| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (C) 2024-2025 Intel Corporation |
| */ |
| |
| #include <net/mac80211.h> |
| #include <kunit/static_stub.h> |
| |
| #include "mld.h" |
| #include "sta.h" |
| #include "agg.h" |
| #include "rx.h" |
| #include "hcmd.h" |
| #include "iface.h" |
| #include "time_sync.h" |
| #include "fw/dbg.h" |
| #include "fw/api/rx.h" |
| |
| /* stores relevant PHY data fields extracted from iwl_rx_mpdu_desc */ |
| struct iwl_mld_rx_phy_data { |
| enum iwl_rx_phy_info_type info_type; |
| __le32 data0; |
| __le32 data1; |
| __le32 data2; |
| __le32 data3; |
| __le32 eht_data4; |
| __le32 data5; |
| __le16 data4; |
| bool first_subframe; |
| bool with_data; |
| __le32 rx_vec[4]; |
| u32 rate_n_flags; |
| u32 gp2_on_air_rise; |
| u16 phy_info; |
| u8 energy_a, energy_b; |
| }; |
| |
| static void |
| iwl_mld_fill_phy_data(struct iwl_mld *mld, |
| struct iwl_rx_mpdu_desc *desc, |
| struct iwl_mld_rx_phy_data *phy_data) |
| { |
| phy_data->phy_info = le16_to_cpu(desc->phy_info); |
| phy_data->rate_n_flags = iwl_v3_rate_from_v2_v3(desc->v3.rate_n_flags, |
| mld->fw_rates_ver_3); |
| phy_data->gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); |
| phy_data->energy_a = desc->v3.energy_a; |
| phy_data->energy_b = desc->v3.energy_b; |
| phy_data->data0 = desc->v3.phy_data0; |
| phy_data->data1 = desc->v3.phy_data1; |
| phy_data->data2 = desc->v3.phy_data2; |
| phy_data->data3 = desc->v3.phy_data3; |
| phy_data->data4 = desc->phy_data4; |
| phy_data->eht_data4 = desc->phy_eht_data4; |
| phy_data->data5 = desc->v3.phy_data5; |
| phy_data->with_data = true; |
| } |
| |
| static inline int iwl_mld_check_pn(struct iwl_mld *mld, struct sk_buff *skb, |
| int queue, struct ieee80211_sta *sta) |
| { |
| struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); |
| struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); |
| struct iwl_mld_sta *mld_sta; |
| struct iwl_mld_ptk_pn *ptk_pn; |
| int res; |
| u8 tid, keyidx; |
| u8 pn[IEEE80211_CCMP_PN_LEN]; |
| u8 *extiv; |
| |
| /* multicast and non-data only arrives on default queue; avoid checking |
| * for default queue - we don't want to replicate all the logic that's |
| * necessary for checking the PN on fragmented frames, leave that |
| * to mac80211 |
| */ |
| if (queue == 0 || !ieee80211_is_data(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) |
| return 0; |
| |
| if (!(stats->flag & RX_FLAG_DECRYPTED)) |
| return 0; |
| |
| /* if we are here - this for sure is either CCMP or GCMP */ |
| if (!sta) { |
| IWL_DEBUG_DROP(mld, |
| "expected hw-decrypted unicast frame for station\n"); |
| return -1; |
| } |
| |
| mld_sta = iwl_mld_sta_from_mac80211(sta); |
| |
| extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); |
| keyidx = extiv[3] >> 6; |
| |
| ptk_pn = rcu_dereference(mld_sta->ptk_pn[keyidx]); |
| if (!ptk_pn) |
| return -1; |
| |
| if (ieee80211_is_data_qos(hdr->frame_control)) |
| tid = ieee80211_get_tid(hdr); |
| else |
| tid = 0; |
| |
| /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ |
| if (tid >= IWL_MAX_TID_COUNT) |
| return -1; |
| |
| /* load pn */ |
| pn[0] = extiv[7]; |
| pn[1] = extiv[6]; |
| pn[2] = extiv[5]; |
| pn[3] = extiv[4]; |
| pn[4] = extiv[1]; |
| pn[5] = extiv[0]; |
| |
| res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); |
| if (res < 0) |
| return -1; |
| if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) |
| return -1; |
| |
| memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); |
| stats->flag |= RX_FLAG_PN_VALIDATED; |
| |
| return 0; |
| } |
| |
| /* iwl_mld_pass_packet_to_mac80211 - passes the packet for mac80211 */ |
| void iwl_mld_pass_packet_to_mac80211(struct iwl_mld *mld, |
| struct napi_struct *napi, |
| struct sk_buff *skb, int queue, |
| struct ieee80211_sta *sta) |
| { |
| KUNIT_STATIC_STUB_REDIRECT(iwl_mld_pass_packet_to_mac80211, |
| mld, napi, skb, queue, sta); |
| |
| if (unlikely(iwl_mld_check_pn(mld, skb, queue, sta))) { |
| kfree_skb(skb); |
| return; |
| } |
| |
| ieee80211_rx_napi(mld->hw, sta, skb, napi); |
| } |
| EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_pass_packet_to_mac80211); |
| |
| static bool iwl_mld_used_average_energy(struct iwl_mld *mld, int link_id, |
| struct ieee80211_hdr *hdr, |
| struct ieee80211_rx_status *rx_status) |
| { |
| struct ieee80211_bss_conf *link_conf; |
| struct iwl_mld_link *mld_link; |
| |
| if (unlikely(!hdr || link_id < 0)) |
| return false; |
| |
| if (likely(!ieee80211_is_beacon(hdr->frame_control))) |
| return false; |
| |
| /* |
| * if link ID is >= valid ones then that means the RX |
| * was on the AUX link and no correction is needed |
| */ |
| if (link_id >= mld->fw->ucode_capa.num_links) |
| return false; |
| |
| /* for the link conf lookup */ |
| guard(rcu)(); |
| |
| link_conf = rcu_dereference(mld->fw_id_to_bss_conf[link_id]); |
| if (!link_conf) |
| return false; |
| |
| mld_link = iwl_mld_link_from_mac80211(link_conf); |
| if (!mld_link) |
| return false; |
| |
| /* |
| * If we know the link by link ID then the frame was |
| * received for the link, so by filtering it means it |
| * was from the AP the link is connected to. |
| */ |
| |
| /* skip also in case we don't have it (yet) */ |
| if (!mld_link->average_beacon_energy) |
| return false; |
| |
| IWL_DEBUG_STATS(mld, "energy override by average %d\n", |
| mld_link->average_beacon_energy); |
| rx_status->signal = -mld_link->average_beacon_energy; |
| return true; |
| } |
| |
| static void iwl_mld_fill_signal(struct iwl_mld *mld, int link_id, |
| struct ieee80211_hdr *hdr, |
| struct ieee80211_rx_status *rx_status, |
| struct iwl_mld_rx_phy_data *phy_data) |
| { |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| int energy_a = phy_data->energy_a; |
| int energy_b = phy_data->energy_b; |
| int max_energy; |
| |
| energy_a = energy_a ? -energy_a : S8_MIN; |
| energy_b = energy_b ? -energy_b : S8_MIN; |
| max_energy = max(energy_a, energy_b); |
| |
| IWL_DEBUG_STATS(mld, "energy in A %d B %d, and max %d\n", |
| energy_a, energy_b, max_energy); |
| |
| if (iwl_mld_used_average_energy(mld, link_id, hdr, rx_status)) |
| return; |
| |
| rx_status->signal = max_energy; |
| rx_status->chains = u32_get_bits(rate_n_flags, RATE_MCS_ANT_AB_MSK); |
| rx_status->chain_signal[0] = energy_a; |
| rx_status->chain_signal[1] = energy_b; |
| } |
| |
| static void |
| iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data *phy_data, |
| struct ieee80211_radiotap_he *he, |
| struct ieee80211_radiotap_he_mu *he_mu, |
| struct ieee80211_rx_status *rx_status) |
| { |
| /* Unfortunately, we have to leave the mac80211 data |
| * incorrect for the case that we receive an HE-MU |
| * transmission and *don't* have the HE phy data (due |
| * to the bits being used for TSF). This shouldn't |
| * happen though as management frames where we need |
| * the TSF/timers are not be transmitted in HE-MU. |
| */ |
| u8 ru = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; |
| u8 offs = 0; |
| |
| rx_status->bw = RATE_INFO_BW_HE_RU; |
| |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); |
| |
| switch (ru) { |
| case 0 ... 36: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; |
| offs = ru; |
| break; |
| case 37 ... 52: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; |
| offs = ru - 37; |
| break; |
| case 53 ... 60: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; |
| offs = ru - 53; |
| break; |
| case 61 ... 64: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; |
| offs = ru - 61; |
| break; |
| case 65 ... 66: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; |
| offs = ru - 65; |
| break; |
| case 67: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; |
| break; |
| case 68: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; |
| break; |
| } |
| he->data2 |= le16_encode_bits(offs, |
| IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); |
| he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); |
| if (phy_data->data1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) |
| he->data2 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); |
| |
| #define CHECK_BW(bw) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ |
| RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ |
| RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) |
| CHECK_BW(20); |
| CHECK_BW(40); |
| CHECK_BW(80); |
| CHECK_BW(160); |
| |
| if (he_mu) |
| he_mu->flags2 |= |
| le16_encode_bits(u32_get_bits(rate_n_flags, |
| RATE_MCS_CHAN_WIDTH_MSK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); |
| else if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| he->data6 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | |
| le16_encode_bits(u32_get_bits(rate_n_flags, |
| RATE_MCS_CHAN_WIDTH_MSK), |
| IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); |
| } |
| |
| static void |
| iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data *phy_data, |
| struct ieee80211_radiotap_he_mu *he_mu) |
| { |
| u32 phy_data2 = le32_to_cpu(phy_data->data2); |
| u32 phy_data3 = le32_to_cpu(phy_data->data3); |
| u16 phy_data4 = le16_to_cpu(phy_data->data4); |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| |
| if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK)) { |
| he_mu->flags1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); |
| |
| he_mu->flags1 |= |
| le16_encode_bits(u32_get_bits(phy_data4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); |
| |
| he_mu->ru_ch1[0] = u32_get_bits(phy_data2, |
| IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0); |
| he_mu->ru_ch1[1] = u32_get_bits(phy_data3, |
| IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1); |
| he_mu->ru_ch1[2] = u32_get_bits(phy_data2, |
| IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2); |
| he_mu->ru_ch1[3] = u32_get_bits(phy_data3, |
| IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3); |
| } |
| |
| if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK) && |
| (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { |
| he_mu->flags1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); |
| |
| he_mu->flags2 |= |
| le16_encode_bits(u32_get_bits(phy_data4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); |
| |
| he_mu->ru_ch2[0] = u32_get_bits(phy_data2, |
| IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0); |
| he_mu->ru_ch2[1] = u32_get_bits(phy_data3, |
| IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1); |
| he_mu->ru_ch2[2] = u32_get_bits(phy_data2, |
| IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2); |
| he_mu->ru_ch2[3] = u32_get_bits(phy_data3, |
| IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3); |
| } |
| } |
| |
| static void |
| iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data *phy_data, |
| struct ieee80211_radiotap_he *he, |
| struct ieee80211_radiotap_he_mu *he_mu, |
| struct ieee80211_rx_status *rx_status, |
| int queue) |
| { |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_NONE: |
| case IWL_RX_PHY_INFO_TYPE_CCK: |
| case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: |
| case IWL_RX_PHY_INFO_TYPE_HT: |
| case IWL_RX_PHY_INFO_TYPE_VHT_SU: |
| case IWL_RX_PHY_INFO_TYPE_VHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_EHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_EHT_TB: |
| case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: |
| return; |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); |
| fallthrough; |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| /* HE common */ |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); |
| he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), |
| IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); |
| if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && |
| phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_UPLINK), |
| IEEE80211_RADIOTAP_HE_DATA3_UL_DL); |
| } |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), |
| IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), |
| IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), |
| IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data1, |
| IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), |
| IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); |
| he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), |
| IEEE80211_RADIOTAP_HE_DATA6_TXOP); |
| he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_DOPPLER), |
| IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); |
| break; |
| } |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), |
| IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); |
| break; |
| default: |
| /* nothing here */ |
| break; |
| } |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| he_mu->flags1 |= |
| le16_encode_bits(le16_get_bits(phy_data->data4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); |
| he_mu->flags1 |= |
| le16_encode_bits(le16_get_bits(phy_data->data4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); |
| he_mu->flags2 |= |
| le16_encode_bits(le16_get_bits(phy_data->data4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); |
| iwl_mld_decode_he_mu_ext(phy_data, he_mu); |
| fallthrough; |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| he_mu->flags2 |= |
| le16_encode_bits(le32_get_bits(phy_data->data1, |
| IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); |
| he_mu->flags2 |= |
| le16_encode_bits(le32_get_bits(phy_data->data1, |
| IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); |
| fallthrough; |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| iwl_mld_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); |
| break; |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_HE_BEAM_CHNG), |
| IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); |
| break; |
| default: |
| /* nothing */ |
| break; |
| } |
| } |
| |
| static void iwl_mld_rx_he(struct iwl_mld *mld, struct sk_buff *skb, |
| struct iwl_mld_rx_phy_data *phy_data, |
| int queue) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_he *he = NULL; |
| struct ieee80211_radiotap_he_mu *he_mu = NULL; |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; |
| u8 ltf; |
| static const struct ieee80211_radiotap_he known = { |
| .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), |
| .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), |
| }; |
| static const struct ieee80211_radiotap_he_mu mu_known = { |
| .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), |
| .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), |
| }; |
| u16 phy_info = phy_data->phy_info; |
| |
| he = skb_put_data(skb, &known, sizeof(known)); |
| rx_status->flag |= RX_FLAG_RADIOTAP_HE; |
| |
| if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || |
| phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { |
| he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); |
| rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; |
| } |
| |
| /* report the AMPDU-EOF bit on single frames */ |
| if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { |
| rx_status->flag |= RX_FLAG_AMPDU_DETAILS; |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) |
| iwl_mld_decode_he_phy_data(phy_data, he, he_mu, rx_status, |
| queue); |
| |
| /* update aggregation data for monitor sake on default queue */ |
| if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && |
| (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| if (he_type == RATE_MCS_HE_TYPE_EXT_SU && |
| rate_n_flags & RATE_MCS_HE_106T_MSK) { |
| rx_status->bw = RATE_INFO_BW_HE_RU; |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; |
| } |
| |
| /* actually data is filled in mac80211 */ |
| if (he_type == RATE_MCS_HE_TYPE_SU || |
| he_type == RATE_MCS_HE_TYPE_EXT_SU) |
| he->data1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); |
| |
| #define CHECK_TYPE(F) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ |
| (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) |
| |
| CHECK_TYPE(SU); |
| CHECK_TYPE(EXT_SU); |
| CHECK_TYPE(MU); |
| CHECK_TYPE(TRIG); |
| |
| he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); |
| |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); |
| |
| switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> |
| RATE_MCS_HE_GI_LTF_POS) { |
| case 0: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| else |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| if (he_type == RATE_MCS_HE_TYPE_MU) |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| else |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; |
| break; |
| case 1: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| else |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| break; |
| case 2: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) { |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| } else { |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| } |
| break; |
| case 3: |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| break; |
| case 4: |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| break; |
| default: |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; |
| } |
| |
| he->data5 |= le16_encode_bits(ltf, |
| IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); |
| } |
| |
| static void iwl_mld_decode_lsig(struct sk_buff *skb, |
| struct iwl_mld_rx_phy_data *phy_data) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_lsig *lsig; |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HT: |
| case IWL_RX_PHY_INFO_TYPE_VHT_SU: |
| case IWL_RX_PHY_INFO_TYPE_VHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| case IWL_RX_PHY_INFO_TYPE_EHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_EHT_TB: |
| case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: |
| lsig = skb_put(skb, sizeof(*lsig)); |
| lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); |
| lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->data1, |
| IWL_RX_PHY_DATA1_LSIG_LEN_MASK), |
| IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); |
| rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Put a TLV on the skb and return data pointer |
| * |
| * Also pad the len to 4 and zero out all data part |
| */ |
| static void * |
| iwl_mld_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) |
| { |
| struct ieee80211_radiotap_tlv *tlv; |
| |
| tlv = skb_put(skb, sizeof(*tlv)); |
| tlv->type = cpu_to_le16(type); |
| tlv->len = cpu_to_le16(len); |
| return skb_put_zero(skb, ALIGN(len, 4)); |
| } |
| |
| #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ |
| le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) |
| |
| #define IWL_MLD_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ |
| typeof(enc_bits) _enc_bits = enc_bits; \ |
| typeof(usig) _usig = usig; \ |
| (_usig)->mask |= cpu_to_le32(_enc_bits); \ |
| (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ |
| } while (0) |
| |
| #define __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ |
| eht->data[(rt_data)] |= \ |
| (cpu_to_le32 \ |
| (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ |
| LE32_DEC_ENC(data ## fw_data, \ |
| IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ |
| IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) |
| |
| #define _IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ |
| __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) |
| |
| #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 |
| #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 |
| #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 |
| #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 |
| #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 |
| #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 |
| #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 |
| #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 |
| |
| #define IWL_RX_RU_DATA_A1 2 |
| #define IWL_RX_RU_DATA_A2 2 |
| #define IWL_RX_RU_DATA_B1 2 |
| #define IWL_RX_RU_DATA_B2 4 |
| #define IWL_RX_RU_DATA_C1 3 |
| #define IWL_RX_RU_DATA_C2 3 |
| #define IWL_RX_RU_DATA_D1 4 |
| #define IWL_RX_RU_DATA_D2 4 |
| |
| #define IWL_MLD_ENC_EHT_RU(rt_ru, fw_ru) \ |
| _IWL_MLD_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ |
| rt_ru, \ |
| IWL_RX_RU_DATA_ ## fw_ru, \ |
| fw_ru) |
| |
| static void iwl_mld_decode_eht_ext_mu(struct iwl_mld *mld, |
| struct iwl_mld_rx_phy_data *phy_data, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_radiotap_eht *eht, |
| struct ieee80211_radiotap_eht_usig *usig) |
| { |
| if (phy_data->with_data) { |
| __le32 data1 = phy_data->data1; |
| __le32 data2 = phy_data->data2; |
| __le32 data3 = phy_data->data3; |
| __le32 data4 = phy_data->eht_data4; |
| __le32 data5 = phy_data->data5; |
| u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; |
| |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, data4, |
| IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); |
| IWL_MLD_ENC_USIG_VALUE_MASK |
| (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); |
| |
| eht->user_info[0] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | |
| LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, |
| IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); |
| eht->data[7] |= LE32_DEC_ENC |
| (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, |
| IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); |
| |
| /* |
| * Hardware labels the content channels/RU allocation values |
| * as follows: |
| * Content Channel 1 Content Channel 2 |
| * 20 MHz: A1 |
| * 40 MHz: A1 B1 |
| * 80 MHz: A1 C1 B1 D1 |
| * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 |
| * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 |
| * |
| * However firmware can only give us A1-D2, so the higher |
| * frequencies are missing. |
| */ |
| |
| switch (phy_bw) { |
| case RATE_MCS_CHAN_WIDTH_320: |
| /* additional values are missing in RX metadata */ |
| fallthrough; |
| case RATE_MCS_CHAN_WIDTH_160: |
| /* content channel 1 */ |
| IWL_MLD_ENC_EHT_RU(1_2_1, A2); |
| IWL_MLD_ENC_EHT_RU(1_2_2, C2); |
| /* content channel 2 */ |
| IWL_MLD_ENC_EHT_RU(2_2_1, B2); |
| IWL_MLD_ENC_EHT_RU(2_2_2, D2); |
| fallthrough; |
| case RATE_MCS_CHAN_WIDTH_80: |
| /* content channel 1 */ |
| IWL_MLD_ENC_EHT_RU(1_1_2, C1); |
| /* content channel 2 */ |
| IWL_MLD_ENC_EHT_RU(2_1_2, D1); |
| fallthrough; |
| case RATE_MCS_CHAN_WIDTH_40: |
| /* content channel 2 */ |
| IWL_MLD_ENC_EHT_RU(2_1_1, B1); |
| fallthrough; |
| case RATE_MCS_CHAN_WIDTH_20: |
| IWL_MLD_ENC_EHT_RU(1_1_1, A1); |
| break; |
| } |
| } else { |
| __le32 usig_a1 = phy_data->rx_vec[0]; |
| __le32 usig_a2 = phy_data->rx_vec[1]; |
| |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, |
| IWL_RX_USIG_A1_DISREGARD, |
| IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, |
| IWL_RX_USIG_A1_VALIDATE, |
| IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_PPDU_TYPE, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_SIG_MCS, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); |
| IWL_MLD_ENC_USIG_VALUE_MASK |
| (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_CRC_OK, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); |
| } |
| } |
| |
| static void iwl_mld_decode_eht_ext_tb(struct iwl_mld *mld, |
| struct iwl_mld_rx_phy_data *phy_data, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_radiotap_eht *eht, |
| struct ieee80211_radiotap_eht_usig *usig) |
| { |
| if (phy_data->with_data) { |
| __le32 data5 = phy_data->data5; |
| |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); |
| |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); |
| } else { |
| __le32 usig_a1 = phy_data->rx_vec[0]; |
| __le32 usig_a2 = phy_data->rx_vec[1]; |
| |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1, |
| IWL_RX_USIG_A1_DISREGARD, |
| IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_PPDU_TYPE, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); |
| IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_CRC_OK, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); |
| } |
| } |
| |
| static void iwl_mld_decode_eht_ru(struct iwl_mld *mld, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_radiotap_eht *eht) |
| { |
| u32 ru = le32_get_bits(eht->data[8], |
| IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); |
| enum nl80211_eht_ru_alloc nl_ru; |
| |
| /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields |
| * in an EHT variant User Info field |
| */ |
| |
| switch (ru) { |
| case 0 ... 36: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; |
| break; |
| case 37 ... 52: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; |
| break; |
| case 53 ... 60: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; |
| break; |
| case 61 ... 64: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; |
| break; |
| case 65 ... 66: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; |
| break; |
| case 67: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; |
| break; |
| case 68: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; |
| break; |
| case 69: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; |
| break; |
| case 70 ... 81: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; |
| break; |
| case 82 ... 89: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; |
| break; |
| case 90 ... 93: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; |
| break; |
| case 94 ... 95: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; |
| break; |
| case 96 ... 99: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; |
| break; |
| case 100 ... 103: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; |
| break; |
| case 104: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; |
| break; |
| case 105 ... 106: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; |
| break; |
| default: |
| return; |
| } |
| |
| rx_status->bw = RATE_INFO_BW_EHT_RU; |
| rx_status->eht.ru = nl_ru; |
| } |
| |
| static void iwl_mld_decode_eht_phy_data(struct iwl_mld *mld, |
| struct iwl_mld_rx_phy_data *phy_data, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_radiotap_eht *eht, |
| struct ieee80211_radiotap_eht_usig *usig) |
| |
| { |
| __le32 data0 = phy_data->data0; |
| __le32 data1 = phy_data->data1; |
| __le32 usig_a1 = phy_data->rx_vec[0]; |
| u8 info_type = phy_data->info_type; |
| |
| /* Not in EHT range */ |
| if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || |
| info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) |
| return; |
| |
| usig->common |= cpu_to_le32 |
| (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); |
| if (phy_data->with_data) { |
| usig->common |= LE32_DEC_ENC(data0, |
| IWL_RX_PHY_DATA0_EHT_UPLINK, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); |
| usig->common |= LE32_DEC_ENC(data0, |
| IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); |
| } else { |
| usig->common |= LE32_DEC_ENC(usig_a1, |
| IWL_RX_USIG_A1_UL_FLAG, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); |
| usig->common |= LE32_DEC_ENC(usig_a1, |
| IWL_RX_USIG_A1_BSS_COLOR, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); |
| } |
| |
| usig->common |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); |
| usig->common |= |
| LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); |
| eht->data[0] |= LE32_DEC_ENC(data0, |
| IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, |
| IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); |
| |
| /* All RU allocating size/index is in TB format */ |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); |
| eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, |
| IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); |
| eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, |
| IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); |
| eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, |
| IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); |
| |
| iwl_mld_decode_eht_ru(mld, rx_status, eht); |
| |
| /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set |
| * which is on only in case of monitor mode so no need to check monitor |
| * mode |
| */ |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); |
| eht->data[1] |= |
| le32_encode_bits(mld->monitor.p80, |
| IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); |
| |
| usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); |
| if (phy_data->with_data) |
| usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); |
| else |
| usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); |
| eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, |
| IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); |
| eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, |
| IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); |
| eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, |
| IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); |
| |
| /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ |
| |
| if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) |
| usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); |
| |
| usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); |
| usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); |
| |
| /* |
| * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, |
| * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS |
| */ |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); |
| eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, |
| IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); |
| |
| if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || |
| info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) |
| iwl_mld_decode_eht_ext_tb(mld, phy_data, rx_status, eht, usig); |
| |
| if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || |
| info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) |
| iwl_mld_decode_eht_ext_mu(mld, phy_data, rx_status, eht, usig); |
| } |
| |
| static void iwl_mld_rx_eht(struct iwl_mld *mld, struct sk_buff *skb, |
| struct iwl_mld_rx_phy_data *phy_data, |
| int queue) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_eht *eht; |
| struct ieee80211_radiotap_eht_usig *usig; |
| size_t eht_len = sizeof(*eht); |
| |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; |
| /* EHT and HE have the same values for LTF */ |
| u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; |
| u16 phy_info = phy_data->phy_info; |
| u32 bw; |
| |
| /* u32 for 1 user_info */ |
| if (phy_data->with_data) |
| eht_len += sizeof(u32); |
| |
| eht = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); |
| |
| usig = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, |
| sizeof(*usig)); |
| rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; |
| usig->common |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); |
| |
| /* specific handling for 320MHz */ |
| bw = u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK); |
| if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) |
| bw += le32_get_bits(phy_data->data0, |
| IWL_RX_PHY_DATA0_EHT_BW320_SLOT); |
| |
| usig->common |= cpu_to_le32 |
| (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); |
| |
| /* report the AMPDU-EOF bit on single frames */ |
| if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { |
| rx_status->flag |= RX_FLAG_AMPDU_DETAILS; |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->data0 & |
| cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| /* update aggregation data for monitor sake on default queue */ |
| if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && |
| (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->data0 & |
| cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) |
| iwl_mld_decode_eht_phy_data(mld, phy_data, rx_status, eht, usig); |
| |
| #define CHECK_TYPE(F) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ |
| (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) |
| |
| CHECK_TYPE(SU); |
| CHECK_TYPE(EXT_SU); |
| CHECK_TYPE(MU); |
| CHECK_TYPE(TRIG); |
| |
| switch (u32_get_bits(rate_n_flags, RATE_MCS_HE_GI_LTF_MSK)) { |
| case 0: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) { |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; |
| } else { |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| } |
| break; |
| case 1: |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| break; |
| case 2: |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; |
| else |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; |
| break; |
| case 3: |
| if (he_type != RATE_MCS_HE_TYPE_TRIG) { |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; |
| } |
| break; |
| default: |
| /* nothing here */ |
| break; |
| } |
| |
| if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); |
| eht->data[0] |= cpu_to_le32 |
| (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, |
| ltf) | |
| FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, |
| rx_status->eht.gi)); |
| } |
| |
| if (!phy_data->with_data) { |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | |
| IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); |
| eht->data[7] |= |
| le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], |
| RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), |
| IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| eht->data[7] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); |
| } else { |
| eht->user_info[0] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | |
| IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | |
| IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | |
| IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | |
| IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); |
| |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| eht->user_info[0] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); |
| |
| if (rate_n_flags & RATE_MCS_LDPC_MSK) |
| eht->user_info[0] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); |
| |
| eht->user_info[0] |= cpu_to_le32 |
| (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, |
| u32_get_bits(rate_n_flags, |
| RATE_VHT_MCS_RATE_CODE_MSK)) | |
| FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, |
| u32_get_bits(rate_n_flags, |
| RATE_MCS_NSS_MSK))); |
| } |
| } |
| |
| #ifdef CONFIG_IWLWIFI_DEBUGFS |
| static void iwl_mld_add_rtap_sniffer_config(struct iwl_mld *mld, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_vendor_content *radiotap; |
| const u16 vendor_data_len = sizeof(mld->monitor.cur_aid); |
| |
| if (!mld->monitor.cur_aid) |
| return; |
| |
| radiotap = |
| iwl_mld_radiotap_put_tlv(skb, |
| IEEE80211_RADIOTAP_VENDOR_NAMESPACE, |
| sizeof(*radiotap) + vendor_data_len); |
| |
| /* Intel OUI */ |
| radiotap->oui[0] = 0xf6; |
| radiotap->oui[1] = 0x54; |
| radiotap->oui[2] = 0x25; |
| /* radiotap sniffer config sub-namespace */ |
| radiotap->oui_subtype = 1; |
| radiotap->vendor_type = 0; |
| |
| /* fill the data now */ |
| memcpy(radiotap->data, &mld->monitor.cur_aid, |
| sizeof(mld->monitor.cur_aid)); |
| |
| rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; |
| } |
| #endif |
| |
| /* Note: hdr can be NULL */ |
| static void iwl_mld_rx_fill_status(struct iwl_mld *mld, int link_id, |
| struct ieee80211_hdr *hdr, |
| struct sk_buff *skb, |
| struct iwl_mld_rx_phy_data *phy_data, |
| int queue) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| u32 format = phy_data->rate_n_flags & RATE_MCS_MOD_TYPE_MSK; |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); |
| bool is_sgi = rate_n_flags & RATE_MCS_SGI_MSK; |
| |
| phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; |
| |
| if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) |
| phy_data->info_type = |
| le32_get_bits(phy_data->data1, |
| IWL_RX_PHY_DATA1_INFO_TYPE_MASK); |
| |
| /* set the preamble flag if appropriate */ |
| if (format == RATE_MCS_MOD_TYPE_CCK && |
| phy_data->phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) |
| rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; |
| |
| iwl_mld_fill_signal(mld, link_id, hdr, rx_status, phy_data); |
| |
| /* This may be overridden by iwl_mld_rx_he() to HE_RU */ |
| switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { |
| case RATE_MCS_CHAN_WIDTH_20: |
| break; |
| case RATE_MCS_CHAN_WIDTH_40: |
| rx_status->bw = RATE_INFO_BW_40; |
| break; |
| case RATE_MCS_CHAN_WIDTH_80: |
| rx_status->bw = RATE_INFO_BW_80; |
| break; |
| case RATE_MCS_CHAN_WIDTH_160: |
| rx_status->bw = RATE_INFO_BW_160; |
| break; |
| case RATE_MCS_CHAN_WIDTH_320: |
| rx_status->bw = RATE_INFO_BW_320; |
| break; |
| } |
| |
| /* must be before L-SIG data */ |
| if (format == RATE_MCS_MOD_TYPE_HE) |
| iwl_mld_rx_he(mld, skb, phy_data, queue); |
| |
| iwl_mld_decode_lsig(skb, phy_data); |
| |
| rx_status->device_timestamp = phy_data->gp2_on_air_rise; |
| |
| /* using TLV format and must be after all fixed len fields */ |
| if (format == RATE_MCS_MOD_TYPE_EHT) |
| iwl_mld_rx_eht(mld, skb, phy_data, queue); |
| |
| #ifdef CONFIG_IWLWIFI_DEBUGFS |
| if (unlikely(mld->monitor.on)) { |
| iwl_mld_add_rtap_sniffer_config(mld, skb); |
| |
| if (mld->monitor.ptp_time) { |
| u64 adj_time = |
| iwl_mld_ptp_get_adj_time(mld, |
| phy_data->gp2_on_air_rise * |
| NSEC_PER_USEC); |
| |
| rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC); |
| rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64; |
| rx_status->flag &= ~RX_FLAG_MACTIME; |
| } |
| } |
| #endif |
| |
| if (format != RATE_MCS_MOD_TYPE_CCK && is_sgi) |
| rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; |
| |
| if (rate_n_flags & RATE_MCS_LDPC_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_LDPC; |
| |
| switch (format) { |
| case RATE_MCS_MOD_TYPE_HT: |
| rx_status->encoding = RX_ENC_HT; |
| rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| break; |
| case RATE_MCS_MOD_TYPE_VHT: |
| case RATE_MCS_MOD_TYPE_HE: |
| case RATE_MCS_MOD_TYPE_EHT: |
| if (format == RATE_MCS_MOD_TYPE_VHT) { |
| rx_status->encoding = RX_ENC_VHT; |
| } else if (format == RATE_MCS_MOD_TYPE_HE) { |
| rx_status->encoding = RX_ENC_HE; |
| rx_status->he_dcm = |
| !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); |
| } else if (format == RATE_MCS_MOD_TYPE_EHT) { |
| rx_status->encoding = RX_ENC_EHT; |
| } |
| |
| rx_status->nss = u32_get_bits(rate_n_flags, |
| RATE_MCS_NSS_MSK) + 1; |
| rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| break; |
| default: { |
| int rate = |
| iwl_mld_legacy_hw_idx_to_mac80211_idx(rate_n_flags, |
| rx_status->band); |
| |
| /* valid rate */ |
| if (rate >= 0 && rate <= 0xFF) { |
| rx_status->rate_idx = rate; |
| break; |
| } |
| |
| /* invalid rate */ |
| rx_status->rate_idx = 0; |
| |
| if (net_ratelimit()) |
| IWL_ERR(mld, "invalid rate_n_flags=0x%x, band=%d\n", |
| rate_n_flags, rx_status->band); |
| break; |
| } |
| } |
| } |
| |
| /* iwl_mld_create_skb adds the rxb to a new skb */ |
| static int iwl_mld_build_rx_skb(struct iwl_mld *mld, struct sk_buff *skb, |
| struct ieee80211_hdr *hdr, u16 len, |
| u8 crypt_len, struct iwl_rx_cmd_buffer *rxb) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; |
| unsigned int headlen, fraglen, pad_len = 0; |
| unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| u8 mic_crc_len = u8_get_bits(desc->mac_flags1, |
| IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; |
| |
| if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { |
| len -= 2; |
| pad_len = 2; |
| } |
| |
| /* For non monitor interface strip the bytes the RADA might not have |
| * removed (it might be disabled, e.g. for mgmt frames). As a monitor |
| * interface cannot exist with other interfaces, this removal is safe |
| * and sufficient, in monitor mode there's no decryption being done. |
| */ |
| if (len > mic_crc_len && !ieee80211_hw_check(mld->hw, RX_INCLUDES_FCS)) |
| len -= mic_crc_len; |
| |
| /* If frame is small enough to fit in skb->head, pull it completely. |
| * If not, only pull ieee80211_hdr (including crypto if present, and |
| * an additional 8 bytes for SNAP/ethertype, see below) so that |
| * splice() or TCP coalesce are more efficient. |
| * |
| * Since, in addition, ieee80211_data_to_8023() always pull in at |
| * least 8 bytes (possibly more for mesh) we can do the same here |
| * to save the cost of doing it later. That still doesn't pull in |
| * the actual IP header since the typical case has a SNAP header. |
| * If the latter changes (there are efforts in the standards group |
| * to do so) we should revisit this and ieee80211_data_to_8023(). |
| */ |
| headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8; |
| |
| /* The firmware may align the packet to DWORD. |
| * The padding is inserted after the IV. |
| * After copying the header + IV skip the padding if |
| * present before copying packet data. |
| */ |
| hdrlen += crypt_len; |
| |
| if (unlikely(headlen < hdrlen)) |
| return -EINVAL; |
| |
| /* Since data doesn't move data while putting data on skb and that is |
| * the only way we use, data + len is the next place that hdr would |
| * be put |
| */ |
| skb_set_mac_header(skb, skb->len); |
| skb_put_data(skb, hdr, hdrlen); |
| skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); |
| |
| if (skb->ip_summed == CHECKSUM_COMPLETE) { |
| struct { |
| u8 hdr[6]; |
| __be16 type; |
| } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); |
| |
| if (unlikely(headlen - hdrlen < sizeof(*shdr) || |
| !ether_addr_equal(shdr->hdr, rfc1042_header) || |
| (shdr->type != htons(ETH_P_IP) && |
| shdr->type != htons(ETH_P_ARP) && |
| shdr->type != htons(ETH_P_IPV6) && |
| shdr->type != htons(ETH_P_8021Q) && |
| shdr->type != htons(ETH_P_PAE) && |
| shdr->type != htons(ETH_P_TDLS)))) |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| |
| fraglen = len - headlen; |
| |
| if (fraglen) { |
| int offset = (u8 *)hdr + headlen + pad_len - |
| (u8 *)rxb_addr(rxb) + rxb_offset(rxb); |
| |
| skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, |
| fraglen, rxb->truesize); |
| } |
| |
| return 0; |
| } |
| |
| /* returns true if a packet is a duplicate or invalid tid and |
| * should be dropped. Updates AMSDU PN tracking info |
| */ |
| VISIBLE_IF_IWLWIFI_KUNIT |
| bool |
| iwl_mld_is_dup(struct iwl_mld *mld, struct ieee80211_sta *sta, |
| struct ieee80211_hdr *hdr, |
| const struct iwl_rx_mpdu_desc *mpdu_desc, |
| struct ieee80211_rx_status *rx_status, int queue) |
| { |
| struct iwl_mld_sta *mld_sta; |
| struct iwl_mld_rxq_dup_data *dup_data; |
| u8 tid, sub_frame_idx; |
| |
| if (WARN_ON(!sta)) |
| return false; |
| |
| mld_sta = iwl_mld_sta_from_mac80211(sta); |
| |
| if (WARN_ON_ONCE(!mld_sta->dup_data)) |
| return false; |
| |
| dup_data = &mld_sta->dup_data[queue]; |
| |
| /* Drop duplicate 802.11 retransmissions |
| * (IEEE 802.11-2020: 10.3.2.14 "Duplicate detection and recovery") |
| */ |
| if (ieee80211_is_ctl(hdr->frame_control) || |
| ieee80211_is_any_nullfunc(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) |
| return false; |
| |
| if (ieee80211_is_data_qos(hdr->frame_control)) { |
| /* frame has qos control */ |
| tid = ieee80211_get_tid(hdr); |
| if (tid >= IWL_MAX_TID_COUNT) |
| return true; |
| } else { |
| tid = IWL_MAX_TID_COUNT; |
| } |
| |
| /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ |
| sub_frame_idx = mpdu_desc->amsdu_info & |
| IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; |
| |
| if (IWL_FW_CHECK(mld, |
| sub_frame_idx > 0 && |
| !(mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU), |
| "got sub_frame_idx=%d but A-MSDU flag is not set\n", |
| sub_frame_idx)) |
| return true; |
| |
| if (unlikely(ieee80211_has_retry(hdr->frame_control) && |
| dup_data->last_seq[tid] == hdr->seq_ctrl && |
| dup_data->last_sub_frame_idx[tid] >= sub_frame_idx)) |
| return true; |
| |
| /* Allow same PN as the first subframe for following sub frames */ |
| if (dup_data->last_seq[tid] == hdr->seq_ctrl && |
| sub_frame_idx > dup_data->last_sub_frame_idx[tid]) |
| rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; |
| |
| dup_data->last_seq[tid] = hdr->seq_ctrl; |
| dup_data->last_sub_frame_idx[tid] = sub_frame_idx; |
| |
| rx_status->flag |= RX_FLAG_DUP_VALIDATED; |
| |
| return false; |
| } |
| EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_is_dup); |
| |
| static void iwl_mld_update_last_rx_timestamp(struct iwl_mld *mld, u8 baid) |
| { |
| unsigned long now = jiffies; |
| unsigned long timeout; |
| struct iwl_mld_baid_data *ba_data; |
| |
| ba_data = rcu_dereference(mld->fw_id_to_ba[baid]); |
| if (!ba_data) { |
| IWL_DEBUG_HT(mld, "BAID %d not found in map\n", baid); |
| return; |
| } |
| |
| if (!ba_data->timeout) |
| return; |
| |
| /* To minimize cache bouncing between RX queues, avoid frequent updates |
| * to last_rx_timestamp. update it only when the timeout period has |
| * passed. The worst-case scenario is the session expiring after |
| * approximately 2 * timeout, which is negligible (the update is |
| * atomic). |
| */ |
| timeout = TU_TO_JIFFIES(ba_data->timeout); |
| if (time_is_before_jiffies(ba_data->last_rx_timestamp + timeout)) |
| ba_data->last_rx_timestamp = now; |
| } |
| |
| /* Processes received packets for a station. |
| * Sets *drop to true if the packet should be dropped. |
| * Returns the station if found, or NULL otherwise. |
| */ |
| static struct ieee80211_sta * |
| iwl_mld_rx_with_sta(struct iwl_mld *mld, struct ieee80211_hdr *hdr, |
| struct sk_buff *skb, |
| const struct iwl_rx_mpdu_desc *mpdu_desc, |
| const struct iwl_rx_packet *pkt, int queue, bool *drop) |
| { |
| struct ieee80211_sta *sta = NULL; |
| struct ieee80211_link_sta *link_sta = NULL; |
| struct ieee80211_rx_status *rx_status; |
| u8 baid; |
| |
| if (mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { |
| u8 sta_id = le32_get_bits(mpdu_desc->status, |
| IWL_RX_MPDU_STATUS_STA_ID); |
| |
| if (IWL_FW_CHECK(mld, |
| sta_id >= mld->fw->ucode_capa.num_stations, |
| "rx_mpdu: invalid sta_id %d\n", sta_id)) |
| return NULL; |
| |
| link_sta = rcu_dereference(mld->fw_id_to_link_sta[sta_id]); |
| if (!IS_ERR_OR_NULL(link_sta)) |
| sta = link_sta->sta; |
| } else if (!is_multicast_ether_addr(hdr->addr2)) { |
| /* Passing NULL is fine since we prevent two stations with the |
| * same address from being added. |
| */ |
| sta = ieee80211_find_sta_by_ifaddr(mld->hw, hdr->addr2, NULL); |
| } |
| |
| /* we may not have any station yet */ |
| if (!sta) |
| return NULL; |
| |
| rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| if (link_sta && sta->valid_links) { |
| rx_status->link_valid = true; |
| rx_status->link_id = link_sta->link_id; |
| } |
| |
| /* fill checksum */ |
| if (ieee80211_is_data(hdr->frame_control) && |
| pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { |
| u16 hwsum = be16_to_cpu(mpdu_desc->v3.raw_xsum); |
| |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| skb->csum = csum_unfold(~(__force __sum16)hwsum); |
| } |
| |
| if (iwl_mld_is_dup(mld, sta, hdr, mpdu_desc, rx_status, queue)) { |
| IWL_DEBUG_DROP(mld, "Dropping duplicate packet 0x%x\n", |
| le16_to_cpu(hdr->seq_ctrl)); |
| *drop = true; |
| return NULL; |
| } |
| |
| baid = le32_get_bits(mpdu_desc->reorder_data, |
| IWL_RX_MPDU_REORDER_BAID_MASK); |
| if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) |
| iwl_mld_update_last_rx_timestamp(mld, baid); |
| |
| if (link_sta && ieee80211_is_data(hdr->frame_control)) { |
| u8 sub_frame_idx = mpdu_desc->amsdu_info & |
| IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; |
| |
| /* 0 means not an A-MSDU, and 1 means a new A-MSDU */ |
| if (!sub_frame_idx || sub_frame_idx == 1) |
| iwl_mld_count_mpdu_rx(link_sta, queue, 1); |
| |
| if (!is_multicast_ether_addr(hdr->addr1)) |
| iwl_mld_low_latency_update_counters(mld, hdr, sta, |
| queue); |
| } |
| |
| return sta; |
| } |
| |
| #define KEY_IDX_LEN 2 |
| |
| static int iwl_mld_rx_mgmt_prot(struct ieee80211_sta *sta, |
| struct ieee80211_hdr *hdr, |
| struct ieee80211_rx_status *rx_status, |
| u32 mpdu_status, |
| u32 mpdu_len) |
| { |
| struct wireless_dev *wdev; |
| struct iwl_mld_sta *mld_sta; |
| struct iwl_mld_vif *mld_vif; |
| u8 keyidx; |
| struct ieee80211_key_conf *key; |
| const u8 *frame = (void *)hdr; |
| |
| if ((mpdu_status & IWL_RX_MPDU_STATUS_SEC_MASK) == |
| IWL_RX_MPDU_STATUS_SEC_NONE) |
| return 0; |
| |
| /* For non-beacon, we don't really care. But beacons may |
| * be filtered out, and we thus need the firmware's replay |
| * detection, otherwise beacons the firmware previously |
| * filtered could be replayed, or something like that, and |
| * it can filter a lot - though usually only if nothing has |
| * changed. |
| */ |
| if (!ieee80211_is_beacon(hdr->frame_control)) |
| return 0; |
| |
| if (!sta) |
| return -1; |
| |
| mld_sta = iwl_mld_sta_from_mac80211(sta); |
| mld_vif = iwl_mld_vif_from_mac80211(mld_sta->vif); |
| |
| /* key mismatch - will also report !MIC_OK but we shouldn't count it */ |
| if (!(mpdu_status & IWL_RX_MPDU_STATUS_KEY_VALID)) |
| goto report; |
| |
| /* good cases */ |
| if (likely(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK && |
| !(mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { |
| rx_status->flag |= RX_FLAG_DECRYPTED; |
| return 0; |
| } |
| |
| /* both keys will have the same cipher and MIC length, use |
| * whichever one is available |
| */ |
| key = rcu_dereference(mld_vif->bigtks[0]); |
| if (!key) { |
| key = rcu_dereference(mld_vif->bigtks[1]); |
| if (!key) |
| goto report; |
| } |
| |
| if (mpdu_len < key->icv_len + IEEE80211_GMAC_PN_LEN + KEY_IDX_LEN) |
| goto report; |
| |
| /* get the real key ID */ |
| keyidx = frame[mpdu_len - key->icv_len - IEEE80211_GMAC_PN_LEN - KEY_IDX_LEN]; |
| /* and if that's the other key, look it up */ |
| if (keyidx != key->keyidx) { |
| /* shouldn't happen since firmware checked, but be safe |
| * in case the MIC length is wrong too, for example |
| */ |
| if (keyidx != 6 && keyidx != 7) |
| return -1; |
| |
| key = rcu_dereference(mld_vif->bigtks[keyidx - 6]); |
| if (!key) |
| goto report; |
| } |
| |
| /* Report status to mac80211 */ |
| if (!(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK)) |
| ieee80211_key_mic_failure(key); |
| else if (mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) |
| ieee80211_key_replay(key); |
| report: |
| wdev = ieee80211_vif_to_wdev(mld_sta->vif); |
| if (wdev->netdev) |
| cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, |
| mpdu_len); |
| |
| return -1; |
| } |
| |
| static int iwl_mld_rx_crypto(struct iwl_mld *mld, |
| struct ieee80211_sta *sta, |
| struct ieee80211_hdr *hdr, |
| struct ieee80211_rx_status *rx_status, |
| struct iwl_rx_mpdu_desc *desc, int queue, |
| u32 pkt_flags, u8 *crypto_len) |
| { |
| u32 status = le32_to_cpu(desc->status); |
| |
| if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && |
| !ieee80211_has_protected(hdr->frame_control))) |
| return iwl_mld_rx_mgmt_prot(sta, hdr, rx_status, status, |
| le16_to_cpu(desc->mpdu_len)); |
| |
| if (!ieee80211_has_protected(hdr->frame_control) || |
| (status & IWL_RX_MPDU_STATUS_SEC_MASK) == |
| IWL_RX_MPDU_STATUS_SEC_NONE) |
| return 0; |
| |
| switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { |
| case IWL_RX_MPDU_STATUS_SEC_CCM: |
| case IWL_RX_MPDU_STATUS_SEC_GCM: |
| BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); |
| if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { |
| IWL_DEBUG_DROP(mld, |
| "Dropping packet, bad MIC (CCM/GCM)\n"); |
| return -1; |
| } |
| |
| rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; |
| *crypto_len = IEEE80211_CCMP_HDR_LEN; |
| return 0; |
| case IWL_RX_MPDU_STATUS_SEC_TKIP: |
| if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) |
| return -1; |
| |
| if (!(status & RX_MPDU_RES_STATUS_MIC_OK)) |
| rx_status->flag |= RX_FLAG_MMIC_ERROR; |
| |
| if (pkt_flags & FH_RSCSR_RADA_EN) { |
| rx_status->flag |= RX_FLAG_ICV_STRIPPED; |
| rx_status->flag |= RX_FLAG_MMIC_STRIPPED; |
| } |
| |
| *crypto_len = IEEE80211_TKIP_IV_LEN; |
| rx_status->flag |= RX_FLAG_DECRYPTED; |
| return 0; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static void iwl_mld_rx_update_ampdu_ref(struct iwl_mld *mld, |
| struct iwl_mld_rx_phy_data *phy_data, |
| struct ieee80211_rx_status *rx_status) |
| { |
| bool toggle_bit = |
| phy_data->phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; |
| |
| rx_status->flag |= RX_FLAG_AMPDU_DETAILS; |
| /* Toggle is switched whenever new aggregation starts. Make |
| * sure ampdu_reference is never 0 so we can later use it to |
| * see if the frame was really part of an A-MPDU or not. |
| */ |
| if (toggle_bit != mld->monitor.ampdu_toggle) { |
| mld->monitor.ampdu_ref++; |
| if (mld->monitor.ampdu_ref == 0) |
| mld->monitor.ampdu_ref++; |
| mld->monitor.ampdu_toggle = toggle_bit; |
| phy_data->first_subframe = true; |
| } |
| rx_status->ampdu_reference = mld->monitor.ampdu_ref; |
| } |
| |
| static void |
| iwl_mld_fill_rx_status_band_freq(struct ieee80211_rx_status *rx_status, |
| u8 band, u8 channel) |
| { |
| rx_status->band = iwl_mld_phy_band_to_nl80211(band); |
| rx_status->freq = ieee80211_channel_to_frequency(channel, |
| rx_status->band); |
| } |
| |
| void iwl_mld_rx_mpdu(struct iwl_mld *mld, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_mld_rx_phy_data phy_data = {}; |
| struct iwl_rx_mpdu_desc *mpdu_desc = (void *)pkt->data; |
| struct ieee80211_sta *sta; |
| struct ieee80211_hdr *hdr; |
| struct sk_buff *skb; |
| size_t mpdu_desc_size = sizeof(*mpdu_desc); |
| bool drop = false; |
| u8 crypto_len = 0, band, link_id; |
| u32 pkt_len = iwl_rx_packet_payload_len(pkt); |
| u32 mpdu_len; |
| enum iwl_mld_reorder_result reorder_res; |
| struct ieee80211_rx_status *rx_status; |
| |
| if (unlikely(mld->fw_status.in_hw_restart)) |
| return; |
| |
| if (IWL_FW_CHECK(mld, pkt_len < mpdu_desc_size, |
| "Bad REPLY_RX_MPDU_CMD size (%d)\n", pkt_len)) |
| return; |
| |
| mpdu_len = le16_to_cpu(mpdu_desc->mpdu_len); |
| |
| if (IWL_FW_CHECK(mld, mpdu_len + mpdu_desc_size > pkt_len, |
| "FW lied about packet len (%d)\n", pkt_len)) |
| return; |
| |
| /* Don't use dev_alloc_skb(), we'll have enough headroom once |
| * ieee80211_hdr pulled. |
| */ |
| skb = alloc_skb(128, GFP_ATOMIC); |
| if (!skb) { |
| IWL_ERR(mld, "alloc_skb failed\n"); |
| return; |
| } |
| |
| hdr = (void *)(pkt->data + mpdu_desc_size); |
| |
| iwl_mld_fill_phy_data(mld, mpdu_desc, &phy_data); |
| |
| if (mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { |
| /* If the device inserted padding it means that (it thought) |
| * the 802.11 header wasn't a multiple of 4 bytes long. In |
| * this case, reserve two bytes at the start of the SKB to |
| * align the payload properly in case we end up copying it. |
| */ |
| skb_reserve(skb, 2); |
| } |
| |
| rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| /* this is needed early */ |
| band = u8_get_bits(mpdu_desc->mac_phy_band, |
| IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK); |
| iwl_mld_fill_rx_status_band_freq(rx_status, band, |
| mpdu_desc->v3.channel); |
| |
| |
| rcu_read_lock(); |
| |
| sta = iwl_mld_rx_with_sta(mld, hdr, skb, mpdu_desc, pkt, queue, &drop); |
| if (drop) |
| goto drop; |
| |
| /* update aggregation data for monitor sake on default queue */ |
| if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) |
| iwl_mld_rx_update_ampdu_ref(mld, &phy_data, rx_status); |
| |
| /* Keep packets with CRC errors (and with overrun) for monitor mode |
| * (otherwise the firmware discards them) but mark them as bad. |
| */ |
| if (!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || |
| !(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { |
| IWL_DEBUG_RX(mld, "Bad CRC or FIFO: 0x%08X.\n", |
| le32_to_cpu(mpdu_desc->status)); |
| rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; |
| } |
| |
| if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { |
| rx_status->mactime = |
| le64_to_cpu(mpdu_desc->v3.tsf_on_air_rise); |
| |
| /* TSF as indicated by the firmware is at INA time */ |
| rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; |
| } |
| |
| /* management stuff on default queue */ |
| if (!queue && unlikely(ieee80211_is_beacon(hdr->frame_control) || |
| ieee80211_is_probe_resp(hdr->frame_control))) { |
| rx_status->boottime_ns = ktime_get_boottime_ns(); |
| |
| if (mld->scan.pass_all_sched_res == |
| SCHED_SCAN_PASS_ALL_STATE_ENABLED) |
| mld->scan.pass_all_sched_res = |
| SCHED_SCAN_PASS_ALL_STATE_FOUND; |
| } |
| |
| link_id = u8_get_bits(mpdu_desc->mac_phy_band, |
| IWL_RX_MPDU_MAC_PHY_BAND_LINK_MASK); |
| |
| iwl_mld_rx_fill_status(mld, link_id, hdr, skb, &phy_data, queue); |
| |
| if (iwl_mld_rx_crypto(mld, sta, hdr, rx_status, mpdu_desc, queue, |
| le32_to_cpu(pkt->len_n_flags), &crypto_len)) |
| goto drop; |
| |
| if (iwl_mld_build_rx_skb(mld, skb, hdr, mpdu_len, crypto_len, rxb)) |
| goto drop; |
| |
| /* time sync frame is saved and will be released later when the |
| * notification with the timestamps arrives. |
| */ |
| if (iwl_mld_time_sync_frame(mld, skb, hdr->addr2)) |
| goto out; |
| |
| reorder_res = iwl_mld_reorder(mld, napi, queue, sta, skb, mpdu_desc); |
| switch (reorder_res) { |
| case IWL_MLD_PASS_SKB: |
| break; |
| case IWL_MLD_DROP_SKB: |
| goto drop; |
| case IWL_MLD_BUFFERED_SKB: |
| goto out; |
| default: |
| WARN_ON(1); |
| goto drop; |
| } |
| |
| iwl_mld_pass_packet_to_mac80211(mld, napi, skb, queue, sta); |
| |
| goto out; |
| |
| drop: |
| kfree_skb(skb); |
| out: |
| rcu_read_unlock(); |
| } |
| |
| #define SYNC_RX_QUEUE_TIMEOUT (HZ) |
| void iwl_mld_sync_rx_queues(struct iwl_mld *mld, |
| enum iwl_mld_internal_rxq_notif_type type, |
| const void *notif_payload, u32 notif_payload_size) |
| { |
| u8 num_rx_queues = mld->trans->info.num_rxqs; |
| struct { |
| struct iwl_rxq_sync_cmd sync_cmd; |
| struct iwl_mld_internal_rxq_notif notif; |
| } __packed cmd = { |
| .sync_cmd.rxq_mask = cpu_to_le32(BIT(num_rx_queues) - 1), |
| .sync_cmd.count = |
| cpu_to_le32(sizeof(struct iwl_mld_internal_rxq_notif) + |
| notif_payload_size), |
| .notif.type = type, |
| .notif.cookie = mld->rxq_sync.cookie, |
| }; |
| struct iwl_host_cmd hcmd = { |
| .id = WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD), |
| .data[0] = &cmd, |
| .len[0] = sizeof(cmd), |
| .data[1] = notif_payload, |
| .len[1] = notif_payload_size, |
| }; |
| int ret; |
| |
| /* size must be a multiple of DWORD */ |
| if (WARN_ON(cmd.sync_cmd.count & cpu_to_le32(3))) |
| return; |
| |
| mld->rxq_sync.state = (1 << num_rx_queues) - 1; |
| |
| ret = iwl_mld_send_cmd(mld, &hcmd); |
| if (ret) { |
| IWL_ERR(mld, "Failed to trigger RX queues sync (%d)\n", ret); |
| goto out; |
| } |
| |
| ret = wait_event_timeout(mld->rxq_sync.waitq, |
| READ_ONCE(mld->rxq_sync.state) == 0, |
| SYNC_RX_QUEUE_TIMEOUT); |
| WARN_ONCE(!ret, "RXQ sync failed: state=0x%lx, cookie=%d\n", |
| mld->rxq_sync.state, mld->rxq_sync.cookie); |
| |
| out: |
| mld->rxq_sync.state = 0; |
| mld->rxq_sync.cookie++; |
| } |
| |
| void iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld *mld, |
| struct napi_struct *napi, |
| struct iwl_rx_packet *pkt, int queue) |
| { |
| struct iwl_rxq_sync_notification *notif; |
| struct iwl_mld_internal_rxq_notif *internal_notif; |
| u32 len = iwl_rx_packet_payload_len(pkt); |
| size_t combined_notif_len = sizeof(*notif) + sizeof(*internal_notif); |
| |
| notif = (void *)pkt->data; |
| internal_notif = (void *)notif->payload; |
| |
| if (IWL_FW_CHECK(mld, len < combined_notif_len, |
| "invalid notification size %u (%zu)\n", |
| len, combined_notif_len)) |
| return; |
| |
| len -= combined_notif_len; |
| |
| if (IWL_FW_CHECK(mld, mld->rxq_sync.cookie != internal_notif->cookie, |
| "received expired RX queue sync message (cookie=%d expected=%d q[%d])\n", |
| internal_notif->cookie, mld->rxq_sync.cookie, queue)) |
| return; |
| |
| switch (internal_notif->type) { |
| case IWL_MLD_RXQ_EMPTY: |
| IWL_FW_CHECK(mld, len, |
| "invalid empty notification size %d\n", len); |
| break; |
| case IWL_MLD_RXQ_NOTIF_DEL_BA: |
| if (IWL_FW_CHECK(mld, len != sizeof(struct iwl_mld_delba_data), |
| "invalid delba notification size %u (%zu)\n", |
| len, sizeof(struct iwl_mld_delba_data))) |
| break; |
| iwl_mld_del_ba(mld, queue, (void *)internal_notif->payload); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| } |
| |
| IWL_FW_CHECK(mld, !test_and_clear_bit(queue, &mld->rxq_sync.state), |
| "RXQ sync: queue %d responded a second time!\n", queue); |
| |
| if (READ_ONCE(mld->rxq_sync.state) == 0) |
| wake_up(&mld->rxq_sync.waitq); |
| } |
| |
| void iwl_mld_rx_monitor_no_data(struct iwl_mld *mld, struct napi_struct *napi, |
| struct iwl_rx_packet *pkt, int queue) |
| { |
| struct iwl_rx_no_data_ver_3 *desc; |
| struct iwl_mld_rx_phy_data phy_data; |
| struct ieee80211_rx_status *rx_status; |
| struct sk_buff *skb; |
| u32 format, rssi; |
| u8 channel; |
| |
| if (unlikely(mld->fw_status.in_hw_restart)) |
| return; |
| |
| if (IWL_FW_CHECK(mld, iwl_rx_packet_payload_len(pkt) < sizeof(*desc), |
| "Bad RX_NO_DATA_NOTIF size (%d)\n", |
| iwl_rx_packet_payload_len(pkt))) |
| return; |
| |
| desc = (void *)pkt->data; |
| |
| rssi = le32_to_cpu(desc->rssi); |
| channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); |
| |
| phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); |
| phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); |
| phy_data.data0 = desc->phy_info[0]; |
| phy_data.data1 = desc->phy_info[1]; |
| phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; |
| phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); |
| phy_data.rate_n_flags = iwl_v3_rate_from_v2_v3(desc->rate, |
| mld->fw_rates_ver_3); |
| phy_data.with_data = false; |
| |
| BUILD_BUG_ON(sizeof(phy_data.rx_vec) != sizeof(desc->rx_vec)); |
| memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec)); |
| |
| format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; |
| |
| /* Don't use dev_alloc_skb(), we'll have enough headroom once |
| * ieee80211_hdr pulled. |
| */ |
| skb = alloc_skb(128, GFP_ATOMIC); |
| if (!skb) { |
| IWL_ERR(mld, "alloc_skb failed\n"); |
| return; |
| } |
| |
| rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| /* 0-length PSDU */ |
| rx_status->flag |= RX_FLAG_NO_PSDU; |
| |
| /* mark as failed PLCP on any errors to skip checks in mac80211 */ |
| if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) != |
| RX_NO_DATA_INFO_ERR_NONE) |
| rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; |
| |
| switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) { |
| case RX_NO_DATA_INFO_TYPE_NDP: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; |
| break; |
| case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: |
| case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; |
| break; |
| default: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; |
| break; |
| } |
| |
| rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : |
| NL80211_BAND_2GHZ; |
| |
| rx_status->freq = ieee80211_channel_to_frequency(channel, |
| rx_status->band); |
| |
| /* link ID is ignored for NULL header */ |
| iwl_mld_rx_fill_status(mld, -1, NULL, skb, &phy_data, queue); |
| |
| /* No more radiotap info should be added after this point. |
| * Mark it as mac header for upper layers to know where |
| * the radiotap header ends. |
| */ |
| skb_set_mac_header(skb, skb->len); |
| |
| /* Override the nss from the rx_vec since the rate_n_flags has |
| * only 1 bit for the nss which gives a max of 2 ss but there |
| * may be up to 8 spatial streams. |
| */ |
| switch (format) { |
| case RATE_MCS_MOD_TYPE_VHT: |
| rx_status->nss = |
| le32_get_bits(desc->rx_vec[0], |
| RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; |
| break; |
| case RATE_MCS_MOD_TYPE_HE: |
| rx_status->nss = |
| le32_get_bits(desc->rx_vec[0], |
| RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; |
| break; |
| case RATE_MCS_MOD_TYPE_EHT: |
| rx_status->nss = |
| le32_get_bits(desc->rx_vec[2], |
| RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; |
| } |
| |
| /* pass the packet to mac80211 */ |
| rcu_read_lock(); |
| ieee80211_rx_napi(mld->hw, NULL, skb, napi); |
| rcu_read_unlock(); |
| } |