|  | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) | 
|  | /* Copyright (c) 2018 Facebook */ | 
|  |  | 
|  | #include <byteswap.h> | 
|  | #include <endian.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <fcntl.h> | 
|  | #include <unistd.h> | 
|  | #include <errno.h> | 
|  | #include <sys/utsname.h> | 
|  | #include <sys/param.h> | 
|  | #include <sys/stat.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/btf.h> | 
|  | #include <gelf.h> | 
|  | #include "btf.h" | 
|  | #include "bpf.h" | 
|  | #include "libbpf.h" | 
|  | #include "libbpf_internal.h" | 
|  | #include "hashmap.h" | 
|  | #include "strset.h" | 
|  | #include "str_error.h" | 
|  |  | 
|  | #define BTF_MAX_NR_TYPES 0x7fffffffU | 
|  | #define BTF_MAX_STR_OFFSET 0x7fffffffU | 
|  |  | 
|  | static struct btf_type btf_void; | 
|  |  | 
|  | struct btf { | 
|  | /* raw BTF data in native endianness */ | 
|  | void *raw_data; | 
|  | /* raw BTF data in non-native endianness */ | 
|  | void *raw_data_swapped; | 
|  | __u32 raw_size; | 
|  | /* whether target endianness differs from the native one */ | 
|  | bool swapped_endian; | 
|  |  | 
|  | /* | 
|  | * When BTF is loaded from an ELF or raw memory it is stored | 
|  | * in a contiguous memory block. The hdr, type_data, and, strs_data | 
|  | * point inside that memory region to their respective parts of BTF | 
|  | * representation: | 
|  | * | 
|  | * +--------------------------------+ | 
|  | * |  Header  |  Types  |  Strings  | | 
|  | * +--------------------------------+ | 
|  | * ^          ^         ^ | 
|  | * |          |         | | 
|  | * hdr        |         | | 
|  | * types_data-+         | | 
|  | * strs_data------------+ | 
|  | * | 
|  | * If BTF data is later modified, e.g., due to types added or | 
|  | * removed, BTF deduplication performed, etc, this contiguous | 
|  | * representation is broken up into three independently allocated | 
|  | * memory regions to be able to modify them independently. | 
|  | * raw_data is nulled out at that point, but can be later allocated | 
|  | * and cached again if user calls btf__raw_data(), at which point | 
|  | * raw_data will contain a contiguous copy of header, types, and | 
|  | * strings: | 
|  | * | 
|  | * +----------+  +---------+  +-----------+ | 
|  | * |  Header  |  |  Types  |  |  Strings  | | 
|  | * +----------+  +---------+  +-----------+ | 
|  | * ^             ^            ^ | 
|  | * |             |            | | 
|  | * hdr           |            | | 
|  | * types_data----+            | | 
|  | * strset__data(strs_set)-----+ | 
|  | * | 
|  | *               +----------+---------+-----------+ | 
|  | *               |  Header  |  Types  |  Strings  | | 
|  | * raw_data----->+----------+---------+-----------+ | 
|  | */ | 
|  | struct btf_header *hdr; | 
|  |  | 
|  | void *types_data; | 
|  | size_t types_data_cap; /* used size stored in hdr->type_len */ | 
|  |  | 
|  | /* type ID to `struct btf_type *` lookup index | 
|  | * type_offs[0] corresponds to the first non-VOID type: | 
|  | *   - for base BTF it's type [1]; | 
|  | *   - for split BTF it's the first non-base BTF type. | 
|  | */ | 
|  | __u32 *type_offs; | 
|  | size_t type_offs_cap; | 
|  | /* number of types in this BTF instance: | 
|  | *   - doesn't include special [0] void type; | 
|  | *   - for split BTF counts number of types added on top of base BTF. | 
|  | */ | 
|  | __u32 nr_types; | 
|  | /* if not NULL, points to the base BTF on top of which the current | 
|  | * split BTF is based | 
|  | */ | 
|  | struct btf *base_btf; | 
|  | /* BTF type ID of the first type in this BTF instance: | 
|  | *   - for base BTF it's equal to 1; | 
|  | *   - for split BTF it's equal to biggest type ID of base BTF plus 1. | 
|  | */ | 
|  | int start_id; | 
|  | /* logical string offset of this BTF instance: | 
|  | *   - for base BTF it's equal to 0; | 
|  | *   - for split BTF it's equal to total size of base BTF's string section size. | 
|  | */ | 
|  | int start_str_off; | 
|  |  | 
|  | /* only one of strs_data or strs_set can be non-NULL, depending on | 
|  | * whether BTF is in a modifiable state (strs_set is used) or not | 
|  | * (strs_data points inside raw_data) | 
|  | */ | 
|  | void *strs_data; | 
|  | /* a set of unique strings */ | 
|  | struct strset *strs_set; | 
|  | /* whether strings are already deduplicated */ | 
|  | bool strs_deduped; | 
|  |  | 
|  | /* whether base_btf should be freed in btf_free for this instance */ | 
|  | bool owns_base; | 
|  |  | 
|  | /* BTF object FD, if loaded into kernel */ | 
|  | int fd; | 
|  |  | 
|  | /* Pointer size (in bytes) for a target architecture of this BTF */ | 
|  | int ptr_sz; | 
|  | }; | 
|  |  | 
|  | static inline __u64 ptr_to_u64(const void *ptr) | 
|  | { | 
|  | return (__u64) (unsigned long) ptr; | 
|  | } | 
|  |  | 
|  | /* Ensure given dynamically allocated memory region pointed to by *data* with | 
|  | * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough | 
|  | * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements | 
|  | * are already used. At most *max_cnt* elements can be ever allocated. | 
|  | * If necessary, memory is reallocated and all existing data is copied over, | 
|  | * new pointer to the memory region is stored at *data, new memory region | 
|  | * capacity (in number of elements) is stored in *cap. | 
|  | * On success, memory pointer to the beginning of unused memory is returned. | 
|  | * On error, NULL is returned. | 
|  | */ | 
|  | void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, | 
|  | size_t cur_cnt, size_t max_cnt, size_t add_cnt) | 
|  | { | 
|  | size_t new_cnt; | 
|  | void *new_data; | 
|  |  | 
|  | if (cur_cnt + add_cnt <= *cap_cnt) | 
|  | return *data + cur_cnt * elem_sz; | 
|  |  | 
|  | /* requested more than the set limit */ | 
|  | if (cur_cnt + add_cnt > max_cnt) | 
|  | return NULL; | 
|  |  | 
|  | new_cnt = *cap_cnt; | 
|  | new_cnt += new_cnt / 4;		  /* expand by 25% */ | 
|  | if (new_cnt < 16)		  /* but at least 16 elements */ | 
|  | new_cnt = 16; | 
|  | if (new_cnt > max_cnt)		  /* but not exceeding a set limit */ | 
|  | new_cnt = max_cnt; | 
|  | if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */ | 
|  | new_cnt = cur_cnt + add_cnt; | 
|  |  | 
|  | new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); | 
|  | if (!new_data) | 
|  | return NULL; | 
|  |  | 
|  | /* zero out newly allocated portion of memory */ | 
|  | memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); | 
|  |  | 
|  | *data = new_data; | 
|  | *cap_cnt = new_cnt; | 
|  | return new_data + cur_cnt * elem_sz; | 
|  | } | 
|  |  | 
|  | /* Ensure given dynamically allocated memory region has enough allocated space | 
|  | * to accommodate *need_cnt* elements of size *elem_sz* bytes each | 
|  | */ | 
|  | int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | if (need_cnt <= *cap_cnt) | 
|  | return 0; | 
|  |  | 
|  | p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) | 
|  | { | 
|  | return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), | 
|  | btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); | 
|  | } | 
|  |  | 
|  | static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) | 
|  | { | 
|  | __u32 *p; | 
|  |  | 
|  | p = btf_add_type_offs_mem(btf, 1); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | *p = type_off; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btf_bswap_hdr(struct btf_header *h) | 
|  | { | 
|  | h->magic = bswap_16(h->magic); | 
|  | h->hdr_len = bswap_32(h->hdr_len); | 
|  | h->type_off = bswap_32(h->type_off); | 
|  | h->type_len = bswap_32(h->type_len); | 
|  | h->str_off = bswap_32(h->str_off); | 
|  | h->str_len = bswap_32(h->str_len); | 
|  | } | 
|  |  | 
|  | static int btf_parse_hdr(struct btf *btf) | 
|  | { | 
|  | struct btf_header *hdr = btf->hdr; | 
|  | __u32 meta_left; | 
|  |  | 
|  | if (btf->raw_size < sizeof(struct btf_header)) { | 
|  | pr_debug("BTF header not found\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (hdr->magic == bswap_16(BTF_MAGIC)) { | 
|  | btf->swapped_endian = true; | 
|  | if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { | 
|  | pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", | 
|  | bswap_32(hdr->hdr_len)); | 
|  | return -ENOTSUP; | 
|  | } | 
|  | btf_bswap_hdr(hdr); | 
|  | } else if (hdr->magic != BTF_MAGIC) { | 
|  | pr_debug("Invalid BTF magic: %x\n", hdr->magic); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf->raw_size < hdr->hdr_len) { | 
|  | pr_debug("BTF header len %u larger than data size %u\n", | 
|  | hdr->hdr_len, btf->raw_size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | meta_left = btf->raw_size - hdr->hdr_len; | 
|  | if (meta_left < (long long)hdr->str_off + hdr->str_len) { | 
|  | pr_debug("Invalid BTF total size: %u\n", btf->raw_size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { | 
|  | pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", | 
|  | hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (hdr->type_off % 4) { | 
|  | pr_debug("BTF type section is not aligned to 4 bytes\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_parse_str_sec(struct btf *btf) | 
|  | { | 
|  | const struct btf_header *hdr = btf->hdr; | 
|  | const char *start = btf->strs_data; | 
|  | const char *end = start + btf->hdr->str_len; | 
|  |  | 
|  | if (btf->base_btf && hdr->str_len == 0) | 
|  | return 0; | 
|  | if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { | 
|  | pr_debug("Invalid BTF string section\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!btf->base_btf && start[0]) { | 
|  | pr_debug("Invalid BTF string section\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_type_size(const struct btf_type *t) | 
|  | { | 
|  | const int base_size = sizeof(struct btf_type); | 
|  | __u16 vlen = btf_vlen(t); | 
|  |  | 
|  | switch (btf_kind(t)) { | 
|  | case BTF_KIND_FWD: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_FUNC: | 
|  | case BTF_KIND_FLOAT: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | return base_size; | 
|  | case BTF_KIND_INT: | 
|  | return base_size + sizeof(__u32); | 
|  | case BTF_KIND_ENUM: | 
|  | return base_size + vlen * sizeof(struct btf_enum); | 
|  | case BTF_KIND_ENUM64: | 
|  | return base_size + vlen * sizeof(struct btf_enum64); | 
|  | case BTF_KIND_ARRAY: | 
|  | return base_size + sizeof(struct btf_array); | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | return base_size + vlen * sizeof(struct btf_member); | 
|  | case BTF_KIND_FUNC_PROTO: | 
|  | return base_size + vlen * sizeof(struct btf_param); | 
|  | case BTF_KIND_VAR: | 
|  | return base_size + sizeof(struct btf_var); | 
|  | case BTF_KIND_DATASEC: | 
|  | return base_size + vlen * sizeof(struct btf_var_secinfo); | 
|  | case BTF_KIND_DECL_TAG: | 
|  | return base_size + sizeof(struct btf_decl_tag); | 
|  | default: | 
|  | pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btf_bswap_type_base(struct btf_type *t) | 
|  | { | 
|  | t->name_off = bswap_32(t->name_off); | 
|  | t->info = bswap_32(t->info); | 
|  | t->type = bswap_32(t->type); | 
|  | } | 
|  |  | 
|  | static int btf_bswap_type_rest(struct btf_type *t) | 
|  | { | 
|  | struct btf_var_secinfo *v; | 
|  | struct btf_enum64 *e64; | 
|  | struct btf_member *m; | 
|  | struct btf_array *a; | 
|  | struct btf_param *p; | 
|  | struct btf_enum *e; | 
|  | __u16 vlen = btf_vlen(t); | 
|  | int i; | 
|  |  | 
|  | switch (btf_kind(t)) { | 
|  | case BTF_KIND_FWD: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_FUNC: | 
|  | case BTF_KIND_FLOAT: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | return 0; | 
|  | case BTF_KIND_INT: | 
|  | *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); | 
|  | return 0; | 
|  | case BTF_KIND_ENUM: | 
|  | for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { | 
|  | e->name_off = bswap_32(e->name_off); | 
|  | e->val = bswap_32(e->val); | 
|  | } | 
|  | return 0; | 
|  | case BTF_KIND_ENUM64: | 
|  | for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { | 
|  | e64->name_off = bswap_32(e64->name_off); | 
|  | e64->val_lo32 = bswap_32(e64->val_lo32); | 
|  | e64->val_hi32 = bswap_32(e64->val_hi32); | 
|  | } | 
|  | return 0; | 
|  | case BTF_KIND_ARRAY: | 
|  | a = btf_array(t); | 
|  | a->type = bswap_32(a->type); | 
|  | a->index_type = bswap_32(a->index_type); | 
|  | a->nelems = bswap_32(a->nelems); | 
|  | return 0; | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | for (i = 0, m = btf_members(t); i < vlen; i++, m++) { | 
|  | m->name_off = bswap_32(m->name_off); | 
|  | m->type = bswap_32(m->type); | 
|  | m->offset = bswap_32(m->offset); | 
|  | } | 
|  | return 0; | 
|  | case BTF_KIND_FUNC_PROTO: | 
|  | for (i = 0, p = btf_params(t); i < vlen; i++, p++) { | 
|  | p->name_off = bswap_32(p->name_off); | 
|  | p->type = bswap_32(p->type); | 
|  | } | 
|  | return 0; | 
|  | case BTF_KIND_VAR: | 
|  | btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); | 
|  | return 0; | 
|  | case BTF_KIND_DATASEC: | 
|  | for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { | 
|  | v->type = bswap_32(v->type); | 
|  | v->offset = bswap_32(v->offset); | 
|  | v->size = bswap_32(v->size); | 
|  | } | 
|  | return 0; | 
|  | case BTF_KIND_DECL_TAG: | 
|  | btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); | 
|  | return 0; | 
|  | default: | 
|  | pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int btf_parse_type_sec(struct btf *btf) | 
|  | { | 
|  | struct btf_header *hdr = btf->hdr; | 
|  | void *next_type = btf->types_data; | 
|  | void *end_type = next_type + hdr->type_len; | 
|  | int err, type_size; | 
|  |  | 
|  | while (next_type + sizeof(struct btf_type) <= end_type) { | 
|  | if (btf->swapped_endian) | 
|  | btf_bswap_type_base(next_type); | 
|  |  | 
|  | type_size = btf_type_size(next_type); | 
|  | if (type_size < 0) | 
|  | return type_size; | 
|  | if (next_type + type_size > end_type) { | 
|  | pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (btf->swapped_endian && btf_bswap_type_rest(next_type)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = btf_add_type_idx_entry(btf, next_type - btf->types_data); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | next_type += type_size; | 
|  | btf->nr_types++; | 
|  | } | 
|  |  | 
|  | if (next_type != end_type) { | 
|  | pr_warn("BTF types data is malformed\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id) | 
|  | { | 
|  | const char *s; | 
|  |  | 
|  | s = btf__str_by_offset(btf, str_off); | 
|  | if (!s) { | 
|  | pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id) | 
|  | { | 
|  | const struct btf_type *t; | 
|  |  | 
|  | t = btf__type_by_id(btf, id); | 
|  | if (!t) { | 
|  | pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id) | 
|  | { | 
|  | __u32 kind = btf_kind(t); | 
|  | int err, i, n; | 
|  |  | 
|  | err = btf_validate_str(btf, t->name_off, "type name", id); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | switch (kind) { | 
|  | case BTF_KIND_UNKN: | 
|  | case BTF_KIND_INT: | 
|  | case BTF_KIND_FWD: | 
|  | case BTF_KIND_FLOAT: | 
|  | break; | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_VAR: | 
|  | case BTF_KIND_DECL_TAG: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | err = btf_validate_id(btf, t->type, id); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | case BTF_KIND_ARRAY: { | 
|  | const struct btf_array *a = btf_array(t); | 
|  |  | 
|  | err = btf_validate_id(btf, a->type, id); | 
|  | err = err ?: btf_validate_id(btf, a->index_type, id); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | } | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: { | 
|  | const struct btf_member *m = btf_members(t); | 
|  |  | 
|  | n = btf_vlen(t); | 
|  | for (i = 0; i < n; i++, m++) { | 
|  | err = btf_validate_str(btf, m->name_off, "field name", id); | 
|  | err = err ?: btf_validate_id(btf, m->type, id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BTF_KIND_ENUM: { | 
|  | const struct btf_enum *m = btf_enum(t); | 
|  |  | 
|  | n = btf_vlen(t); | 
|  | for (i = 0; i < n; i++, m++) { | 
|  | err = btf_validate_str(btf, m->name_off, "enum name", id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BTF_KIND_ENUM64: { | 
|  | const struct btf_enum64 *m = btf_enum64(t); | 
|  |  | 
|  | n = btf_vlen(t); | 
|  | for (i = 0; i < n; i++, m++) { | 
|  | err = btf_validate_str(btf, m->name_off, "enum name", id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BTF_KIND_FUNC: { | 
|  | const struct btf_type *ft; | 
|  |  | 
|  | err = btf_validate_id(btf, t->type, id); | 
|  | if (err) | 
|  | return err; | 
|  | ft = btf__type_by_id(btf, t->type); | 
|  | if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) { | 
|  | pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BTF_KIND_FUNC_PROTO: { | 
|  | const struct btf_param *m = btf_params(t); | 
|  |  | 
|  | n = btf_vlen(t); | 
|  | for (i = 0; i < n; i++, m++) { | 
|  | err = btf_validate_str(btf, m->name_off, "param name", id); | 
|  | err = err ?: btf_validate_id(btf, m->type, id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BTF_KIND_DATASEC: { | 
|  | const struct btf_var_secinfo *m = btf_var_secinfos(t); | 
|  |  | 
|  | n = btf_vlen(t); | 
|  | for (i = 0; i < n; i++, m++) { | 
|  | err = btf_validate_id(btf, m->type, id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Validate basic sanity of BTF. It's intentionally less thorough than | 
|  | * kernel's validation and validates only properties of BTF that libbpf relies | 
|  | * on to be correct (e.g., valid type IDs, valid string offsets, etc) | 
|  | */ | 
|  | static int btf_sanity_check(const struct btf *btf) | 
|  | { | 
|  | const struct btf_type *t; | 
|  | __u32 i, n = btf__type_cnt(btf); | 
|  | int err; | 
|  |  | 
|  | for (i = btf->start_id; i < n; i++) { | 
|  | t = btf_type_by_id(btf, i); | 
|  | err = btf_validate_type(btf, t, i); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __u32 btf__type_cnt(const struct btf *btf) | 
|  | { | 
|  | return btf->start_id + btf->nr_types; | 
|  | } | 
|  |  | 
|  | const struct btf *btf__base_btf(const struct btf *btf) | 
|  | { | 
|  | return btf->base_btf; | 
|  | } | 
|  |  | 
|  | /* internal helper returning non-const pointer to a type */ | 
|  | struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) | 
|  | { | 
|  | if (type_id == 0) | 
|  | return &btf_void; | 
|  | if (type_id < btf->start_id) | 
|  | return btf_type_by_id(btf->base_btf, type_id); | 
|  | return btf->types_data + btf->type_offs[type_id - btf->start_id]; | 
|  | } | 
|  |  | 
|  | const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) | 
|  | { | 
|  | if (type_id >= btf->start_id + btf->nr_types) | 
|  | return errno = EINVAL, NULL; | 
|  | return btf_type_by_id((struct btf *)btf, type_id); | 
|  | } | 
|  |  | 
|  | static int determine_ptr_size(const struct btf *btf) | 
|  | { | 
|  | static const char * const long_aliases[] = { | 
|  | "long", | 
|  | "long int", | 
|  | "int long", | 
|  | "unsigned long", | 
|  | "long unsigned", | 
|  | "unsigned long int", | 
|  | "unsigned int long", | 
|  | "long unsigned int", | 
|  | "long int unsigned", | 
|  | "int unsigned long", | 
|  | "int long unsigned", | 
|  | }; | 
|  | const struct btf_type *t; | 
|  | const char *name; | 
|  | int i, j, n; | 
|  |  | 
|  | if (btf->base_btf && btf->base_btf->ptr_sz > 0) | 
|  | return btf->base_btf->ptr_sz; | 
|  |  | 
|  | n = btf__type_cnt(btf); | 
|  | for (i = 1; i < n; i++) { | 
|  | t = btf__type_by_id(btf, i); | 
|  | if (!btf_is_int(t)) | 
|  | continue; | 
|  |  | 
|  | if (t->size != 4 && t->size != 8) | 
|  | continue; | 
|  |  | 
|  | name = btf__name_by_offset(btf, t->name_off); | 
|  | if (!name) | 
|  | continue; | 
|  |  | 
|  | for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { | 
|  | if (strcmp(name, long_aliases[j]) == 0) | 
|  | return t->size; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static size_t btf_ptr_sz(const struct btf *btf) | 
|  | { | 
|  | if (!btf->ptr_sz) | 
|  | ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); | 
|  | return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; | 
|  | } | 
|  |  | 
|  | /* Return pointer size this BTF instance assumes. The size is heuristically | 
|  | * determined by looking for 'long' or 'unsigned long' integer type and | 
|  | * recording its size in bytes. If BTF type information doesn't have any such | 
|  | * type, this function returns 0. In the latter case, native architecture's | 
|  | * pointer size is assumed, so will be either 4 or 8, depending on | 
|  | * architecture that libbpf was compiled for. It's possible to override | 
|  | * guessed value by using btf__set_pointer_size() API. | 
|  | */ | 
|  | size_t btf__pointer_size(const struct btf *btf) | 
|  | { | 
|  | if (!btf->ptr_sz) | 
|  | ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); | 
|  |  | 
|  | if (btf->ptr_sz < 0) | 
|  | /* not enough BTF type info to guess */ | 
|  | return 0; | 
|  |  | 
|  | return btf->ptr_sz; | 
|  | } | 
|  |  | 
|  | /* Override or set pointer size in bytes. Only values of 4 and 8 are | 
|  | * supported. | 
|  | */ | 
|  | int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) | 
|  | { | 
|  | if (ptr_sz != 4 && ptr_sz != 8) | 
|  | return libbpf_err(-EINVAL); | 
|  | btf->ptr_sz = ptr_sz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_host_big_endian(void) | 
|  | { | 
|  | #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ | 
|  | return false; | 
|  | #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ | 
|  | return true; | 
|  | #else | 
|  | # error "Unrecognized __BYTE_ORDER__" | 
|  | #endif | 
|  | } | 
|  |  | 
|  | enum btf_endianness btf__endianness(const struct btf *btf) | 
|  | { | 
|  | if (is_host_big_endian()) | 
|  | return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; | 
|  | else | 
|  | return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; | 
|  | } | 
|  |  | 
|  | int btf__set_endianness(struct btf *btf, enum btf_endianness endian) | 
|  | { | 
|  | if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); | 
|  | if (!btf->swapped_endian) { | 
|  | free(btf->raw_data_swapped); | 
|  | btf->raw_data_swapped = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool btf_type_is_void(const struct btf_type *t) | 
|  | { | 
|  | return t == &btf_void || btf_is_fwd(t); | 
|  | } | 
|  |  | 
|  | static bool btf_type_is_void_or_null(const struct btf_type *t) | 
|  | { | 
|  | return !t || btf_type_is_void(t); | 
|  | } | 
|  |  | 
|  | #define MAX_RESOLVE_DEPTH 32 | 
|  |  | 
|  | __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) | 
|  | { | 
|  | const struct btf_array *array; | 
|  | const struct btf_type *t; | 
|  | __u32 nelems = 1; | 
|  | __s64 size = -1; | 
|  | int i; | 
|  |  | 
|  | t = btf__type_by_id(btf, type_id); | 
|  | for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { | 
|  | switch (btf_kind(t)) { | 
|  | case BTF_KIND_INT: | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | case BTF_KIND_ENUM: | 
|  | case BTF_KIND_ENUM64: | 
|  | case BTF_KIND_DATASEC: | 
|  | case BTF_KIND_FLOAT: | 
|  | size = t->size; | 
|  | goto done; | 
|  | case BTF_KIND_PTR: | 
|  | size = btf_ptr_sz(btf); | 
|  | goto done; | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_VAR: | 
|  | case BTF_KIND_DECL_TAG: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | type_id = t->type; | 
|  | break; | 
|  | case BTF_KIND_ARRAY: | 
|  | array = btf_array(t); | 
|  | if (nelems && array->nelems > UINT32_MAX / nelems) | 
|  | return libbpf_err(-E2BIG); | 
|  | nelems *= array->nelems; | 
|  | type_id = array->type; | 
|  | break; | 
|  | default: | 
|  | return libbpf_err(-EINVAL); | 
|  | } | 
|  |  | 
|  | t = btf__type_by_id(btf, type_id); | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (size < 0) | 
|  | return libbpf_err(-EINVAL); | 
|  | if (nelems && size > UINT32_MAX / nelems) | 
|  | return libbpf_err(-E2BIG); | 
|  |  | 
|  | return nelems * size; | 
|  | } | 
|  |  | 
|  | int btf__align_of(const struct btf *btf, __u32 id) | 
|  | { | 
|  | const struct btf_type *t = btf__type_by_id(btf, id); | 
|  | __u16 kind = btf_kind(t); | 
|  |  | 
|  | switch (kind) { | 
|  | case BTF_KIND_INT: | 
|  | case BTF_KIND_ENUM: | 
|  | case BTF_KIND_ENUM64: | 
|  | case BTF_KIND_FLOAT: | 
|  | return min(btf_ptr_sz(btf), (size_t)t->size); | 
|  | case BTF_KIND_PTR: | 
|  | return btf_ptr_sz(btf); | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | return btf__align_of(btf, t->type); | 
|  | case BTF_KIND_ARRAY: | 
|  | return btf__align_of(btf, btf_array(t)->type); | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: { | 
|  | const struct btf_member *m = btf_members(t); | 
|  | __u16 vlen = btf_vlen(t); | 
|  | int i, max_align = 1, align; | 
|  |  | 
|  | for (i = 0; i < vlen; i++, m++) { | 
|  | align = btf__align_of(btf, m->type); | 
|  | if (align <= 0) | 
|  | return libbpf_err(align); | 
|  | max_align = max(max_align, align); | 
|  |  | 
|  | /* if field offset isn't aligned according to field | 
|  | * type's alignment, then struct must be packed | 
|  | */ | 
|  | if (btf_member_bitfield_size(t, i) == 0 && | 
|  | (m->offset % (8 * align)) != 0) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* if struct/union size isn't a multiple of its alignment, | 
|  | * then struct must be packed | 
|  | */ | 
|  | if ((t->size % max_align) != 0) | 
|  | return 1; | 
|  |  | 
|  | return max_align; | 
|  | } | 
|  | default: | 
|  | pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); | 
|  | return errno = EINVAL, 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int btf__resolve_type(const struct btf *btf, __u32 type_id) | 
|  | { | 
|  | const struct btf_type *t; | 
|  | int depth = 0; | 
|  |  | 
|  | t = btf__type_by_id(btf, type_id); | 
|  | while (depth < MAX_RESOLVE_DEPTH && | 
|  | !btf_type_is_void_or_null(t) && | 
|  | (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { | 
|  | type_id = t->type; | 
|  | t = btf__type_by_id(btf, type_id); | 
|  | depth++; | 
|  | } | 
|  |  | 
|  | if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | return type_id; | 
|  | } | 
|  |  | 
|  | __s32 btf__find_by_name(const struct btf *btf, const char *type_name) | 
|  | { | 
|  | __u32 i, nr_types = btf__type_cnt(btf); | 
|  |  | 
|  | if (!strcmp(type_name, "void")) | 
|  | return 0; | 
|  |  | 
|  | for (i = 1; i < nr_types; i++) { | 
|  | const struct btf_type *t = btf__type_by_id(btf, i); | 
|  | const char *name = btf__name_by_offset(btf, t->name_off); | 
|  |  | 
|  | if (name && !strcmp(type_name, name)) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return libbpf_err(-ENOENT); | 
|  | } | 
|  |  | 
|  | static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, | 
|  | const char *type_name, __u32 kind) | 
|  | { | 
|  | __u32 i, nr_types = btf__type_cnt(btf); | 
|  |  | 
|  | if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) | 
|  | return 0; | 
|  |  | 
|  | for (i = start_id; i < nr_types; i++) { | 
|  | const struct btf_type *t = btf__type_by_id(btf, i); | 
|  | const char *name; | 
|  |  | 
|  | if (btf_kind(t) != kind) | 
|  | continue; | 
|  | name = btf__name_by_offset(btf, t->name_off); | 
|  | if (name && !strcmp(type_name, name)) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return libbpf_err(-ENOENT); | 
|  | } | 
|  |  | 
|  | __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, | 
|  | __u32 kind) | 
|  | { | 
|  | return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); | 
|  | } | 
|  |  | 
|  | __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, | 
|  | __u32 kind) | 
|  | { | 
|  | return btf_find_by_name_kind(btf, 1, type_name, kind); | 
|  | } | 
|  |  | 
|  | static bool btf_is_modifiable(const struct btf *btf) | 
|  | { | 
|  | return (void *)btf->hdr != btf->raw_data; | 
|  | } | 
|  |  | 
|  | void btf__free(struct btf *btf) | 
|  | { | 
|  | if (IS_ERR_OR_NULL(btf)) | 
|  | return; | 
|  |  | 
|  | if (btf->fd >= 0) | 
|  | close(btf->fd); | 
|  |  | 
|  | if (btf_is_modifiable(btf)) { | 
|  | /* if BTF was modified after loading, it will have a split | 
|  | * in-memory representation for header, types, and strings | 
|  | * sections, so we need to free all of them individually. It | 
|  | * might still have a cached contiguous raw data present, | 
|  | * which will be unconditionally freed below. | 
|  | */ | 
|  | free(btf->hdr); | 
|  | free(btf->types_data); | 
|  | strset__free(btf->strs_set); | 
|  | } | 
|  | free(btf->raw_data); | 
|  | free(btf->raw_data_swapped); | 
|  | free(btf->type_offs); | 
|  | if (btf->owns_base) | 
|  | btf__free(btf->base_btf); | 
|  | free(btf); | 
|  | } | 
|  |  | 
|  | static struct btf *btf_new_empty(struct btf *base_btf) | 
|  | { | 
|  | struct btf *btf; | 
|  |  | 
|  | btf = calloc(1, sizeof(*btf)); | 
|  | if (!btf) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | btf->nr_types = 0; | 
|  | btf->start_id = 1; | 
|  | btf->start_str_off = 0; | 
|  | btf->fd = -1; | 
|  | btf->ptr_sz = sizeof(void *); | 
|  | btf->swapped_endian = false; | 
|  |  | 
|  | if (base_btf) { | 
|  | btf->base_btf = base_btf; | 
|  | btf->start_id = btf__type_cnt(base_btf); | 
|  | btf->start_str_off = base_btf->hdr->str_len; | 
|  | btf->swapped_endian = base_btf->swapped_endian; | 
|  | } | 
|  |  | 
|  | /* +1 for empty string at offset 0 */ | 
|  | btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); | 
|  | btf->raw_data = calloc(1, btf->raw_size); | 
|  | if (!btf->raw_data) { | 
|  | free(btf); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | btf->hdr = btf->raw_data; | 
|  | btf->hdr->hdr_len = sizeof(struct btf_header); | 
|  | btf->hdr->magic = BTF_MAGIC; | 
|  | btf->hdr->version = BTF_VERSION; | 
|  |  | 
|  | btf->types_data = btf->raw_data + btf->hdr->hdr_len; | 
|  | btf->strs_data = btf->raw_data + btf->hdr->hdr_len; | 
|  | btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ | 
|  |  | 
|  | return btf; | 
|  | } | 
|  |  | 
|  | struct btf *btf__new_empty(void) | 
|  | { | 
|  | return libbpf_ptr(btf_new_empty(NULL)); | 
|  | } | 
|  |  | 
|  | struct btf *btf__new_empty_split(struct btf *base_btf) | 
|  | { | 
|  | return libbpf_ptr(btf_new_empty(base_btf)); | 
|  | } | 
|  |  | 
|  | static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) | 
|  | { | 
|  | struct btf *btf; | 
|  | int err; | 
|  |  | 
|  | btf = calloc(1, sizeof(struct btf)); | 
|  | if (!btf) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | btf->nr_types = 0; | 
|  | btf->start_id = 1; | 
|  | btf->start_str_off = 0; | 
|  | btf->fd = -1; | 
|  |  | 
|  | if (base_btf) { | 
|  | btf->base_btf = base_btf; | 
|  | btf->start_id = btf__type_cnt(base_btf); | 
|  | btf->start_str_off = base_btf->hdr->str_len; | 
|  | } | 
|  |  | 
|  | btf->raw_data = malloc(size); | 
|  | if (!btf->raw_data) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | memcpy(btf->raw_data, data, size); | 
|  | btf->raw_size = size; | 
|  |  | 
|  | btf->hdr = btf->raw_data; | 
|  | err = btf_parse_hdr(btf); | 
|  | if (err) | 
|  | goto done; | 
|  |  | 
|  | btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; | 
|  | btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; | 
|  |  | 
|  | err = btf_parse_str_sec(btf); | 
|  | err = err ?: btf_parse_type_sec(btf); | 
|  | err = err ?: btf_sanity_check(btf); | 
|  | if (err) | 
|  | goto done; | 
|  |  | 
|  | done: | 
|  | if (err) { | 
|  | btf__free(btf); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | return btf; | 
|  | } | 
|  |  | 
|  | struct btf *btf__new(const void *data, __u32 size) | 
|  | { | 
|  | return libbpf_ptr(btf_new(data, size, NULL)); | 
|  | } | 
|  |  | 
|  | struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf) | 
|  | { | 
|  | return libbpf_ptr(btf_new(data, size, base_btf)); | 
|  | } | 
|  |  | 
|  | struct btf_elf_secs { | 
|  | Elf_Data *btf_data; | 
|  | Elf_Data *btf_ext_data; | 
|  | Elf_Data *btf_base_data; | 
|  | }; | 
|  |  | 
|  | static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs) | 
|  | { | 
|  | Elf_Scn *scn = NULL; | 
|  | Elf_Data *data; | 
|  | GElf_Ehdr ehdr; | 
|  | size_t shstrndx; | 
|  | int idx = 0; | 
|  |  | 
|  | if (!gelf_getehdr(elf, &ehdr)) { | 
|  | pr_warn("failed to get EHDR from %s\n", path); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (elf_getshdrstrndx(elf, &shstrndx)) { | 
|  | pr_warn("failed to get section names section index for %s\n", | 
|  | path); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { | 
|  | pr_warn("failed to get e_shstrndx from %s\n", path); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | while ((scn = elf_nextscn(elf, scn)) != NULL) { | 
|  | Elf_Data **field; | 
|  | GElf_Shdr sh; | 
|  | char *name; | 
|  |  | 
|  | idx++; | 
|  | if (gelf_getshdr(scn, &sh) != &sh) { | 
|  | pr_warn("failed to get section(%d) header from %s\n", | 
|  | idx, path); | 
|  | goto err; | 
|  | } | 
|  | name = elf_strptr(elf, shstrndx, sh.sh_name); | 
|  | if (!name) { | 
|  | pr_warn("failed to get section(%d) name from %s\n", | 
|  | idx, path); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (strcmp(name, BTF_ELF_SEC) == 0) | 
|  | field = &secs->btf_data; | 
|  | else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) | 
|  | field = &secs->btf_ext_data; | 
|  | else if (strcmp(name, BTF_BASE_ELF_SEC) == 0) | 
|  | field = &secs->btf_base_data; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | data = elf_getdata(scn, 0); | 
|  | if (!data) { | 
|  | pr_warn("failed to get section(%d, %s) data from %s\n", | 
|  | idx, name, path); | 
|  | goto err; | 
|  | } | 
|  | *field = data; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | return -LIBBPF_ERRNO__FORMAT; | 
|  | } | 
|  |  | 
|  | static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, | 
|  | struct btf_ext **btf_ext) | 
|  | { | 
|  | struct btf_elf_secs secs = {}; | 
|  | struct btf *dist_base_btf = NULL; | 
|  | struct btf *btf = NULL; | 
|  | int err = 0, fd = -1; | 
|  | Elf *elf = NULL; | 
|  |  | 
|  | if (elf_version(EV_CURRENT) == EV_NONE) { | 
|  | pr_warn("failed to init libelf for %s\n", path); | 
|  | return ERR_PTR(-LIBBPF_ERRNO__LIBELF); | 
|  | } | 
|  |  | 
|  | fd = open(path, O_RDONLY | O_CLOEXEC); | 
|  | if (fd < 0) { | 
|  | err = -errno; | 
|  | pr_warn("failed to open %s: %s\n", path, errstr(err)); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | elf = elf_begin(fd, ELF_C_READ, NULL); | 
|  | if (!elf) { | 
|  | pr_warn("failed to open %s as ELF file\n", path); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | err = btf_find_elf_sections(elf, path, &secs); | 
|  | if (err) | 
|  | goto done; | 
|  |  | 
|  | if (!secs.btf_data) { | 
|  | pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path); | 
|  | err = -ENODATA; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (secs.btf_base_data) { | 
|  | dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size, | 
|  | NULL); | 
|  | if (IS_ERR(dist_base_btf)) { | 
|  | err = PTR_ERR(dist_base_btf); | 
|  | dist_base_btf = NULL; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size, | 
|  | dist_base_btf ?: base_btf); | 
|  | if (IS_ERR(btf)) { | 
|  | err = PTR_ERR(btf); | 
|  | goto done; | 
|  | } | 
|  | if (dist_base_btf && base_btf) { | 
|  | err = btf__relocate(btf, base_btf); | 
|  | if (err) | 
|  | goto done; | 
|  | btf__free(dist_base_btf); | 
|  | dist_base_btf = NULL; | 
|  | } | 
|  |  | 
|  | if (dist_base_btf) | 
|  | btf->owns_base = true; | 
|  |  | 
|  | switch (gelf_getclass(elf)) { | 
|  | case ELFCLASS32: | 
|  | btf__set_pointer_size(btf, 4); | 
|  | break; | 
|  | case ELFCLASS64: | 
|  | btf__set_pointer_size(btf, 8); | 
|  | break; | 
|  | default: | 
|  | pr_warn("failed to get ELF class (bitness) for %s\n", path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (btf_ext && secs.btf_ext_data) { | 
|  | *btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size); | 
|  | if (IS_ERR(*btf_ext)) { | 
|  | err = PTR_ERR(*btf_ext); | 
|  | goto done; | 
|  | } | 
|  | } else if (btf_ext) { | 
|  | *btf_ext = NULL; | 
|  | } | 
|  | done: | 
|  | if (elf) | 
|  | elf_end(elf); | 
|  | close(fd); | 
|  |  | 
|  | if (!err) | 
|  | return btf; | 
|  |  | 
|  | if (btf_ext) | 
|  | btf_ext__free(*btf_ext); | 
|  | btf__free(dist_base_btf); | 
|  | btf__free(btf); | 
|  |  | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) | 
|  | { | 
|  | return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); | 
|  | } | 
|  |  | 
|  | struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) | 
|  | { | 
|  | return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); | 
|  | } | 
|  |  | 
|  | static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) | 
|  | { | 
|  | struct btf *btf = NULL; | 
|  | void *data = NULL; | 
|  | FILE *f = NULL; | 
|  | __u16 magic; | 
|  | int err = 0; | 
|  | long sz; | 
|  |  | 
|  | f = fopen(path, "rbe"); | 
|  | if (!f) { | 
|  | err = -errno; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* check BTF magic */ | 
|  | if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { | 
|  | /* definitely not a raw BTF */ | 
|  | err = -EPROTO; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* get file size */ | 
|  | if (fseek(f, 0, SEEK_END)) { | 
|  | err = -errno; | 
|  | goto err_out; | 
|  | } | 
|  | sz = ftell(f); | 
|  | if (sz < 0) { | 
|  | err = -errno; | 
|  | goto err_out; | 
|  | } | 
|  | /* rewind to the start */ | 
|  | if (fseek(f, 0, SEEK_SET)) { | 
|  | err = -errno; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* pre-alloc memory and read all of BTF data */ | 
|  | data = malloc(sz); | 
|  | if (!data) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | if (fread(data, 1, sz, f) < sz) { | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* finally parse BTF data */ | 
|  | btf = btf_new(data, sz, base_btf); | 
|  |  | 
|  | err_out: | 
|  | free(data); | 
|  | if (f) | 
|  | fclose(f); | 
|  | return err ? ERR_PTR(err) : btf; | 
|  | } | 
|  |  | 
|  | struct btf *btf__parse_raw(const char *path) | 
|  | { | 
|  | return libbpf_ptr(btf_parse_raw(path, NULL)); | 
|  | } | 
|  |  | 
|  | struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) | 
|  | { | 
|  | return libbpf_ptr(btf_parse_raw(path, base_btf)); | 
|  | } | 
|  |  | 
|  | static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) | 
|  | { | 
|  | struct btf *btf; | 
|  | int err; | 
|  |  | 
|  | if (btf_ext) | 
|  | *btf_ext = NULL; | 
|  |  | 
|  | btf = btf_parse_raw(path, base_btf); | 
|  | err = libbpf_get_error(btf); | 
|  | if (!err) | 
|  | return btf; | 
|  | if (err != -EPROTO) | 
|  | return ERR_PTR(err); | 
|  | return btf_parse_elf(path, base_btf, btf_ext); | 
|  | } | 
|  |  | 
|  | struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) | 
|  | { | 
|  | return libbpf_ptr(btf_parse(path, NULL, btf_ext)); | 
|  | } | 
|  |  | 
|  | struct btf *btf__parse_split(const char *path, struct btf *base_btf) | 
|  | { | 
|  | return libbpf_ptr(btf_parse(path, base_btf, NULL)); | 
|  | } | 
|  |  | 
|  | static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); | 
|  |  | 
|  | int btf_load_into_kernel(struct btf *btf, | 
|  | char *log_buf, size_t log_sz, __u32 log_level, | 
|  | int token_fd) | 
|  | { | 
|  | LIBBPF_OPTS(bpf_btf_load_opts, opts); | 
|  | __u32 buf_sz = 0, raw_size; | 
|  | char *buf = NULL, *tmp; | 
|  | void *raw_data; | 
|  | int err = 0; | 
|  |  | 
|  | if (btf->fd >= 0) | 
|  | return libbpf_err(-EEXIST); | 
|  | if (log_sz && !log_buf) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* cache native raw data representation */ | 
|  | raw_data = btf_get_raw_data(btf, &raw_size, false); | 
|  | if (!raw_data) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | btf->raw_size = raw_size; | 
|  | btf->raw_data = raw_data; | 
|  |  | 
|  | retry_load: | 
|  | /* if log_level is 0, we won't provide log_buf/log_size to the kernel, | 
|  | * initially. Only if BTF loading fails, we bump log_level to 1 and | 
|  | * retry, using either auto-allocated or custom log_buf. This way | 
|  | * non-NULL custom log_buf provides a buffer just in case, but hopes | 
|  | * for successful load and no need for log_buf. | 
|  | */ | 
|  | if (log_level) { | 
|  | /* if caller didn't provide custom log_buf, we'll keep | 
|  | * allocating our own progressively bigger buffers for BTF | 
|  | * verification log | 
|  | */ | 
|  | if (!log_buf) { | 
|  | buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); | 
|  | tmp = realloc(buf, buf_sz); | 
|  | if (!tmp) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | buf = tmp; | 
|  | buf[0] = '\0'; | 
|  | } | 
|  |  | 
|  | opts.log_buf = log_buf ? log_buf : buf; | 
|  | opts.log_size = log_buf ? log_sz : buf_sz; | 
|  | opts.log_level = log_level; | 
|  | } | 
|  |  | 
|  | opts.token_fd = token_fd; | 
|  | if (token_fd) | 
|  | opts.btf_flags |= BPF_F_TOKEN_FD; | 
|  |  | 
|  | btf->fd = bpf_btf_load(raw_data, raw_size, &opts); | 
|  | if (btf->fd < 0) { | 
|  | /* time to turn on verbose mode and try again */ | 
|  | if (log_level == 0) { | 
|  | log_level = 1; | 
|  | goto retry_load; | 
|  | } | 
|  | /* only retry if caller didn't provide custom log_buf, but | 
|  | * make sure we can never overflow buf_sz | 
|  | */ | 
|  | if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) | 
|  | goto retry_load; | 
|  |  | 
|  | err = -errno; | 
|  | pr_warn("BTF loading error: %s\n", errstr(err)); | 
|  | /* don't print out contents of custom log_buf */ | 
|  | if (!log_buf && buf[0]) | 
|  | pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); | 
|  | } | 
|  |  | 
|  | done: | 
|  | free(buf); | 
|  | return libbpf_err(err); | 
|  | } | 
|  |  | 
|  | int btf__load_into_kernel(struct btf *btf) | 
|  | { | 
|  | return btf_load_into_kernel(btf, NULL, 0, 0, 0); | 
|  | } | 
|  |  | 
|  | int btf__fd(const struct btf *btf) | 
|  | { | 
|  | return btf->fd; | 
|  | } | 
|  |  | 
|  | void btf__set_fd(struct btf *btf, int fd) | 
|  | { | 
|  | btf->fd = fd; | 
|  | } | 
|  |  | 
|  | static const void *btf_strs_data(const struct btf *btf) | 
|  | { | 
|  | return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); | 
|  | } | 
|  |  | 
|  | static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) | 
|  | { | 
|  | struct btf_header *hdr = btf->hdr; | 
|  | struct btf_type *t; | 
|  | void *data, *p; | 
|  | __u32 data_sz; | 
|  | int i; | 
|  |  | 
|  | data = swap_endian ? btf->raw_data_swapped : btf->raw_data; | 
|  | if (data) { | 
|  | *size = btf->raw_size; | 
|  | return data; | 
|  | } | 
|  |  | 
|  | data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; | 
|  | data = calloc(1, data_sz); | 
|  | if (!data) | 
|  | return NULL; | 
|  | p = data; | 
|  |  | 
|  | memcpy(p, hdr, hdr->hdr_len); | 
|  | if (swap_endian) | 
|  | btf_bswap_hdr(p); | 
|  | p += hdr->hdr_len; | 
|  |  | 
|  | memcpy(p, btf->types_data, hdr->type_len); | 
|  | if (swap_endian) { | 
|  | for (i = 0; i < btf->nr_types; i++) { | 
|  | t = p + btf->type_offs[i]; | 
|  | /* btf_bswap_type_rest() relies on native t->info, so | 
|  | * we swap base type info after we swapped all the | 
|  | * additional information | 
|  | */ | 
|  | if (btf_bswap_type_rest(t)) | 
|  | goto err_out; | 
|  | btf_bswap_type_base(t); | 
|  | } | 
|  | } | 
|  | p += hdr->type_len; | 
|  |  | 
|  | memcpy(p, btf_strs_data(btf), hdr->str_len); | 
|  | p += hdr->str_len; | 
|  |  | 
|  | *size = data_sz; | 
|  | return data; | 
|  | err_out: | 
|  | free(data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) | 
|  | { | 
|  | struct btf *btf = (struct btf *)btf_ro; | 
|  | __u32 data_sz; | 
|  | void *data; | 
|  |  | 
|  | data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); | 
|  | if (!data) | 
|  | return errno = ENOMEM, NULL; | 
|  |  | 
|  | btf->raw_size = data_sz; | 
|  | if (btf->swapped_endian) | 
|  | btf->raw_data_swapped = data; | 
|  | else | 
|  | btf->raw_data = data; | 
|  | *size = data_sz; | 
|  | return data; | 
|  | } | 
|  |  | 
|  | __attribute__((alias("btf__raw_data"))) | 
|  | const void *btf__get_raw_data(const struct btf *btf, __u32 *size); | 
|  |  | 
|  | const char *btf__str_by_offset(const struct btf *btf, __u32 offset) | 
|  | { | 
|  | if (offset < btf->start_str_off) | 
|  | return btf__str_by_offset(btf->base_btf, offset); | 
|  | else if (offset - btf->start_str_off < btf->hdr->str_len) | 
|  | return btf_strs_data(btf) + (offset - btf->start_str_off); | 
|  | else | 
|  | return errno = EINVAL, NULL; | 
|  | } | 
|  |  | 
|  | const char *btf__name_by_offset(const struct btf *btf, __u32 offset) | 
|  | { | 
|  | return btf__str_by_offset(btf, offset); | 
|  | } | 
|  |  | 
|  | struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) | 
|  | { | 
|  | struct bpf_btf_info btf_info; | 
|  | __u32 len = sizeof(btf_info); | 
|  | __u32 last_size; | 
|  | struct btf *btf; | 
|  | void *ptr; | 
|  | int err; | 
|  |  | 
|  | /* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so | 
|  | * let's start with a sane default - 4KiB here - and resize it only if | 
|  | * bpf_btf_get_info_by_fd() needs a bigger buffer. | 
|  | */ | 
|  | last_size = 4096; | 
|  | ptr = malloc(last_size); | 
|  | if (!ptr) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | memset(&btf_info, 0, sizeof(btf_info)); | 
|  | btf_info.btf = ptr_to_u64(ptr); | 
|  | btf_info.btf_size = last_size; | 
|  | err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); | 
|  |  | 
|  | if (!err && btf_info.btf_size > last_size) { | 
|  | void *temp_ptr; | 
|  |  | 
|  | last_size = btf_info.btf_size; | 
|  | temp_ptr = realloc(ptr, last_size); | 
|  | if (!temp_ptr) { | 
|  | btf = ERR_PTR(-ENOMEM); | 
|  | goto exit_free; | 
|  | } | 
|  | ptr = temp_ptr; | 
|  |  | 
|  | len = sizeof(btf_info); | 
|  | memset(&btf_info, 0, sizeof(btf_info)); | 
|  | btf_info.btf = ptr_to_u64(ptr); | 
|  | btf_info.btf_size = last_size; | 
|  |  | 
|  | err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len); | 
|  | } | 
|  |  | 
|  | if (err || btf_info.btf_size > last_size) { | 
|  | btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); | 
|  | goto exit_free; | 
|  | } | 
|  |  | 
|  | btf = btf_new(ptr, btf_info.btf_size, base_btf); | 
|  |  | 
|  | exit_free: | 
|  | free(ptr); | 
|  | return btf; | 
|  | } | 
|  |  | 
|  | struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) | 
|  | { | 
|  | struct btf *btf; | 
|  | int btf_fd; | 
|  |  | 
|  | btf_fd = bpf_btf_get_fd_by_id(id); | 
|  | if (btf_fd < 0) | 
|  | return libbpf_err_ptr(-errno); | 
|  |  | 
|  | btf = btf_get_from_fd(btf_fd, base_btf); | 
|  | close(btf_fd); | 
|  |  | 
|  | return libbpf_ptr(btf); | 
|  | } | 
|  |  | 
|  | struct btf *btf__load_from_kernel_by_id(__u32 id) | 
|  | { | 
|  | return btf__load_from_kernel_by_id_split(id, NULL); | 
|  | } | 
|  |  | 
|  | static void btf_invalidate_raw_data(struct btf *btf) | 
|  | { | 
|  | if (btf->raw_data) { | 
|  | free(btf->raw_data); | 
|  | btf->raw_data = NULL; | 
|  | } | 
|  | if (btf->raw_data_swapped) { | 
|  | free(btf->raw_data_swapped); | 
|  | btf->raw_data_swapped = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure BTF is ready to be modified (by splitting into a three memory | 
|  | * regions for header, types, and strings). Also invalidate cached | 
|  | * raw_data, if any. | 
|  | */ | 
|  | static int btf_ensure_modifiable(struct btf *btf) | 
|  | { | 
|  | void *hdr, *types; | 
|  | struct strset *set = NULL; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | if (btf_is_modifiable(btf)) { | 
|  | /* any BTF modification invalidates raw_data */ | 
|  | btf_invalidate_raw_data(btf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* split raw data into three memory regions */ | 
|  | hdr = malloc(btf->hdr->hdr_len); | 
|  | types = malloc(btf->hdr->type_len); | 
|  | if (!hdr || !types) | 
|  | goto err_out; | 
|  |  | 
|  | memcpy(hdr, btf->hdr, btf->hdr->hdr_len); | 
|  | memcpy(types, btf->types_data, btf->hdr->type_len); | 
|  |  | 
|  | /* build lookup index for all strings */ | 
|  | set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); | 
|  | if (IS_ERR(set)) { | 
|  | err = PTR_ERR(set); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* only when everything was successful, update internal state */ | 
|  | btf->hdr = hdr; | 
|  | btf->types_data = types; | 
|  | btf->types_data_cap = btf->hdr->type_len; | 
|  | btf->strs_data = NULL; | 
|  | btf->strs_set = set; | 
|  | /* if BTF was created from scratch, all strings are guaranteed to be | 
|  | * unique and deduplicated | 
|  | */ | 
|  | if (btf->hdr->str_len == 0) | 
|  | btf->strs_deduped = true; | 
|  | if (!btf->base_btf && btf->hdr->str_len == 1) | 
|  | btf->strs_deduped = true; | 
|  |  | 
|  | /* invalidate raw_data representation */ | 
|  | btf_invalidate_raw_data(btf); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | strset__free(set); | 
|  | free(hdr); | 
|  | free(types); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Find an offset in BTF string section that corresponds to a given string *s*. | 
|  | * Returns: | 
|  | *   - >0 offset into string section, if string is found; | 
|  | *   - -ENOENT, if string is not in the string section; | 
|  | *   - <0, on any other error. | 
|  | */ | 
|  | int btf__find_str(struct btf *btf, const char *s) | 
|  | { | 
|  | int off; | 
|  |  | 
|  | if (btf->base_btf) { | 
|  | off = btf__find_str(btf->base_btf, s); | 
|  | if (off != -ENOENT) | 
|  | return off; | 
|  | } | 
|  |  | 
|  | /* BTF needs to be in a modifiable state to build string lookup index */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | off = strset__find_str(btf->strs_set, s); | 
|  | if (off < 0) | 
|  | return libbpf_err(off); | 
|  |  | 
|  | return btf->start_str_off + off; | 
|  | } | 
|  |  | 
|  | /* Add a string s to the BTF string section. | 
|  | * Returns: | 
|  | *   - > 0 offset into string section, on success; | 
|  | *   - < 0, on error. | 
|  | */ | 
|  | int btf__add_str(struct btf *btf, const char *s) | 
|  | { | 
|  | int off; | 
|  |  | 
|  | if (btf->base_btf) { | 
|  | off = btf__find_str(btf->base_btf, s); | 
|  | if (off != -ENOENT) | 
|  | return off; | 
|  | } | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | off = strset__add_str(btf->strs_set, s); | 
|  | if (off < 0) | 
|  | return libbpf_err(off); | 
|  |  | 
|  | btf->hdr->str_len = strset__data_size(btf->strs_set); | 
|  |  | 
|  | return btf->start_str_off + off; | 
|  | } | 
|  |  | 
|  | static void *btf_add_type_mem(struct btf *btf, size_t add_sz) | 
|  | { | 
|  | return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, | 
|  | btf->hdr->type_len, UINT_MAX, add_sz); | 
|  | } | 
|  |  | 
|  | static void btf_type_inc_vlen(struct btf_type *t) | 
|  | { | 
|  | t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); | 
|  | } | 
|  |  | 
|  | static int btf_commit_type(struct btf *btf, int data_sz) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = btf_add_type_idx_entry(btf, btf->hdr->type_len); | 
|  | if (err) | 
|  | return libbpf_err(err); | 
|  |  | 
|  | btf->hdr->type_len += data_sz; | 
|  | btf->hdr->str_off += data_sz; | 
|  | btf->nr_types++; | 
|  | return btf->start_id + btf->nr_types - 1; | 
|  | } | 
|  |  | 
|  | struct btf_pipe { | 
|  | const struct btf *src; | 
|  | struct btf *dst; | 
|  | struct hashmap *str_off_map; /* map string offsets from src to dst */ | 
|  | }; | 
|  |  | 
|  | static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off) | 
|  | { | 
|  | long mapped_off; | 
|  | int off, err; | 
|  |  | 
|  | if (!*str_off) /* nothing to do for empty strings */ | 
|  | return 0; | 
|  |  | 
|  | if (p->str_off_map && | 
|  | hashmap__find(p->str_off_map, *str_off, &mapped_off)) { | 
|  | *str_off = mapped_off; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); | 
|  | if (off < 0) | 
|  | return off; | 
|  |  | 
|  | /* Remember string mapping from src to dst.  It avoids | 
|  | * performing expensive string comparisons. | 
|  | */ | 
|  | if (p->str_off_map) { | 
|  | err = hashmap__append(p->str_off_map, *str_off, off); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | *str_off = off; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type) | 
|  | { | 
|  | struct btf_field_iter it; | 
|  | struct btf_type *t; | 
|  | __u32 *str_off; | 
|  | int sz, err; | 
|  |  | 
|  | sz = btf_type_size(src_type); | 
|  | if (sz < 0) | 
|  | return libbpf_err(sz); | 
|  |  | 
|  | /* deconstruct BTF, if necessary, and invalidate raw_data */ | 
|  | if (btf_ensure_modifiable(p->dst)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | t = btf_add_type_mem(p->dst, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | memcpy(t, src_type, sz); | 
|  |  | 
|  | err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); | 
|  | if (err) | 
|  | return libbpf_err(err); | 
|  |  | 
|  | while ((str_off = btf_field_iter_next(&it))) { | 
|  | err = btf_rewrite_str(p, str_off); | 
|  | if (err) | 
|  | return libbpf_err(err); | 
|  | } | 
|  |  | 
|  | return btf_commit_type(p->dst, sz); | 
|  | } | 
|  |  | 
|  | int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) | 
|  | { | 
|  | struct btf_pipe p = { .src = src_btf, .dst = btf }; | 
|  |  | 
|  | return btf_add_type(&p, src_type); | 
|  | } | 
|  |  | 
|  | static size_t btf_dedup_identity_hash_fn(long key, void *ctx); | 
|  | static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); | 
|  |  | 
|  | int btf__add_btf(struct btf *btf, const struct btf *src_btf) | 
|  | { | 
|  | struct btf_pipe p = { .src = src_btf, .dst = btf }; | 
|  | int data_sz, sz, cnt, i, err, old_strs_len; | 
|  | __u32 *off; | 
|  | void *t; | 
|  |  | 
|  | /* appending split BTF isn't supported yet */ | 
|  | if (src_btf->base_btf) | 
|  | return libbpf_err(-ENOTSUP); | 
|  |  | 
|  | /* deconstruct BTF, if necessary, and invalidate raw_data */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | /* remember original strings section size if we have to roll back | 
|  | * partial strings section changes | 
|  | */ | 
|  | old_strs_len = btf->hdr->str_len; | 
|  |  | 
|  | data_sz = src_btf->hdr->type_len; | 
|  | cnt = btf__type_cnt(src_btf) - 1; | 
|  |  | 
|  | /* pre-allocate enough memory for new types */ | 
|  | t = btf_add_type_mem(btf, data_sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | /* pre-allocate enough memory for type offset index for new types */ | 
|  | off = btf_add_type_offs_mem(btf, cnt); | 
|  | if (!off) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | /* Map the string offsets from src_btf to the offsets from btf to improve performance */ | 
|  | p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); | 
|  | if (IS_ERR(p.str_off_map)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | /* bulk copy types data for all types from src_btf */ | 
|  | memcpy(t, src_btf->types_data, data_sz); | 
|  |  | 
|  | for (i = 0; i < cnt; i++) { | 
|  | struct btf_field_iter it; | 
|  | __u32 *type_id, *str_off; | 
|  |  | 
|  | sz = btf_type_size(t); | 
|  | if (sz < 0) { | 
|  | /* unlikely, has to be corrupted src_btf */ | 
|  | err = sz; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* fill out type ID to type offset mapping for lookups by type ID */ | 
|  | *off = t - btf->types_data; | 
|  |  | 
|  | /* add, dedup, and remap strings referenced by this BTF type */ | 
|  | err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); | 
|  | if (err) | 
|  | goto err_out; | 
|  | while ((str_off = btf_field_iter_next(&it))) { | 
|  | err = btf_rewrite_str(&p, str_off); | 
|  | if (err) | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* remap all type IDs referenced from this BTF type */ | 
|  | err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); | 
|  | if (err) | 
|  | goto err_out; | 
|  |  | 
|  | while ((type_id = btf_field_iter_next(&it))) { | 
|  | if (!*type_id) /* nothing to do for VOID references */ | 
|  | continue; | 
|  |  | 
|  | /* we haven't updated btf's type count yet, so | 
|  | * btf->start_id + btf->nr_types - 1 is the type ID offset we should | 
|  | * add to all newly added BTF types | 
|  | */ | 
|  | *type_id += btf->start_id + btf->nr_types - 1; | 
|  | } | 
|  |  | 
|  | /* go to next type data and type offset index entry */ | 
|  | t += sz; | 
|  | off++; | 
|  | } | 
|  |  | 
|  | /* Up until now any of the copied type data was effectively invisible, | 
|  | * so if we exited early before this point due to error, BTF would be | 
|  | * effectively unmodified. There would be extra internal memory | 
|  | * pre-allocated, but it would not be available for querying.  But now | 
|  | * that we've copied and rewritten all the data successfully, we can | 
|  | * update type count and various internal offsets and sizes to | 
|  | * "commit" the changes and made them visible to the outside world. | 
|  | */ | 
|  | btf->hdr->type_len += data_sz; | 
|  | btf->hdr->str_off += data_sz; | 
|  | btf->nr_types += cnt; | 
|  |  | 
|  | hashmap__free(p.str_off_map); | 
|  |  | 
|  | /* return type ID of the first added BTF type */ | 
|  | return btf->start_id + btf->nr_types - cnt; | 
|  | err_out: | 
|  | /* zero out preallocated memory as if it was just allocated with | 
|  | * libbpf_add_mem() | 
|  | */ | 
|  | memset(btf->types_data + btf->hdr->type_len, 0, data_sz); | 
|  | memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); | 
|  |  | 
|  | /* and now restore original strings section size; types data size | 
|  | * wasn't modified, so doesn't need restoring, see big comment above | 
|  | */ | 
|  | btf->hdr->str_len = old_strs_len; | 
|  |  | 
|  | hashmap__free(p.str_off_map); | 
|  |  | 
|  | return libbpf_err(err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_INT type with: | 
|  | *   - *name* - non-empty, non-NULL type name; | 
|  | *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; | 
|  | *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int sz, name_off; | 
|  |  | 
|  | /* non-empty name */ | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  | /* byte_sz must be power of 2 */ | 
|  | if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) | 
|  | return libbpf_err(-EINVAL); | 
|  | if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* deconstruct BTF, if necessary, and invalidate raw_data */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type) + sizeof(int); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | /* if something goes wrong later, we might end up with an extra string, | 
|  | * but that shouldn't be a problem, because BTF can't be constructed | 
|  | * completely anyway and will most probably be just discarded | 
|  | */ | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  |  | 
|  | t->name_off = name_off; | 
|  | t->info = btf_type_info(BTF_KIND_INT, 0, 0); | 
|  | t->size = byte_sz; | 
|  | /* set INT info, we don't allow setting legacy bit offset/size */ | 
|  | *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_FLOAT type with: | 
|  | *   - *name* - non-empty, non-NULL type name; | 
|  | *   - *sz* - size of the type, in bytes; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int sz, name_off; | 
|  |  | 
|  | /* non-empty name */ | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* byte_sz must be one of the explicitly allowed values */ | 
|  | if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && | 
|  | byte_sz != 16) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  |  | 
|  | t->name_off = name_off; | 
|  | t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); | 
|  | t->size = byte_sz; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* it's completely legal to append BTF types with type IDs pointing forward to | 
|  | * types that haven't been appended yet, so we only make sure that id looks | 
|  | * sane, we can't guarantee that ID will always be valid | 
|  | */ | 
|  | static int validate_type_id(int id) | 
|  | { | 
|  | if (id < 0 || id > BTF_MAX_NR_TYPES) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ | 
|  | static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int sz, name_off = 0; | 
|  |  | 
|  | if (validate_type_id(ref_type_id)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | if (name && name[0]) { | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  | } | 
|  |  | 
|  | t->name_off = name_off; | 
|  | t->info = btf_type_info(kind, 0, 0); | 
|  | t->type = ref_type_id; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_PTR type with: | 
|  | *   - *ref_type_id* - referenced type ID, it might not exist yet; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_ptr(struct btf *btf, int ref_type_id) | 
|  | { | 
|  | return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_ARRAY type with: | 
|  | *   - *index_type_id* - type ID of the type describing array index; | 
|  | *   - *elem_type_id* - type ID of the type describing array element; | 
|  | *   - *nr_elems* - the size of the array; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) | 
|  | { | 
|  | struct btf_type *t; | 
|  | struct btf_array *a; | 
|  | int sz; | 
|  |  | 
|  | if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type) + sizeof(struct btf_array); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | t->name_off = 0; | 
|  | t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); | 
|  | t->size = 0; | 
|  |  | 
|  | a = btf_array(t); | 
|  | a->type = elem_type_id; | 
|  | a->index_type = index_type_id; | 
|  | a->nelems = nr_elems; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* generic STRUCT/UNION append function */ | 
|  | static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int sz, name_off = 0; | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | if (name && name[0]) { | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  | } | 
|  |  | 
|  | /* start out with vlen=0 and no kflag; this will be adjusted when | 
|  | * adding each member | 
|  | */ | 
|  | t->name_off = name_off; | 
|  | t->info = btf_type_info(kind, 0, 0); | 
|  | t->size = bytes_sz; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_STRUCT type with: | 
|  | *   - *name* - name of the struct, can be NULL or empty for anonymous structs; | 
|  | *   - *byte_sz* - size of the struct, in bytes; | 
|  | * | 
|  | * Struct initially has no fields in it. Fields can be added by | 
|  | * btf__add_field() right after btf__add_struct() succeeds. | 
|  | * | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) | 
|  | { | 
|  | return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_UNION type with: | 
|  | *   - *name* - name of the union, can be NULL or empty for anonymous union; | 
|  | *   - *byte_sz* - size of the union, in bytes; | 
|  | * | 
|  | * Union initially has no fields in it. Fields can be added by | 
|  | * btf__add_field() right after btf__add_union() succeeds. All fields | 
|  | * should have *bit_offset* of 0. | 
|  | * | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) | 
|  | { | 
|  | return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); | 
|  | } | 
|  |  | 
|  | static struct btf_type *btf_last_type(struct btf *btf) | 
|  | { | 
|  | return btf_type_by_id(btf, btf__type_cnt(btf) - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new field for the current STRUCT/UNION type with: | 
|  | *   - *name* - name of the field, can be NULL or empty for anonymous field; | 
|  | *   - *type_id* - type ID for the type describing field type; | 
|  | *   - *bit_offset* - bit offset of the start of the field within struct/union; | 
|  | *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; | 
|  | * Returns: | 
|  | *   -  0, on success; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_field(struct btf *btf, const char *name, int type_id, | 
|  | __u32 bit_offset, __u32 bit_size) | 
|  | { | 
|  | struct btf_type *t; | 
|  | struct btf_member *m; | 
|  | bool is_bitfield; | 
|  | int sz, name_off = 0; | 
|  |  | 
|  | /* last type should be union/struct */ | 
|  | if (btf->nr_types == 0) | 
|  | return libbpf_err(-EINVAL); | 
|  | t = btf_last_type(btf); | 
|  | if (!btf_is_composite(t)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (validate_type_id(type_id)) | 
|  | return libbpf_err(-EINVAL); | 
|  | /* best-effort bit field offset/size enforcement */ | 
|  | is_bitfield = bit_size || (bit_offset % 8 != 0); | 
|  | if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* only offset 0 is allowed for unions */ | 
|  | if (btf_is_union(t) && bit_offset) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* decompose and invalidate raw data */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_member); | 
|  | m = btf_add_type_mem(btf, sz); | 
|  | if (!m) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | if (name && name[0]) { | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  | } | 
|  |  | 
|  | m->name_off = name_off; | 
|  | m->type = type_id; | 
|  | m->offset = bit_offset | (bit_size << 24); | 
|  |  | 
|  | /* btf_add_type_mem can invalidate t pointer */ | 
|  | t = btf_last_type(btf); | 
|  | /* update parent type's vlen and kflag */ | 
|  | t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); | 
|  |  | 
|  | btf->hdr->type_len += sz; | 
|  | btf->hdr->str_off += sz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, | 
|  | bool is_signed, __u8 kind) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int sz, name_off = 0; | 
|  |  | 
|  | /* byte_sz must be power of 2 */ | 
|  | if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | if (name && name[0]) { | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  | } | 
|  |  | 
|  | /* start out with vlen=0; it will be adjusted when adding enum values */ | 
|  | t->name_off = name_off; | 
|  | t->info = btf_type_info(kind, 0, is_signed); | 
|  | t->size = byte_sz; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_ENUM type with: | 
|  | *   - *name* - name of the enum, can be NULL or empty for anonymous enums; | 
|  | *   - *byte_sz* - size of the enum, in bytes. | 
|  | * | 
|  | * Enum initially has no enum values in it (and corresponds to enum forward | 
|  | * declaration). Enumerator values can be added by btf__add_enum_value() | 
|  | * immediately after btf__add_enum() succeeds. | 
|  | * | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) | 
|  | { | 
|  | /* | 
|  | * set the signedness to be unsigned, it will change to signed | 
|  | * if any later enumerator is negative. | 
|  | */ | 
|  | return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new enum value for the current ENUM type with: | 
|  | *   - *name* - name of the enumerator value, can't be NULL or empty; | 
|  | *   - *value* - integer value corresponding to enum value *name*; | 
|  | * Returns: | 
|  | *   -  0, on success; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) | 
|  | { | 
|  | struct btf_type *t; | 
|  | struct btf_enum *v; | 
|  | int sz, name_off; | 
|  |  | 
|  | /* last type should be BTF_KIND_ENUM */ | 
|  | if (btf->nr_types == 0) | 
|  | return libbpf_err(-EINVAL); | 
|  | t = btf_last_type(btf); | 
|  | if (!btf_is_enum(t)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* non-empty name */ | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  | if (value < INT_MIN || value > UINT_MAX) | 
|  | return libbpf_err(-E2BIG); | 
|  |  | 
|  | /* decompose and invalidate raw data */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_enum); | 
|  | v = btf_add_type_mem(btf, sz); | 
|  | if (!v) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  |  | 
|  | v->name_off = name_off; | 
|  | v->val = value; | 
|  |  | 
|  | /* update parent type's vlen */ | 
|  | t = btf_last_type(btf); | 
|  | btf_type_inc_vlen(t); | 
|  |  | 
|  | /* if negative value, set signedness to signed */ | 
|  | if (value < 0) | 
|  | t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); | 
|  |  | 
|  | btf->hdr->type_len += sz; | 
|  | btf->hdr->str_off += sz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_ENUM64 type with: | 
|  | *   - *name* - name of the enum, can be NULL or empty for anonymous enums; | 
|  | *   - *byte_sz* - size of the enum, in bytes. | 
|  | *   - *is_signed* - whether the enum values are signed or not; | 
|  | * | 
|  | * Enum initially has no enum values in it (and corresponds to enum forward | 
|  | * declaration). Enumerator values can be added by btf__add_enum64_value() | 
|  | * immediately after btf__add_enum64() succeeds. | 
|  | * | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, | 
|  | bool is_signed) | 
|  | { | 
|  | return btf_add_enum_common(btf, name, byte_sz, is_signed, | 
|  | BTF_KIND_ENUM64); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new enum value for the current ENUM64 type with: | 
|  | *   - *name* - name of the enumerator value, can't be NULL or empty; | 
|  | *   - *value* - integer value corresponding to enum value *name*; | 
|  | * Returns: | 
|  | *   -  0, on success; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) | 
|  | { | 
|  | struct btf_enum64 *v; | 
|  | struct btf_type *t; | 
|  | int sz, name_off; | 
|  |  | 
|  | /* last type should be BTF_KIND_ENUM64 */ | 
|  | if (btf->nr_types == 0) | 
|  | return libbpf_err(-EINVAL); | 
|  | t = btf_last_type(btf); | 
|  | if (!btf_is_enum64(t)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* non-empty name */ | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* decompose and invalidate raw data */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_enum64); | 
|  | v = btf_add_type_mem(btf, sz); | 
|  | if (!v) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  |  | 
|  | v->name_off = name_off; | 
|  | v->val_lo32 = (__u32)value; | 
|  | v->val_hi32 = value >> 32; | 
|  |  | 
|  | /* update parent type's vlen */ | 
|  | t = btf_last_type(btf); | 
|  | btf_type_inc_vlen(t); | 
|  |  | 
|  | btf->hdr->type_len += sz; | 
|  | btf->hdr->str_off += sz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_FWD type with: | 
|  | *   - *name*, non-empty/non-NULL name; | 
|  | *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, | 
|  | *     BTF_FWD_UNION, or BTF_FWD_ENUM; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) | 
|  | { | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | switch (fwd_kind) { | 
|  | case BTF_FWD_STRUCT: | 
|  | case BTF_FWD_UNION: { | 
|  | struct btf_type *t; | 
|  | int id; | 
|  |  | 
|  | id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); | 
|  | if (id <= 0) | 
|  | return id; | 
|  | t = btf_type_by_id(btf, id); | 
|  | t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); | 
|  | return id; | 
|  | } | 
|  | case BTF_FWD_ENUM: | 
|  | /* enum forward in BTF currently is just an enum with no enum | 
|  | * values; we also assume a standard 4-byte size for it | 
|  | */ | 
|  | return btf__add_enum(btf, name, sizeof(int)); | 
|  | default: | 
|  | return libbpf_err(-EINVAL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KING_TYPEDEF type with: | 
|  | *   - *name*, non-empty/non-NULL name; | 
|  | *   - *ref_type_id* - referenced type ID, it might not exist yet; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) | 
|  | { | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_VOLATILE type with: | 
|  | *   - *ref_type_id* - referenced type ID, it might not exist yet; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_volatile(struct btf *btf, int ref_type_id) | 
|  | { | 
|  | return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_CONST type with: | 
|  | *   - *ref_type_id* - referenced type ID, it might not exist yet; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_const(struct btf *btf, int ref_type_id) | 
|  | { | 
|  | return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_RESTRICT type with: | 
|  | *   - *ref_type_id* - referenced type ID, it might not exist yet; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_restrict(struct btf *btf, int ref_type_id) | 
|  | { | 
|  | return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_TYPE_TAG type with: | 
|  | *   - *value*, non-empty/non-NULL tag value; | 
|  | *   - *ref_type_id* - referenced type ID, it might not exist yet; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) | 
|  | { | 
|  | if (!value || !value[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_FUNC type with: | 
|  | *   - *name*, non-empty/non-NULL name; | 
|  | *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_func(struct btf *btf, const char *name, | 
|  | enum btf_func_linkage linkage, int proto_type_id) | 
|  | { | 
|  | int id; | 
|  |  | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  | if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && | 
|  | linkage != BTF_FUNC_EXTERN) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); | 
|  | if (id > 0) { | 
|  | struct btf_type *t = btf_type_by_id(btf, id); | 
|  |  | 
|  | t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); | 
|  | } | 
|  | return libbpf_err(id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_FUNC_PROTO with: | 
|  | *   - *ret_type_id* - type ID for return result of a function. | 
|  | * | 
|  | * Function prototype initially has no arguments, but they can be added by | 
|  | * btf__add_func_param() one by one, immediately after | 
|  | * btf__add_func_proto() succeeded. | 
|  | * | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_func_proto(struct btf *btf, int ret_type_id) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int sz; | 
|  |  | 
|  | if (validate_type_id(ret_type_id)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | /* start out with vlen=0; this will be adjusted when adding enum | 
|  | * values, if necessary | 
|  | */ | 
|  | t->name_off = 0; | 
|  | t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); | 
|  | t->type = ret_type_id; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new function parameter for current FUNC_PROTO type with: | 
|  | *   - *name* - parameter name, can be NULL or empty; | 
|  | *   - *type_id* - type ID describing the type of the parameter. | 
|  | * Returns: | 
|  | *   -  0, on success; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_func_param(struct btf *btf, const char *name, int type_id) | 
|  | { | 
|  | struct btf_type *t; | 
|  | struct btf_param *p; | 
|  | int sz, name_off = 0; | 
|  |  | 
|  | if (validate_type_id(type_id)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* last type should be BTF_KIND_FUNC_PROTO */ | 
|  | if (btf->nr_types == 0) | 
|  | return libbpf_err(-EINVAL); | 
|  | t = btf_last_type(btf); | 
|  | if (!btf_is_func_proto(t)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* decompose and invalidate raw data */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_param); | 
|  | p = btf_add_type_mem(btf, sz); | 
|  | if (!p) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | if (name && name[0]) { | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  | } | 
|  |  | 
|  | p->name_off = name_off; | 
|  | p->type = type_id; | 
|  |  | 
|  | /* update parent type's vlen */ | 
|  | t = btf_last_type(btf); | 
|  | btf_type_inc_vlen(t); | 
|  |  | 
|  | btf->hdr->type_len += sz; | 
|  | btf->hdr->str_off += sz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_VAR type with: | 
|  | *   - *name* - non-empty/non-NULL name; | 
|  | *   - *linkage* - variable linkage, one of BTF_VAR_STATIC, | 
|  | *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; | 
|  | *   - *type_id* - type ID of the type describing the type of the variable. | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) | 
|  | { | 
|  | struct btf_type *t; | 
|  | struct btf_var *v; | 
|  | int sz, name_off; | 
|  |  | 
|  | /* non-empty name */ | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  | if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && | 
|  | linkage != BTF_VAR_GLOBAL_EXTERN) | 
|  | return libbpf_err(-EINVAL); | 
|  | if (validate_type_id(type_id)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* deconstruct BTF, if necessary, and invalidate raw_data */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type) + sizeof(struct btf_var); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  |  | 
|  | t->name_off = name_off; | 
|  | t->info = btf_type_info(BTF_KIND_VAR, 0, 0); | 
|  | t->type = type_id; | 
|  |  | 
|  | v = btf_var(t); | 
|  | v->linkage = linkage; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_DATASEC type with: | 
|  | *   - *name* - non-empty/non-NULL name; | 
|  | *   - *byte_sz* - data section size, in bytes. | 
|  | * | 
|  | * Data section is initially empty. Variables info can be added with | 
|  | * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. | 
|  | * | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int sz, name_off; | 
|  |  | 
|  | /* non-empty name */ | 
|  | if (!name || !name[0]) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | name_off = btf__add_str(btf, name); | 
|  | if (name_off < 0) | 
|  | return name_off; | 
|  |  | 
|  | /* start with vlen=0, which will be update as var_secinfos are added */ | 
|  | t->name_off = name_off; | 
|  | t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); | 
|  | t->size = byte_sz; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new data section variable information entry for current DATASEC type: | 
|  | *   - *var_type_id* - type ID, describing type of the variable; | 
|  | *   - *offset* - variable offset within data section, in bytes; | 
|  | *   - *byte_sz* - variable size, in bytes. | 
|  | * | 
|  | * Returns: | 
|  | *   -  0, on success; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) | 
|  | { | 
|  | struct btf_type *t; | 
|  | struct btf_var_secinfo *v; | 
|  | int sz; | 
|  |  | 
|  | /* last type should be BTF_KIND_DATASEC */ | 
|  | if (btf->nr_types == 0) | 
|  | return libbpf_err(-EINVAL); | 
|  | t = btf_last_type(btf); | 
|  | if (!btf_is_datasec(t)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (validate_type_id(var_type_id)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | /* decompose and invalidate raw data */ | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_var_secinfo); | 
|  | v = btf_add_type_mem(btf, sz); | 
|  | if (!v) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | v->type = var_type_id; | 
|  | v->offset = offset; | 
|  | v->size = byte_sz; | 
|  |  | 
|  | /* update parent type's vlen */ | 
|  | t = btf_last_type(btf); | 
|  | btf_type_inc_vlen(t); | 
|  |  | 
|  | btf->hdr->type_len += sz; | 
|  | btf->hdr->str_off += sz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Append new BTF_KIND_DECL_TAG type with: | 
|  | *   - *value* - non-empty/non-NULL string; | 
|  | *   - *ref_type_id* - referenced type ID, it might not exist yet; | 
|  | *   - *component_idx* - -1 for tagging reference type, otherwise struct/union | 
|  | *     member or function argument index; | 
|  | * Returns: | 
|  | *   - >0, type ID of newly added BTF type; | 
|  | *   - <0, on error. | 
|  | */ | 
|  | int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, | 
|  | int component_idx) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int sz, value_off; | 
|  |  | 
|  | if (!value || !value[0] || component_idx < -1) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (validate_type_id(ref_type_id)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); | 
|  | t = btf_add_type_mem(btf, sz); | 
|  | if (!t) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | value_off = btf__add_str(btf, value); | 
|  | if (value_off < 0) | 
|  | return value_off; | 
|  |  | 
|  | t->name_off = value_off; | 
|  | t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); | 
|  | t->type = ref_type_id; | 
|  | btf_decl_tag(t)->component_idx = component_idx; | 
|  |  | 
|  | return btf_commit_type(btf, sz); | 
|  | } | 
|  |  | 
|  | struct btf_ext_sec_info_param { | 
|  | __u32 off; | 
|  | __u32 len; | 
|  | __u32 min_rec_size; | 
|  | struct btf_ext_info *ext_info; | 
|  | const char *desc; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Parse a single info subsection of the BTF.ext info data: | 
|  | *  - validate subsection structure and elements | 
|  | *  - save info subsection start and sizing details in struct btf_ext | 
|  | *  - endian-independent operation, for calling before byte-swapping | 
|  | */ | 
|  | static int btf_ext_parse_sec_info(struct btf_ext *btf_ext, | 
|  | struct btf_ext_sec_info_param *ext_sec, | 
|  | bool is_native) | 
|  | { | 
|  | const struct btf_ext_info_sec *sinfo; | 
|  | struct btf_ext_info *ext_info; | 
|  | __u32 info_left, record_size; | 
|  | size_t sec_cnt = 0; | 
|  | void *info; | 
|  |  | 
|  | if (ext_sec->len == 0) | 
|  | return 0; | 
|  |  | 
|  | if (ext_sec->off & 0x03) { | 
|  | pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", | 
|  | ext_sec->desc); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* The start of the info sec (including the __u32 record_size). */ | 
|  | info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; | 
|  | info_left = ext_sec->len; | 
|  |  | 
|  | if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { | 
|  | pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", | 
|  | ext_sec->desc, ext_sec->off, ext_sec->len); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* At least a record size */ | 
|  | if (info_left < sizeof(__u32)) { | 
|  | pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* The record size needs to meet either the minimum standard or, when | 
|  | * handling non-native endianness data, the exact standard so as | 
|  | * to allow safe byte-swapping. | 
|  | */ | 
|  | record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info); | 
|  | if (record_size < ext_sec->min_rec_size || | 
|  | (!is_native && record_size != ext_sec->min_rec_size) || | 
|  | record_size & 0x03) { | 
|  | pr_debug("%s section in .BTF.ext has invalid record size %u\n", | 
|  | ext_sec->desc, record_size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sinfo = info + sizeof(__u32); | 
|  | info_left -= sizeof(__u32); | 
|  |  | 
|  | /* If no records, return failure now so .BTF.ext won't be used. */ | 
|  | if (!info_left) { | 
|  | pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (info_left) { | 
|  | unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); | 
|  | __u64 total_record_size; | 
|  | __u32 num_records; | 
|  |  | 
|  | if (info_left < sec_hdrlen) { | 
|  | pr_debug("%s section header is not found in .BTF.ext\n", | 
|  | ext_sec->desc); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info); | 
|  | if (num_records == 0) { | 
|  | pr_debug("%s section has incorrect num_records in .BTF.ext\n", | 
|  | ext_sec->desc); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | total_record_size = sec_hdrlen + (__u64)num_records * record_size; | 
|  | if (info_left < total_record_size) { | 
|  | pr_debug("%s section has incorrect num_records in .BTF.ext\n", | 
|  | ext_sec->desc); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | info_left -= total_record_size; | 
|  | sinfo = (void *)sinfo + total_record_size; | 
|  | sec_cnt++; | 
|  | } | 
|  |  | 
|  | ext_info = ext_sec->ext_info; | 
|  | ext_info->len = ext_sec->len - sizeof(__u32); | 
|  | ext_info->rec_size = record_size; | 
|  | ext_info->info = info + sizeof(__u32); | 
|  | ext_info->sec_cnt = sec_cnt; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Parse all info secs in the BTF.ext info data */ | 
|  | static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native) | 
|  | { | 
|  | struct btf_ext_sec_info_param func_info = { | 
|  | .off = btf_ext->hdr->func_info_off, | 
|  | .len = btf_ext->hdr->func_info_len, | 
|  | .min_rec_size = sizeof(struct bpf_func_info_min), | 
|  | .ext_info = &btf_ext->func_info, | 
|  | .desc = "func_info" | 
|  | }; | 
|  | struct btf_ext_sec_info_param line_info = { | 
|  | .off = btf_ext->hdr->line_info_off, | 
|  | .len = btf_ext->hdr->line_info_len, | 
|  | .min_rec_size = sizeof(struct bpf_line_info_min), | 
|  | .ext_info = &btf_ext->line_info, | 
|  | .desc = "line_info", | 
|  | }; | 
|  | struct btf_ext_sec_info_param core_relo = { | 
|  | .off = btf_ext->hdr->core_relo_off, | 
|  | .len = btf_ext->hdr->core_relo_len, | 
|  | .min_rec_size = sizeof(struct bpf_core_relo), | 
|  | .ext_info = &btf_ext->core_relo_info, | 
|  | .desc = "core_relo", | 
|  | }; | 
|  | int err; | 
|  |  | 
|  | err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) | 
|  | return 0; /* skip core relos parsing */ | 
|  |  | 
|  | err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Swap byte-order of BTF.ext header with any endianness */ | 
|  | static void btf_ext_bswap_hdr(struct btf_ext_header *h) | 
|  | { | 
|  | bool is_native = h->magic == BTF_MAGIC; | 
|  | __u32 hdr_len; | 
|  |  | 
|  | hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len); | 
|  |  | 
|  | h->magic = bswap_16(h->magic); | 
|  | h->hdr_len = bswap_32(h->hdr_len); | 
|  | h->func_info_off = bswap_32(h->func_info_off); | 
|  | h->func_info_len = bswap_32(h->func_info_len); | 
|  | h->line_info_off = bswap_32(h->line_info_off); | 
|  | h->line_info_len = bswap_32(h->line_info_len); | 
|  |  | 
|  | if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) | 
|  | return; | 
|  |  | 
|  | h->core_relo_off = bswap_32(h->core_relo_off); | 
|  | h->core_relo_len = bswap_32(h->core_relo_len); | 
|  | } | 
|  |  | 
|  | /* Swap byte-order of generic info subsection */ | 
|  | static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native, | 
|  | info_rec_bswap_fn bswap_fn) | 
|  | { | 
|  | struct btf_ext_info_sec *sec; | 
|  | __u32 info_left, rec_size, *rs; | 
|  |  | 
|  | if (len == 0) | 
|  | return; | 
|  |  | 
|  | rs = info;				/* info record size */ | 
|  | rec_size = is_native ? *rs : bswap_32(*rs); | 
|  | *rs = bswap_32(*rs); | 
|  |  | 
|  | sec = info + sizeof(__u32);		/* info sec #1 */ | 
|  | info_left = len - sizeof(__u32); | 
|  | while (info_left) { | 
|  | unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); | 
|  | __u32 i, num_recs; | 
|  | void *p; | 
|  |  | 
|  | num_recs = is_native ? sec->num_info : bswap_32(sec->num_info); | 
|  | sec->sec_name_off = bswap_32(sec->sec_name_off); | 
|  | sec->num_info = bswap_32(sec->num_info); | 
|  | p = sec->data;			/* info rec #1 */ | 
|  | for (i = 0; i < num_recs; i++, p += rec_size) | 
|  | bswap_fn(p); | 
|  | sec = p; | 
|  | info_left -= sec_hdrlen + (__u64)rec_size * num_recs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Swap byte-order of all info data in a BTF.ext section | 
|  | *  - requires BTF.ext hdr in native endianness | 
|  | */ | 
|  | static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data) | 
|  | { | 
|  | const bool is_native = btf_ext->swapped_endian; | 
|  | const struct btf_ext_header *h = data; | 
|  | void *info; | 
|  |  | 
|  | /* Swap func_info subsection byte-order */ | 
|  | info = data + h->hdr_len + h->func_info_off; | 
|  | btf_ext_bswap_info_sec(info, h->func_info_len, is_native, | 
|  | (info_rec_bswap_fn)bpf_func_info_bswap); | 
|  |  | 
|  | /* Swap line_info subsection byte-order */ | 
|  | info = data + h->hdr_len + h->line_info_off; | 
|  | btf_ext_bswap_info_sec(info, h->line_info_len, is_native, | 
|  | (info_rec_bswap_fn)bpf_line_info_bswap); | 
|  |  | 
|  | /* Swap core_relo subsection byte-order (if present) */ | 
|  | if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) | 
|  | return; | 
|  |  | 
|  | info = data + h->hdr_len + h->core_relo_off; | 
|  | btf_ext_bswap_info_sec(info, h->core_relo_len, is_native, | 
|  | (info_rec_bswap_fn)bpf_core_relo_bswap); | 
|  | } | 
|  |  | 
|  | /* Parse hdr data and info sections: check and convert to native endianness */ | 
|  | static int btf_ext_parse(struct btf_ext *btf_ext) | 
|  | { | 
|  | __u32 hdr_len, data_size = btf_ext->data_size; | 
|  | struct btf_ext_header *hdr = btf_ext->hdr; | 
|  | bool swapped_endian = false; | 
|  | int err; | 
|  |  | 
|  | if (data_size < offsetofend(struct btf_ext_header, hdr_len)) { | 
|  | pr_debug("BTF.ext header too short\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | hdr_len = hdr->hdr_len; | 
|  | if (hdr->magic == bswap_16(BTF_MAGIC)) { | 
|  | swapped_endian = true; | 
|  | hdr_len = bswap_32(hdr_len); | 
|  | } else if (hdr->magic != BTF_MAGIC) { | 
|  | pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Ensure known version of structs, current BTF_VERSION == 1 */ | 
|  | if (hdr->version != 1) { | 
|  | pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (hdr->flags) { | 
|  | pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | if (data_size < hdr_len) { | 
|  | pr_debug("BTF.ext header not found\n"); | 
|  | return -EINVAL; | 
|  | } else if (data_size == hdr_len) { | 
|  | pr_debug("BTF.ext has no data\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Verify mandatory hdr info details present */ | 
|  | if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { | 
|  | pr_warn("BTF.ext header missing func_info, line_info\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Keep hdr native byte-order in memory for introspection */ | 
|  | if (swapped_endian) | 
|  | btf_ext_bswap_hdr(btf_ext->hdr); | 
|  |  | 
|  | /* Validate info subsections and cache key metadata */ | 
|  | err = btf_ext_parse_info(btf_ext, !swapped_endian); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Keep infos native byte-order in memory for introspection */ | 
|  | if (swapped_endian) | 
|  | btf_ext_bswap_info(btf_ext, btf_ext->data); | 
|  |  | 
|  | /* | 
|  | * Set btf_ext->swapped_endian only after all header and info data has | 
|  | * been swapped, helping bswap functions determine if their data are | 
|  | * in native byte-order when called. | 
|  | */ | 
|  | btf_ext->swapped_endian = swapped_endian; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btf_ext__free(struct btf_ext *btf_ext) | 
|  | { | 
|  | if (IS_ERR_OR_NULL(btf_ext)) | 
|  | return; | 
|  | free(btf_ext->func_info.sec_idxs); | 
|  | free(btf_ext->line_info.sec_idxs); | 
|  | free(btf_ext->core_relo_info.sec_idxs); | 
|  | free(btf_ext->data); | 
|  | free(btf_ext->data_swapped); | 
|  | free(btf_ext); | 
|  | } | 
|  |  | 
|  | struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) | 
|  | { | 
|  | struct btf_ext *btf_ext; | 
|  | int err; | 
|  |  | 
|  | btf_ext = calloc(1, sizeof(struct btf_ext)); | 
|  | if (!btf_ext) | 
|  | return libbpf_err_ptr(-ENOMEM); | 
|  |  | 
|  | btf_ext->data_size = size; | 
|  | btf_ext->data = malloc(size); | 
|  | if (!btf_ext->data) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | memcpy(btf_ext->data, data, size); | 
|  |  | 
|  | err = btf_ext_parse(btf_ext); | 
|  |  | 
|  | done: | 
|  | if (err) { | 
|  | btf_ext__free(btf_ext); | 
|  | return libbpf_err_ptr(err); | 
|  | } | 
|  |  | 
|  | return btf_ext; | 
|  | } | 
|  |  | 
|  | static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian) | 
|  | { | 
|  | struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro; | 
|  | const __u32 data_sz = btf_ext->data_size; | 
|  | void *data; | 
|  |  | 
|  | /* Return native data (always present) or swapped data if present */ | 
|  | if (!swap_endian) | 
|  | return btf_ext->data; | 
|  | else if (btf_ext->data_swapped) | 
|  | return btf_ext->data_swapped; | 
|  |  | 
|  | /* Recreate missing swapped data, then cache and return */ | 
|  | data = calloc(1, data_sz); | 
|  | if (!data) | 
|  | return NULL; | 
|  | memcpy(data, btf_ext->data, data_sz); | 
|  |  | 
|  | btf_ext_bswap_info(btf_ext, data); | 
|  | btf_ext_bswap_hdr(data); | 
|  | btf_ext->data_swapped = data; | 
|  | return data; | 
|  | } | 
|  |  | 
|  | const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size) | 
|  | { | 
|  | void *data; | 
|  |  | 
|  | data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian); | 
|  | if (!data) | 
|  | return errno = ENOMEM, NULL; | 
|  |  | 
|  | *size = btf_ext->data_size; | 
|  | return data; | 
|  | } | 
|  |  | 
|  | __attribute__((alias("btf_ext__raw_data"))) | 
|  | const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size); | 
|  |  | 
|  | enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext) | 
|  | { | 
|  | if (is_host_big_endian()) | 
|  | return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; | 
|  | else | 
|  | return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; | 
|  | } | 
|  |  | 
|  | int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian) | 
|  | { | 
|  | if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); | 
|  |  | 
|  | if (!btf_ext->swapped_endian) { | 
|  | free(btf_ext->data_swapped); | 
|  | btf_ext->data_swapped = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct btf_dedup; | 
|  |  | 
|  | static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); | 
|  | static void btf_dedup_free(struct btf_dedup *d); | 
|  | static int btf_dedup_prep(struct btf_dedup *d); | 
|  | static int btf_dedup_strings(struct btf_dedup *d); | 
|  | static int btf_dedup_prim_types(struct btf_dedup *d); | 
|  | static int btf_dedup_struct_types(struct btf_dedup *d); | 
|  | static int btf_dedup_ref_types(struct btf_dedup *d); | 
|  | static int btf_dedup_resolve_fwds(struct btf_dedup *d); | 
|  | static int btf_dedup_compact_types(struct btf_dedup *d); | 
|  | static int btf_dedup_remap_types(struct btf_dedup *d); | 
|  |  | 
|  | /* | 
|  | * Deduplicate BTF types and strings. | 
|  | * | 
|  | * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF | 
|  | * section with all BTF type descriptors and string data. It overwrites that | 
|  | * memory in-place with deduplicated types and strings without any loss of | 
|  | * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section | 
|  | * is provided, all the strings referenced from .BTF.ext section are honored | 
|  | * and updated to point to the right offsets after deduplication. | 
|  | * | 
|  | * If function returns with error, type/string data might be garbled and should | 
|  | * be discarded. | 
|  | * | 
|  | * More verbose and detailed description of both problem btf_dedup is solving, | 
|  | * as well as solution could be found at: | 
|  | * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html | 
|  | * | 
|  | * Problem description and justification | 
|  | * ===================================== | 
|  | * | 
|  | * BTF type information is typically emitted either as a result of conversion | 
|  | * from DWARF to BTF or directly by compiler. In both cases, each compilation | 
|  | * unit contains information about a subset of all the types that are used | 
|  | * in an application. These subsets are frequently overlapping and contain a lot | 
|  | * of duplicated information when later concatenated together into a single | 
|  | * binary. This algorithm ensures that each unique type is represented by single | 
|  | * BTF type descriptor, greatly reducing resulting size of BTF data. | 
|  | * | 
|  | * Compilation unit isolation and subsequent duplication of data is not the only | 
|  | * problem. The same type hierarchy (e.g., struct and all the type that struct | 
|  | * references) in different compilation units can be represented in BTF to | 
|  | * various degrees of completeness (or, rather, incompleteness) due to | 
|  | * struct/union forward declarations. | 
|  | * | 
|  | * Let's take a look at an example, that we'll use to better understand the | 
|  | * problem (and solution). Suppose we have two compilation units, each using | 
|  | * same `struct S`, but each of them having incomplete type information about | 
|  | * struct's fields: | 
|  | * | 
|  | * // CU #1: | 
|  | * struct S; | 
|  | * struct A { | 
|  | *	int a; | 
|  | *	struct A* self; | 
|  | *	struct S* parent; | 
|  | * }; | 
|  | * struct B; | 
|  | * struct S { | 
|  | *	struct A* a_ptr; | 
|  | *	struct B* b_ptr; | 
|  | * }; | 
|  | * | 
|  | * // CU #2: | 
|  | * struct S; | 
|  | * struct A; | 
|  | * struct B { | 
|  | *	int b; | 
|  | *	struct B* self; | 
|  | *	struct S* parent; | 
|  | * }; | 
|  | * struct S { | 
|  | *	struct A* a_ptr; | 
|  | *	struct B* b_ptr; | 
|  | * }; | 
|  | * | 
|  | * In case of CU #1, BTF data will know only that `struct B` exist (but no | 
|  | * more), but will know the complete type information about `struct A`. While | 
|  | * for CU #2, it will know full type information about `struct B`, but will | 
|  | * only know about forward declaration of `struct A` (in BTF terms, it will | 
|  | * have `BTF_KIND_FWD` type descriptor with name `B`). | 
|  | * | 
|  | * This compilation unit isolation means that it's possible that there is no | 
|  | * single CU with complete type information describing structs `S`, `A`, and | 
|  | * `B`. Also, we might get tons of duplicated and redundant type information. | 
|  | * | 
|  | * Additional complication we need to keep in mind comes from the fact that | 
|  | * types, in general, can form graphs containing cycles, not just DAGs. | 
|  | * | 
|  | * While algorithm does deduplication, it also merges and resolves type | 
|  | * information (unless disabled throught `struct btf_opts`), whenever possible. | 
|  | * E.g., in the example above with two compilation units having partial type | 
|  | * information for structs `A` and `B`, the output of algorithm will emit | 
|  | * a single copy of each BTF type that describes structs `A`, `B`, and `S` | 
|  | * (as well as type information for `int` and pointers), as if they were defined | 
|  | * in a single compilation unit as: | 
|  | * | 
|  | * struct A { | 
|  | *	int a; | 
|  | *	struct A* self; | 
|  | *	struct S* parent; | 
|  | * }; | 
|  | * struct B { | 
|  | *	int b; | 
|  | *	struct B* self; | 
|  | *	struct S* parent; | 
|  | * }; | 
|  | * struct S { | 
|  | *	struct A* a_ptr; | 
|  | *	struct B* b_ptr; | 
|  | * }; | 
|  | * | 
|  | * Algorithm summary | 
|  | * ================= | 
|  | * | 
|  | * Algorithm completes its work in 7 separate passes: | 
|  | * | 
|  | * 1. Strings deduplication. | 
|  | * 2. Primitive types deduplication (int, enum, fwd). | 
|  | * 3. Struct/union types deduplication. | 
|  | * 4. Resolve unambiguous forward declarations. | 
|  | * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func | 
|  | *    protos, and const/volatile/restrict modifiers). | 
|  | * 6. Types compaction. | 
|  | * 7. Types remapping. | 
|  | * | 
|  | * Algorithm determines canonical type descriptor, which is a single | 
|  | * representative type for each truly unique type. This canonical type is the | 
|  | * one that will go into final deduplicated BTF type information. For | 
|  | * struct/unions, it is also the type that algorithm will merge additional type | 
|  | * information into (while resolving FWDs), as it discovers it from data in | 
|  | * other CUs. Each input BTF type eventually gets either mapped to itself, if | 
|  | * that type is canonical, or to some other type, if that type is equivalent | 
|  | * and was chosen as canonical representative. This mapping is stored in | 
|  | * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that | 
|  | * FWD type got resolved to. | 
|  | * | 
|  | * To facilitate fast discovery of canonical types, we also maintain canonical | 
|  | * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash | 
|  | * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types | 
|  | * that match that signature. With sufficiently good choice of type signature | 
|  | * hashing function, we can limit number of canonical types for each unique type | 
|  | * signature to a very small number, allowing to find canonical type for any | 
|  | * duplicated type very quickly. | 
|  | * | 
|  | * Struct/union deduplication is the most critical part and algorithm for | 
|  | * deduplicating structs/unions is described in greater details in comments for | 
|  | * `btf_dedup_is_equiv` function. | 
|  | */ | 
|  | int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) | 
|  | { | 
|  | struct btf_dedup *d; | 
|  | int err; | 
|  |  | 
|  | if (!OPTS_VALID(opts, btf_dedup_opts)) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | d = btf_dedup_new(btf, opts); | 
|  | if (IS_ERR(d)) { | 
|  | pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d)); | 
|  | return libbpf_err(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (btf_ensure_modifiable(btf)) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | err = btf_dedup_prep(d); | 
|  | if (err) { | 
|  | pr_debug("btf_dedup_prep failed: %s\n", errstr(err)); | 
|  | goto done; | 
|  | } | 
|  | err = btf_dedup_strings(d); | 
|  | if (err < 0) { | 
|  | pr_debug("btf_dedup_strings failed: %s\n", errstr(err)); | 
|  | goto done; | 
|  | } | 
|  | err = btf_dedup_prim_types(d); | 
|  | if (err < 0) { | 
|  | pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err)); | 
|  | goto done; | 
|  | } | 
|  | err = btf_dedup_struct_types(d); | 
|  | if (err < 0) { | 
|  | pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err)); | 
|  | goto done; | 
|  | } | 
|  | err = btf_dedup_resolve_fwds(d); | 
|  | if (err < 0) { | 
|  | pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err)); | 
|  | goto done; | 
|  | } | 
|  | err = btf_dedup_ref_types(d); | 
|  | if (err < 0) { | 
|  | pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err)); | 
|  | goto done; | 
|  | } | 
|  | err = btf_dedup_compact_types(d); | 
|  | if (err < 0) { | 
|  | pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err)); | 
|  | goto done; | 
|  | } | 
|  | err = btf_dedup_remap_types(d); | 
|  | if (err < 0) { | 
|  | pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err)); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | done: | 
|  | btf_dedup_free(d); | 
|  | return libbpf_err(err); | 
|  | } | 
|  |  | 
|  | #define BTF_UNPROCESSED_ID ((__u32)-1) | 
|  | #define BTF_IN_PROGRESS_ID ((__u32)-2) | 
|  |  | 
|  | struct btf_dedup { | 
|  | /* .BTF section to be deduped in-place */ | 
|  | struct btf *btf; | 
|  | /* | 
|  | * Optional .BTF.ext section. When provided, any strings referenced | 
|  | * from it will be taken into account when deduping strings | 
|  | */ | 
|  | struct btf_ext *btf_ext; | 
|  | /* | 
|  | * This is a map from any type's signature hash to a list of possible | 
|  | * canonical representative type candidates. Hash collisions are | 
|  | * ignored, so even types of various kinds can share same list of | 
|  | * candidates, which is fine because we rely on subsequent | 
|  | * btf_xxx_equal() checks to authoritatively verify type equality. | 
|  | */ | 
|  | struct hashmap *dedup_table; | 
|  | /* Canonical types map */ | 
|  | __u32 *map; | 
|  | /* Hypothetical mapping, used during type graph equivalence checks */ | 
|  | __u32 *hypot_map; | 
|  | __u32 *hypot_list; | 
|  | size_t hypot_cnt; | 
|  | size_t hypot_cap; | 
|  | /* Whether hypothetical mapping, if successful, would need to adjust | 
|  | * already canonicalized types (due to a new forward declaration to | 
|  | * concrete type resolution). In such case, during split BTF dedup | 
|  | * candidate type would still be considered as different, because base | 
|  | * BTF is considered to be immutable. | 
|  | */ | 
|  | bool hypot_adjust_canon; | 
|  | /* Various option modifying behavior of algorithm */ | 
|  | struct btf_dedup_opts opts; | 
|  | /* temporary strings deduplication state */ | 
|  | struct strset *strs_set; | 
|  | }; | 
|  |  | 
|  | static long hash_combine(long h, long value) | 
|  | { | 
|  | return h * 31 + value; | 
|  | } | 
|  |  | 
|  | #define for_each_dedup_cand(d, node, hash) \ | 
|  | hashmap__for_each_key_entry(d->dedup_table, node, hash) | 
|  |  | 
|  | static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) | 
|  | { | 
|  | return hashmap__append(d->dedup_table, hash, type_id); | 
|  | } | 
|  |  | 
|  | static int btf_dedup_hypot_map_add(struct btf_dedup *d, | 
|  | __u32 from_id, __u32 to_id) | 
|  | { | 
|  | if (d->hypot_cnt == d->hypot_cap) { | 
|  | __u32 *new_list; | 
|  |  | 
|  | d->hypot_cap += max((size_t)16, d->hypot_cap / 2); | 
|  | new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); | 
|  | if (!new_list) | 
|  | return -ENOMEM; | 
|  | d->hypot_list = new_list; | 
|  | } | 
|  | d->hypot_list[d->hypot_cnt++] = from_id; | 
|  | d->hypot_map[from_id] = to_id; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btf_dedup_clear_hypot_map(struct btf_dedup *d) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < d->hypot_cnt; i++) | 
|  | d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; | 
|  | d->hypot_cnt = 0; | 
|  | d->hypot_adjust_canon = false; | 
|  | } | 
|  |  | 
|  | static void btf_dedup_free(struct btf_dedup *d) | 
|  | { | 
|  | hashmap__free(d->dedup_table); | 
|  | d->dedup_table = NULL; | 
|  |  | 
|  | free(d->map); | 
|  | d->map = NULL; | 
|  |  | 
|  | free(d->hypot_map); | 
|  | d->hypot_map = NULL; | 
|  |  | 
|  | free(d->hypot_list); | 
|  | d->hypot_list = NULL; | 
|  |  | 
|  | free(d); | 
|  | } | 
|  |  | 
|  | static size_t btf_dedup_identity_hash_fn(long key, void *ctx) | 
|  | { | 
|  | return key; | 
|  | } | 
|  |  | 
|  | static size_t btf_dedup_collision_hash_fn(long key, void *ctx) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) | 
|  | { | 
|  | return k1 == k2; | 
|  | } | 
|  |  | 
|  | static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) | 
|  | { | 
|  | struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); | 
|  | hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; | 
|  | int i, err = 0, type_cnt; | 
|  |  | 
|  | if (!d) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (OPTS_GET(opts, force_collisions, false)) | 
|  | hash_fn = btf_dedup_collision_hash_fn; | 
|  |  | 
|  | d->btf = btf; | 
|  | d->btf_ext = OPTS_GET(opts, btf_ext, NULL); | 
|  |  | 
|  | d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); | 
|  | if (IS_ERR(d->dedup_table)) { | 
|  | err = PTR_ERR(d->dedup_table); | 
|  | d->dedup_table = NULL; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | type_cnt = btf__type_cnt(btf); | 
|  | d->map = malloc(sizeof(__u32) * type_cnt); | 
|  | if (!d->map) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | /* special BTF "void" type is made canonical immediately */ | 
|  | d->map[0] = 0; | 
|  | for (i = 1; i < type_cnt; i++) { | 
|  | struct btf_type *t = btf_type_by_id(d->btf, i); | 
|  |  | 
|  | /* VAR and DATASEC are never deduped and are self-canonical */ | 
|  | if (btf_is_var(t) || btf_is_datasec(t)) | 
|  | d->map[i] = i; | 
|  | else | 
|  | d->map[i] = BTF_UNPROCESSED_ID; | 
|  | } | 
|  |  | 
|  | d->hypot_map = malloc(sizeof(__u32) * type_cnt); | 
|  | if (!d->hypot_map) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | for (i = 0; i < type_cnt; i++) | 
|  | d->hypot_map[i] = BTF_UNPROCESSED_ID; | 
|  |  | 
|  | done: | 
|  | if (err) { | 
|  | btf_dedup_free(d); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | return d; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate over all possible places in .BTF and .BTF.ext that can reference | 
|  | * string and pass pointer to it to a provided callback `fn`. | 
|  | */ | 
|  | static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) | 
|  | { | 
|  | int i, r; | 
|  |  | 
|  | for (i = 0; i < d->btf->nr_types; i++) { | 
|  | struct btf_field_iter it; | 
|  | struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); | 
|  | __u32 *str_off; | 
|  |  | 
|  | r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | while ((str_off = btf_field_iter_next(&it))) { | 
|  | r = fn(str_off, ctx); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!d->btf_ext) | 
|  | return 0; | 
|  |  | 
|  | r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) | 
|  | { | 
|  | struct btf_dedup *d = ctx; | 
|  | __u32 str_off = *str_off_ptr; | 
|  | const char *s; | 
|  | int off, err; | 
|  |  | 
|  | /* don't touch empty string or string in main BTF */ | 
|  | if (str_off == 0 || str_off < d->btf->start_str_off) | 
|  | return 0; | 
|  |  | 
|  | s = btf__str_by_offset(d->btf, str_off); | 
|  | if (d->btf->base_btf) { | 
|  | err = btf__find_str(d->btf->base_btf, s); | 
|  | if (err >= 0) { | 
|  | *str_off_ptr = err; | 
|  | return 0; | 
|  | } | 
|  | if (err != -ENOENT) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | off = strset__add_str(d->strs_set, s); | 
|  | if (off < 0) | 
|  | return off; | 
|  |  | 
|  | *str_off_ptr = d->btf->start_str_off + off; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dedup string and filter out those that are not referenced from either .BTF | 
|  | * or .BTF.ext (if provided) sections. | 
|  | * | 
|  | * This is done by building index of all strings in BTF's string section, | 
|  | * then iterating over all entities that can reference strings (e.g., type | 
|  | * names, struct field names, .BTF.ext line info, etc) and marking corresponding | 
|  | * strings as used. After that all used strings are deduped and compacted into | 
|  | * sequential blob of memory and new offsets are calculated. Then all the string | 
|  | * references are iterated again and rewritten using new offsets. | 
|  | */ | 
|  | static int btf_dedup_strings(struct btf_dedup *d) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (d->btf->strs_deduped) | 
|  | return 0; | 
|  |  | 
|  | d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); | 
|  | if (IS_ERR(d->strs_set)) { | 
|  | err = PTR_ERR(d->strs_set); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | if (!d->btf->base_btf) { | 
|  | /* insert empty string; we won't be looking it up during strings | 
|  | * dedup, but it's good to have it for generic BTF string lookups | 
|  | */ | 
|  | err = strset__add_str(d->strs_set, ""); | 
|  | if (err < 0) | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* remap string offsets */ | 
|  | err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); | 
|  | if (err) | 
|  | goto err_out; | 
|  |  | 
|  | /* replace BTF string data and hash with deduped ones */ | 
|  | strset__free(d->btf->strs_set); | 
|  | d->btf->hdr->str_len = strset__data_size(d->strs_set); | 
|  | d->btf->strs_set = d->strs_set; | 
|  | d->strs_set = NULL; | 
|  | d->btf->strs_deduped = true; | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | strset__free(d->strs_set); | 
|  | d->strs_set = NULL; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static long btf_hash_common(struct btf_type *t) | 
|  | { | 
|  | long h; | 
|  |  | 
|  | h = hash_combine(0, t->name_off); | 
|  | h = hash_combine(h, t->info); | 
|  | h = hash_combine(h, t->size); | 
|  | return h; | 
|  | } | 
|  |  | 
|  | static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | return t1->name_off == t2->name_off && | 
|  | t1->info == t2->info && | 
|  | t1->size == t2->size; | 
|  | } | 
|  |  | 
|  | /* Calculate type signature hash of INT or TAG. */ | 
|  | static long btf_hash_int_decl_tag(struct btf_type *t) | 
|  | { | 
|  | __u32 info = *(__u32 *)(t + 1); | 
|  | long h; | 
|  |  | 
|  | h = btf_hash_common(t); | 
|  | h = hash_combine(h, info); | 
|  | return h; | 
|  | } | 
|  |  | 
|  | /* Check structural equality of two INTs or TAGs. */ | 
|  | static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | __u32 info1, info2; | 
|  |  | 
|  | if (!btf_equal_common(t1, t2)) | 
|  | return false; | 
|  | info1 = *(__u32 *)(t1 + 1); | 
|  | info2 = *(__u32 *)(t2 + 1); | 
|  | return info1 == info2; | 
|  | } | 
|  |  | 
|  | /* Calculate type signature hash of ENUM/ENUM64. */ | 
|  | static long btf_hash_enum(struct btf_type *t) | 
|  | { | 
|  | long h; | 
|  |  | 
|  | /* don't hash vlen, enum members and size to support enum fwd resolving */ | 
|  | h = hash_combine(0, t->name_off); | 
|  | return h; | 
|  | } | 
|  |  | 
|  | static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | const struct btf_enum *m1, *m2; | 
|  | __u16 vlen; | 
|  | int i; | 
|  |  | 
|  | vlen = btf_vlen(t1); | 
|  | m1 = btf_enum(t1); | 
|  | m2 = btf_enum(t2); | 
|  | for (i = 0; i < vlen; i++) { | 
|  | if (m1->name_off != m2->name_off || m1->val != m2->val) | 
|  | return false; | 
|  | m1++; | 
|  | m2++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | const struct btf_enum64 *m1, *m2; | 
|  | __u16 vlen; | 
|  | int i; | 
|  |  | 
|  | vlen = btf_vlen(t1); | 
|  | m1 = btf_enum64(t1); | 
|  | m2 = btf_enum64(t2); | 
|  | for (i = 0; i < vlen; i++) { | 
|  | if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || | 
|  | m1->val_hi32 != m2->val_hi32) | 
|  | return false; | 
|  | m1++; | 
|  | m2++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Check structural equality of two ENUMs or ENUM64s. */ | 
|  | static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | if (!btf_equal_common(t1, t2)) | 
|  | return false; | 
|  |  | 
|  | /* t1 & t2 kinds are identical because of btf_equal_common */ | 
|  | if (btf_kind(t1) == BTF_KIND_ENUM) | 
|  | return btf_equal_enum_members(t1, t2); | 
|  | else | 
|  | return btf_equal_enum64_members(t1, t2); | 
|  | } | 
|  |  | 
|  | static inline bool btf_is_enum_fwd(struct btf_type *t) | 
|  | { | 
|  | return btf_is_any_enum(t) && btf_vlen(t) == 0; | 
|  | } | 
|  |  | 
|  | static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) | 
|  | return btf_equal_enum(t1, t2); | 
|  | /* At this point either t1 or t2 or both are forward declarations, thus: | 
|  | * - skip comparing vlen because it is zero for forward declarations; | 
|  | * - skip comparing size to allow enum forward declarations | 
|  | *   to be compatible with enum64 full declarations; | 
|  | * - skip comparing kind for the same reason. | 
|  | */ | 
|  | return t1->name_off == t2->name_off && | 
|  | btf_is_any_enum(t1) && btf_is_any_enum(t2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, | 
|  | * as referenced type IDs equivalence is established separately during type | 
|  | * graph equivalence check algorithm. | 
|  | */ | 
|  | static long btf_hash_struct(struct btf_type *t) | 
|  | { | 
|  | const struct btf_member *member = btf_members(t); | 
|  | __u32 vlen = btf_vlen(t); | 
|  | long h = btf_hash_common(t); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < vlen; i++) { | 
|  | h = hash_combine(h, member->name_off); | 
|  | h = hash_combine(h, member->offset); | 
|  | /* no hashing of referenced type ID, it can be unresolved yet */ | 
|  | member++; | 
|  | } | 
|  | return h; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced | 
|  | * type IDs. This check is performed during type graph equivalence check and | 
|  | * referenced types equivalence is checked separately. | 
|  | */ | 
|  | static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | const struct btf_member *m1, *m2; | 
|  | __u16 vlen; | 
|  | int i; | 
|  |  | 
|  | if (!btf_equal_common(t1, t2)) | 
|  | return false; | 
|  |  | 
|  | vlen = btf_vlen(t1); | 
|  | m1 = btf_members(t1); | 
|  | m2 = btf_members(t2); | 
|  | for (i = 0; i < vlen; i++) { | 
|  | if (m1->name_off != m2->name_off || m1->offset != m2->offset) | 
|  | return false; | 
|  | m1++; | 
|  | m2++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate type signature hash of ARRAY, including referenced type IDs, | 
|  | * under assumption that they were already resolved to canonical type IDs and | 
|  | * are not going to change. | 
|  | */ | 
|  | static long btf_hash_array(struct btf_type *t) | 
|  | { | 
|  | const struct btf_array *info = btf_array(t); | 
|  | long h = btf_hash_common(t); | 
|  |  | 
|  | h = hash_combine(h, info->type); | 
|  | h = hash_combine(h, info->index_type); | 
|  | h = hash_combine(h, info->nelems); | 
|  | return h; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check exact equality of two ARRAYs, taking into account referenced | 
|  | * type IDs, under assumption that they were already resolved to canonical | 
|  | * type IDs and are not going to change. | 
|  | * This function is called during reference types deduplication to compare | 
|  | * ARRAY to potential canonical representative. | 
|  | */ | 
|  | static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | const struct btf_array *info1, *info2; | 
|  |  | 
|  | if (!btf_equal_common(t1, t2)) | 
|  | return false; | 
|  |  | 
|  | info1 = btf_array(t1); | 
|  | info2 = btf_array(t2); | 
|  | return info1->type == info2->type && | 
|  | info1->index_type == info2->index_type && | 
|  | info1->nelems == info2->nelems; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check structural compatibility of two ARRAYs, ignoring referenced type | 
|  | * IDs. This check is performed during type graph equivalence check and | 
|  | * referenced types equivalence is checked separately. | 
|  | */ | 
|  | static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | if (!btf_equal_common(t1, t2)) | 
|  | return false; | 
|  |  | 
|  | return btf_array(t1)->nelems == btf_array(t2)->nelems; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, | 
|  | * under assumption that they were already resolved to canonical type IDs and | 
|  | * are not going to change. | 
|  | */ | 
|  | static long btf_hash_fnproto(struct btf_type *t) | 
|  | { | 
|  | const struct btf_param *member = btf_params(t); | 
|  | __u16 vlen = btf_vlen(t); | 
|  | long h = btf_hash_common(t); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < vlen; i++) { | 
|  | h = hash_combine(h, member->name_off); | 
|  | h = hash_combine(h, member->type); | 
|  | member++; | 
|  | } | 
|  | return h; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check exact equality of two FUNC_PROTOs, taking into account referenced | 
|  | * type IDs, under assumption that they were already resolved to canonical | 
|  | * type IDs and are not going to change. | 
|  | * This function is called during reference types deduplication to compare | 
|  | * FUNC_PROTO to potential canonical representative. | 
|  | */ | 
|  | static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | const struct btf_param *m1, *m2; | 
|  | __u16 vlen; | 
|  | int i; | 
|  |  | 
|  | if (!btf_equal_common(t1, t2)) | 
|  | return false; | 
|  |  | 
|  | vlen = btf_vlen(t1); | 
|  | m1 = btf_params(t1); | 
|  | m2 = btf_params(t2); | 
|  | for (i = 0; i < vlen; i++) { | 
|  | if (m1->name_off != m2->name_off || m1->type != m2->type) | 
|  | return false; | 
|  | m1++; | 
|  | m2++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type | 
|  | * IDs. This check is performed during type graph equivalence check and | 
|  | * referenced types equivalence is checked separately. | 
|  | */ | 
|  | static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) | 
|  | { | 
|  | const struct btf_param *m1, *m2; | 
|  | __u16 vlen; | 
|  | int i; | 
|  |  | 
|  | /* skip return type ID */ | 
|  | if (t1->name_off != t2->name_off || t1->info != t2->info) | 
|  | return false; | 
|  |  | 
|  | vlen = btf_vlen(t1); | 
|  | m1 = btf_params(t1); | 
|  | m2 = btf_params(t2); | 
|  | for (i = 0; i < vlen; i++) { | 
|  | if (m1->name_off != m2->name_off) | 
|  | return false; | 
|  | m1++; | 
|  | m2++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Prepare split BTF for deduplication by calculating hashes of base BTF's | 
|  | * types and initializing the rest of the state (canonical type mapping) for | 
|  | * the fixed base BTF part. | 
|  | */ | 
|  | static int btf_dedup_prep(struct btf_dedup *d) | 
|  | { | 
|  | struct btf_type *t; | 
|  | int type_id; | 
|  | long h; | 
|  |  | 
|  | if (!d->btf->base_btf) | 
|  | return 0; | 
|  |  | 
|  | for (type_id = 1; type_id < d->btf->start_id; type_id++) { | 
|  | t = btf_type_by_id(d->btf, type_id); | 
|  |  | 
|  | /* all base BTF types are self-canonical by definition */ | 
|  | d->map[type_id] = type_id; | 
|  |  | 
|  | switch (btf_kind(t)) { | 
|  | case BTF_KIND_VAR: | 
|  | case BTF_KIND_DATASEC: | 
|  | /* VAR and DATASEC are never hash/deduplicated */ | 
|  | continue; | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_FWD: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_FUNC: | 
|  | case BTF_KIND_FLOAT: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | h = btf_hash_common(t); | 
|  | break; | 
|  | case BTF_KIND_INT: | 
|  | case BTF_KIND_DECL_TAG: | 
|  | h = btf_hash_int_decl_tag(t); | 
|  | break; | 
|  | case BTF_KIND_ENUM: | 
|  | case BTF_KIND_ENUM64: | 
|  | h = btf_hash_enum(t); | 
|  | break; | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | h = btf_hash_struct(t); | 
|  | break; | 
|  | case BTF_KIND_ARRAY: | 
|  | h = btf_hash_array(t); | 
|  | break; | 
|  | case BTF_KIND_FUNC_PROTO: | 
|  | h = btf_hash_fnproto(t); | 
|  | break; | 
|  | default: | 
|  | pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (btf_dedup_table_add(d, h, type_id)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deduplicate primitive types, that can't reference other types, by calculating | 
|  | * their type signature hash and comparing them with any possible canonical | 
|  | * candidate. If no canonical candidate matches, type itself is marked as | 
|  | * canonical and is added into `btf_dedup->dedup_table` as another candidate. | 
|  | */ | 
|  | static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) | 
|  | { | 
|  | struct btf_type *t = btf_type_by_id(d->btf, type_id); | 
|  | struct hashmap_entry *hash_entry; | 
|  | struct btf_type *cand; | 
|  | /* if we don't find equivalent type, then we are canonical */ | 
|  | __u32 new_id = type_id; | 
|  | __u32 cand_id; | 
|  | long h; | 
|  |  | 
|  | switch (btf_kind(t)) { | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_ARRAY: | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | case BTF_KIND_FUNC: | 
|  | case BTF_KIND_FUNC_PROTO: | 
|  | case BTF_KIND_VAR: | 
|  | case BTF_KIND_DATASEC: | 
|  | case BTF_KIND_DECL_TAG: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | return 0; | 
|  |  | 
|  | case BTF_KIND_INT: | 
|  | h = btf_hash_int_decl_tag(t); | 
|  | for_each_dedup_cand(d, hash_entry, h) { | 
|  | cand_id = hash_entry->value; | 
|  | cand = btf_type_by_id(d->btf, cand_id); | 
|  | if (btf_equal_int_tag(t, cand)) { | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case BTF_KIND_ENUM: | 
|  | case BTF_KIND_ENUM64: | 
|  | h = btf_hash_enum(t); | 
|  | for_each_dedup_cand(d, hash_entry, h) { | 
|  | cand_id = hash_entry->value; | 
|  | cand = btf_type_by_id(d->btf, cand_id); | 
|  | if (btf_equal_enum(t, cand)) { | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  | if (btf_compat_enum(t, cand)) { | 
|  | if (btf_is_enum_fwd(t)) { | 
|  | /* resolve fwd to full enum */ | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  | /* resolve canonical enum fwd to full enum */ | 
|  | d->map[cand_id] = type_id; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case BTF_KIND_FWD: | 
|  | case BTF_KIND_FLOAT: | 
|  | h = btf_hash_common(t); | 
|  | for_each_dedup_cand(d, hash_entry, h) { | 
|  | cand_id = hash_entry->value; | 
|  | cand = btf_type_by_id(d->btf, cand_id); | 
|  | if (btf_equal_common(t, cand)) { | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | d->map[type_id] = new_id; | 
|  | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_dedup_prim_types(struct btf_dedup *d) | 
|  | { | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < d->btf->nr_types; i++) { | 
|  | err = btf_dedup_prim_type(d, d->btf->start_id + i); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether type is already mapped into canonical one (could be to itself). | 
|  | */ | 
|  | static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) | 
|  | { | 
|  | return d->map[type_id] <= BTF_MAX_NR_TYPES; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resolve type ID into its canonical type ID, if any; otherwise return original | 
|  | * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow | 
|  | * STRUCT/UNION link and resolve it into canonical type ID as well. | 
|  | */ | 
|  | static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) | 
|  | { | 
|  | while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) | 
|  | type_id = d->map[type_id]; | 
|  | return type_id; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original | 
|  | * type ID. | 
|  | */ | 
|  | static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) | 
|  | { | 
|  | __u32 orig_type_id = type_id; | 
|  |  | 
|  | if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) | 
|  | return type_id; | 
|  |  | 
|  | while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) | 
|  | type_id = d->map[type_id]; | 
|  |  | 
|  | if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) | 
|  | return type_id; | 
|  |  | 
|  | return orig_type_id; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline __u16 btf_fwd_kind(struct btf_type *t) | 
|  | { | 
|  | return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; | 
|  | } | 
|  |  | 
|  | /* Check if given two types are identical ARRAY definitions */ | 
|  | static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) | 
|  | { | 
|  | struct btf_type *t1, *t2; | 
|  |  | 
|  | t1 = btf_type_by_id(d->btf, id1); | 
|  | t2 = btf_type_by_id(d->btf, id2); | 
|  | if (!btf_is_array(t1) || !btf_is_array(t2)) | 
|  | return false; | 
|  |  | 
|  | return btf_equal_array(t1, t2); | 
|  | } | 
|  |  | 
|  | /* Check if given two types are identical STRUCT/UNION definitions */ | 
|  | static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) | 
|  | { | 
|  | const struct btf_member *m1, *m2; | 
|  | struct btf_type *t1, *t2; | 
|  | int n, i; | 
|  |  | 
|  | t1 = btf_type_by_id(d->btf, id1); | 
|  | t2 = btf_type_by_id(d->btf, id2); | 
|  |  | 
|  | if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) | 
|  | return false; | 
|  |  | 
|  | if (!btf_shallow_equal_struct(t1, t2)) | 
|  | return false; | 
|  |  | 
|  | m1 = btf_members(t1); | 
|  | m2 = btf_members(t2); | 
|  | for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { | 
|  | if (m1->type != m2->type && | 
|  | !btf_dedup_identical_arrays(d, m1->type, m2->type) && | 
|  | !btf_dedup_identical_structs(d, m1->type, m2->type)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check equivalence of BTF type graph formed by candidate struct/union (we'll | 
|  | * call it "candidate graph" in this description for brevity) to a type graph | 
|  | * formed by (potential) canonical struct/union ("canonical graph" for brevity | 
|  | * here, though keep in mind that not all types in canonical graph are | 
|  | * necessarily canonical representatives themselves, some of them might be | 
|  | * duplicates or its uniqueness might not have been established yet). | 
|  | * Returns: | 
|  | *  - >0, if type graphs are equivalent; | 
|  | *  -  0, if not equivalent; | 
|  | *  - <0, on error. | 
|  | * | 
|  | * Algorithm performs side-by-side DFS traversal of both type graphs and checks | 
|  | * equivalence of BTF types at each step. If at any point BTF types in candidate | 
|  | * and canonical graphs are not compatible structurally, whole graphs are | 
|  | * incompatible. If types are structurally equivalent (i.e., all information | 
|  | * except referenced type IDs is exactly the same), a mapping from `canon_id` to | 
|  | * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`). | 
|  | * If a type references other types, then those referenced types are checked | 
|  | * for equivalence recursively. | 
|  | * | 
|  | * During DFS traversal, if we find that for current `canon_id` type we | 
|  | * already have some mapping in hypothetical map, we check for two possible | 
|  | * situations: | 
|  | *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will | 
|  | *     happen when type graphs have cycles. In this case we assume those two | 
|  | *     types are equivalent. | 
|  | *   - `canon_id` is mapped to different type. This is contradiction in our | 
|  | *     hypothetical mapping, because same graph in canonical graph corresponds | 
|  | *     to two different types in candidate graph, which for equivalent type | 
|  | *     graphs shouldn't happen. This condition terminates equivalence check | 
|  | *     with negative result. | 
|  | * | 
|  | * If type graphs traversal exhausts types to check and find no contradiction, | 
|  | * then type graphs are equivalent. | 
|  | * | 
|  | * When checking types for equivalence, there is one special case: FWD types. | 
|  | * If FWD type resolution is allowed and one of the types (either from canonical | 
|  | * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind | 
|  | * flag) and their names match, hypothetical mapping is updated to point from | 
|  | * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, | 
|  | * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. | 
|  | * | 
|  | * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, | 
|  | * if there are two exactly named (or anonymous) structs/unions that are | 
|  | * compatible structurally, one of which has FWD field, while other is concrete | 
|  | * STRUCT/UNION, but according to C sources they are different structs/unions | 
|  | * that are referencing different types with the same name. This is extremely | 
|  | * unlikely to happen, but btf_dedup API allows to disable FWD resolution if | 
|  | * this logic is causing problems. | 
|  | * | 
|  | * Doing FWD resolution means that both candidate and/or canonical graphs can | 
|  | * consists of portions of the graph that come from multiple compilation units. | 
|  | * This is due to the fact that types within single compilation unit are always | 
|  | * deduplicated and FWDs are already resolved, if referenced struct/union | 
|  | * definition is available. So, if we had unresolved FWD and found corresponding | 
|  | * STRUCT/UNION, they will be from different compilation units. This | 
|  | * consequently means that when we "link" FWD to corresponding STRUCT/UNION, | 
|  | * type graph will likely have at least two different BTF types that describe | 
|  | * same type (e.g., most probably there will be two different BTF types for the | 
|  | * same 'int' primitive type) and could even have "overlapping" parts of type | 
|  | * graph that describe same subset of types. | 
|  | * | 
|  | * This in turn means that our assumption that each type in canonical graph | 
|  | * must correspond to exactly one type in candidate graph might not hold | 
|  | * anymore and will make it harder to detect contradictions using hypothetical | 
|  | * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION | 
|  | * resolution only in canonical graph. FWDs in candidate graphs are never | 
|  | * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs | 
|  | * that can occur: | 
|  | *   - Both types in canonical and candidate graphs are FWDs. If they are | 
|  | *     structurally equivalent, then they can either be both resolved to the | 
|  | *     same STRUCT/UNION or not resolved at all. In both cases they are | 
|  | *     equivalent and there is no need to resolve FWD on candidate side. | 
|  | *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION, | 
|  | *     so nothing to resolve as well, algorithm will check equivalence anyway. | 
|  | *   - Type in canonical graph is FWD, while type in candidate is concrete | 
|  | *     STRUCT/UNION. In this case candidate graph comes from single compilation | 
|  | *     unit, so there is exactly one BTF type for each unique C type. After | 
|  | *     resolving FWD into STRUCT/UNION, there might be more than one BTF type | 
|  | *     in canonical graph mapping to single BTF type in candidate graph, but | 
|  | *     because hypothetical mapping maps from canonical to candidate types, it's | 
|  | *     alright, and we still maintain the property of having single `canon_id` | 
|  | *     mapping to single `cand_id` (there could be two different `canon_id` | 
|  | *     mapped to the same `cand_id`, but it's not contradictory). | 
|  | *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate | 
|  | *     graph is FWD. In this case we are just going to check compatibility of | 
|  | *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll | 
|  | *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to | 
|  | *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs | 
|  | *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from | 
|  | *     canonical graph. | 
|  | */ | 
|  | static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, | 
|  | __u32 canon_id) | 
|  | { | 
|  | struct btf_type *cand_type; | 
|  | struct btf_type *canon_type; | 
|  | __u32 hypot_type_id; | 
|  | __u16 cand_kind; | 
|  | __u16 canon_kind; | 
|  | int i, eq; | 
|  |  | 
|  | /* if both resolve to the same canonical, they must be equivalent */ | 
|  | if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) | 
|  | return 1; | 
|  |  | 
|  | canon_id = resolve_fwd_id(d, canon_id); | 
|  |  | 
|  | hypot_type_id = d->hypot_map[canon_id]; | 
|  | if (hypot_type_id <= BTF_MAX_NR_TYPES) { | 
|  | if (hypot_type_id == cand_id) | 
|  | return 1; | 
|  | /* In some cases compiler will generate different DWARF types | 
|  | * for *identical* array type definitions and use them for | 
|  | * different fields within the *same* struct. This breaks type | 
|  | * equivalence check, which makes an assumption that candidate | 
|  | * types sub-graph has a consistent and deduped-by-compiler | 
|  | * types within a single CU. So work around that by explicitly | 
|  | * allowing identical array types here. | 
|  | */ | 
|  | if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) | 
|  | return 1; | 
|  | /* It turns out that similar situation can happen with | 
|  | * struct/union sometimes, sigh... Handle the case where | 
|  | * structs/unions are exactly the same, down to the referenced | 
|  | * type IDs. Anything more complicated (e.g., if referenced | 
|  | * types are different, but equivalent) is *way more* | 
|  | * complicated and requires a many-to-many equivalence mapping. | 
|  | */ | 
|  | if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cand_type = btf_type_by_id(d->btf, cand_id); | 
|  | canon_type = btf_type_by_id(d->btf, canon_id); | 
|  | cand_kind = btf_kind(cand_type); | 
|  | canon_kind = btf_kind(canon_type); | 
|  |  | 
|  | if (cand_type->name_off != canon_type->name_off) | 
|  | return 0; | 
|  |  | 
|  | /* FWD <--> STRUCT/UNION equivalence check, if enabled */ | 
|  | if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) | 
|  | && cand_kind != canon_kind) { | 
|  | __u16 real_kind; | 
|  | __u16 fwd_kind; | 
|  |  | 
|  | if (cand_kind == BTF_KIND_FWD) { | 
|  | real_kind = canon_kind; | 
|  | fwd_kind = btf_fwd_kind(cand_type); | 
|  | } else { | 
|  | real_kind = cand_kind; | 
|  | fwd_kind = btf_fwd_kind(canon_type); | 
|  | /* we'd need to resolve base FWD to STRUCT/UNION */ | 
|  | if (fwd_kind == real_kind && canon_id < d->btf->start_id) | 
|  | d->hypot_adjust_canon = true; | 
|  | } | 
|  | return fwd_kind == real_kind; | 
|  | } | 
|  |  | 
|  | if (cand_kind != canon_kind) | 
|  | return 0; | 
|  |  | 
|  | switch (cand_kind) { | 
|  | case BTF_KIND_INT: | 
|  | return btf_equal_int_tag(cand_type, canon_type); | 
|  |  | 
|  | case BTF_KIND_ENUM: | 
|  | case BTF_KIND_ENUM64: | 
|  | return btf_compat_enum(cand_type, canon_type); | 
|  |  | 
|  | case BTF_KIND_FWD: | 
|  | case BTF_KIND_FLOAT: | 
|  | return btf_equal_common(cand_type, canon_type); | 
|  |  | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_FUNC: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | if (cand_type->info != canon_type->info) | 
|  | return 0; | 
|  | return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); | 
|  |  | 
|  | case BTF_KIND_ARRAY: { | 
|  | const struct btf_array *cand_arr, *canon_arr; | 
|  |  | 
|  | if (!btf_compat_array(cand_type, canon_type)) | 
|  | return 0; | 
|  | cand_arr = btf_array(cand_type); | 
|  | canon_arr = btf_array(canon_type); | 
|  | eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); | 
|  | if (eq <= 0) | 
|  | return eq; | 
|  | return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); | 
|  | } | 
|  |  | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: { | 
|  | const struct btf_member *cand_m, *canon_m; | 
|  | __u16 vlen; | 
|  |  | 
|  | if (!btf_shallow_equal_struct(cand_type, canon_type)) | 
|  | return 0; | 
|  | vlen = btf_vlen(cand_type); | 
|  | cand_m = btf_members(cand_type); | 
|  | canon_m = btf_members(canon_type); | 
|  | for (i = 0; i < vlen; i++) { | 
|  | eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); | 
|  | if (eq <= 0) | 
|  | return eq; | 
|  | cand_m++; | 
|  | canon_m++; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | case BTF_KIND_FUNC_PROTO: { | 
|  | const struct btf_param *cand_p, *canon_p; | 
|  | __u16 vlen; | 
|  |  | 
|  | if (!btf_compat_fnproto(cand_type, canon_type)) | 
|  | return 0; | 
|  | eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); | 
|  | if (eq <= 0) | 
|  | return eq; | 
|  | vlen = btf_vlen(cand_type); | 
|  | cand_p = btf_params(cand_type); | 
|  | canon_p = btf_params(canon_type); | 
|  | for (i = 0; i < vlen; i++) { | 
|  | eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); | 
|  | if (eq <= 0) | 
|  | return eq; | 
|  | cand_p++; | 
|  | canon_p++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use hypothetical mapping, produced by successful type graph equivalence | 
|  | * check, to augment existing struct/union canonical mapping, where possible. | 
|  | * | 
|  | * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record | 
|  | * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: | 
|  | * it doesn't matter if FWD type was part of canonical graph or candidate one, | 
|  | * we are recording the mapping anyway. As opposed to carefulness required | 
|  | * for struct/union correspondence mapping (described below), for FWD resolution | 
|  | * it's not important, as by the time that FWD type (reference type) will be | 
|  | * deduplicated all structs/unions will be deduped already anyway. | 
|  | * | 
|  | * Recording STRUCT/UNION mapping is purely a performance optimization and is | 
|  | * not required for correctness. It needs to be done carefully to ensure that | 
|  | * struct/union from candidate's type graph is not mapped into corresponding | 
|  | * struct/union from canonical type graph that itself hasn't been resolved into | 
|  | * canonical representative. The only guarantee we have is that canonical | 
|  | * struct/union was determined as canonical and that won't change. But any | 
|  | * types referenced through that struct/union fields could have been not yet | 
|  | * resolved, so in case like that it's too early to establish any kind of | 
|  | * correspondence between structs/unions. | 
|  | * | 
|  | * No canonical correspondence is derived for primitive types (they are already | 
|  | * deduplicated completely already anyway) or reference types (they rely on | 
|  | * stability of struct/union canonical relationship for equivalence checks). | 
|  | */ | 
|  | static void btf_dedup_merge_hypot_map(struct btf_dedup *d) | 
|  | { | 
|  | __u32 canon_type_id, targ_type_id; | 
|  | __u16 t_kind, c_kind; | 
|  | __u32 t_id, c_id; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < d->hypot_cnt; i++) { | 
|  | canon_type_id = d->hypot_list[i]; | 
|  | targ_type_id = d->hypot_map[canon_type_id]; | 
|  | t_id = resolve_type_id(d, targ_type_id); | 
|  | c_id = resolve_type_id(d, canon_type_id); | 
|  | t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); | 
|  | c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); | 
|  | /* | 
|  | * Resolve FWD into STRUCT/UNION. | 
|  | * It's ok to resolve FWD into STRUCT/UNION that's not yet | 
|  | * mapped to canonical representative (as opposed to | 
|  | * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because | 
|  | * eventually that struct is going to be mapped and all resolved | 
|  | * FWDs will automatically resolve to correct canonical | 
|  | * representative. This will happen before ref type deduping, | 
|  | * which critically depends on stability of these mapping. This | 
|  | * stability is not a requirement for STRUCT/UNION equivalence | 
|  | * checks, though. | 
|  | */ | 
|  |  | 
|  | /* if it's the split BTF case, we still need to point base FWD | 
|  | * to STRUCT/UNION in a split BTF, because FWDs from split BTF | 
|  | * will be resolved against base FWD. If we don't point base | 
|  | * canonical FWD to the resolved STRUCT/UNION, then all the | 
|  | * FWDs in split BTF won't be correctly resolved to a proper | 
|  | * STRUCT/UNION. | 
|  | */ | 
|  | if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) | 
|  | d->map[c_id] = t_id; | 
|  |  | 
|  | /* if graph equivalence determined that we'd need to adjust | 
|  | * base canonical types, then we need to only point base FWDs | 
|  | * to STRUCTs/UNIONs and do no more modifications. For all | 
|  | * other purposes the type graphs were not equivalent. | 
|  | */ | 
|  | if (d->hypot_adjust_canon) | 
|  | continue; | 
|  |  | 
|  | if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) | 
|  | d->map[t_id] = c_id; | 
|  |  | 
|  | if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && | 
|  | c_kind != BTF_KIND_FWD && | 
|  | is_type_mapped(d, c_id) && | 
|  | !is_type_mapped(d, t_id)) { | 
|  | /* | 
|  | * as a perf optimization, we can map struct/union | 
|  | * that's part of type graph we just verified for | 
|  | * equivalence. We can do that for struct/union that has | 
|  | * canonical representative only, though. | 
|  | */ | 
|  | d->map[t_id] = c_id; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deduplicate struct/union types. | 
|  | * | 
|  | * For each struct/union type its type signature hash is calculated, taking | 
|  | * into account type's name, size, number, order and names of fields, but | 
|  | * ignoring type ID's referenced from fields, because they might not be deduped | 
|  | * completely until after reference types deduplication phase. This type hash | 
|  | * is used to iterate over all potential canonical types, sharing same hash. | 
|  | * For each canonical candidate we check whether type graphs that they form | 
|  | * (through referenced types in fields and so on) are equivalent using algorithm | 
|  | * implemented in `btf_dedup_is_equiv`. If such equivalence is found and | 
|  | * BTF_KIND_FWD resolution is allowed, then hypothetical mapping | 
|  | * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence | 
|  | * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to | 
|  | * potentially map other structs/unions to their canonical representatives, | 
|  | * if such relationship hasn't yet been established. This speeds up algorithm | 
|  | * by eliminating some of the duplicate work. | 
|  | * | 
|  | * If no matching canonical representative was found, struct/union is marked | 
|  | * as canonical for itself and is added into btf_dedup->dedup_table hash map | 
|  | * for further look ups. | 
|  | */ | 
|  | static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) | 
|  | { | 
|  | struct btf_type *cand_type, *t; | 
|  | struct hashmap_entry *hash_entry; | 
|  | /* if we don't find equivalent type, then we are canonical */ | 
|  | __u32 new_id = type_id; | 
|  | __u16 kind; | 
|  | long h; | 
|  |  | 
|  | /* already deduped or is in process of deduping (loop detected) */ | 
|  | if (d->map[type_id] <= BTF_MAX_NR_TYPES) | 
|  | return 0; | 
|  |  | 
|  | t = btf_type_by_id(d->btf, type_id); | 
|  | kind = btf_kind(t); | 
|  |  | 
|  | if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) | 
|  | return 0; | 
|  |  | 
|  | h = btf_hash_struct(t); | 
|  | for_each_dedup_cand(d, hash_entry, h) { | 
|  | __u32 cand_id = hash_entry->value; | 
|  | int eq; | 
|  |  | 
|  | /* | 
|  | * Even though btf_dedup_is_equiv() checks for | 
|  | * btf_shallow_equal_struct() internally when checking two | 
|  | * structs (unions) for equivalence, we need to guard here | 
|  | * from picking matching FWD type as a dedup candidate. | 
|  | * This can happen due to hash collision. In such case just | 
|  | * relying on btf_dedup_is_equiv() would lead to potentially | 
|  | * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because | 
|  | * FWD and compatible STRUCT/UNION are considered equivalent. | 
|  | */ | 
|  | cand_type = btf_type_by_id(d->btf, cand_id); | 
|  | if (!btf_shallow_equal_struct(t, cand_type)) | 
|  | continue; | 
|  |  | 
|  | btf_dedup_clear_hypot_map(d); | 
|  | eq = btf_dedup_is_equiv(d, type_id, cand_id); | 
|  | if (eq < 0) | 
|  | return eq; | 
|  | if (!eq) | 
|  | continue; | 
|  | btf_dedup_merge_hypot_map(d); | 
|  | if (d->hypot_adjust_canon) /* not really equivalent */ | 
|  | continue; | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  |  | 
|  | d->map[type_id] = new_id; | 
|  | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_dedup_struct_types(struct btf_dedup *d) | 
|  | { | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < d->btf->nr_types; i++) { | 
|  | err = btf_dedup_struct_type(d, d->btf->start_id + i); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deduplicate reference type. | 
|  | * | 
|  | * Once all primitive and struct/union types got deduplicated, we can easily | 
|  | * deduplicate all other (reference) BTF types. This is done in two steps: | 
|  | * | 
|  | * 1. Resolve all referenced type IDs into their canonical type IDs. This | 
|  | * resolution can be done either immediately for primitive or struct/union types | 
|  | * (because they were deduped in previous two phases) or recursively for | 
|  | * reference types. Recursion will always terminate at either primitive or | 
|  | * struct/union type, at which point we can "unwind" chain of reference types | 
|  | * one by one. There is no danger of encountering cycles because in C type | 
|  | * system the only way to form type cycle is through struct/union, so any chain | 
|  | * of reference types, even those taking part in a type cycle, will inevitably | 
|  | * reach struct/union at some point. | 
|  | * | 
|  | * 2. Once all referenced type IDs are resolved into canonical ones, BTF type | 
|  | * becomes "stable", in the sense that no further deduplication will cause | 
|  | * any changes to it. With that, it's now possible to calculate type's signature | 
|  | * hash (this time taking into account referenced type IDs) and loop over all | 
|  | * potential canonical representatives. If no match was found, current type | 
|  | * will become canonical representative of itself and will be added into | 
|  | * btf_dedup->dedup_table as another possible canonical representative. | 
|  | */ | 
|  | static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) | 
|  | { | 
|  | struct hashmap_entry *hash_entry; | 
|  | __u32 new_id = type_id, cand_id; | 
|  | struct btf_type *t, *cand; | 
|  | /* if we don't find equivalent type, then we are representative type */ | 
|  | int ref_type_id; | 
|  | long h; | 
|  |  | 
|  | if (d->map[type_id] == BTF_IN_PROGRESS_ID) | 
|  | return -ELOOP; | 
|  | if (d->map[type_id] <= BTF_MAX_NR_TYPES) | 
|  | return resolve_type_id(d, type_id); | 
|  |  | 
|  | t = btf_type_by_id(d->btf, type_id); | 
|  | d->map[type_id] = BTF_IN_PROGRESS_ID; | 
|  |  | 
|  | switch (btf_kind(t)) { | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_FUNC: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | ref_type_id = btf_dedup_ref_type(d, t->type); | 
|  | if (ref_type_id < 0) | 
|  | return ref_type_id; | 
|  | t->type = ref_type_id; | 
|  |  | 
|  | h = btf_hash_common(t); | 
|  | for_each_dedup_cand(d, hash_entry, h) { | 
|  | cand_id = hash_entry->value; | 
|  | cand = btf_type_by_id(d->btf, cand_id); | 
|  | if (btf_equal_common(t, cand)) { | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case BTF_KIND_DECL_TAG: | 
|  | ref_type_id = btf_dedup_ref_type(d, t->type); | 
|  | if (ref_type_id < 0) | 
|  | return ref_type_id; | 
|  | t->type = ref_type_id; | 
|  |  | 
|  | h = btf_hash_int_decl_tag(t); | 
|  | for_each_dedup_cand(d, hash_entry, h) { | 
|  | cand_id = hash_entry->value; | 
|  | cand = btf_type_by_id(d->btf, cand_id); | 
|  | if (btf_equal_int_tag(t, cand)) { | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case BTF_KIND_ARRAY: { | 
|  | struct btf_array *info = btf_array(t); | 
|  |  | 
|  | ref_type_id = btf_dedup_ref_type(d, info->type); | 
|  | if (ref_type_id < 0) | 
|  | return ref_type_id; | 
|  | info->type = ref_type_id; | 
|  |  | 
|  | ref_type_id = btf_dedup_ref_type(d, info->index_type); | 
|  | if (ref_type_id < 0) | 
|  | return ref_type_id; | 
|  | info->index_type = ref_type_id; | 
|  |  | 
|  | h = btf_hash_array(t); | 
|  | for_each_dedup_cand(d, hash_entry, h) { | 
|  | cand_id = hash_entry->value; | 
|  | cand = btf_type_by_id(d->btf, cand_id); | 
|  | if (btf_equal_array(t, cand)) { | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case BTF_KIND_FUNC_PROTO: { | 
|  | struct btf_param *param; | 
|  | __u16 vlen; | 
|  | int i; | 
|  |  | 
|  | ref_type_id = btf_dedup_ref_type(d, t->type); | 
|  | if (ref_type_id < 0) | 
|  | return ref_type_id; | 
|  | t->type = ref_type_id; | 
|  |  | 
|  | vlen = btf_vlen(t); | 
|  | param = btf_params(t); | 
|  | for (i = 0; i < vlen; i++) { | 
|  | ref_type_id = btf_dedup_ref_type(d, param->type); | 
|  | if (ref_type_id < 0) | 
|  | return ref_type_id; | 
|  | param->type = ref_type_id; | 
|  | param++; | 
|  | } | 
|  |  | 
|  | h = btf_hash_fnproto(t); | 
|  | for_each_dedup_cand(d, hash_entry, h) { | 
|  | cand_id = hash_entry->value; | 
|  | cand = btf_type_by_id(d->btf, cand_id); | 
|  | if (btf_equal_fnproto(t, cand)) { | 
|  | new_id = cand_id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | d->map[type_id] = new_id; | 
|  | if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return new_id; | 
|  | } | 
|  |  | 
|  | static int btf_dedup_ref_types(struct btf_dedup *d) | 
|  | { | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < d->btf->nr_types; i++) { | 
|  | err = btf_dedup_ref_type(d, d->btf->start_id + i); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | /* we won't need d->dedup_table anymore */ | 
|  | hashmap__free(d->dedup_table); | 
|  | d->dedup_table = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Collect a map from type names to type ids for all canonical structs | 
|  | * and unions. If the same name is shared by several canonical types | 
|  | * use a special value 0 to indicate this fact. | 
|  | */ | 
|  | static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) | 
|  | { | 
|  | __u32 nr_types = btf__type_cnt(d->btf); | 
|  | struct btf_type *t; | 
|  | __u32 type_id; | 
|  | __u16 kind; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Iterate over base and split module ids in order to get all | 
|  | * available structs in the map. | 
|  | */ | 
|  | for (type_id = 1; type_id < nr_types; ++type_id) { | 
|  | t = btf_type_by_id(d->btf, type_id); | 
|  | kind = btf_kind(t); | 
|  |  | 
|  | if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) | 
|  | continue; | 
|  |  | 
|  | /* Skip non-canonical types */ | 
|  | if (type_id != d->map[type_id]) | 
|  | continue; | 
|  |  | 
|  | err = hashmap__add(names_map, t->name_off, type_id); | 
|  | if (err == -EEXIST) | 
|  | err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) | 
|  | { | 
|  | struct btf_type *t = btf_type_by_id(d->btf, type_id); | 
|  | enum btf_fwd_kind fwd_kind = btf_kflag(t); | 
|  | __u16 cand_kind, kind = btf_kind(t); | 
|  | struct btf_type *cand_t; | 
|  | uintptr_t cand_id; | 
|  |  | 
|  | if (kind != BTF_KIND_FWD) | 
|  | return 0; | 
|  |  | 
|  | /* Skip if this FWD already has a mapping */ | 
|  | if (type_id != d->map[type_id]) | 
|  | return 0; | 
|  |  | 
|  | if (!hashmap__find(names_map, t->name_off, &cand_id)) | 
|  | return 0; | 
|  |  | 
|  | /* Zero is a special value indicating that name is not unique */ | 
|  | if (!cand_id) | 
|  | return 0; | 
|  |  | 
|  | cand_t = btf_type_by_id(d->btf, cand_id); | 
|  | cand_kind = btf_kind(cand_t); | 
|  | if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || | 
|  | (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) | 
|  | return 0; | 
|  |  | 
|  | d->map[type_id] = cand_id; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resolve unambiguous forward declarations. | 
|  | * | 
|  | * The lion's share of all FWD declarations is resolved during | 
|  | * `btf_dedup_struct_types` phase when different type graphs are | 
|  | * compared against each other. However, if in some compilation unit a | 
|  | * FWD declaration is not a part of a type graph compared against | 
|  | * another type graph that declaration's canonical type would not be | 
|  | * changed. Example: | 
|  | * | 
|  | * CU #1: | 
|  | * | 
|  | * struct foo; | 
|  | * struct foo *some_global; | 
|  | * | 
|  | * CU #2: | 
|  | * | 
|  | * struct foo { int u; }; | 
|  | * struct foo *another_global; | 
|  | * | 
|  | * After `btf_dedup_struct_types` the BTF looks as follows: | 
|  | * | 
|  | * [1] STRUCT 'foo' size=4 vlen=1 ... | 
|  | * [2] INT 'int' size=4 ... | 
|  | * [3] PTR '(anon)' type_id=1 | 
|  | * [4] FWD 'foo' fwd_kind=struct | 
|  | * [5] PTR '(anon)' type_id=4 | 
|  | * | 
|  | * This pass assumes that such FWD declarations should be mapped to | 
|  | * structs or unions with identical name in case if the name is not | 
|  | * ambiguous. | 
|  | */ | 
|  | static int btf_dedup_resolve_fwds(struct btf_dedup *d) | 
|  | { | 
|  | int i, err; | 
|  | struct hashmap *names_map; | 
|  |  | 
|  | names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); | 
|  | if (IS_ERR(names_map)) | 
|  | return PTR_ERR(names_map); | 
|  |  | 
|  | err = btf_dedup_fill_unique_names_map(d, names_map); | 
|  | if (err < 0) | 
|  | goto exit; | 
|  |  | 
|  | for (i = 0; i < d->btf->nr_types; i++) { | 
|  | err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); | 
|  | if (err < 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | exit: | 
|  | hashmap__free(names_map); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compact types. | 
|  | * | 
|  | * After we established for each type its corresponding canonical representative | 
|  | * type, we now can eliminate types that are not canonical and leave only | 
|  | * canonical ones layed out sequentially in memory by copying them over | 
|  | * duplicates. During compaction btf_dedup->hypot_map array is reused to store | 
|  | * a map from original type ID to a new compacted type ID, which will be used | 
|  | * during next phase to "fix up" type IDs, referenced from struct/union and | 
|  | * reference types. | 
|  | */ | 
|  | static int btf_dedup_compact_types(struct btf_dedup *d) | 
|  | { | 
|  | __u32 *new_offs; | 
|  | __u32 next_type_id = d->btf->start_id; | 
|  | const struct btf_type *t; | 
|  | void *p; | 
|  | int i, id, len; | 
|  |  | 
|  | /* we are going to reuse hypot_map to store compaction remapping */ | 
|  | d->hypot_map[0] = 0; | 
|  | /* base BTF types are not renumbered */ | 
|  | for (id = 1; id < d->btf->start_id; id++) | 
|  | d->hypot_map[id] = id; | 
|  | for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) | 
|  | d->hypot_map[id] = BTF_UNPROCESSED_ID; | 
|  |  | 
|  | p = d->btf->types_data; | 
|  |  | 
|  | for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { | 
|  | if (d->map[id] != id) | 
|  | continue; | 
|  |  | 
|  | t = btf__type_by_id(d->btf, id); | 
|  | len = btf_type_size(t); | 
|  | if (len < 0) | 
|  | return len; | 
|  |  | 
|  | memmove(p, t, len); | 
|  | d->hypot_map[id] = next_type_id; | 
|  | d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; | 
|  | p += len; | 
|  | next_type_id++; | 
|  | } | 
|  |  | 
|  | /* shrink struct btf's internal types index and update btf_header */ | 
|  | d->btf->nr_types = next_type_id - d->btf->start_id; | 
|  | d->btf->type_offs_cap = d->btf->nr_types; | 
|  | d->btf->hdr->type_len = p - d->btf->types_data; | 
|  | new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, | 
|  | sizeof(*new_offs)); | 
|  | if (d->btf->type_offs_cap && !new_offs) | 
|  | return -ENOMEM; | 
|  | d->btf->type_offs = new_offs; | 
|  | d->btf->hdr->str_off = d->btf->hdr->type_len; | 
|  | d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out final (deduplicated and compacted) type ID for provided original | 
|  | * `type_id` by first resolving it into corresponding canonical type ID and | 
|  | * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, | 
|  | * which is populated during compaction phase. | 
|  | */ | 
|  | static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) | 
|  | { | 
|  | struct btf_dedup *d = ctx; | 
|  | __u32 resolved_type_id, new_type_id; | 
|  |  | 
|  | resolved_type_id = resolve_type_id(d, *type_id); | 
|  | new_type_id = d->hypot_map[resolved_type_id]; | 
|  | if (new_type_id > BTF_MAX_NR_TYPES) | 
|  | return -EINVAL; | 
|  |  | 
|  | *type_id = new_type_id; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remap referenced type IDs into deduped type IDs. | 
|  | * | 
|  | * After BTF types are deduplicated and compacted, their final type IDs may | 
|  | * differ from original ones. The map from original to a corresponding | 
|  | * deduped type ID is stored in btf_dedup->hypot_map and is populated during | 
|  | * compaction phase. During remapping phase we are rewriting all type IDs | 
|  | * referenced from any BTF type (e.g., struct fields, func proto args, etc) to | 
|  | * their final deduped type IDs. | 
|  | */ | 
|  | static int btf_dedup_remap_types(struct btf_dedup *d) | 
|  | { | 
|  | int i, r; | 
|  |  | 
|  | for (i = 0; i < d->btf->nr_types; i++) { | 
|  | struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); | 
|  | struct btf_field_iter it; | 
|  | __u32 *type_id; | 
|  |  | 
|  | r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | while ((type_id = btf_field_iter_next(&it))) { | 
|  | __u32 resolved_id, new_id; | 
|  |  | 
|  | resolved_id = resolve_type_id(d, *type_id); | 
|  | new_id = d->hypot_map[resolved_id]; | 
|  | if (new_id > BTF_MAX_NR_TYPES) | 
|  | return -EINVAL; | 
|  |  | 
|  | *type_id = new_id; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!d->btf_ext) | 
|  | return 0; | 
|  |  | 
|  | r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Probe few well-known locations for vmlinux kernel image and try to load BTF | 
|  | * data out of it to use for target BTF. | 
|  | */ | 
|  | struct btf *btf__load_vmlinux_btf(void) | 
|  | { | 
|  | const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux"; | 
|  | /* fall back locations, trying to find vmlinux on disk */ | 
|  | const char *locations[] = { | 
|  | "/boot/vmlinux-%1$s", | 
|  | "/lib/modules/%1$s/vmlinux-%1$s", | 
|  | "/lib/modules/%1$s/build/vmlinux", | 
|  | "/usr/lib/modules/%1$s/kernel/vmlinux", | 
|  | "/usr/lib/debug/boot/vmlinux-%1$s", | 
|  | "/usr/lib/debug/boot/vmlinux-%1$s.debug", | 
|  | "/usr/lib/debug/lib/modules/%1$s/vmlinux", | 
|  | }; | 
|  | char path[PATH_MAX + 1]; | 
|  | struct utsname buf; | 
|  | struct btf *btf; | 
|  | int i, err; | 
|  |  | 
|  | /* is canonical sysfs location accessible? */ | 
|  | if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) { | 
|  | pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n", | 
|  | sysfs_btf_path); | 
|  | } else { | 
|  | btf = btf__parse(sysfs_btf_path, NULL); | 
|  | if (!btf) { | 
|  | err = -errno; | 
|  | pr_warn("failed to read kernel BTF from '%s': %s\n", | 
|  | sysfs_btf_path, errstr(err)); | 
|  | return libbpf_err_ptr(err); | 
|  | } | 
|  | pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path); | 
|  | return btf; | 
|  | } | 
|  |  | 
|  | /* try fallback locations */ | 
|  | uname(&buf); | 
|  | for (i = 0; i < ARRAY_SIZE(locations); i++) { | 
|  | snprintf(path, PATH_MAX, locations[i], buf.release); | 
|  |  | 
|  | if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) | 
|  | continue; | 
|  |  | 
|  | btf = btf__parse(path, NULL); | 
|  | err = libbpf_get_error(btf); | 
|  | pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err)); | 
|  | if (err) | 
|  | continue; | 
|  |  | 
|  | return btf; | 
|  | } | 
|  |  | 
|  | pr_warn("failed to find valid kernel BTF\n"); | 
|  | return libbpf_err_ptr(-ESRCH); | 
|  | } | 
|  |  | 
|  | struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); | 
|  |  | 
|  | struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) | 
|  | { | 
|  | char path[80]; | 
|  |  | 
|  | snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); | 
|  | return btf__parse_split(path, vmlinux_btf); | 
|  | } | 
|  |  | 
|  | int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) | 
|  | { | 
|  | const struct btf_ext_info *seg; | 
|  | struct btf_ext_info_sec *sec; | 
|  | int i, err; | 
|  |  | 
|  | seg = &btf_ext->func_info; | 
|  | for_each_btf_ext_sec(seg, sec) { | 
|  | struct bpf_func_info_min *rec; | 
|  |  | 
|  | for_each_btf_ext_rec(seg, sec, i, rec) { | 
|  | err = visit(&rec->type_id, ctx); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | seg = &btf_ext->core_relo_info; | 
|  | for_each_btf_ext_sec(seg, sec) { | 
|  | struct bpf_core_relo *rec; | 
|  |  | 
|  | for_each_btf_ext_rec(seg, sec, i, rec) { | 
|  | err = visit(&rec->type_id, ctx); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) | 
|  | { | 
|  | const struct btf_ext_info *seg; | 
|  | struct btf_ext_info_sec *sec; | 
|  | int i, err; | 
|  |  | 
|  | seg = &btf_ext->func_info; | 
|  | for_each_btf_ext_sec(seg, sec) { | 
|  | err = visit(&sec->sec_name_off, ctx); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | seg = &btf_ext->line_info; | 
|  | for_each_btf_ext_sec(seg, sec) { | 
|  | struct bpf_line_info_min *rec; | 
|  |  | 
|  | err = visit(&sec->sec_name_off, ctx); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for_each_btf_ext_rec(seg, sec, i, rec) { | 
|  | err = visit(&rec->file_name_off, ctx); | 
|  | if (err) | 
|  | return err; | 
|  | err = visit(&rec->line_off, ctx); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | seg = &btf_ext->core_relo_info; | 
|  | for_each_btf_ext_sec(seg, sec) { | 
|  | struct bpf_core_relo *rec; | 
|  |  | 
|  | err = visit(&sec->sec_name_off, ctx); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for_each_btf_ext_rec(seg, sec, i, rec) { | 
|  | err = visit(&rec->access_str_off, ctx); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct btf_distill { | 
|  | struct btf_pipe pipe; | 
|  | int *id_map; | 
|  | unsigned int split_start_id; | 
|  | unsigned int split_start_str; | 
|  | int diff_id; | 
|  | }; | 
|  |  | 
|  | static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i) | 
|  | { | 
|  | struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i); | 
|  | struct btf_field_iter it; | 
|  | __u32 *id; | 
|  | int err; | 
|  |  | 
|  | err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS); | 
|  | if (err) | 
|  | return err; | 
|  | while ((id = btf_field_iter_next(&it))) { | 
|  | struct btf_type *base_t; | 
|  |  | 
|  | if (!*id) | 
|  | continue; | 
|  | /* split BTF id, not needed */ | 
|  | if (*id >= dist->split_start_id) | 
|  | continue; | 
|  | /* already added ? */ | 
|  | if (dist->id_map[*id] > 0) | 
|  | continue; | 
|  |  | 
|  | /* only a subset of base BTF types should be referenced from | 
|  | * split BTF; ensure nothing unexpected is referenced. | 
|  | */ | 
|  | base_t = btf_type_by_id(dist->pipe.src, *id); | 
|  | switch (btf_kind(base_t)) { | 
|  | case BTF_KIND_INT: | 
|  | case BTF_KIND_FLOAT: | 
|  | case BTF_KIND_FWD: | 
|  | case BTF_KIND_ARRAY: | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_ENUM: | 
|  | case BTF_KIND_ENUM64: | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_FUNC_PROTO: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | dist->id_map[*id] = *id; | 
|  | break; | 
|  | default: | 
|  | pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n", | 
|  | *id, btf_kind(base_t)); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* If a base type is used, ensure types it refers to are | 
|  | * marked as used also; so for example if we find a PTR to INT | 
|  | * we need both the PTR and INT. | 
|  | * | 
|  | * The only exception is named struct/unions, since distilled | 
|  | * base BTF composite types have no members. | 
|  | */ | 
|  | if (btf_is_composite(base_t) && base_t->name_off) | 
|  | continue; | 
|  | err = btf_add_distilled_type_ids(dist, *id); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btf_add_distilled_types(struct btf_distill *dist) | 
|  | { | 
|  | bool adding_to_base = dist->pipe.dst->start_id == 1; | 
|  | int id = btf__type_cnt(dist->pipe.dst); | 
|  | struct btf_type *t; | 
|  | int i, err = 0; | 
|  |  | 
|  |  | 
|  | /* Add types for each of the required references to either distilled | 
|  | * base or split BTF, depending on type characteristics. | 
|  | */ | 
|  | for (i = 1; i < dist->split_start_id; i++) { | 
|  | const char *name; | 
|  | int kind; | 
|  |  | 
|  | if (!dist->id_map[i]) | 
|  | continue; | 
|  | t = btf_type_by_id(dist->pipe.src, i); | 
|  | kind = btf_kind(t); | 
|  | name = btf__name_by_offset(dist->pipe.src, t->name_off); | 
|  |  | 
|  | switch (kind) { | 
|  | case BTF_KIND_INT: | 
|  | case BTF_KIND_FLOAT: | 
|  | case BTF_KIND_FWD: | 
|  | /* Named int, float, fwd are added to base. */ | 
|  | if (!adding_to_base) | 
|  | continue; | 
|  | err = btf_add_type(&dist->pipe, t); | 
|  | break; | 
|  | case BTF_KIND_STRUCT: | 
|  | case BTF_KIND_UNION: | 
|  | /* Named struct/union are added to base as 0-vlen | 
|  | * struct/union of same size.  Anonymous struct/unions | 
|  | * are added to split BTF as-is. | 
|  | */ | 
|  | if (adding_to_base) { | 
|  | if (!t->name_off) | 
|  | continue; | 
|  | err = btf_add_composite(dist->pipe.dst, kind, name, t->size); | 
|  | } else { | 
|  | if (t->name_off) | 
|  | continue; | 
|  | err = btf_add_type(&dist->pipe, t); | 
|  | } | 
|  | break; | 
|  | case BTF_KIND_ENUM: | 
|  | case BTF_KIND_ENUM64: | 
|  | /* Named enum[64]s are added to base as a sized | 
|  | * enum; relocation will match with appropriately-named | 
|  | * and sized enum or enum64. | 
|  | * | 
|  | * Anonymous enums are added to split BTF as-is. | 
|  | */ | 
|  | if (adding_to_base) { | 
|  | if (!t->name_off) | 
|  | continue; | 
|  | err = btf__add_enum(dist->pipe.dst, name, t->size); | 
|  | } else { | 
|  | if (t->name_off) | 
|  | continue; | 
|  | err = btf_add_type(&dist->pipe, t); | 
|  | } | 
|  | break; | 
|  | case BTF_KIND_ARRAY: | 
|  | case BTF_KIND_TYPEDEF: | 
|  | case BTF_KIND_PTR: | 
|  | case BTF_KIND_CONST: | 
|  | case BTF_KIND_RESTRICT: | 
|  | case BTF_KIND_VOLATILE: | 
|  | case BTF_KIND_FUNC_PROTO: | 
|  | case BTF_KIND_TYPE_TAG: | 
|  | /* All other types are added to split BTF. */ | 
|  | if (adding_to_base) | 
|  | continue; | 
|  | err = btf_add_type(&dist->pipe, t); | 
|  | break; | 
|  | default: | 
|  | pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n", | 
|  | name, i, kind); | 
|  | return -EINVAL; | 
|  |  | 
|  | } | 
|  | if (err < 0) | 
|  | break; | 
|  | dist->id_map[i] = id++; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Split BTF ids without a mapping will be shifted downwards since distilled | 
|  | * base BTF is smaller than the original base BTF.  For those that have a | 
|  | * mapping (either to base or updated split BTF), update the id based on | 
|  | * that mapping. | 
|  | */ | 
|  | static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i) | 
|  | { | 
|  | struct btf_type *t = btf_type_by_id(dist->pipe.dst, i); | 
|  | struct btf_field_iter it; | 
|  | __u32 *id; | 
|  | int err; | 
|  |  | 
|  | err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS); | 
|  | if (err) | 
|  | return err; | 
|  | while ((id = btf_field_iter_next(&it))) { | 
|  | if (dist->id_map[*id]) | 
|  | *id = dist->id_map[*id]; | 
|  | else if (*id >= dist->split_start_id) | 
|  | *id -= dist->diff_id; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Create updated split BTF with distilled base BTF; distilled base BTF | 
|  | * consists of BTF information required to clarify the types that split | 
|  | * BTF refers to, omitting unneeded details.  Specifically it will contain | 
|  | * base types and memberless definitions of named structs, unions and enumerated | 
|  | * types. Associated reference types like pointers, arrays and anonymous | 
|  | * structs, unions and enumerated types will be added to split BTF. | 
|  | * Size is recorded for named struct/unions to help guide matching to the | 
|  | * target base BTF during later relocation. | 
|  | * | 
|  | * The only case where structs, unions or enumerated types are fully represented | 
|  | * is when they are anonymous; in such cases, the anonymous type is added to | 
|  | * split BTF in full. | 
|  | * | 
|  | * We return newly-created split BTF where the split BTF refers to a newly-created | 
|  | * distilled base BTF. Both must be freed separately by the caller. | 
|  | */ | 
|  | int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf, | 
|  | struct btf **new_split_btf) | 
|  | { | 
|  | struct btf *new_base = NULL, *new_split = NULL; | 
|  | const struct btf *old_base; | 
|  | unsigned int n = btf__type_cnt(src_btf); | 
|  | struct btf_distill dist = {}; | 
|  | struct btf_type *t; | 
|  | int i, err = 0; | 
|  |  | 
|  | /* src BTF must be split BTF. */ | 
|  | old_base = btf__base_btf(src_btf); | 
|  | if (!new_base_btf || !new_split_btf || !old_base) | 
|  | return libbpf_err(-EINVAL); | 
|  |  | 
|  | new_base = btf__new_empty(); | 
|  | if (!new_base) | 
|  | return libbpf_err(-ENOMEM); | 
|  |  | 
|  | btf__set_endianness(new_base, btf__endianness(src_btf)); | 
|  |  | 
|  | dist.id_map = calloc(n, sizeof(*dist.id_map)); | 
|  | if (!dist.id_map) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | dist.pipe.src = src_btf; | 
|  | dist.pipe.dst = new_base; | 
|  | dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); | 
|  | if (IS_ERR(dist.pipe.str_off_map)) { | 
|  | err = -ENOMEM; | 
|  | goto done; | 
|  | } | 
|  | dist.split_start_id = btf__type_cnt(old_base); | 
|  | dist.split_start_str = old_base->hdr->str_len; | 
|  |  | 
|  | /* Pass over src split BTF; generate the list of base BTF type ids it | 
|  | * references; these will constitute our distilled BTF set to be | 
|  | * distributed over base and split BTF as appropriate. | 
|  | */ | 
|  | for (i = src_btf->start_id; i < n; i++) { | 
|  | err = btf_add_distilled_type_ids(&dist, i); | 
|  | if (err < 0) | 
|  | goto done; | 
|  | } | 
|  | /* Next add types for each of the required references to base BTF and split BTF | 
|  | * in turn. | 
|  | */ | 
|  | err = btf_add_distilled_types(&dist); | 
|  | if (err < 0) | 
|  | goto done; | 
|  |  | 
|  | /* Create new split BTF with distilled base BTF as its base; the final | 
|  | * state is split BTF with distilled base BTF that represents enough | 
|  | * about its base references to allow it to be relocated with the base | 
|  | * BTF available. | 
|  | */ | 
|  | new_split = btf__new_empty_split(new_base); | 
|  | if (!new_split) { | 
|  | err = -errno; | 
|  | goto done; | 
|  | } | 
|  | dist.pipe.dst = new_split; | 
|  | /* First add all split types */ | 
|  | for (i = src_btf->start_id; i < n; i++) { | 
|  | t = btf_type_by_id(src_btf, i); | 
|  | err = btf_add_type(&dist.pipe, t); | 
|  | if (err < 0) | 
|  | goto done; | 
|  | } | 
|  | /* Now add distilled types to split BTF that are not added to base. */ | 
|  | err = btf_add_distilled_types(&dist); | 
|  | if (err < 0) | 
|  | goto done; | 
|  |  | 
|  | /* All split BTF ids will be shifted downwards since there are less base | 
|  | * BTF ids in distilled base BTF. | 
|  | */ | 
|  | dist.diff_id = dist.split_start_id - btf__type_cnt(new_base); | 
|  |  | 
|  | n = btf__type_cnt(new_split); | 
|  | /* Now update base/split BTF ids. */ | 
|  | for (i = 1; i < n; i++) { | 
|  | err = btf_update_distilled_type_ids(&dist, i); | 
|  | if (err < 0) | 
|  | break; | 
|  | } | 
|  | done: | 
|  | free(dist.id_map); | 
|  | hashmap__free(dist.pipe.str_off_map); | 
|  | if (err) { | 
|  | btf__free(new_split); | 
|  | btf__free(new_base); | 
|  | return libbpf_err(err); | 
|  | } | 
|  | *new_base_btf = new_base; | 
|  | *new_split_btf = new_split; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct btf_header *btf_header(const struct btf *btf) | 
|  | { | 
|  | return btf->hdr; | 
|  | } | 
|  |  | 
|  | void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) | 
|  | { | 
|  | btf->base_btf = (struct btf *)base_btf; | 
|  | btf->start_id = btf__type_cnt(base_btf); | 
|  | btf->start_str_off = base_btf->hdr->str_len; | 
|  | } | 
|  |  | 
|  | int btf__relocate(struct btf *btf, const struct btf *base_btf) | 
|  | { | 
|  | int err = btf_relocate(btf, base_btf, NULL); | 
|  |  | 
|  | if (!err) | 
|  | btf->owns_base = false; | 
|  | return libbpf_err(err); | 
|  | } |