like tar, rsync, | 
|  | * others don't incorrectly think the file is completely sparse. | 
|  | */ | 
|  | if (unlikely(ext4_has_inline_data(inode))) | 
|  | stat->blocks += (stat->size + 511) >> 9; | 
|  |  | 
|  | /* | 
|  | * We can't update i_blocks if the block allocation is delayed | 
|  | * otherwise in the case of system crash before the real block | 
|  | * allocation is done, we will have i_blocks inconsistent with | 
|  | * on-disk file blocks. | 
|  | * We always keep i_blocks updated together with real | 
|  | * allocation. But to not confuse with user, stat | 
|  | * will return the blocks that include the delayed allocation | 
|  | * blocks for this file. | 
|  | */ | 
|  | delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), | 
|  | EXT4_I(inode)->i_reserved_data_blocks); | 
|  | stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_index_trans_blocks(struct inode *inode, int lblocks, | 
|  | int pextents) | 
|  | { | 
|  | if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
|  | return ext4_ind_trans_blocks(inode, lblocks); | 
|  | return ext4_ext_index_trans_blocks(inode, pextents); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for index blocks, block groups bitmaps and block group | 
|  | * descriptor blocks if modify datablocks and index blocks | 
|  | * worse case, the indexs blocks spread over different block groups | 
|  | * | 
|  | * If datablocks are discontiguous, they are possible to spread over | 
|  | * different block groups too. If they are contiguous, with flexbg, | 
|  | * they could still across block group boundary. | 
|  | * | 
|  | * Also account for superblock, inode, quota and xattr blocks | 
|  | */ | 
|  | static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, | 
|  | int pextents) | 
|  | { | 
|  | ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); | 
|  | int gdpblocks; | 
|  | int idxblocks; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * How many index blocks need to touch to map @lblocks logical blocks | 
|  | * to @pextents physical extents? | 
|  | */ | 
|  | idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); | 
|  |  | 
|  | ret = idxblocks; | 
|  |  | 
|  | /* | 
|  | * Now let's see how many group bitmaps and group descriptors need | 
|  | * to account | 
|  | */ | 
|  | groups = idxblocks + pextents; | 
|  | gdpblocks = groups; | 
|  | if (groups > ngroups) | 
|  | groups = ngroups; | 
|  | if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) | 
|  | gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; | 
|  |  | 
|  | /* bitmaps and block group descriptor blocks */ | 
|  | ret += groups + gdpblocks; | 
|  |  | 
|  | /* Blocks for super block, inode, quota and xattr blocks */ | 
|  | ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the total number of credits to reserve to fit | 
|  | * the modification of a single pages into a single transaction, | 
|  | * which may include multiple chunks of block allocations. | 
|  | * | 
|  | * This could be called via ext4_write_begin() | 
|  | * | 
|  | * We need to consider the worse case, when | 
|  | * one new block per extent. | 
|  | */ | 
|  | int ext4_writepage_trans_blocks(struct inode *inode) | 
|  | { | 
|  | int bpp = ext4_journal_blocks_per_page(inode); | 
|  | int ret; | 
|  |  | 
|  | ret = ext4_meta_trans_blocks(inode, bpp, bpp); | 
|  |  | 
|  | /* Account for data blocks for journalled mode */ | 
|  | if (ext4_should_journal_data(inode)) | 
|  | ret += bpp; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the journal credits for a chunk of data modification. | 
|  | * | 
|  | * This is called from DIO, fallocate or whoever calling | 
|  | * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. | 
|  | * | 
|  | * journal buffers for data blocks are not included here, as DIO | 
|  | * and fallocate do no need to journal data buffers. | 
|  | */ | 
|  | int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) | 
|  | { | 
|  | return ext4_meta_trans_blocks(inode, nrblocks, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The caller must have previously called ext4_reserve_inode_write(). | 
|  | * Give this, we know that the caller already has write access to iloc->bh. | 
|  | */ | 
|  | int ext4_mark_iloc_dirty(handle_t *handle, | 
|  | struct inode *inode, struct ext4_iloc *iloc) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | err = ext4_emergency_state(inode->i_sb); | 
|  | if (unlikely(err)) { | 
|  | put_bh(iloc->bh); | 
|  | return err; | 
|  | } | 
|  | ext4_fc_track_inode(handle, inode); | 
|  |  | 
|  | /* the do_update_inode consumes one bh->b_count */ | 
|  | get_bh(iloc->bh); | 
|  |  | 
|  | /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ | 
|  | err = ext4_do_update_inode(handle, inode, iloc); | 
|  | put_bh(iloc->bh); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On success, We end up with an outstanding reference count against | 
|  | * iloc->bh.  This _must_ be cleaned up later. | 
|  | */ | 
|  |  | 
|  | int | 
|  | ext4_reserve_inode_write(handle_t *handle, struct inode *inode, | 
|  | struct ext4_iloc *iloc) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = ext4_emergency_state(inode->i_sb); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | err = ext4_get_inode_loc(inode, iloc); | 
|  | if (!err) { | 
|  | BUFFER_TRACE(iloc->bh, "get_write_access"); | 
|  | err = ext4_journal_get_write_access(handle, inode->i_sb, | 
|  | iloc->bh, EXT4_JTR_NONE); | 
|  | if (err) { | 
|  | brelse(iloc->bh); | 
|  | iloc->bh = NULL; | 
|  | } | 
|  | } | 
|  | ext4_std_error(inode->i_sb, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __ext4_expand_extra_isize(struct inode *inode, | 
|  | unsigned int new_extra_isize, | 
|  | struct ext4_iloc *iloc, | 
|  | handle_t *handle, int *no_expand) | 
|  | { | 
|  | struct ext4_inode *raw_inode; | 
|  | struct ext4_xattr_ibody_header *header; | 
|  | unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | int error; | 
|  |  | 
|  | /* this was checked at iget time, but double check for good measure */ | 
|  | if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || | 
|  | (ei->i_extra_isize & 3)) { | 
|  | EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", | 
|  | ei->i_extra_isize, | 
|  | EXT4_INODE_SIZE(inode->i_sb)); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | if ((new_extra_isize < ei->i_extra_isize) || | 
|  | (new_extra_isize < 4) || | 
|  | (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) | 
|  | return -EINVAL;	/* Should never happen */ | 
|  |  | 
|  | raw_inode = ext4_raw_inode(iloc); | 
|  |  | 
|  | header = IHDR(inode, raw_inode); | 
|  |  | 
|  | /* No extended attributes present */ | 
|  | if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || | 
|  | header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { | 
|  | memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + | 
|  | EXT4_I(inode)->i_extra_isize, 0, | 
|  | new_extra_isize - EXT4_I(inode)->i_extra_isize); | 
|  | EXT4_I(inode)->i_extra_isize = new_extra_isize; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may need to allocate external xattr block so we need quotas | 
|  | * initialized. Here we can be called with various locks held so we | 
|  | * cannot affort to initialize quotas ourselves. So just bail. | 
|  | */ | 
|  | if (dquot_initialize_needed(inode)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* try to expand with EAs present */ | 
|  | error = ext4_expand_extra_isize_ea(inode, new_extra_isize, | 
|  | raw_inode, handle); | 
|  | if (error) { | 
|  | /* | 
|  | * Inode size expansion failed; don't try again | 
|  | */ | 
|  | *no_expand = 1; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand an inode by new_extra_isize bytes. | 
|  | * Returns 0 on success or negative error number on failure. | 
|  | */ | 
|  | static int ext4_try_to_expand_extra_isize(struct inode *inode, | 
|  | unsigned int new_extra_isize, | 
|  | struct ext4_iloc iloc, | 
|  | handle_t *handle) | 
|  | { | 
|  | int no_expand; | 
|  | int error; | 
|  |  | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | /* | 
|  | * In nojournal mode, we can immediately attempt to expand | 
|  | * the inode.  When journaled, we first need to obtain extra | 
|  | * buffer credits since we may write into the EA block | 
|  | * with this same handle. If journal_extend fails, then it will | 
|  | * only result in a minor loss of functionality for that inode. | 
|  | * If this is felt to be critical, then e2fsck should be run to | 
|  | * force a large enough s_min_extra_isize. | 
|  | */ | 
|  | if (ext4_journal_extend(handle, | 
|  | EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (ext4_write_trylock_xattr(inode, &no_expand) == 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, | 
|  | handle, &no_expand); | 
|  | ext4_write_unlock_xattr(inode, &no_expand); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int ext4_expand_extra_isize(struct inode *inode, | 
|  | unsigned int new_extra_isize, | 
|  | struct ext4_iloc *iloc) | 
|  | { | 
|  | handle_t *handle; | 
|  | int no_expand; | 
|  | int error, rc; | 
|  |  | 
|  | if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { | 
|  | brelse(iloc->bh); | 
|  | return -EOVERFLOW; | 
|  | } | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, | 
|  | EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); | 
|  | if (IS_ERR(handle)) { | 
|  | error = PTR_ERR(handle); | 
|  | brelse(iloc->bh); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | ext4_write_lock_xattr(inode, &no_expand); | 
|  |  | 
|  | BUFFER_TRACE(iloc->bh, "get_write_access"); | 
|  | error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, | 
|  | EXT4_JTR_NONE); | 
|  | if (error) { | 
|  | brelse(iloc->bh); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, | 
|  | handle, &no_expand); | 
|  |  | 
|  | rc = ext4_mark_iloc_dirty(handle, inode, iloc); | 
|  | if (!error) | 
|  | error = rc; | 
|  |  | 
|  | out_unlock: | 
|  | ext4_write_unlock_xattr(inode, &no_expand); | 
|  | ext4_journal_stop(handle); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * What we do here is to mark the in-core inode as clean with respect to inode | 
|  | * dirtiness (it may still be data-dirty). | 
|  | * This means that the in-core inode may be reaped by prune_icache | 
|  | * without having to perform any I/O.  This is a very good thing, | 
|  | * because *any* task may call prune_icache - even ones which | 
|  | * have a transaction open against a different journal. | 
|  | * | 
|  | * Is this cheating?  Not really.  Sure, we haven't written the | 
|  | * inode out, but prune_icache isn't a user-visible syncing function. | 
|  | * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) | 
|  | * we start and wait on commits. | 
|  | */ | 
|  | int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, | 
|  | const char *func, unsigned int line) | 
|  | { | 
|  | struct ext4_iloc iloc; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
|  | int err; | 
|  |  | 
|  | might_sleep(); | 
|  | trace_ext4_mark_inode_dirty(inode, _RET_IP_); | 
|  | err = ext4_reserve_inode_write(handle, inode, &iloc); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) | 
|  | ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, | 
|  | iloc, handle); | 
|  |  | 
|  | err = ext4_mark_iloc_dirty(handle, inode, &iloc); | 
|  | out: | 
|  | if (unlikely(err)) | 
|  | ext4_error_inode_err(inode, func, line, 0, err, | 
|  | "mark_inode_dirty error"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ext4_dirty_inode() is called from __mark_inode_dirty() | 
|  | * | 
|  | * We're really interested in the case where a file is being extended. | 
|  | * i_size has been changed by generic_commit_write() and we thus need | 
|  | * to include the updated inode in the current transaction. | 
|  | * | 
|  | * Also, dquot_alloc_block() will always dirty the inode when blocks | 
|  | * are allocated to the file. | 
|  | * | 
|  | * If the inode is marked synchronous, we don't honour that here - doing | 
|  | * so would cause a commit on atime updates, which we don't bother doing. | 
|  | * We handle synchronous inodes at the highest possible level. | 
|  | */ | 
|  | void ext4_dirty_inode(struct inode *inode, int flags) | 
|  | { | 
|  | handle_t *handle; | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); | 
|  | if (IS_ERR(handle)) | 
|  | return; | 
|  | ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_journal_stop(handle); | 
|  | } | 
|  |  | 
|  | int ext4_change_inode_journal_flag(struct inode *inode, int val) | 
|  | { | 
|  | journal_t *journal; | 
|  | handle_t *handle; | 
|  | int err; | 
|  | int alloc_ctx; | 
|  |  | 
|  | /* | 
|  | * We have to be very careful here: changing a data block's | 
|  | * journaling status dynamically is dangerous.  If we write a | 
|  | * data block to the journal, change the status and then delete | 
|  | * that block, we risk forgetting to revoke the old log record | 
|  | * from the journal and so a subsequent replay can corrupt data. | 
|  | * So, first we make sure that the journal is empty and that | 
|  | * nobody is changing anything. | 
|  | */ | 
|  |  | 
|  | journal = EXT4_JOURNAL(inode); | 
|  | if (!journal) | 
|  | return 0; | 
|  | if (is_journal_aborted(journal)) | 
|  | return -EROFS; | 
|  |  | 
|  | /* Wait for all existing dio workers */ | 
|  | inode_dio_wait(inode); | 
|  |  | 
|  | /* | 
|  | * Before flushing the journal and switching inode's aops, we have | 
|  | * to flush all dirty data the inode has. There can be outstanding | 
|  | * delayed allocations, there can be unwritten extents created by | 
|  | * fallocate or buffered writes in dioread_nolock mode covered by | 
|  | * dirty data which can be converted only after flushing the dirty | 
|  | * data (and journalled aops don't know how to handle these cases). | 
|  | */ | 
|  | if (val) { | 
|  | filemap_invalidate_lock(inode->i_mapping); | 
|  | err = filemap_write_and_wait(inode->i_mapping); | 
|  | if (err < 0) { | 
|  | filemap_invalidate_unlock(inode->i_mapping); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | alloc_ctx = ext4_writepages_down_write(inode->i_sb); | 
|  | jbd2_journal_lock_updates(journal); | 
|  |  | 
|  | /* | 
|  | * OK, there are no updates running now, and all cached data is | 
|  | * synced to disk.  We are now in a completely consistent state | 
|  | * which doesn't have anything in the journal, and we know that | 
|  | * no filesystem updates are running, so it is safe to modify | 
|  | * the inode's in-core data-journaling state flag now. | 
|  | */ | 
|  |  | 
|  | if (val) | 
|  | ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); | 
|  | else { | 
|  | err = jbd2_journal_flush(journal, 0); | 
|  | if (err < 0) { | 
|  | jbd2_journal_unlock_updates(journal); | 
|  | ext4_writepages_up_write(inode->i_sb, alloc_ctx); | 
|  | return err; | 
|  | } | 
|  | ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); | 
|  | } | 
|  | ext4_set_aops(inode); | 
|  |  | 
|  | jbd2_journal_unlock_updates(journal); | 
|  | ext4_writepages_up_write(inode->i_sb, alloc_ctx); | 
|  |  | 
|  | if (val) | 
|  | filemap_invalidate_unlock(inode->i_mapping); | 
|  |  | 
|  | /* Finally we can mark the inode as dirty. */ | 
|  |  | 
|  | handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); | 
|  | if (IS_ERR(handle)) | 
|  | return PTR_ERR(handle); | 
|  |  | 
|  | ext4_fc_mark_ineligible(inode->i_sb, | 
|  | EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); | 
|  | err = ext4_mark_inode_dirty(handle, inode); | 
|  | ext4_handle_sync(handle); | 
|  | ext4_journal_stop(handle); | 
|  | ext4_std_error(inode->i_sb, err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, | 
|  | struct buffer_head *bh) | 
|  | { | 
|  | return !buffer_mapped(bh); | 
|  | } | 
|  |  | 
|  | vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct folio *folio = page_folio(vmf->page); | 
|  | loff_t size; | 
|  | unsigned long len; | 
|  | int err; | 
|  | vm_fault_t ret; | 
|  | struct file *file = vma->vm_file; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | handle_t *handle; | 
|  | get_block_t *get_block; | 
|  | int retries = 0; | 
|  |  | 
|  | if (unlikely(IS_IMMUTABLE(inode))) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | sb_start_pagefault(inode->i_sb); | 
|  | file_update_time(vma->vm_file); | 
|  |  | 
|  | filemap_invalidate_lock_shared(mapping); | 
|  |  | 
|  | err = ext4_convert_inline_data(inode); | 
|  | if (err) | 
|  | goto out_ret; | 
|  |  | 
|  | /* | 
|  | * On data journalling we skip straight to the transaction handle: | 
|  | * there's no delalloc; page truncated will be checked later; the | 
|  | * early return w/ all buffers mapped (calculates size/len) can't | 
|  | * be used; and there's no dioread_nolock, so only ext4_get_block. | 
|  | */ | 
|  | if (ext4_should_journal_data(inode)) | 
|  | goto retry_alloc; | 
|  |  | 
|  | /* Delalloc case is easy... */ | 
|  | if (test_opt(inode->i_sb, DELALLOC) && | 
|  | !ext4_nonda_switch(inode->i_sb)) { | 
|  | do { | 
|  | err = block_page_mkwrite(vma, vmf, | 
|  | ext4_da_get_block_prep); | 
|  | } while (err == -ENOSPC && | 
|  | ext4_should_retry_alloc(inode->i_sb, &retries)); | 
|  | goto out_ret; | 
|  | } | 
|  |  | 
|  | folio_lock(folio); | 
|  | size = i_size_read(inode); | 
|  | /* Page got truncated from under us? */ | 
|  | if (folio->mapping != mapping || folio_pos(folio) > size) { | 
|  | folio_unlock(folio); | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | len = folio_size(folio); | 
|  | if (folio_pos(folio) + len > size) | 
|  | len = size - folio_pos(folio); | 
|  | /* | 
|  | * Return if we have all the buffers mapped. This avoids the need to do | 
|  | * journal_start/journal_stop which can block and take a long time | 
|  | * | 
|  | * This cannot be done for data journalling, as we have to add the | 
|  | * inode to the transaction's list to writeprotect pages on commit. | 
|  | */ | 
|  | if (folio_buffers(folio)) { | 
|  | if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), | 
|  | 0, len, NULL, | 
|  | ext4_bh_unmapped)) { | 
|  | /* Wait so that we don't change page under IO */ | 
|  | folio_wait_stable(folio); | 
|  | ret = VM_FAULT_LOCKED; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | folio_unlock(folio); | 
|  | /* OK, we need to fill the hole... */ | 
|  | if (ext4_should_dioread_nolock(inode)) | 
|  | get_block = ext4_get_block_unwritten; | 
|  | else | 
|  | get_block = ext4_get_block; | 
|  | retry_alloc: | 
|  | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, | 
|  | ext4_writepage_trans_blocks(inode)); | 
|  | if (IS_ERR(handle)) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Data journalling can't use block_page_mkwrite() because it | 
|  | * will set_buffer_dirty() before do_journal_get_write_access() | 
|  | * thus might hit warning messages for dirty metadata buffers. | 
|  | */ | 
|  | if (!ext4_should_journal_data(inode)) { | 
|  | err = block_page_mkwrite(vma, vmf, get_block); | 
|  | } else { | 
|  | folio_lock(folio); | 
|  | size = i_size_read(inode); | 
|  | /* Page got truncated from under us? */ | 
|  | if (folio->mapping != mapping || folio_pos(folio) > size) { | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | len = folio_size(folio); | 
|  | if (folio_pos(folio) + len > size) | 
|  | len = size - folio_pos(folio); | 
|  |  | 
|  | err = ext4_block_write_begin(handle, folio, 0, len, | 
|  | ext4_get_block); | 
|  | if (!err) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | if (ext4_journal_folio_buffers(handle, folio, len)) | 
|  | goto out_error; | 
|  | } else { | 
|  | folio_unlock(folio); | 
|  | } | 
|  | } | 
|  | ext4_journal_stop(handle); | 
|  | if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
|  | goto retry_alloc; | 
|  | out_ret: | 
|  | ret = vmf_fs_error(err); | 
|  | out: | 
|  | filemap_invalidate_unlock_shared(mapping); | 
|  | sb_end_pagefault(inode->i_sb); | 
|  | return ret; | 
|  | out_error: | 
|  | folio_unlock(folio); | 
|  | ext4_journal_stop(handle); | 
|  | goto out; | 
|  | } |