| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/sched/signal.h> |
| #include <linux/hardirq.h> |
| #include <linux/module.h> |
| #include <linux/uaccess.h> |
| #include <linux/sched/debug.h> |
| #include <asm/current.h> |
| #include <asm/tlbflush.h> |
| #include <arch.h> |
| #include <as-layout.h> |
| #include <kern_util.h> |
| #include <os.h> |
| #include <skas.h> |
| |
| /* |
| * NOTE: UML does not have exception tables. As such, this is almost a copy |
| * of the code in mm/memory.c, only adjusting the logic to simply check whether |
| * we are coming from the kernel instead of doing an additional lookup in the |
| * exception table. |
| * We can do this simplification because we never get here if the exception was |
| * fixable. |
| */ |
| static inline bool get_mmap_lock_carefully(struct mm_struct *mm, bool is_user) |
| { |
| if (likely(mmap_read_trylock(mm))) |
| return true; |
| |
| if (!is_user) |
| return false; |
| |
| return !mmap_read_lock_killable(mm); |
| } |
| |
| static inline bool mmap_upgrade_trylock(struct mm_struct *mm) |
| { |
| /* |
| * We don't have this operation yet. |
| * |
| * It should be easy enough to do: it's basically a |
| * atomic_long_try_cmpxchg_acquire() |
| * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but |
| * it also needs the proper lockdep magic etc. |
| */ |
| return false; |
| } |
| |
| static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, bool is_user) |
| { |
| mmap_read_unlock(mm); |
| if (!is_user) |
| return false; |
| |
| return !mmap_write_lock_killable(mm); |
| } |
| |
| /* |
| * Helper for page fault handling. |
| * |
| * This is kind of equivalend to "mmap_read_lock()" followed |
| * by "find_extend_vma()", except it's a lot more careful about |
| * the locking (and will drop the lock on failure). |
| * |
| * For example, if we have a kernel bug that causes a page |
| * fault, we don't want to just use mmap_read_lock() to get |
| * the mm lock, because that would deadlock if the bug were |
| * to happen while we're holding the mm lock for writing. |
| * |
| * So this checks the exception tables on kernel faults in |
| * order to only do this all for instructions that are actually |
| * expected to fault. |
| * |
| * We can also actually take the mm lock for writing if we |
| * need to extend the vma, which helps the VM layer a lot. |
| */ |
| static struct vm_area_struct * |
| um_lock_mm_and_find_vma(struct mm_struct *mm, |
| unsigned long addr, bool is_user) |
| { |
| struct vm_area_struct *vma; |
| |
| if (!get_mmap_lock_carefully(mm, is_user)) |
| return NULL; |
| |
| vma = find_vma(mm, addr); |
| if (likely(vma && (vma->vm_start <= addr))) |
| return vma; |
| |
| /* |
| * Well, dang. We might still be successful, but only |
| * if we can extend a vma to do so. |
| */ |
| if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { |
| mmap_read_unlock(mm); |
| return NULL; |
| } |
| |
| /* |
| * We can try to upgrade the mmap lock atomically, |
| * in which case we can continue to use the vma |
| * we already looked up. |
| * |
| * Otherwise we'll have to drop the mmap lock and |
| * re-take it, and also look up the vma again, |
| * re-checking it. |
| */ |
| if (!mmap_upgrade_trylock(mm)) { |
| if (!upgrade_mmap_lock_carefully(mm, is_user)) |
| return NULL; |
| |
| vma = find_vma(mm, addr); |
| if (!vma) |
| goto fail; |
| if (vma->vm_start <= addr) |
| goto success; |
| if (!(vma->vm_flags & VM_GROWSDOWN)) |
| goto fail; |
| } |
| |
| if (expand_stack_locked(vma, addr)) |
| goto fail; |
| |
| success: |
| mmap_write_downgrade(mm); |
| return vma; |
| |
| fail: |
| mmap_write_unlock(mm); |
| return NULL; |
| } |
| |
| /* |
| * Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by |
| * segv(). |
| */ |
| int handle_page_fault(unsigned long address, unsigned long ip, |
| int is_write, int is_user, int *code_out) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| pmd_t *pmd; |
| pte_t *pte; |
| int err = -EFAULT; |
| unsigned int flags = FAULT_FLAG_DEFAULT; |
| |
| *code_out = SEGV_MAPERR; |
| |
| /* |
| * If the fault was with pagefaults disabled, don't take the fault, just |
| * fail. |
| */ |
| if (faulthandler_disabled()) |
| goto out_nosemaphore; |
| |
| if (is_user) |
| flags |= FAULT_FLAG_USER; |
| retry: |
| vma = um_lock_mm_and_find_vma(mm, address, is_user); |
| if (!vma) |
| goto out_nosemaphore; |
| |
| *code_out = SEGV_ACCERR; |
| if (is_write) { |
| if (!(vma->vm_flags & VM_WRITE)) |
| goto out; |
| flags |= FAULT_FLAG_WRITE; |
| } else { |
| /* Don't require VM_READ|VM_EXEC for write faults! */ |
| if (!(vma->vm_flags & (VM_READ | VM_EXEC))) |
| goto out; |
| } |
| |
| do { |
| vm_fault_t fault; |
| |
| fault = handle_mm_fault(vma, address, flags, NULL); |
| |
| if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) |
| goto out_nosemaphore; |
| |
| /* The fault is fully completed (including releasing mmap lock) */ |
| if (fault & VM_FAULT_COMPLETED) |
| return 0; |
| |
| if (unlikely(fault & VM_FAULT_ERROR)) { |
| if (fault & VM_FAULT_OOM) { |
| goto out_of_memory; |
| } else if (fault & VM_FAULT_SIGSEGV) { |
| goto out; |
| } else if (fault & VM_FAULT_SIGBUS) { |
| err = -EACCES; |
| goto out; |
| } |
| BUG(); |
| } |
| if (fault & VM_FAULT_RETRY) { |
| flags |= FAULT_FLAG_TRIED; |
| |
| goto retry; |
| } |
| |
| pmd = pmd_off(mm, address); |
| pte = pte_offset_kernel(pmd, address); |
| } while (!pte_present(*pte)); |
| err = 0; |
| /* |
| * The below warning was added in place of |
| * pte_mkyoung(); if (is_write) pte_mkdirty(); |
| * If it's triggered, we'd see normally a hang here (a clean pte is |
| * marked read-only to emulate the dirty bit). |
| * However, the generic code can mark a PTE writable but clean on a |
| * concurrent read fault, triggering this harmlessly. So comment it out. |
| */ |
| #if 0 |
| WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte))); |
| #endif |
| |
| out: |
| mmap_read_unlock(mm); |
| out_nosemaphore: |
| return err; |
| |
| out_of_memory: |
| /* |
| * We ran out of memory, call the OOM killer, and return the userspace |
| * (which will retry the fault, or kill us if we got oom-killed). |
| */ |
| mmap_read_unlock(mm); |
| if (!is_user) |
| goto out_nosemaphore; |
| pagefault_out_of_memory(); |
| return 0; |
| } |
| |
| static void show_segv_info(struct uml_pt_regs *regs) |
| { |
| struct task_struct *tsk = current; |
| struct faultinfo *fi = UPT_FAULTINFO(regs); |
| |
| if (!unhandled_signal(tsk, SIGSEGV)) |
| return; |
| |
| if (!printk_ratelimit()) |
| return; |
| |
| printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x", |
| task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, |
| tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi), |
| (void *)UPT_IP(regs), (void *)UPT_SP(regs), |
| fi->error_code); |
| |
| print_vma_addr(KERN_CONT " in ", UPT_IP(regs)); |
| printk(KERN_CONT "\n"); |
| } |
| |
| static void bad_segv(struct faultinfo fi, unsigned long ip) |
| { |
| current->thread.arch.faultinfo = fi; |
| force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi)); |
| } |
| |
| void fatal_sigsegv(void) |
| { |
| force_fatal_sig(SIGSEGV); |
| do_signal(¤t->thread.regs); |
| /* |
| * This is to tell gcc that we're not returning - do_signal |
| * can, in general, return, but in this case, it's not, since |
| * we just got a fatal SIGSEGV queued. |
| */ |
| os_dump_core(); |
| } |
| |
| /** |
| * segv_handler() - the SIGSEGV handler |
| * @sig: the signal number |
| * @unused_si: the signal info struct; unused in this handler |
| * @regs: the ptrace register information |
| * @mc: the mcontext of the signal |
| * |
| * The handler first extracts the faultinfo from the UML ptrace regs struct. |
| * If the userfault did not happen in an UML userspace process, bad_segv is called. |
| * Otherwise the signal did happen in a cloned userspace process, handle it. |
| */ |
| void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs, |
| void *mc) |
| { |
| struct faultinfo * fi = UPT_FAULTINFO(regs); |
| |
| if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) { |
| show_segv_info(regs); |
| bad_segv(*fi, UPT_IP(regs)); |
| return; |
| } |
| segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs, mc); |
| } |
| |
| /* |
| * We give a *copy* of the faultinfo in the regs to segv. |
| * This must be done, since nesting SEGVs could overwrite |
| * the info in the regs. A pointer to the info then would |
| * give us bad data! |
| */ |
| unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user, |
| struct uml_pt_regs *regs, void *mc) |
| { |
| int si_code; |
| int err; |
| int is_write = FAULT_WRITE(fi); |
| unsigned long address = FAULT_ADDRESS(fi); |
| |
| if (!is_user && regs) |
| current->thread.segv_regs = container_of(regs, struct pt_regs, regs); |
| |
| if (!is_user && init_mm.context.sync_tlb_range_to) { |
| /* |
| * Kernel has pending updates from set_ptes that were not |
| * flushed yet. Syncing them should fix the pagefault (if not |
| * we'll get here again and panic). |
| */ |
| err = um_tlb_sync(&init_mm); |
| if (err == -ENOMEM) |
| report_enomem(); |
| if (err) |
| panic("Failed to sync kernel TLBs: %d", err); |
| goto out; |
| } |
| else if (current->pagefault_disabled) { |
| if (!mc) { |
| show_regs(container_of(regs, struct pt_regs, regs)); |
| panic("Segfault with pagefaults disabled but no mcontext"); |
| } |
| if (!current->thread.segv_continue) { |
| show_regs(container_of(regs, struct pt_regs, regs)); |
| panic("Segfault without recovery target"); |
| } |
| mc_set_rip(mc, current->thread.segv_continue); |
| current->thread.segv_continue = NULL; |
| goto out; |
| } |
| else if (current->mm == NULL) { |
| show_regs(container_of(regs, struct pt_regs, regs)); |
| panic("Segfault with no mm"); |
| } |
| else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) { |
| show_regs(container_of(regs, struct pt_regs, regs)); |
| panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx", |
| address, ip); |
| } |
| |
| if (SEGV_IS_FIXABLE(&fi)) |
| err = handle_page_fault(address, ip, is_write, is_user, |
| &si_code); |
| else { |
| err = -EFAULT; |
| /* |
| * A thread accessed NULL, we get a fault, but CR2 is invalid. |
| * This code is used in __do_copy_from_user() of TT mode. |
| * XXX tt mode is gone, so maybe this isn't needed any more |
| */ |
| address = 0; |
| } |
| |
| if (!err) |
| goto out; |
| else if (!is_user && arch_fixup(ip, regs)) |
| goto out; |
| |
| if (!is_user) { |
| show_regs(container_of(regs, struct pt_regs, regs)); |
| panic("Kernel mode fault at addr 0x%lx, ip 0x%lx", |
| address, ip); |
| } |
| |
| show_segv_info(regs); |
| |
| if (err == -EACCES) { |
| current->thread.arch.faultinfo = fi; |
| force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); |
| } else { |
| BUG_ON(err != -EFAULT); |
| current->thread.arch.faultinfo = fi; |
| force_sig_fault(SIGSEGV, si_code, (void __user *) address); |
| } |
| |
| out: |
| if (regs) |
| current->thread.segv_regs = NULL; |
| |
| return 0; |
| } |
| |
| void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs, |
| void *mc) |
| { |
| int code, err; |
| if (!UPT_IS_USER(regs)) { |
| if (sig == SIGBUS) |
| printk(KERN_ERR "Bus error - the host /dev/shm or /tmp " |
| "mount likely just ran out of space\n"); |
| panic("Kernel mode signal %d", sig); |
| } |
| |
| arch_examine_signal(sig, regs); |
| |
| /* Is the signal layout for the signal known? |
| * Signal data must be scrubbed to prevent information leaks. |
| */ |
| code = si->si_code; |
| err = si->si_errno; |
| if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) { |
| struct faultinfo *fi = UPT_FAULTINFO(regs); |
| current->thread.arch.faultinfo = *fi; |
| force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi)); |
| } else { |
| printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n", |
| sig, code, err); |
| force_sig(sig); |
| } |
| } |
| |
| void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs, |
| void *mc) |
| { |
| do_IRQ(WINCH_IRQ, regs); |
| } |