blob: b6dedd1ecd4d8182ada5d5bc57aa599390d575fc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (C) 2024-2025 Intel Corporation
*/
#include <net/mac80211.h>
#include <kunit/static_stub.h>
#include "mld.h"
#include "sta.h"
#include "agg.h"
#include "rx.h"
#include "hcmd.h"
#include "iface.h"
#include "time_sync.h"
#include "fw/dbg.h"
#include "fw/api/rx.h"
/* stores relevant PHY data fields extracted from iwl_rx_mpdu_desc */
struct iwl_mld_rx_phy_data {
enum iwl_rx_phy_info_type info_type;
__le32 data0;
__le32 data1;
__le32 data2;
__le32 data3;
__le32 eht_data4;
__le32 data5;
__le16 data4;
bool first_subframe;
bool with_data;
__le32 rx_vec[4];
u32 rate_n_flags;
u32 gp2_on_air_rise;
u16 phy_info;
u8 energy_a, energy_b;
};
static void
iwl_mld_fill_phy_data(struct iwl_mld *mld,
struct iwl_rx_mpdu_desc *desc,
struct iwl_mld_rx_phy_data *phy_data)
{
phy_data->phy_info = le16_to_cpu(desc->phy_info);
phy_data->rate_n_flags = iwl_v3_rate_from_v2_v3(desc->v3.rate_n_flags,
mld->fw_rates_ver_3);
phy_data->gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
phy_data->energy_a = desc->v3.energy_a;
phy_data->energy_b = desc->v3.energy_b;
phy_data->data0 = desc->v3.phy_data0;
phy_data->data1 = desc->v3.phy_data1;
phy_data->data2 = desc->v3.phy_data2;
phy_data->data3 = desc->v3.phy_data3;
phy_data->data4 = desc->phy_data4;
phy_data->eht_data4 = desc->phy_eht_data4;
phy_data->data5 = desc->v3.phy_data5;
phy_data->with_data = true;
}
static inline int iwl_mld_check_pn(struct iwl_mld *mld, struct sk_buff *skb,
int queue, struct ieee80211_sta *sta)
{
struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
struct iwl_mld_sta *mld_sta;
struct iwl_mld_ptk_pn *ptk_pn;
int res;
u8 tid, keyidx;
u8 pn[IEEE80211_CCMP_PN_LEN];
u8 *extiv;
/* multicast and non-data only arrives on default queue; avoid checking
* for default queue - we don't want to replicate all the logic that's
* necessary for checking the PN on fragmented frames, leave that
* to mac80211
*/
if (queue == 0 || !ieee80211_is_data(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1))
return 0;
if (!(stats->flag & RX_FLAG_DECRYPTED))
return 0;
/* if we are here - this for sure is either CCMP or GCMP */
if (!sta) {
IWL_DEBUG_DROP(mld,
"expected hw-decrypted unicast frame for station\n");
return -1;
}
mld_sta = iwl_mld_sta_from_mac80211(sta);
extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
keyidx = extiv[3] >> 6;
ptk_pn = rcu_dereference(mld_sta->ptk_pn[keyidx]);
if (!ptk_pn)
return -1;
if (ieee80211_is_data_qos(hdr->frame_control))
tid = ieee80211_get_tid(hdr);
else
tid = 0;
/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
if (tid >= IWL_MAX_TID_COUNT)
return -1;
/* load pn */
pn[0] = extiv[7];
pn[1] = extiv[6];
pn[2] = extiv[5];
pn[3] = extiv[4];
pn[4] = extiv[1];
pn[5] = extiv[0];
res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
if (res < 0)
return -1;
if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
return -1;
memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
stats->flag |= RX_FLAG_PN_VALIDATED;
return 0;
}
/* iwl_mld_pass_packet_to_mac80211 - passes the packet for mac80211 */
void iwl_mld_pass_packet_to_mac80211(struct iwl_mld *mld,
struct napi_struct *napi,
struct sk_buff *skb, int queue,
struct ieee80211_sta *sta)
{
KUNIT_STATIC_STUB_REDIRECT(iwl_mld_pass_packet_to_mac80211,
mld, napi, skb, queue, sta);
if (unlikely(iwl_mld_check_pn(mld, skb, queue, sta))) {
kfree_skb(skb);
return;
}
ieee80211_rx_napi(mld->hw, sta, skb, napi);
}
EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_pass_packet_to_mac80211);
static bool iwl_mld_used_average_energy(struct iwl_mld *mld, int link_id,
struct ieee80211_hdr *hdr,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_bss_conf *link_conf;
struct iwl_mld_link *mld_link;
if (unlikely(!hdr || link_id < 0))
return false;
if (likely(!ieee80211_is_beacon(hdr->frame_control)))
return false;
/*
* if link ID is >= valid ones then that means the RX
* was on the AUX link and no correction is needed
*/
if (link_id >= mld->fw->ucode_capa.num_links)
return false;
/* for the link conf lookup */
guard(rcu)();
link_conf = rcu_dereference(mld->fw_id_to_bss_conf[link_id]);
if (!link_conf)
return false;
mld_link = iwl_mld_link_from_mac80211(link_conf);
if (!mld_link)
return false;
/*
* If we know the link by link ID then the frame was
* received for the link, so by filtering it means it
* was from the AP the link is connected to.
*/
/* skip also in case we don't have it (yet) */
if (!mld_link->average_beacon_energy)
return false;
IWL_DEBUG_STATS(mld, "energy override by average %d\n",
mld_link->average_beacon_energy);
rx_status->signal = -mld_link->average_beacon_energy;
return true;
}
static void iwl_mld_fill_signal(struct iwl_mld *mld, int link_id,
struct ieee80211_hdr *hdr,
struct ieee80211_rx_status *rx_status,
struct iwl_mld_rx_phy_data *phy_data)
{
u32 rate_n_flags = phy_data->rate_n_flags;
int energy_a = phy_data->energy_a;
int energy_b = phy_data->energy_b;
int max_energy;
energy_a = energy_a ? -energy_a : S8_MIN;
energy_b = energy_b ? -energy_b : S8_MIN;
max_energy = max(energy_a, energy_b);
IWL_DEBUG_STATS(mld, "energy in A %d B %d, and max %d\n",
energy_a, energy_b, max_energy);
if (iwl_mld_used_average_energy(mld, link_id, hdr, rx_status))
return;
rx_status->signal = max_energy;
rx_status->chains = u32_get_bits(rate_n_flags, RATE_MCS_ANT_AB_MSK);
rx_status->chain_signal[0] = energy_a;
rx_status->chain_signal[1] = energy_b;
}
static void
iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data *phy_data,
struct ieee80211_radiotap_he *he,
struct ieee80211_radiotap_he_mu *he_mu,
struct ieee80211_rx_status *rx_status)
{
/* Unfortunately, we have to leave the mac80211 data
* incorrect for the case that we receive an HE-MU
* transmission and *don't* have the HE phy data (due
* to the bits being used for TSF). This shouldn't
* happen though as management frames where we need
* the TSF/timers are not be transmitted in HE-MU.
*/
u8 ru = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
u32 rate_n_flags = phy_data->rate_n_flags;
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
u8 offs = 0;
rx_status->bw = RATE_INFO_BW_HE_RU;
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
switch (ru) {
case 0 ... 36:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
offs = ru;
break;
case 37 ... 52:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
offs = ru - 37;
break;
case 53 ... 60:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
offs = ru - 53;
break;
case 61 ... 64:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
offs = ru - 61;
break;
case 65 ... 66:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
offs = ru - 65;
break;
case 67:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
break;
case 68:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
break;
}
he->data2 |= le16_encode_bits(offs,
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
if (phy_data->data1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
he->data2 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
#define CHECK_BW(bw) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
CHECK_BW(20);
CHECK_BW(40);
CHECK_BW(80);
CHECK_BW(160);
if (he_mu)
he_mu->flags2 |=
le16_encode_bits(u32_get_bits(rate_n_flags,
RATE_MCS_CHAN_WIDTH_MSK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
else if (he_type == RATE_MCS_HE_TYPE_TRIG)
he->data6 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
le16_encode_bits(u32_get_bits(rate_n_flags,
RATE_MCS_CHAN_WIDTH_MSK),
IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
}
static void
iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data *phy_data,
struct ieee80211_radiotap_he_mu *he_mu)
{
u32 phy_data2 = le32_to_cpu(phy_data->data2);
u32 phy_data3 = le32_to_cpu(phy_data->data3);
u16 phy_data4 = le16_to_cpu(phy_data->data4);
u32 rate_n_flags = phy_data->rate_n_flags;
if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK)) {
he_mu->flags1 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
he_mu->flags1 |=
le16_encode_bits(u32_get_bits(phy_data4,
IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
he_mu->ru_ch1[0] = u32_get_bits(phy_data2,
IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0);
he_mu->ru_ch1[1] = u32_get_bits(phy_data3,
IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1);
he_mu->ru_ch1[2] = u32_get_bits(phy_data2,
IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2);
he_mu->ru_ch1[3] = u32_get_bits(phy_data3,
IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3);
}
if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK) &&
(rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
he_mu->flags1 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
he_mu->flags2 |=
le16_encode_bits(u32_get_bits(phy_data4,
IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
he_mu->ru_ch2[0] = u32_get_bits(phy_data2,
IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0);
he_mu->ru_ch2[1] = u32_get_bits(phy_data3,
IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1);
he_mu->ru_ch2[2] = u32_get_bits(phy_data2,
IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2);
he_mu->ru_ch2[3] = u32_get_bits(phy_data3,
IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3);
}
}
static void
iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data *phy_data,
struct ieee80211_radiotap_he *he,
struct ieee80211_radiotap_he_mu *he_mu,
struct ieee80211_rx_status *rx_status,
int queue)
{
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_NONE:
case IWL_RX_PHY_INFO_TYPE_CCK:
case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
case IWL_RX_PHY_INFO_TYPE_HT:
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
case IWL_RX_PHY_INFO_TYPE_EHT_MU:
case IWL_RX_PHY_INFO_TYPE_EHT_TB:
case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
return;
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_SU:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_TB:
/* HE common */
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_UPLINK),
IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
}
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data1,
IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
IEEE80211_RADIOTAP_HE_DATA6_TXOP);
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_DOPPLER),
IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
break;
}
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_SU:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
break;
default:
/* nothing here */
break;
}
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
he_mu->flags1 |=
le16_encode_bits(le16_get_bits(phy_data->data4,
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
he_mu->flags1 |=
le16_encode_bits(le16_get_bits(phy_data->data4,
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
he_mu->flags2 |=
le16_encode_bits(le16_get_bits(phy_data->data4,
IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
iwl_mld_decode_he_mu_ext(phy_data, he_mu);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_MU:
he_mu->flags2 |=
le16_encode_bits(le32_get_bits(phy_data->data1,
IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
he_mu->flags2 |=
le16_encode_bits(le32_get_bits(phy_data->data1,
IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_TB:
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
iwl_mld_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
break;
case IWL_RX_PHY_INFO_TYPE_HE_SU:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
break;
default:
/* nothing */
break;
}
}
static void iwl_mld_rx_he(struct iwl_mld *mld, struct sk_buff *skb,
struct iwl_mld_rx_phy_data *phy_data,
int queue)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_he *he = NULL;
struct ieee80211_radiotap_he_mu *he_mu = NULL;
u32 rate_n_flags = phy_data->rate_n_flags;
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
u8 ltf;
static const struct ieee80211_radiotap_he known = {
.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
};
static const struct ieee80211_radiotap_he_mu mu_known = {
.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
};
u16 phy_info = phy_data->phy_info;
he = skb_put_data(skb, &known, sizeof(known));
rx_status->flag |= RX_FLAG_RADIOTAP_HE;
if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
}
/* report the AMPDU-EOF bit on single frames */
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
iwl_mld_decode_he_phy_data(phy_data, he, he_mu, rx_status,
queue);
/* update aggregation data for monitor sake on default queue */
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
(phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
rate_n_flags & RATE_MCS_HE_106T_MSK) {
rx_status->bw = RATE_INFO_BW_HE_RU;
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
}
/* actually data is filled in mac80211 */
if (he_type == RATE_MCS_HE_TYPE_SU ||
he_type == RATE_MCS_HE_TYPE_EXT_SU)
he->data1 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
#define CHECK_TYPE(F) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
(RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
CHECK_TYPE(SU);
CHECK_TYPE(EXT_SU);
CHECK_TYPE(MU);
CHECK_TYPE(TRIG);
he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
if (rate_n_flags & RATE_MCS_BF_MSK)
he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
RATE_MCS_HE_GI_LTF_POS) {
case 0:
if (he_type == RATE_MCS_HE_TYPE_TRIG)
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
else
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
if (he_type == RATE_MCS_HE_TYPE_MU)
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
else
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
break;
case 1:
if (he_type == RATE_MCS_HE_TYPE_TRIG)
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
else
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
break;
case 2:
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
} else {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
}
break;
case 3:
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
break;
case 4:
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
break;
default:
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
}
he->data5 |= le16_encode_bits(ltf,
IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
}
static void iwl_mld_decode_lsig(struct sk_buff *skb,
struct iwl_mld_rx_phy_data *phy_data)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_lsig *lsig;
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HT:
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_SU:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_TB:
case IWL_RX_PHY_INFO_TYPE_EHT_MU:
case IWL_RX_PHY_INFO_TYPE_EHT_TB:
case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
lsig = skb_put(skb, sizeof(*lsig));
lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->data1,
IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
break;
default:
break;
}
}
/* Put a TLV on the skb and return data pointer
*
* Also pad the len to 4 and zero out all data part
*/
static void *
iwl_mld_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
{
struct ieee80211_radiotap_tlv *tlv;
tlv = skb_put(skb, sizeof(*tlv));
tlv->type = cpu_to_le16(type);
tlv->len = cpu_to_le16(len);
return skb_put_zero(skb, ALIGN(len, 4));
}
#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
#define IWL_MLD_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
typeof(enc_bits) _enc_bits = enc_bits; \
typeof(usig) _usig = usig; \
(_usig)->mask |= cpu_to_le32(_enc_bits); \
(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
} while (0)
#define __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
eht->data[(rt_data)] |= \
(cpu_to_le32 \
(IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
LE32_DEC_ENC(data ## fw_data, \
IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
#define _IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
__IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
#define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
#define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
#define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
#define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
#define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
#define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
#define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
#define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
#define IWL_RX_RU_DATA_A1 2
#define IWL_RX_RU_DATA_A2 2
#define IWL_RX_RU_DATA_B1 2
#define IWL_RX_RU_DATA_B2 4
#define IWL_RX_RU_DATA_C1 3
#define IWL_RX_RU_DATA_C2 3
#define IWL_RX_RU_DATA_D1 4
#define IWL_RX_RU_DATA_D2 4
#define IWL_MLD_ENC_EHT_RU(rt_ru, fw_ru) \
_IWL_MLD_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
rt_ru, \
IWL_RX_RU_DATA_ ## fw_ru, \
fw_ru)
static void iwl_mld_decode_eht_ext_mu(struct iwl_mld *mld,
struct iwl_mld_rx_phy_data *phy_data,
struct ieee80211_rx_status *rx_status,
struct ieee80211_radiotap_eht *eht,
struct ieee80211_radiotap_eht_usig *usig)
{
if (phy_data->with_data) {
__le32 data1 = phy_data->data1;
__le32 data2 = phy_data->data2;
__le32 data3 = phy_data->data3;
__le32 data4 = phy_data->eht_data4;
__le32 data5 = phy_data->data5;
u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data4,
IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
IWL_MLD_ENC_USIG_VALUE_MASK
(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
eht->user_info[0] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
eht->data[7] |= LE32_DEC_ENC
(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
/*
* Hardware labels the content channels/RU allocation values
* as follows:
* Content Channel 1 Content Channel 2
* 20 MHz: A1
* 40 MHz: A1 B1
* 80 MHz: A1 C1 B1 D1
* 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
* 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
*
* However firmware can only give us A1-D2, so the higher
* frequencies are missing.
*/
switch (phy_bw) {
case RATE_MCS_CHAN_WIDTH_320:
/* additional values are missing in RX metadata */
fallthrough;
case RATE_MCS_CHAN_WIDTH_160:
/* content channel 1 */
IWL_MLD_ENC_EHT_RU(1_2_1, A2);
IWL_MLD_ENC_EHT_RU(1_2_2, C2);
/* content channel 2 */
IWL_MLD_ENC_EHT_RU(2_2_1, B2);
IWL_MLD_ENC_EHT_RU(2_2_2, D2);
fallthrough;
case RATE_MCS_CHAN_WIDTH_80:
/* content channel 1 */
IWL_MLD_ENC_EHT_RU(1_1_2, C1);
/* content channel 2 */
IWL_MLD_ENC_EHT_RU(2_1_2, D1);
fallthrough;
case RATE_MCS_CHAN_WIDTH_40:
/* content channel 2 */
IWL_MLD_ENC_EHT_RU(2_1_1, B1);
fallthrough;
case RATE_MCS_CHAN_WIDTH_20:
IWL_MLD_ENC_EHT_RU(1_1_1, A1);
break;
}
} else {
__le32 usig_a1 = phy_data->rx_vec[0];
__le32 usig_a2 = phy_data->rx_vec[1];
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
IWL_RX_USIG_A1_DISREGARD,
IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
IWL_RX_USIG_A1_VALIDATE,
IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_PPDU_TYPE,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_SIG_MCS,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
IWL_MLD_ENC_USIG_VALUE_MASK
(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_CRC_OK,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
}
}
static void iwl_mld_decode_eht_ext_tb(struct iwl_mld *mld,
struct iwl_mld_rx_phy_data *phy_data,
struct ieee80211_rx_status *rx_status,
struct ieee80211_radiotap_eht *eht,
struct ieee80211_radiotap_eht_usig *usig)
{
if (phy_data->with_data) {
__le32 data5 = phy_data->data5;
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
} else {
__le32 usig_a1 = phy_data->rx_vec[0];
__le32 usig_a2 = phy_data->rx_vec[1];
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
IWL_RX_USIG_A1_DISREGARD,
IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_PPDU_TYPE,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_CRC_OK,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
}
}
static void iwl_mld_decode_eht_ru(struct iwl_mld *mld,
struct ieee80211_rx_status *rx_status,
struct ieee80211_radiotap_eht *eht)
{
u32 ru = le32_get_bits(eht->data[8],
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
enum nl80211_eht_ru_alloc nl_ru;
/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
* in an EHT variant User Info field
*/
switch (ru) {
case 0 ... 36:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
break;
case 37 ... 52:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
break;
case 53 ... 60:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
break;
case 61 ... 64:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
break;
case 65 ... 66:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
break;
case 67:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
break;
case 68:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
break;
case 69:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
break;
case 70 ... 81:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
break;
case 82 ... 89:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
break;
case 90 ... 93:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
break;
case 94 ... 95:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
break;
case 96 ... 99:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
break;
case 100 ... 103:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
break;
case 104:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
break;
case 105 ... 106:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
break;
default:
return;
}
rx_status->bw = RATE_INFO_BW_EHT_RU;
rx_status->eht.ru = nl_ru;
}
static void iwl_mld_decode_eht_phy_data(struct iwl_mld *mld,
struct iwl_mld_rx_phy_data *phy_data,
struct ieee80211_rx_status *rx_status,
struct ieee80211_radiotap_eht *eht,
struct ieee80211_radiotap_eht_usig *usig)
{
__le32 data0 = phy_data->data0;
__le32 data1 = phy_data->data1;
__le32 usig_a1 = phy_data->rx_vec[0];
u8 info_type = phy_data->info_type;
/* Not in EHT range */
if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
return;
usig->common |= cpu_to_le32
(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
if (phy_data->with_data) {
usig->common |= LE32_DEC_ENC(data0,
IWL_RX_PHY_DATA0_EHT_UPLINK,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
usig->common |= LE32_DEC_ENC(data0,
IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
} else {
usig->common |= LE32_DEC_ENC(usig_a1,
IWL_RX_USIG_A1_UL_FLAG,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
usig->common |= LE32_DEC_ENC(usig_a1,
IWL_RX_USIG_A1_BSS_COLOR,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
}
usig->common |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
usig->common |=
LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
eht->data[0] |= LE32_DEC_ENC(data0,
IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
/* All RU allocating size/index is in TB format */
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
iwl_mld_decode_eht_ru(mld, rx_status, eht);
/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
* which is on only in case of monitor mode so no need to check monitor
* mode
*/
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
eht->data[1] |=
le32_encode_bits(mld->monitor.p80,
IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
if (phy_data->with_data)
usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
else
usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
/*
* TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
* IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
*/
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
iwl_mld_decode_eht_ext_tb(mld, phy_data, rx_status, eht, usig);
if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
iwl_mld_decode_eht_ext_mu(mld, phy_data, rx_status, eht, usig);
}
static void iwl_mld_rx_eht(struct iwl_mld *mld, struct sk_buff *skb,
struct iwl_mld_rx_phy_data *phy_data,
int queue)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_eht *eht;
struct ieee80211_radiotap_eht_usig *usig;
size_t eht_len = sizeof(*eht);
u32 rate_n_flags = phy_data->rate_n_flags;
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
/* EHT and HE have the same values for LTF */
u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
u16 phy_info = phy_data->phy_info;
u32 bw;
/* u32 for 1 user_info */
if (phy_data->with_data)
eht_len += sizeof(u32);
eht = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
usig = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
sizeof(*usig));
rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
usig->common |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
/* specific handling for 320MHz */
bw = u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK);
if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
bw += le32_get_bits(phy_data->data0,
IWL_RX_PHY_DATA0_EHT_BW320_SLOT);
usig->common |= cpu_to_le32
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
/* report the AMPDU-EOF bit on single frames */
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->data0 &
cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
/* update aggregation data for monitor sake on default queue */
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
(phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->data0 &
cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
iwl_mld_decode_eht_phy_data(mld, phy_data, rx_status, eht, usig);
#define CHECK_TYPE(F) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
(RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
CHECK_TYPE(SU);
CHECK_TYPE(EXT_SU);
CHECK_TYPE(MU);
CHECK_TYPE(TRIG);
switch (u32_get_bits(rate_n_flags, RATE_MCS_HE_GI_LTF_MSK)) {
case 0:
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
} else {
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
}
break;
case 1:
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
break;
case 2:
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
if (he_type == RATE_MCS_HE_TYPE_TRIG)
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
else
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
break;
case 3:
if (he_type != RATE_MCS_HE_TYPE_TRIG) {
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
}
break;
default:
/* nothing here */
break;
}
if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
eht->data[0] |= cpu_to_le32
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
ltf) |
FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
rx_status->eht.gi));
}
if (!phy_data->with_data) {
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
eht->data[7] |=
le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
if (rate_n_flags & RATE_MCS_BF_MSK)
eht->data[7] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
} else {
eht->user_info[0] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
if (rate_n_flags & RATE_MCS_BF_MSK)
eht->user_info[0] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
if (rate_n_flags & RATE_MCS_LDPC_MSK)
eht->user_info[0] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
eht->user_info[0] |= cpu_to_le32
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
u32_get_bits(rate_n_flags,
RATE_VHT_MCS_RATE_CODE_MSK)) |
FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
u32_get_bits(rate_n_flags,
RATE_MCS_NSS_MSK)));
}
}
#ifdef CONFIG_IWLWIFI_DEBUGFS
static void iwl_mld_add_rtap_sniffer_config(struct iwl_mld *mld,
struct sk_buff *skb)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_vendor_content *radiotap;
const u16 vendor_data_len = sizeof(mld->monitor.cur_aid);
if (!mld->monitor.cur_aid)
return;
radiotap =
iwl_mld_radiotap_put_tlv(skb,
IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
sizeof(*radiotap) + vendor_data_len);
/* Intel OUI */
radiotap->oui[0] = 0xf6;
radiotap->oui[1] = 0x54;
radiotap->oui[2] = 0x25;
/* radiotap sniffer config sub-namespace */
radiotap->oui_subtype = 1;
radiotap->vendor_type = 0;
/* fill the data now */
memcpy(radiotap->data, &mld->monitor.cur_aid,
sizeof(mld->monitor.cur_aid));
rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
}
#endif
/* Note: hdr can be NULL */
static void iwl_mld_rx_fill_status(struct iwl_mld *mld, int link_id,
struct ieee80211_hdr *hdr,
struct sk_buff *skb,
struct iwl_mld_rx_phy_data *phy_data,
int queue)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
u32 format = phy_data->rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
u32 rate_n_flags = phy_data->rate_n_flags;
u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
bool is_sgi = rate_n_flags & RATE_MCS_SGI_MSK;
phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
phy_data->info_type =
le32_get_bits(phy_data->data1,
IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
/* set the preamble flag if appropriate */
if (format == RATE_MCS_MOD_TYPE_CCK &&
phy_data->phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
iwl_mld_fill_signal(mld, link_id, hdr, rx_status, phy_data);
/* This may be overridden by iwl_mld_rx_he() to HE_RU */
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
break;
case RATE_MCS_CHAN_WIDTH_40:
rx_status->bw = RATE_INFO_BW_40;
break;
case RATE_MCS_CHAN_WIDTH_80:
rx_status->bw = RATE_INFO_BW_80;
break;
case RATE_MCS_CHAN_WIDTH_160:
rx_status->bw = RATE_INFO_BW_160;
break;
case RATE_MCS_CHAN_WIDTH_320:
rx_status->bw = RATE_INFO_BW_320;
break;
}
/* must be before L-SIG data */
if (format == RATE_MCS_MOD_TYPE_HE)
iwl_mld_rx_he(mld, skb, phy_data, queue);
iwl_mld_decode_lsig(skb, phy_data);
rx_status->device_timestamp = phy_data->gp2_on_air_rise;
/* using TLV format and must be after all fixed len fields */
if (format == RATE_MCS_MOD_TYPE_EHT)
iwl_mld_rx_eht(mld, skb, phy_data, queue);
#ifdef CONFIG_IWLWIFI_DEBUGFS
if (unlikely(mld->monitor.on)) {
iwl_mld_add_rtap_sniffer_config(mld, skb);
if (mld->monitor.ptp_time) {
u64 adj_time =
iwl_mld_ptp_get_adj_time(mld,
phy_data->gp2_on_air_rise *
NSEC_PER_USEC);
rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC);
rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64;
rx_status->flag &= ~RX_FLAG_MACTIME;
}
}
#endif
if (format != RATE_MCS_MOD_TYPE_CCK && is_sgi)
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (rate_n_flags & RATE_MCS_LDPC_MSK)
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
switch (format) {
case RATE_MCS_MOD_TYPE_HT:
rx_status->encoding = RX_ENC_HT;
rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
break;
case RATE_MCS_MOD_TYPE_VHT:
case RATE_MCS_MOD_TYPE_HE:
case RATE_MCS_MOD_TYPE_EHT:
if (format == RATE_MCS_MOD_TYPE_VHT) {
rx_status->encoding = RX_ENC_VHT;
} else if (format == RATE_MCS_MOD_TYPE_HE) {
rx_status->encoding = RX_ENC_HE;
rx_status->he_dcm =
!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
} else if (format == RATE_MCS_MOD_TYPE_EHT) {
rx_status->encoding = RX_ENC_EHT;
}
rx_status->nss = u32_get_bits(rate_n_flags,
RATE_MCS_NSS_MSK) + 1;
rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
break;
default: {
int rate =
iwl_mld_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
rx_status->band);
/* valid rate */
if (rate >= 0 && rate <= 0xFF) {
rx_status->rate_idx = rate;
break;
}
/* invalid rate */
rx_status->rate_idx = 0;
if (net_ratelimit())
IWL_ERR(mld, "invalid rate_n_flags=0x%x, band=%d\n",
rate_n_flags, rx_status->band);
break;
}
}
}
/* iwl_mld_create_skb adds the rxb to a new skb */
static int iwl_mld_build_rx_skb(struct iwl_mld *mld, struct sk_buff *skb,
struct ieee80211_hdr *hdr, u16 len,
u8 crypt_len, struct iwl_rx_cmd_buffer *rxb)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
unsigned int headlen, fraglen, pad_len = 0;
unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
len -= 2;
pad_len = 2;
}
/* For non monitor interface strip the bytes the RADA might not have
* removed (it might be disabled, e.g. for mgmt frames). As a monitor
* interface cannot exist with other interfaces, this removal is safe
* and sufficient, in monitor mode there's no decryption being done.
*/
if (len > mic_crc_len && !ieee80211_hw_check(mld->hw, RX_INCLUDES_FCS))
len -= mic_crc_len;
/* If frame is small enough to fit in skb->head, pull it completely.
* If not, only pull ieee80211_hdr (including crypto if present, and
* an additional 8 bytes for SNAP/ethertype, see below) so that
* splice() or TCP coalesce are more efficient.
*
* Since, in addition, ieee80211_data_to_8023() always pull in at
* least 8 bytes (possibly more for mesh) we can do the same here
* to save the cost of doing it later. That still doesn't pull in
* the actual IP header since the typical case has a SNAP header.
* If the latter changes (there are efforts in the standards group
* to do so) we should revisit this and ieee80211_data_to_8023().
*/
headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8;
/* The firmware may align the packet to DWORD.
* The padding is inserted after the IV.
* After copying the header + IV skip the padding if
* present before copying packet data.
*/
hdrlen += crypt_len;
if (unlikely(headlen < hdrlen))
return -EINVAL;
/* Since data doesn't move data while putting data on skb and that is
* the only way we use, data + len is the next place that hdr would
* be put
*/
skb_set_mac_header(skb, skb->len);
skb_put_data(skb, hdr, hdrlen);
skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
if (skb->ip_summed == CHECKSUM_COMPLETE) {
struct {
u8 hdr[6];
__be16 type;
} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
!ether_addr_equal(shdr->hdr, rfc1042_header) ||
(shdr->type != htons(ETH_P_IP) &&
shdr->type != htons(ETH_P_ARP) &&
shdr->type != htons(ETH_P_IPV6) &&
shdr->type != htons(ETH_P_8021Q) &&
shdr->type != htons(ETH_P_PAE) &&
shdr->type != htons(ETH_P_TDLS))))
skb->ip_summed = CHECKSUM_NONE;
}
fraglen = len - headlen;
if (fraglen) {
int offset = (u8 *)hdr + headlen + pad_len -
(u8 *)rxb_addr(rxb) + rxb_offset(rxb);
skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
fraglen, rxb->truesize);
}
return 0;
}
/* returns true if a packet is a duplicate or invalid tid and
* should be dropped. Updates AMSDU PN tracking info
*/
VISIBLE_IF_IWLWIFI_KUNIT
bool
iwl_mld_is_dup(struct iwl_mld *mld, struct ieee80211_sta *sta,
struct ieee80211_hdr *hdr,
const struct iwl_rx_mpdu_desc *mpdu_desc,
struct ieee80211_rx_status *rx_status, int queue)
{
struct iwl_mld_sta *mld_sta;
struct iwl_mld_rxq_dup_data *dup_data;
u8 tid, sub_frame_idx;
if (WARN_ON(!sta))
return false;
mld_sta = iwl_mld_sta_from_mac80211(sta);
if (WARN_ON_ONCE(!mld_sta->dup_data))
return false;
dup_data = &mld_sta->dup_data[queue];
/* Drop duplicate 802.11 retransmissions
* (IEEE 802.11-2020: 10.3.2.14 "Duplicate detection and recovery")
*/
if (ieee80211_is_ctl(hdr->frame_control) ||
ieee80211_is_any_nullfunc(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1))
return false;
if (ieee80211_is_data_qos(hdr->frame_control)) {
/* frame has qos control */
tid = ieee80211_get_tid(hdr);
if (tid >= IWL_MAX_TID_COUNT)
return true;
} else {
tid = IWL_MAX_TID_COUNT;
}
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
sub_frame_idx = mpdu_desc->amsdu_info &
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
if (IWL_FW_CHECK(mld,
sub_frame_idx > 0 &&
!(mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU),
"got sub_frame_idx=%d but A-MSDU flag is not set\n",
sub_frame_idx))
return true;
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
dup_data->last_seq[tid] == hdr->seq_ctrl &&
dup_data->last_sub_frame_idx[tid] >= sub_frame_idx))
return true;
/* Allow same PN as the first subframe for following sub frames */
if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
sub_frame_idx > dup_data->last_sub_frame_idx[tid])
rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
dup_data->last_seq[tid] = hdr->seq_ctrl;
dup_data->last_sub_frame_idx[tid] = sub_frame_idx;
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
return false;
}
EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_is_dup);
static void iwl_mld_update_last_rx_timestamp(struct iwl_mld *mld, u8 baid)
{
unsigned long now = jiffies;
unsigned long timeout;
struct iwl_mld_baid_data *ba_data;
ba_data = rcu_dereference(mld->fw_id_to_ba[baid]);
if (!ba_data) {
IWL_DEBUG_HT(mld, "BAID %d not found in map\n", baid);
return;
}
if (!ba_data->timeout)
return;
/* To minimize cache bouncing between RX queues, avoid frequent updates
* to last_rx_timestamp. update it only when the timeout period has
* passed. The worst-case scenario is the session expiring after
* approximately 2 * timeout, which is negligible (the update is
* atomic).
*/
timeout = TU_TO_JIFFIES(ba_data->timeout);
if (time_is_before_jiffies(ba_data->last_rx_timestamp + timeout))
ba_data->last_rx_timestamp = now;
}
/* Processes received packets for a station.
* Sets *drop to true if the packet should be dropped.
* Returns the station if found, or NULL otherwise.
*/
static struct ieee80211_sta *
iwl_mld_rx_with_sta(struct iwl_mld *mld, struct ieee80211_hdr *hdr,
struct sk_buff *skb,
const struct iwl_rx_mpdu_desc *mpdu_desc,
const struct iwl_rx_packet *pkt, int queue, bool *drop)
{
struct ieee80211_sta *sta = NULL;
struct ieee80211_link_sta *link_sta = NULL;
struct ieee80211_rx_status *rx_status;
u8 baid;
if (mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
u8 sta_id = le32_get_bits(mpdu_desc->status,
IWL_RX_MPDU_STATUS_STA_ID);
if (IWL_FW_CHECK(mld,
sta_id >= mld->fw->ucode_capa.num_stations,
"rx_mpdu: invalid sta_id %d\n", sta_id))
return NULL;
link_sta = rcu_dereference(mld->fw_id_to_link_sta[sta_id]);
if (!IS_ERR_OR_NULL(link_sta))
sta = link_sta->sta;
} else if (!is_multicast_ether_addr(hdr->addr2)) {
/* Passing NULL is fine since we prevent two stations with the
* same address from being added.
*/
sta = ieee80211_find_sta_by_ifaddr(mld->hw, hdr->addr2, NULL);
}
/* we may not have any station yet */
if (!sta)
return NULL;
rx_status = IEEE80211_SKB_RXCB(skb);
if (link_sta && sta->valid_links) {
rx_status->link_valid = true;
rx_status->link_id = link_sta->link_id;
}
/* fill checksum */
if (ieee80211_is_data(hdr->frame_control) &&
pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
u16 hwsum = be16_to_cpu(mpdu_desc->v3.raw_xsum);
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = csum_unfold(~(__force __sum16)hwsum);
}
if (iwl_mld_is_dup(mld, sta, hdr, mpdu_desc, rx_status, queue)) {
IWL_DEBUG_DROP(mld, "Dropping duplicate packet 0x%x\n",
le16_to_cpu(hdr->seq_ctrl));
*drop = true;
return NULL;
}
baid = le32_get_bits(mpdu_desc->reorder_data,
IWL_RX_MPDU_REORDER_BAID_MASK);
if (baid != IWL_RX_REORDER_DATA_INVALID_BAID)
iwl_mld_update_last_rx_timestamp(mld, baid);
if (link_sta && ieee80211_is_data(hdr->frame_control)) {
u8 sub_frame_idx = mpdu_desc->amsdu_info &
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
/* 0 means not an A-MSDU, and 1 means a new A-MSDU */
if (!sub_frame_idx || sub_frame_idx == 1)
iwl_mld_count_mpdu_rx(link_sta, queue, 1);
if (!is_multicast_ether_addr(hdr->addr1))
iwl_mld_low_latency_update_counters(mld, hdr, sta,
queue);
}
return sta;
}
#define KEY_IDX_LEN 2
static int iwl_mld_rx_mgmt_prot(struct ieee80211_sta *sta,
struct ieee80211_hdr *hdr,
struct ieee80211_rx_status *rx_status,
u32 mpdu_status,
u32 mpdu_len)
{
struct wireless_dev *wdev;
struct iwl_mld_sta *mld_sta;
struct iwl_mld_vif *mld_vif;
u8 keyidx;
struct ieee80211_key_conf *key;
const u8 *frame = (void *)hdr;
if ((mpdu_status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
IWL_RX_MPDU_STATUS_SEC_NONE)
return 0;
/* For non-beacon, we don't really care. But beacons may
* be filtered out, and we thus need the firmware's replay
* detection, otherwise beacons the firmware previously
* filtered could be replayed, or something like that, and
* it can filter a lot - though usually only if nothing has
* changed.
*/
if (!ieee80211_is_beacon(hdr->frame_control))
return 0;
if (!sta)
return -1;
mld_sta = iwl_mld_sta_from_mac80211(sta);
mld_vif = iwl_mld_vif_from_mac80211(mld_sta->vif);
/* key mismatch - will also report !MIC_OK but we shouldn't count it */
if (!(mpdu_status & IWL_RX_MPDU_STATUS_KEY_VALID))
goto report;
/* good cases */
if (likely(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK &&
!(mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
rx_status->flag |= RX_FLAG_DECRYPTED;
return 0;
}
/* both keys will have the same cipher and MIC length, use
* whichever one is available
*/
key = rcu_dereference(mld_vif->bigtks[0]);
if (!key) {
key = rcu_dereference(mld_vif->bigtks[1]);
if (!key)
goto report;
}
if (mpdu_len < key->icv_len + IEEE80211_GMAC_PN_LEN + KEY_IDX_LEN)
goto report;
/* get the real key ID */
keyidx = frame[mpdu_len - key->icv_len - IEEE80211_GMAC_PN_LEN - KEY_IDX_LEN];
/* and if that's the other key, look it up */
if (keyidx != key->keyidx) {
/* shouldn't happen since firmware checked, but be safe
* in case the MIC length is wrong too, for example
*/
if (keyidx != 6 && keyidx != 7)
return -1;
key = rcu_dereference(mld_vif->bigtks[keyidx - 6]);
if (!key)
goto report;
}
/* Report status to mac80211 */
if (!(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK))
ieee80211_key_mic_failure(key);
else if (mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
ieee80211_key_replay(key);
report:
wdev = ieee80211_vif_to_wdev(mld_sta->vif);
if (wdev->netdev)
cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr,
mpdu_len);
return -1;
}
static int iwl_mld_rx_crypto(struct iwl_mld *mld,
struct ieee80211_sta *sta,
struct ieee80211_hdr *hdr,
struct ieee80211_rx_status *rx_status,
struct iwl_rx_mpdu_desc *desc, int queue,
u32 pkt_flags, u8 *crypto_len)
{
u32 status = le32_to_cpu(desc->status);
if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
!ieee80211_has_protected(hdr->frame_control)))
return iwl_mld_rx_mgmt_prot(sta, hdr, rx_status, status,
le16_to_cpu(desc->mpdu_len));
if (!ieee80211_has_protected(hdr->frame_control) ||
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
IWL_RX_MPDU_STATUS_SEC_NONE)
return 0;
switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
case IWL_RX_MPDU_STATUS_SEC_CCM:
case IWL_RX_MPDU_STATUS_SEC_GCM:
BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
IWL_DEBUG_DROP(mld,
"Dropping packet, bad MIC (CCM/GCM)\n");
return -1;
}
rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
*crypto_len = IEEE80211_CCMP_HDR_LEN;
return 0;
case IWL_RX_MPDU_STATUS_SEC_TKIP:
if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
return -1;
if (!(status & RX_MPDU_RES_STATUS_MIC_OK))
rx_status->flag |= RX_FLAG_MMIC_ERROR;
if (pkt_flags & FH_RSCSR_RADA_EN) {
rx_status->flag |= RX_FLAG_ICV_STRIPPED;
rx_status->flag |= RX_FLAG_MMIC_STRIPPED;
}
*crypto_len = IEEE80211_TKIP_IV_LEN;
rx_status->flag |= RX_FLAG_DECRYPTED;
return 0;
default:
break;
}
return 0;
}
static void iwl_mld_rx_update_ampdu_ref(struct iwl_mld *mld,
struct iwl_mld_rx_phy_data *phy_data,
struct ieee80211_rx_status *rx_status)
{
bool toggle_bit =
phy_data->phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
/* Toggle is switched whenever new aggregation starts. Make
* sure ampdu_reference is never 0 so we can later use it to
* see if the frame was really part of an A-MPDU or not.
*/
if (toggle_bit != mld->monitor.ampdu_toggle) {
mld->monitor.ampdu_ref++;
if (mld->monitor.ampdu_ref == 0)
mld->monitor.ampdu_ref++;
mld->monitor.ampdu_toggle = toggle_bit;
phy_data->first_subframe = true;
}
rx_status->ampdu_reference = mld->monitor.ampdu_ref;
}
static void
iwl_mld_fill_rx_status_band_freq(struct ieee80211_rx_status *rx_status,
u8 band, u8 channel)
{
rx_status->band = iwl_mld_phy_band_to_nl80211(band);
rx_status->freq = ieee80211_channel_to_frequency(channel,
rx_status->band);
}
void iwl_mld_rx_mpdu(struct iwl_mld *mld, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_mld_rx_phy_data phy_data = {};
struct iwl_rx_mpdu_desc *mpdu_desc = (void *)pkt->data;
struct ieee80211_sta *sta;
struct ieee80211_hdr *hdr;
struct sk_buff *skb;
size_t mpdu_desc_size = sizeof(*mpdu_desc);
bool drop = false;
u8 crypto_len = 0, band, link_id;
u32 pkt_len = iwl_rx_packet_payload_len(pkt);
u32 mpdu_len;
enum iwl_mld_reorder_result reorder_res;
struct ieee80211_rx_status *rx_status;
if (unlikely(mld->fw_status.in_hw_restart))
return;
if (IWL_FW_CHECK(mld, pkt_len < mpdu_desc_size,
"Bad REPLY_RX_MPDU_CMD size (%d)\n", pkt_len))
return;
mpdu_len = le16_to_cpu(mpdu_desc->mpdu_len);
if (IWL_FW_CHECK(mld, mpdu_len + mpdu_desc_size > pkt_len,
"FW lied about packet len (%d)\n", pkt_len))
return;
/* Don't use dev_alloc_skb(), we'll have enough headroom once
* ieee80211_hdr pulled.
*/
skb = alloc_skb(128, GFP_ATOMIC);
if (!skb) {
IWL_ERR(mld, "alloc_skb failed\n");
return;
}
hdr = (void *)(pkt->data + mpdu_desc_size);
iwl_mld_fill_phy_data(mld, mpdu_desc, &phy_data);
if (mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
/* If the device inserted padding it means that (it thought)
* the 802.11 header wasn't a multiple of 4 bytes long. In
* this case, reserve two bytes at the start of the SKB to
* align the payload properly in case we end up copying it.
*/
skb_reserve(skb, 2);
}
rx_status = IEEE80211_SKB_RXCB(skb);
/* this is needed early */
band = u8_get_bits(mpdu_desc->mac_phy_band,
IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK);
iwl_mld_fill_rx_status_band_freq(rx_status, band,
mpdu_desc->v3.channel);
rcu_read_lock();
sta = iwl_mld_rx_with_sta(mld, hdr, skb, mpdu_desc, pkt, queue, &drop);
if (drop)
goto drop;
/* update aggregation data for monitor sake on default queue */
if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU))
iwl_mld_rx_update_ampdu_ref(mld, &phy_data, rx_status);
/* Keep packets with CRC errors (and with overrun) for monitor mode
* (otherwise the firmware discards them) but mark them as bad.
*/
if (!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
IWL_DEBUG_RX(mld, "Bad CRC or FIFO: 0x%08X.\n",
le32_to_cpu(mpdu_desc->status));
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
}
if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
rx_status->mactime =
le64_to_cpu(mpdu_desc->v3.tsf_on_air_rise);
/* TSF as indicated by the firmware is at INA time */
rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
}
/* management stuff on default queue */
if (!queue && unlikely(ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control))) {
rx_status->boottime_ns = ktime_get_boottime_ns();
if (mld->scan.pass_all_sched_res ==
SCHED_SCAN_PASS_ALL_STATE_ENABLED)
mld->scan.pass_all_sched_res =
SCHED_SCAN_PASS_ALL_STATE_FOUND;
}
link_id = u8_get_bits(mpdu_desc->mac_phy_band,
IWL_RX_MPDU_MAC_PHY_BAND_LINK_MASK);
iwl_mld_rx_fill_status(mld, link_id, hdr, skb, &phy_data, queue);
if (iwl_mld_rx_crypto(mld, sta, hdr, rx_status, mpdu_desc, queue,
le32_to_cpu(pkt->len_n_flags), &crypto_len))
goto drop;
if (iwl_mld_build_rx_skb(mld, skb, hdr, mpdu_len, crypto_len, rxb))
goto drop;
/* time sync frame is saved and will be released later when the
* notification with the timestamps arrives.
*/
if (iwl_mld_time_sync_frame(mld, skb, hdr->addr2))
goto out;
reorder_res = iwl_mld_reorder(mld, napi, queue, sta, skb, mpdu_desc);
switch (reorder_res) {
case IWL_MLD_PASS_SKB:
break;
case IWL_MLD_DROP_SKB:
goto drop;
case IWL_MLD_BUFFERED_SKB:
goto out;
default:
WARN_ON(1);
goto drop;
}
iwl_mld_pass_packet_to_mac80211(mld, napi, skb, queue, sta);
goto out;
drop:
kfree_skb(skb);
out:
rcu_read_unlock();
}
#define SYNC_RX_QUEUE_TIMEOUT (HZ)
void iwl_mld_sync_rx_queues(struct iwl_mld *mld,
enum iwl_mld_internal_rxq_notif_type type,
const void *notif_payload, u32 notif_payload_size)
{
u8 num_rx_queues = mld->trans->info.num_rxqs;
struct {
struct iwl_rxq_sync_cmd sync_cmd;
struct iwl_mld_internal_rxq_notif notif;
} __packed cmd = {
.sync_cmd.rxq_mask = cpu_to_le32(BIT(num_rx_queues) - 1),
.sync_cmd.count =
cpu_to_le32(sizeof(struct iwl_mld_internal_rxq_notif) +
notif_payload_size),
.notif.type = type,
.notif.cookie = mld->rxq_sync.cookie,
};
struct iwl_host_cmd hcmd = {
.id = WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD),
.data[0] = &cmd,
.len[0] = sizeof(cmd),
.data[1] = notif_payload,
.len[1] = notif_payload_size,
};
int ret;
/* size must be a multiple of DWORD */
if (WARN_ON(cmd.sync_cmd.count & cpu_to_le32(3)))
return;
mld->rxq_sync.state = (1 << num_rx_queues) - 1;
ret = iwl_mld_send_cmd(mld, &hcmd);
if (ret) {
IWL_ERR(mld, "Failed to trigger RX queues sync (%d)\n", ret);
goto out;
}
ret = wait_event_timeout(mld->rxq_sync.waitq,
READ_ONCE(mld->rxq_sync.state) == 0,
SYNC_RX_QUEUE_TIMEOUT);
WARN_ONCE(!ret, "RXQ sync failed: state=0x%lx, cookie=%d\n",
mld->rxq_sync.state, mld->rxq_sync.cookie);
out:
mld->rxq_sync.state = 0;
mld->rxq_sync.cookie++;
}
void iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld *mld,
struct napi_struct *napi,
struct iwl_rx_packet *pkt, int queue)
{
struct iwl_rxq_sync_notification *notif;
struct iwl_mld_internal_rxq_notif *internal_notif;
u32 len = iwl_rx_packet_payload_len(pkt);
size_t combined_notif_len = sizeof(*notif) + sizeof(*internal_notif);
notif = (void *)pkt->data;
internal_notif = (void *)notif->payload;
if (IWL_FW_CHECK(mld, len < combined_notif_len,
"invalid notification size %u (%zu)\n",
len, combined_notif_len))
return;
len -= combined_notif_len;
if (IWL_FW_CHECK(mld, mld->rxq_sync.cookie != internal_notif->cookie,
"received expired RX queue sync message (cookie=%d expected=%d q[%d])\n",
internal_notif->cookie, mld->rxq_sync.cookie, queue))
return;
switch (internal_notif->type) {
case IWL_MLD_RXQ_EMPTY:
IWL_FW_CHECK(mld, len,
"invalid empty notification size %d\n", len);
break;
case IWL_MLD_RXQ_NOTIF_DEL_BA:
if (IWL_FW_CHECK(mld, len != sizeof(struct iwl_mld_delba_data),
"invalid delba notification size %u (%zu)\n",
len, sizeof(struct iwl_mld_delba_data)))
break;
iwl_mld_del_ba(mld, queue, (void *)internal_notif->payload);
break;
default:
WARN_ON_ONCE(1);
}
IWL_FW_CHECK(mld, !test_and_clear_bit(queue, &mld->rxq_sync.state),
"RXQ sync: queue %d responded a second time!\n", queue);
if (READ_ONCE(mld->rxq_sync.state) == 0)
wake_up(&mld->rxq_sync.waitq);
}
void iwl_mld_rx_monitor_no_data(struct iwl_mld *mld, struct napi_struct *napi,
struct iwl_rx_packet *pkt, int queue)
{
struct iwl_rx_no_data_ver_3 *desc;
struct iwl_mld_rx_phy_data phy_data;
struct ieee80211_rx_status *rx_status;
struct sk_buff *skb;
u32 format, rssi;
u8 channel;
if (unlikely(mld->fw_status.in_hw_restart))
return;
if (IWL_FW_CHECK(mld, iwl_rx_packet_payload_len(pkt) < sizeof(*desc),
"Bad RX_NO_DATA_NOTIF size (%d)\n",
iwl_rx_packet_payload_len(pkt)))
return;
desc = (void *)pkt->data;
rssi = le32_to_cpu(desc->rssi);
channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
phy_data.data0 = desc->phy_info[0];
phy_data.data1 = desc->phy_info[1];
phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
phy_data.rate_n_flags = iwl_v3_rate_from_v2_v3(desc->rate,
mld->fw_rates_ver_3);
phy_data.with_data = false;
BUILD_BUG_ON(sizeof(phy_data.rx_vec) != sizeof(desc->rx_vec));
memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec));
format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
/* Don't use dev_alloc_skb(), we'll have enough headroom once
* ieee80211_hdr pulled.
*/
skb = alloc_skb(128, GFP_ATOMIC);
if (!skb) {
IWL_ERR(mld, "alloc_skb failed\n");
return;
}
rx_status = IEEE80211_SKB_RXCB(skb);
/* 0-length PSDU */
rx_status->flag |= RX_FLAG_NO_PSDU;
/* mark as failed PLCP on any errors to skip checks in mac80211 */
if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
RX_NO_DATA_INFO_ERR_NONE)
rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
case RX_NO_DATA_INFO_TYPE_NDP:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
break;
case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
break;
default:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
break;
}
rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
NL80211_BAND_2GHZ;
rx_status->freq = ieee80211_channel_to_frequency(channel,
rx_status->band);
/* link ID is ignored for NULL header */
iwl_mld_rx_fill_status(mld, -1, NULL, skb, &phy_data, queue);
/* No more radiotap info should be added after this point.
* Mark it as mac header for upper layers to know where
* the radiotap header ends.
*/
skb_set_mac_header(skb, skb->len);
/* Override the nss from the rx_vec since the rate_n_flags has
* only 1 bit for the nss which gives a max of 2 ss but there
* may be up to 8 spatial streams.
*/
switch (format) {
case RATE_MCS_MOD_TYPE_VHT:
rx_status->nss =
le32_get_bits(desc->rx_vec[0],
RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
break;
case RATE_MCS_MOD_TYPE_HE:
rx_status->nss =
le32_get_bits(desc->rx_vec[0],
RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
break;
case RATE_MCS_MOD_TYPE_EHT:
rx_status->nss =
le32_get_bits(desc->rx_vec[2],
RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
}
/* pass the packet to mac80211 */
rcu_read_lock();
ieee80211_rx_napi(mld->hw, NULL, skb, napi);
rcu_read_unlock();
}