| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/slab.h> |
| #include <linux/file.h> |
| #include <linux/fdtable.h> |
| #include <linux/freezer.h> |
| #include <linux/mm.h> |
| #include <linux/stat.h> |
| #include <linux/fcntl.h> |
| #include <linux/swap.h> |
| #include <linux/ctype.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/pagemap.h> |
| #include <linux/perf_event.h> |
| #include <linux/highmem.h> |
| #include <linux/spinlock.h> |
| #include <linux/key.h> |
| #include <linux/personality.h> |
| #include <linux/binfmts.h> |
| #include <linux/coredump.h> |
| #include <linux/sort.h> |
| #include <linux/sched/coredump.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/utsname.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/module.h> |
| #include <linux/namei.h> |
| #include <linux/mount.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| #include <linux/tsacct_kern.h> |
| #include <linux/cn_proc.h> |
| #include <linux/audit.h> |
| #include <linux/kmod.h> |
| #include <linux/fsnotify.h> |
| #include <linux/fs_struct.h> |
| #include <linux/pipe_fs_i.h> |
| #include <linux/oom.h> |
| #include <linux/compat.h> |
| #include <linux/fs.h> |
| #include <linux/path.h> |
| #include <linux/timekeeping.h> |
| #include <linux/sysctl.h> |
| #include <linux/elf.h> |
| #include <linux/pidfs.h> |
| #include <linux/net.h> |
| #include <linux/socket.h> |
| #include <net/af_unix.h> |
| #include <net/net_namespace.h> |
| #include <net/sock.h> |
| #include <uapi/linux/pidfd.h> |
| #include <uapi/linux/un.h> |
| #include <uapi/linux/coredump.h> |
| |
| #include <linux/uaccess.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlb.h> |
| #include <asm/exec.h> |
| |
| #include <trace/events/task.h> |
| #include "internal.h" |
| |
| #include <trace/events/sched.h> |
| |
| static bool dump_vma_snapshot(struct coredump_params *cprm); |
| static void free_vma_snapshot(struct coredump_params *cprm); |
| |
| #define CORE_FILE_NOTE_SIZE_DEFAULT (4*1024*1024) |
| /* Define a reasonable max cap */ |
| #define CORE_FILE_NOTE_SIZE_MAX (16*1024*1024) |
| /* |
| * File descriptor number for the pidfd for the thread-group leader of |
| * the coredumping task installed into the usermode helper's file |
| * descriptor table. |
| */ |
| #define COREDUMP_PIDFD_NUMBER 3 |
| |
| static int core_uses_pid; |
| static unsigned int core_pipe_limit; |
| static unsigned int core_sort_vma; |
| static char core_pattern[CORENAME_MAX_SIZE] = "core"; |
| static int core_name_size = CORENAME_MAX_SIZE; |
| unsigned int core_file_note_size_limit = CORE_FILE_NOTE_SIZE_DEFAULT; |
| static atomic_t core_pipe_count = ATOMIC_INIT(0); |
| |
| enum coredump_type_t { |
| COREDUMP_FILE = 1, |
| COREDUMP_PIPE = 2, |
| COREDUMP_SOCK = 3, |
| COREDUMP_SOCK_REQ = 4, |
| }; |
| |
| struct core_name { |
| char *corename; |
| int used, size; |
| unsigned int core_pipe_limit; |
| bool core_dumped; |
| enum coredump_type_t core_type; |
| u64 mask; |
| }; |
| |
| static int expand_corename(struct core_name *cn, int size) |
| { |
| char *corename; |
| |
| size = kmalloc_size_roundup(size); |
| corename = krealloc(cn->corename, size, GFP_KERNEL); |
| |
| if (!corename) |
| return -ENOMEM; |
| |
| if (size > core_name_size) /* racy but harmless */ |
| core_name_size = size; |
| |
| cn->size = size; |
| cn->corename = corename; |
| return 0; |
| } |
| |
| static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, |
| va_list arg) |
| { |
| int free, need; |
| va_list arg_copy; |
| |
| again: |
| free = cn->size - cn->used; |
| |
| va_copy(arg_copy, arg); |
| need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); |
| va_end(arg_copy); |
| |
| if (need < free) { |
| cn->used += need; |
| return 0; |
| } |
| |
| if (!expand_corename(cn, cn->size + need - free + 1)) |
| goto again; |
| |
| return -ENOMEM; |
| } |
| |
| static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) |
| { |
| va_list arg; |
| int ret; |
| |
| va_start(arg, fmt); |
| ret = cn_vprintf(cn, fmt, arg); |
| va_end(arg); |
| |
| return ret; |
| } |
| |
| static __printf(2, 3) |
| int cn_esc_printf(struct core_name *cn, const char *fmt, ...) |
| { |
| int cur = cn->used; |
| va_list arg; |
| int ret; |
| |
| va_start(arg, fmt); |
| ret = cn_vprintf(cn, fmt, arg); |
| va_end(arg); |
| |
| if (ret == 0) { |
| /* |
| * Ensure that this coredump name component can't cause the |
| * resulting corefile path to consist of a ".." or ".". |
| */ |
| if ((cn->used - cur == 1 && cn->corename[cur] == '.') || |
| (cn->used - cur == 2 && cn->corename[cur] == '.' |
| && cn->corename[cur+1] == '.')) |
| cn->corename[cur] = '!'; |
| |
| /* |
| * Empty names are fishy and could be used to create a "//" in a |
| * corefile name, causing the coredump to happen one directory |
| * level too high. Enforce that all components of the core |
| * pattern are at least one character long. |
| */ |
| if (cn->used == cur) |
| ret = cn_printf(cn, "!"); |
| } |
| |
| for (; cur < cn->used; ++cur) { |
| if (cn->corename[cur] == '/') |
| cn->corename[cur] = '!'; |
| } |
| return ret; |
| } |
| |
| static int cn_print_exe_file(struct core_name *cn, bool name_only) |
| { |
| struct file *exe_file; |
| char *pathbuf, *path, *ptr; |
| int ret; |
| |
| exe_file = get_mm_exe_file(current->mm); |
| if (!exe_file) |
| return cn_esc_printf(cn, "%s (path unknown)", current->comm); |
| |
| pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); |
| if (!pathbuf) { |
| ret = -ENOMEM; |
| goto put_exe_file; |
| } |
| |
| path = file_path(exe_file, pathbuf, PATH_MAX); |
| if (IS_ERR(path)) { |
| ret = PTR_ERR(path); |
| goto free_buf; |
| } |
| |
| if (name_only) { |
| ptr = strrchr(path, '/'); |
| if (ptr) |
| path = ptr + 1; |
| } |
| ret = cn_esc_printf(cn, "%s", path); |
| |
| free_buf: |
| kfree(pathbuf); |
| put_exe_file: |
| fput(exe_file); |
| return ret; |
| } |
| |
| /* |
| * coredump_parse will inspect the pattern parameter, and output a name |
| * into corename, which must have space for at least CORENAME_MAX_SIZE |
| * bytes plus one byte for the zero terminator. |
| */ |
| static bool coredump_parse(struct core_name *cn, struct coredump_params *cprm, |
| size_t **argv, int *argc) |
| { |
| const struct cred *cred = current_cred(); |
| const char *pat_ptr = core_pattern; |
| bool was_space = false; |
| int pid_in_pattern = 0; |
| int err = 0; |
| |
| cn->mask = COREDUMP_KERNEL; |
| if (core_pipe_limit) |
| cn->mask |= COREDUMP_WAIT; |
| cn->used = 0; |
| cn->corename = NULL; |
| cn->core_pipe_limit = 0; |
| cn->core_dumped = false; |
| if (*pat_ptr == '|') |
| cn->core_type = COREDUMP_PIPE; |
| else if (*pat_ptr == '@') |
| cn->core_type = COREDUMP_SOCK; |
| else |
| cn->core_type = COREDUMP_FILE; |
| if (expand_corename(cn, core_name_size)) |
| return false; |
| cn->corename[0] = '\0'; |
| |
| switch (cn->core_type) { |
| case COREDUMP_PIPE: { |
| int argvs = sizeof(core_pattern) / 2; |
| (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); |
| if (!(*argv)) |
| return false; |
| (*argv)[(*argc)++] = 0; |
| ++pat_ptr; |
| if (!(*pat_ptr)) |
| return false; |
| break; |
| } |
| case COREDUMP_SOCK: { |
| /* skip the @ */ |
| pat_ptr++; |
| if (!(*pat_ptr)) |
| return false; |
| if (*pat_ptr == '@') { |
| pat_ptr++; |
| if (!(*pat_ptr)) |
| return false; |
| |
| cn->core_type = COREDUMP_SOCK_REQ; |
| } |
| |
| err = cn_printf(cn, "%s", pat_ptr); |
| if (err) |
| return false; |
| |
| /* Require absolute paths. */ |
| if (cn->corename[0] != '/') |
| return false; |
| |
| /* |
| * Ensure we can uses spaces to indicate additional |
| * parameters in the future. |
| */ |
| if (strchr(cn->corename, ' ')) { |
| coredump_report_failure("Coredump socket may not %s contain spaces", cn->corename); |
| return false; |
| } |
| |
| /* Must not contain ".." in the path. */ |
| if (name_contains_dotdot(cn->corename)) { |
| coredump_report_failure("Coredump socket may not %s contain '..' spaces", cn->corename); |
| return false; |
| } |
| |
| if (strlen(cn->corename) >= UNIX_PATH_MAX) { |
| coredump_report_failure("Coredump socket path %s too long", cn->corename); |
| return false; |
| } |
| |
| /* |
| * Currently no need to parse any other options. |
| * Relevant information can be retrieved from the peer |
| * pidfd retrievable via SO_PEERPIDFD by the receiver or |
| * via /proc/<pid>, using the SO_PEERPIDFD to guard |
| * against pid recycling when opening /proc/<pid>. |
| */ |
| return true; |
| } |
| case COREDUMP_FILE: |
| break; |
| default: |
| WARN_ON_ONCE(true); |
| return false; |
| } |
| |
| /* Repeat as long as we have more pattern to process and more output |
| space */ |
| while (*pat_ptr) { |
| /* |
| * Split on spaces before doing template expansion so that |
| * %e and %E don't get split if they have spaces in them |
| */ |
| if (cn->core_type == COREDUMP_PIPE) { |
| if (isspace(*pat_ptr)) { |
| if (cn->used != 0) |
| was_space = true; |
| pat_ptr++; |
| continue; |
| } else if (was_space) { |
| was_space = false; |
| err = cn_printf(cn, "%c", '\0'); |
| if (err) |
| return false; |
| (*argv)[(*argc)++] = cn->used; |
| } |
| } |
| if (*pat_ptr != '%') { |
| err = cn_printf(cn, "%c", *pat_ptr++); |
| } else { |
| switch (*++pat_ptr) { |
| /* single % at the end, drop that */ |
| case 0: |
| goto out; |
| /* Double percent, output one percent */ |
| case '%': |
| err = cn_printf(cn, "%c", '%'); |
| break; |
| /* pid */ |
| case 'p': |
| pid_in_pattern = 1; |
| err = cn_printf(cn, "%d", |
| task_tgid_vnr(current)); |
| break; |
| /* global pid */ |
| case 'P': |
| err = cn_printf(cn, "%d", |
| task_tgid_nr(current)); |
| break; |
| case 'i': |
| err = cn_printf(cn, "%d", |
| task_pid_vnr(current)); |
| break; |
| case 'I': |
| err = cn_printf(cn, "%d", |
| task_pid_nr(current)); |
| break; |
| /* uid */ |
| case 'u': |
| err = cn_printf(cn, "%u", |
| from_kuid(&init_user_ns, |
| cred->uid)); |
| break; |
| /* gid */ |
| case 'g': |
| err = cn_printf(cn, "%u", |
| from_kgid(&init_user_ns, |
| cred->gid)); |
| break; |
| case 'd': |
| err = cn_printf(cn, "%d", |
| __get_dumpable(cprm->mm_flags)); |
| break; |
| /* signal that caused the coredump */ |
| case 's': |
| err = cn_printf(cn, "%d", |
| cprm->siginfo->si_signo); |
| break; |
| /* UNIX time of coredump */ |
| case 't': { |
| time64_t time; |
| |
| time = ktime_get_real_seconds(); |
| err = cn_printf(cn, "%lld", time); |
| break; |
| } |
| /* hostname */ |
| case 'h': |
| down_read(&uts_sem); |
| err = cn_esc_printf(cn, "%s", |
| utsname()->nodename); |
| up_read(&uts_sem); |
| break; |
| /* executable, could be changed by prctl PR_SET_NAME etc */ |
| case 'e': |
| err = cn_esc_printf(cn, "%s", current->comm); |
| break; |
| /* file name of executable */ |
| case 'f': |
| err = cn_print_exe_file(cn, true); |
| break; |
| case 'E': |
| err = cn_print_exe_file(cn, false); |
| break; |
| /* core limit size */ |
| case 'c': |
| err = cn_printf(cn, "%lu", |
| rlimit(RLIMIT_CORE)); |
| break; |
| /* CPU the task ran on */ |
| case 'C': |
| err = cn_printf(cn, "%d", cprm->cpu); |
| break; |
| /* pidfd number */ |
| case 'F': { |
| /* |
| * Installing a pidfd only makes sense if |
| * we actually spawn a usermode helper. |
| */ |
| if (cn->core_type != COREDUMP_PIPE) |
| break; |
| |
| /* |
| * Note that we'll install a pidfd for the |
| * thread-group leader. We know that task |
| * linkage hasn't been removed yet and even if |
| * this @current isn't the actual thread-group |
| * leader we know that the thread-group leader |
| * cannot be reaped until @current has exited. |
| */ |
| cprm->pid = task_tgid(current); |
| err = cn_printf(cn, "%d", COREDUMP_PIDFD_NUMBER); |
| break; |
| } |
| default: |
| break; |
| } |
| ++pat_ptr; |
| } |
| |
| if (err) |
| return false; |
| } |
| |
| out: |
| /* Backward compatibility with core_uses_pid: |
| * |
| * If core_pattern does not include a %p (as is the default) |
| * and core_uses_pid is set, then .%pid will be appended to |
| * the filename. Do not do this for piped commands. */ |
| if (cn->core_type == COREDUMP_FILE && !pid_in_pattern && core_uses_pid) |
| return cn_printf(cn, ".%d", task_tgid_vnr(current)) == 0; |
| |
| return true; |
| } |
| |
| static int zap_process(struct signal_struct *signal, int exit_code) |
| { |
| struct task_struct *t; |
| int nr = 0; |
| |
| signal->flags = SIGNAL_GROUP_EXIT; |
| signal->group_exit_code = exit_code; |
| signal->group_stop_count = 0; |
| |
| __for_each_thread(signal, t) { |
| task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); |
| if (t != current && !(t->flags & PF_POSTCOREDUMP)) { |
| sigaddset(&t->pending.signal, SIGKILL); |
| signal_wake_up(t, 1); |
| nr++; |
| } |
| } |
| |
| return nr; |
| } |
| |
| static int zap_threads(struct task_struct *tsk, |
| struct core_state *core_state, int exit_code) |
| { |
| struct signal_struct *signal = tsk->signal; |
| int nr = -EAGAIN; |
| |
| spin_lock_irq(&tsk->sighand->siglock); |
| if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) { |
| /* Allow SIGKILL, see prepare_signal() */ |
| signal->core_state = core_state; |
| nr = zap_process(signal, exit_code); |
| clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
| tsk->flags |= PF_DUMPCORE; |
| atomic_set(&core_state->nr_threads, nr); |
| } |
| spin_unlock_irq(&tsk->sighand->siglock); |
| return nr; |
| } |
| |
| static int coredump_wait(int exit_code, struct core_state *core_state) |
| { |
| struct task_struct *tsk = current; |
| int core_waiters = -EBUSY; |
| |
| init_completion(&core_state->startup); |
| core_state->dumper.task = tsk; |
| core_state->dumper.next = NULL; |
| |
| core_waiters = zap_threads(tsk, core_state, exit_code); |
| if (core_waiters > 0) { |
| struct core_thread *ptr; |
| |
| wait_for_completion_state(&core_state->startup, |
| TASK_UNINTERRUPTIBLE|TASK_FREEZABLE); |
| /* |
| * Wait for all the threads to become inactive, so that |
| * all the thread context (extended register state, like |
| * fpu etc) gets copied to the memory. |
| */ |
| ptr = core_state->dumper.next; |
| while (ptr != NULL) { |
| wait_task_inactive(ptr->task, TASK_ANY); |
| ptr = ptr->next; |
| } |
| } |
| |
| return core_waiters; |
| } |
| |
| static void coredump_finish(bool core_dumped) |
| { |
| struct core_thread *curr, *next; |
| struct task_struct *task; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| if (core_dumped && !__fatal_signal_pending(current)) |
| current->signal->group_exit_code |= 0x80; |
| next = current->signal->core_state->dumper.next; |
| current->signal->core_state = NULL; |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| while ((curr = next) != NULL) { |
| next = curr->next; |
| task = curr->task; |
| /* |
| * see coredump_task_exit(), curr->task must not see |
| * ->task == NULL before we read ->next. |
| */ |
| smp_mb(); |
| curr->task = NULL; |
| wake_up_process(task); |
| } |
| } |
| |
| static bool dump_interrupted(void) |
| { |
| /* |
| * SIGKILL or freezing() interrupt the coredumping. Perhaps we |
| * can do try_to_freeze() and check __fatal_signal_pending(), |
| * but then we need to teach dump_write() to restart and clear |
| * TIF_SIGPENDING. |
| */ |
| return fatal_signal_pending(current) || freezing(current); |
| } |
| |
| static void wait_for_dump_helpers(struct file *file) |
| { |
| struct pipe_inode_info *pipe = file->private_data; |
| |
| pipe_lock(pipe); |
| pipe->readers++; |
| pipe->writers--; |
| wake_up_interruptible_sync(&pipe->rd_wait); |
| kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| pipe_unlock(pipe); |
| |
| /* |
| * We actually want wait_event_freezable() but then we need |
| * to clear TIF_SIGPENDING and improve dump_interrupted(). |
| */ |
| wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); |
| |
| pipe_lock(pipe); |
| pipe->readers--; |
| pipe->writers++; |
| pipe_unlock(pipe); |
| } |
| |
| /* |
| * umh_coredump_setup |
| * helper function to customize the process used |
| * to collect the core in userspace. Specifically |
| * it sets up a pipe and installs it as fd 0 (stdin) |
| * for the process. Returns 0 on success, or |
| * PTR_ERR on failure. |
| * Note that it also sets the core limit to 1. This |
| * is a special value that we use to trap recursive |
| * core dumps |
| */ |
| static int umh_coredump_setup(struct subprocess_info *info, struct cred *new) |
| { |
| struct file *files[2]; |
| struct coredump_params *cp = (struct coredump_params *)info->data; |
| int err; |
| |
| if (cp->pid) { |
| struct file *pidfs_file __free(fput) = NULL; |
| |
| pidfs_file = pidfs_alloc_file(cp->pid, 0); |
| if (IS_ERR(pidfs_file)) |
| return PTR_ERR(pidfs_file); |
| |
| pidfs_coredump(cp); |
| |
| /* |
| * Usermode helpers are childen of either |
| * system_unbound_wq or of kthreadd. So we know that |
| * we're starting off with a clean file descriptor |
| * table. So we should always be able to use |
| * COREDUMP_PIDFD_NUMBER as our file descriptor value. |
| */ |
| err = replace_fd(COREDUMP_PIDFD_NUMBER, pidfs_file, 0); |
| if (err < 0) |
| return err; |
| } |
| |
| err = create_pipe_files(files, 0); |
| if (err) |
| return err; |
| |
| cp->file = files[1]; |
| |
| err = replace_fd(0, files[0], 0); |
| fput(files[0]); |
| if (err < 0) |
| return err; |
| |
| /* and disallow core files too */ |
| current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_UNIX |
| static bool coredump_sock_connect(struct core_name *cn, struct coredump_params *cprm) |
| { |
| struct file *file __free(fput) = NULL; |
| struct sockaddr_un addr = { |
| .sun_family = AF_UNIX, |
| }; |
| ssize_t addr_len; |
| int retval; |
| struct socket *socket; |
| |
| addr_len = strscpy(addr.sun_path, cn->corename); |
| if (addr_len < 0) |
| return false; |
| addr_len += offsetof(struct sockaddr_un, sun_path) + 1; |
| |
| /* |
| * It is possible that the userspace process which is supposed |
| * to handle the coredump and is listening on the AF_UNIX socket |
| * coredumps. Userspace should just mark itself non dumpable. |
| */ |
| |
| retval = sock_create_kern(&init_net, AF_UNIX, SOCK_STREAM, 0, &socket); |
| if (retval < 0) |
| return false; |
| |
| file = sock_alloc_file(socket, 0, NULL); |
| if (IS_ERR(file)) |
| return false; |
| |
| /* |
| * Set the thread-group leader pid which is used for the peer |
| * credentials during connect() below. Then immediately register |
| * it in pidfs... |
| */ |
| cprm->pid = task_tgid(current); |
| retval = pidfs_register_pid(cprm->pid); |
| if (retval) |
| return false; |
| |
| /* |
| * ... and set the coredump information so userspace has it |
| * available after connect()... |
| */ |
| pidfs_coredump(cprm); |
| |
| retval = kernel_connect(socket, (struct sockaddr *)(&addr), addr_len, |
| O_NONBLOCK | SOCK_COREDUMP); |
| |
| if (retval) { |
| if (retval == -EAGAIN) |
| coredump_report_failure("Coredump socket %s receive queue full", addr.sun_path); |
| else |
| coredump_report_failure("Coredump socket connection %s failed %d", addr.sun_path, retval); |
| return false; |
| } |
| |
| /* ... and validate that @sk_peer_pid matches @cprm.pid. */ |
| if (WARN_ON_ONCE(unix_peer(socket->sk)->sk_peer_pid != cprm->pid)) |
| return false; |
| |
| cprm->limit = RLIM_INFINITY; |
| cprm->file = no_free_ptr(file); |
| |
| return true; |
| } |
| |
| static inline bool coredump_sock_recv(struct file *file, struct coredump_ack *ack, size_t size, int flags) |
| { |
| struct msghdr msg = {}; |
| struct kvec iov = { .iov_base = ack, .iov_len = size }; |
| ssize_t ret; |
| |
| memset(ack, 0, size); |
| ret = kernel_recvmsg(sock_from_file(file), &msg, &iov, 1, size, flags); |
| return ret == size; |
| } |
| |
| static inline bool coredump_sock_send(struct file *file, struct coredump_req *req) |
| { |
| struct msghdr msg = { .msg_flags = MSG_NOSIGNAL }; |
| struct kvec iov = { .iov_base = req, .iov_len = sizeof(*req) }; |
| ssize_t ret; |
| |
| ret = kernel_sendmsg(sock_from_file(file), &msg, &iov, 1, sizeof(*req)); |
| return ret == sizeof(*req); |
| } |
| |
| static_assert(sizeof(enum coredump_mark) == sizeof(__u32)); |
| |
| static inline bool coredump_sock_mark(struct file *file, enum coredump_mark mark) |
| { |
| struct msghdr msg = { .msg_flags = MSG_NOSIGNAL }; |
| struct kvec iov = { .iov_base = &mark, .iov_len = sizeof(mark) }; |
| ssize_t ret; |
| |
| ret = kernel_sendmsg(sock_from_file(file), &msg, &iov, 1, sizeof(mark)); |
| return ret == sizeof(mark); |
| } |
| |
| static inline void coredump_sock_wait(struct file *file) |
| { |
| ssize_t n; |
| |
| /* |
| * We use a simple read to wait for the coredump processing to |
| * finish. Either the socket is closed or we get sent unexpected |
| * data. In both cases, we're done. |
| */ |
| n = __kernel_read(file, &(char){ 0 }, 1, NULL); |
| if (n > 0) |
| coredump_report_failure("Coredump socket had unexpected data"); |
| else if (n < 0) |
| coredump_report_failure("Coredump socket failed"); |
| } |
| |
| static inline void coredump_sock_shutdown(struct file *file) |
| { |
| struct socket *socket; |
| |
| socket = sock_from_file(file); |
| if (!socket) |
| return; |
| |
| /* Let userspace know we're done processing the coredump. */ |
| kernel_sock_shutdown(socket, SHUT_WR); |
| } |
| |
| static bool coredump_sock_request(struct core_name *cn, struct coredump_params *cprm) |
| { |
| struct coredump_req req = { |
| .size = sizeof(struct coredump_req), |
| .mask = COREDUMP_KERNEL | COREDUMP_USERSPACE | |
| COREDUMP_REJECT | COREDUMP_WAIT, |
| .size_ack = sizeof(struct coredump_ack), |
| }; |
| struct coredump_ack ack = {}; |
| ssize_t usize; |
| |
| if (cn->core_type != COREDUMP_SOCK_REQ) |
| return true; |
| |
| /* Let userspace know what we support. */ |
| if (!coredump_sock_send(cprm->file, &req)) |
| return false; |
| |
| /* Peek the size of the coredump_ack. */ |
| if (!coredump_sock_recv(cprm->file, &ack, sizeof(ack.size), |
| MSG_PEEK | MSG_WAITALL)) |
| return false; |
| |
| /* Refuse unknown coredump_ack sizes. */ |
| usize = ack.size; |
| if (usize < COREDUMP_ACK_SIZE_VER0) { |
| coredump_sock_mark(cprm->file, COREDUMP_MARK_MINSIZE); |
| return false; |
| } |
| |
| if (usize > sizeof(ack)) { |
| coredump_sock_mark(cprm->file, COREDUMP_MARK_MAXSIZE); |
| return false; |
| } |
| |
| /* Now retrieve the coredump_ack. */ |
| if (!coredump_sock_recv(cprm->file, &ack, usize, MSG_WAITALL)) |
| return false; |
| if (ack.size != usize) |
| return false; |
| |
| /* Refuse unknown coredump_ack flags. */ |
| if (ack.mask & ~req.mask) { |
| coredump_sock_mark(cprm->file, COREDUMP_MARK_UNSUPPORTED); |
| return false; |
| } |
| |
| /* Refuse mutually exclusive options. */ |
| if (hweight64(ack.mask & (COREDUMP_USERSPACE | COREDUMP_KERNEL | |
| COREDUMP_REJECT)) != 1) { |
| coredump_sock_mark(cprm->file, COREDUMP_MARK_CONFLICTING); |
| return false; |
| } |
| |
| if (ack.spare) { |
| coredump_sock_mark(cprm->file, COREDUMP_MARK_UNSUPPORTED); |
| return false; |
| } |
| |
| cn->mask = ack.mask; |
| return coredump_sock_mark(cprm->file, COREDUMP_MARK_REQACK); |
| } |
| |
| static bool coredump_socket(struct core_name *cn, struct coredump_params *cprm) |
| { |
| if (!coredump_sock_connect(cn, cprm)) |
| return false; |
| |
| return coredump_sock_request(cn, cprm); |
| } |
| #else |
| static inline void coredump_sock_wait(struct file *file) { } |
| static inline void coredump_sock_shutdown(struct file *file) { } |
| static inline bool coredump_socket(struct core_name *cn, struct coredump_params *cprm) { return false; } |
| #endif |
| |
| /* cprm->mm_flags contains a stable snapshot of dumpability flags. */ |
| static inline bool coredump_force_suid_safe(const struct coredump_params *cprm) |
| { |
| /* Require nonrelative corefile path and be extra careful. */ |
| return __get_dumpable(cprm->mm_flags) == SUID_DUMP_ROOT; |
| } |
| |
| static bool coredump_file(struct core_name *cn, struct coredump_params *cprm, |
| const struct linux_binfmt *binfmt) |
| { |
| struct mnt_idmap *idmap; |
| struct inode *inode; |
| struct file *file __free(fput) = NULL; |
| int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW | O_LARGEFILE | O_EXCL; |
| |
| if (cprm->limit < binfmt->min_coredump) |
| return false; |
| |
| if (coredump_force_suid_safe(cprm) && cn->corename[0] != '/') { |
| coredump_report_failure("this process can only dump core to a fully qualified path, skipping core dump"); |
| return false; |
| } |
| |
| /* |
| * Unlink the file if it exists unless this is a SUID |
| * binary - in that case, we're running around with root |
| * privs and don't want to unlink another user's coredump. |
| */ |
| if (!coredump_force_suid_safe(cprm)) { |
| /* |
| * If it doesn't exist, that's fine. If there's some |
| * other problem, we'll catch it at the filp_open(). |
| */ |
| do_unlinkat(AT_FDCWD, getname_kernel(cn->corename)); |
| } |
| |
| /* |
| * There is a race between unlinking and creating the |
| * file, but if that causes an EEXIST here, that's |
| * fine - another process raced with us while creating |
| * the corefile, and the other process won. To userspace, |
| * what matters is that at least one of the two processes |
| * writes its coredump successfully, not which one. |
| */ |
| if (coredump_force_suid_safe(cprm)) { |
| /* |
| * Using user namespaces, normal user tasks can change |
| * their current->fs->root to point to arbitrary |
| * directories. Since the intention of the "only dump |
| * with a fully qualified path" rule is to control where |
| * coredumps may be placed using root privileges, |
| * current->fs->root must not be used. Instead, use the |
| * root directory of init_task. |
| */ |
| struct path root; |
| |
| task_lock(&init_task); |
| get_fs_root(init_task.fs, &root); |
| task_unlock(&init_task); |
| file = file_open_root(&root, cn->corename, open_flags, 0600); |
| path_put(&root); |
| } else { |
| file = filp_open(cn->corename, open_flags, 0600); |
| } |
| if (IS_ERR(file)) |
| return false; |
| |
| inode = file_inode(file); |
| if (inode->i_nlink > 1) |
| return false; |
| if (d_unhashed(file->f_path.dentry)) |
| return false; |
| /* |
| * AK: actually i see no reason to not allow this for named |
| * pipes etc, but keep the previous behaviour for now. |
| */ |
| if (!S_ISREG(inode->i_mode)) |
| return false; |
| /* |
| * Don't dump core if the filesystem changed owner or mode |
| * of the file during file creation. This is an issue when |
| * a process dumps core while its cwd is e.g. on a vfat |
| * filesystem. |
| */ |
| idmap = file_mnt_idmap(file); |
| if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid())) { |
| coredump_report_failure("Core dump to %s aborted: cannot preserve file owner", cn->corename); |
| return false; |
| } |
| if ((inode->i_mode & 0677) != 0600) { |
| coredump_report_failure("Core dump to %s aborted: cannot preserve file permissions", cn->corename); |
| return false; |
| } |
| if (!(file->f_mode & FMODE_CAN_WRITE)) |
| return false; |
| if (do_truncate(idmap, file->f_path.dentry, 0, 0, file)) |
| return false; |
| |
| cprm->file = no_free_ptr(file); |
| return true; |
| } |
| |
| static bool coredump_pipe(struct core_name *cn, struct coredump_params *cprm, |
| size_t *argv, int argc) |
| { |
| int argi; |
| char **helper_argv __free(kfree) = NULL; |
| struct subprocess_info *sub_info; |
| |
| if (cprm->limit == 1) { |
| /* See umh_coredump_setup() which sets RLIMIT_CORE = 1. |
| * |
| * Normally core limits are irrelevant to pipes, since |
| * we're not writing to the file system, but we use |
| * cprm.limit of 1 here as a special value, this is a |
| * consistent way to catch recursive crashes. |
| * We can still crash if the core_pattern binary sets |
| * RLIM_CORE = !1, but it runs as root, and can do |
| * lots of stupid things. |
| * |
| * Note that we use task_tgid_vnr here to grab the pid |
| * of the process group leader. That way we get the |
| * right pid if a thread in a multi-threaded |
| * core_pattern process dies. |
| */ |
| coredump_report_failure("RLIMIT_CORE is set to 1, aborting core"); |
| return false; |
| } |
| cprm->limit = RLIM_INFINITY; |
| |
| cn->core_pipe_limit = atomic_inc_return(&core_pipe_count); |
| if (core_pipe_limit && (core_pipe_limit < cn->core_pipe_limit)) { |
| coredump_report_failure("over core_pipe_limit, skipping core dump"); |
| return false; |
| } |
| |
| helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), GFP_KERNEL); |
| if (!helper_argv) { |
| coredump_report_failure("%s failed to allocate memory", __func__); |
| return false; |
| } |
| for (argi = 0; argi < argc; argi++) |
| helper_argv[argi] = cn->corename + argv[argi]; |
| helper_argv[argi] = NULL; |
| |
| sub_info = call_usermodehelper_setup(helper_argv[0], helper_argv, NULL, |
| GFP_KERNEL, umh_coredump_setup, |
| NULL, cprm); |
| if (!sub_info) |
| return false; |
| |
| if (call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC)) { |
| coredump_report_failure("|%s pipe failed", cn->corename); |
| return false; |
| } |
| |
| /* |
| * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would |
| * have this set to NULL. |
| */ |
| if (!cprm->file) { |
| coredump_report_failure("Core dump to |%s disabled", cn->corename); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool coredump_write(struct core_name *cn, |
| struct coredump_params *cprm, |
| struct linux_binfmt *binfmt) |
| { |
| |
| if (dump_interrupted()) |
| return true; |
| |
| if (!dump_vma_snapshot(cprm)) |
| return false; |
| |
| file_start_write(cprm->file); |
| cn->core_dumped = binfmt->core_dump(cprm); |
| /* |
| * Ensures that file size is big enough to contain the current |
| * file postion. This prevents gdb from complaining about |
| * a truncated file if the last "write" to the file was |
| * dump_skip. |
| */ |
| if (cprm->to_skip) { |
| cprm->to_skip--; |
| dump_emit(cprm, "", 1); |
| } |
| file_end_write(cprm->file); |
| free_vma_snapshot(cprm); |
| return true; |
| } |
| |
| static void coredump_cleanup(struct core_name *cn, struct coredump_params *cprm) |
| { |
| if (cprm->file) |
| filp_close(cprm->file, NULL); |
| if (cn->core_pipe_limit) { |
| VFS_WARN_ON_ONCE(cn->core_type != COREDUMP_PIPE); |
| atomic_dec(&core_pipe_count); |
| } |
| kfree(cn->corename); |
| coredump_finish(cn->core_dumped); |
| } |
| |
| static inline bool coredump_skip(const struct coredump_params *cprm, |
| const struct linux_binfmt *binfmt) |
| { |
| if (!binfmt) |
| return true; |
| if (!binfmt->core_dump) |
| return true; |
| if (!__get_dumpable(cprm->mm_flags)) |
| return true; |
| return false; |
| } |
| |
| void vfs_coredump(const kernel_siginfo_t *siginfo) |
| { |
| struct cred *cred __free(put_cred) = NULL; |
| size_t *argv __free(kfree) = NULL; |
| struct core_state core_state; |
| struct core_name cn; |
| struct mm_struct *mm = current->mm; |
| struct linux_binfmt *binfmt = mm->binfmt; |
| const struct cred *old_cred; |
| int argc = 0; |
| struct coredump_params cprm = { |
| .siginfo = siginfo, |
| .limit = rlimit(RLIMIT_CORE), |
| /* |
| * We must use the same mm->flags while dumping core to avoid |
| * inconsistency of bit flags, since this flag is not protected |
| * by any locks. |
| */ |
| .mm_flags = mm->flags, |
| .vma_meta = NULL, |
| .cpu = raw_smp_processor_id(), |
| }; |
| |
| audit_core_dumps(siginfo->si_signo); |
| |
| if (coredump_skip(&cprm, binfmt)) |
| return; |
| |
| cred = prepare_creds(); |
| if (!cred) |
| return; |
| /* |
| * We cannot trust fsuid as being the "true" uid of the process |
| * nor do we know its entire history. We only know it was tainted |
| * so we dump it as root in mode 2, and only into a controlled |
| * environment (pipe handler or fully qualified path). |
| */ |
| if (coredump_force_suid_safe(&cprm)) |
| cred->fsuid = GLOBAL_ROOT_UID; |
| |
| if (coredump_wait(siginfo->si_signo, &core_state) < 0) |
| return; |
| |
| old_cred = override_creds(cred); |
| |
| if (!coredump_parse(&cn, &cprm, &argv, &argc)) { |
| coredump_report_failure("format_corename failed, aborting core"); |
| goto close_fail; |
| } |
| |
| switch (cn.core_type) { |
| case COREDUMP_FILE: |
| if (!coredump_file(&cn, &cprm, binfmt)) |
| goto close_fail; |
| break; |
| case COREDUMP_PIPE: |
| if (!coredump_pipe(&cn, &cprm, argv, argc)) |
| goto close_fail; |
| break; |
| case COREDUMP_SOCK_REQ: |
| fallthrough; |
| case COREDUMP_SOCK: |
| if (!coredump_socket(&cn, &cprm)) |
| goto close_fail; |
| break; |
| default: |
| WARN_ON_ONCE(true); |
| goto close_fail; |
| } |
| |
| /* Don't even generate the coredump. */ |
| if (cn.mask & COREDUMP_REJECT) |
| goto close_fail; |
| |
| /* get us an unshared descriptor table; almost always a no-op */ |
| /* The cell spufs coredump code reads the file descriptor tables */ |
| if (unshare_files()) |
| goto close_fail; |
| |
| if ((cn.mask & COREDUMP_KERNEL) && !coredump_write(&cn, &cprm, binfmt)) |
| goto close_fail; |
| |
| coredump_sock_shutdown(cprm.file); |
| |
| /* Let the parent know that a coredump was generated. */ |
| if (cn.mask & COREDUMP_USERSPACE) |
| cn.core_dumped = true; |
| |
| /* |
| * When core_pipe_limit is set we wait for the coredump server |
| * or usermodehelper to finish before exiting so it can e.g., |
| * inspect /proc/<pid>. |
| */ |
| if (cn.mask & COREDUMP_WAIT) { |
| switch (cn.core_type) { |
| case COREDUMP_PIPE: |
| wait_for_dump_helpers(cprm.file); |
| break; |
| case COREDUMP_SOCK_REQ: |
| fallthrough; |
| case COREDUMP_SOCK: |
| coredump_sock_wait(cprm.file); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| close_fail: |
| coredump_cleanup(&cn, &cprm); |
| revert_creds(old_cred); |
| return; |
| } |
| |
| /* |
| * Core dumping helper functions. These are the only things you should |
| * do on a core-file: use only these functions to write out all the |
| * necessary info. |
| */ |
| static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr) |
| { |
| struct file *file = cprm->file; |
| loff_t pos = file->f_pos; |
| ssize_t n; |
| |
| if (cprm->written + nr > cprm->limit) |
| return 0; |
| if (dump_interrupted()) |
| return 0; |
| n = __kernel_write(file, addr, nr, &pos); |
| if (n != nr) |
| return 0; |
| file->f_pos = pos; |
| cprm->written += n; |
| cprm->pos += n; |
| |
| return 1; |
| } |
| |
| static int __dump_skip(struct coredump_params *cprm, size_t nr) |
| { |
| static char zeroes[PAGE_SIZE]; |
| struct file *file = cprm->file; |
| |
| if (file->f_mode & FMODE_LSEEK) { |
| if (dump_interrupted() || vfs_llseek(file, nr, SEEK_CUR) < 0) |
| return 0; |
| cprm->pos += nr; |
| return 1; |
| } |
| |
| while (nr > PAGE_SIZE) { |
| if (!__dump_emit(cprm, zeroes, PAGE_SIZE)) |
| return 0; |
| nr -= PAGE_SIZE; |
| } |
| |
| return __dump_emit(cprm, zeroes, nr); |
| } |
| |
| int dump_emit(struct coredump_params *cprm, const void *addr, int nr) |
| { |
| if (cprm->to_skip) { |
| if (!__dump_skip(cprm, cprm->to_skip)) |
| return 0; |
| cprm->to_skip = 0; |
| } |
| return __dump_emit(cprm, addr, nr); |
| } |
| EXPORT_SYMBOL(dump_emit); |
| |
| void dump_skip_to(struct coredump_params *cprm, unsigned long pos) |
| { |
| cprm->to_skip = pos - cprm->pos; |
| } |
| EXPORT_SYMBOL(dump_skip_to); |
| |
| void dump_skip(struct coredump_params *cprm, size_t nr) |
| { |
| cprm->to_skip += nr; |
| } |
| EXPORT_SYMBOL(dump_skip); |
| |
| #ifdef CONFIG_ELF_CORE |
| static int dump_emit_page(struct coredump_params *cprm, struct page *page) |
| { |
| struct bio_vec bvec; |
| struct iov_iter iter; |
| struct file *file = cprm->file; |
| loff_t pos; |
| ssize_t n; |
| |
| if (!page) |
| return 0; |
| |
| if (cprm->to_skip) { |
| if (!__dump_skip(cprm, cprm->to_skip)) |
| return 0; |
| cprm->to_skip = 0; |
| } |
| if (cprm->written + PAGE_SIZE > cprm->limit) |
| return 0; |
| if (dump_interrupted()) |
| return 0; |
| pos = file->f_pos; |
| bvec_set_page(&bvec, page, PAGE_SIZE, 0); |
| iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE); |
| n = __kernel_write_iter(cprm->file, &iter, &pos); |
| if (n != PAGE_SIZE) |
| return 0; |
| file->f_pos = pos; |
| cprm->written += PAGE_SIZE; |
| cprm->pos += PAGE_SIZE; |
| |
| return 1; |
| } |
| |
| /* |
| * If we might get machine checks from kernel accesses during the |
| * core dump, let's get those errors early rather than during the |
| * IO. This is not performance-critical enough to warrant having |
| * all the machine check logic in the iovec paths. |
| */ |
| #ifdef copy_mc_to_kernel |
| |
| #define dump_page_alloc() alloc_page(GFP_KERNEL) |
| #define dump_page_free(x) __free_page(x) |
| static struct page *dump_page_copy(struct page *src, struct page *dst) |
| { |
| void *buf = kmap_local_page(src); |
| size_t left = copy_mc_to_kernel(page_address(dst), buf, PAGE_SIZE); |
| kunmap_local(buf); |
| return left ? NULL : dst; |
| } |
| |
| #else |
| |
| /* We just want to return non-NULL; it's never used. */ |
| #define dump_page_alloc() ERR_PTR(-EINVAL) |
| #define dump_page_free(x) ((void)(x)) |
| static inline struct page *dump_page_copy(struct page *src, struct page *dst) |
| { |
| return src; |
| } |
| #endif |
| |
| int dump_user_range(struct coredump_params *cprm, unsigned long start, |
| unsigned long len) |
| { |
| unsigned long addr; |
| struct page *dump_page; |
| int locked, ret; |
| |
| dump_page = dump_page_alloc(); |
| if (!dump_page) |
| return 0; |
| |
| ret = 0; |
| locked = 0; |
| for (addr = start; addr < start + len; addr += PAGE_SIZE) { |
| struct page *page; |
| |
| if (!locked) { |
| if (mmap_read_lock_killable(current->mm)) |
| goto out; |
| locked = 1; |
| } |
| |
| /* |
| * To avoid having to allocate page tables for virtual address |
| * ranges that have never been used yet, and also to make it |
| * easy to generate sparse core files, use a helper that returns |
| * NULL when encountering an empty page table entry that would |
| * otherwise have been filled with the zero page. |
| */ |
| page = get_dump_page(addr, &locked); |
| if (page) { |
| if (locked) { |
| mmap_read_unlock(current->mm); |
| locked = 0; |
| } |
| int stop = !dump_emit_page(cprm, dump_page_copy(page, dump_page)); |
| put_page(page); |
| if (stop) |
| goto out; |
| } else { |
| dump_skip(cprm, PAGE_SIZE); |
| } |
| |
| if (dump_interrupted()) |
| goto out; |
| |
| if (!need_resched()) |
| continue; |
| if (locked) { |
| mmap_read_unlock(current->mm); |
| locked = 0; |
| } |
| cond_resched(); |
| } |
| ret = 1; |
| out: |
| if (locked) |
| mmap_read_unlock(current->mm); |
| |
| dump_page_free(dump_page); |
| return ret; |
| } |
| #endif |
| |
| int dump_align(struct coredump_params *cprm, int align) |
| { |
| unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1); |
| if (align & (align - 1)) |
| return 0; |
| if (mod) |
| cprm->to_skip += align - mod; |
| return 1; |
| } |
| EXPORT_SYMBOL(dump_align); |
| |
| #ifdef CONFIG_SYSCTL |
| |
| void validate_coredump_safety(void) |
| { |
| if (suid_dumpable == SUID_DUMP_ROOT && |
| core_pattern[0] != '/' && core_pattern[0] != '|' && core_pattern[0] != '@') { |
| |
| coredump_report_failure("Unsafe core_pattern used with fs.suid_dumpable=2: " |
| "pipe handler or fully qualified core dump path required. " |
| "Set kernel.core_pattern before fs.suid_dumpable."); |
| } |
| } |
| |
| static inline bool check_coredump_socket(void) |
| { |
| const char *p; |
| |
| if (core_pattern[0] != '@') |
| return true; |
| |
| /* |
| * Coredump socket must be located in the initial mount |
| * namespace. Don't give the impression that anything else is |
| * supported right now. |
| */ |
| if (current->nsproxy->mnt_ns != init_task.nsproxy->mnt_ns) |
| return false; |
| |
| /* Must be an absolute path... */ |
| if (core_pattern[1] != '/') { |
| /* ... or the socket request protocol... */ |
| if (core_pattern[1] != '@') |
| return false; |
| /* ... and if so must be an absolute path. */ |
| if (core_pattern[2] != '/') |
| return false; |
| p = &core_pattern[2]; |
| } else { |
| p = &core_pattern[1]; |
| } |
| |
| /* The path obviously cannot exceed UNIX_PATH_MAX. */ |
| if (strlen(p) >= UNIX_PATH_MAX) |
| return false; |
| |
| /* Must not contain ".." in the path. */ |
| if (name_contains_dotdot(core_pattern)) |
| return false; |
| |
| return true; |
| } |
| |
| static int proc_dostring_coredump(const struct ctl_table *table, int write, |
| void *buffer, size_t *lenp, loff_t *ppos) |
| { |
| int error; |
| ssize_t retval; |
| char old_core_pattern[CORENAME_MAX_SIZE]; |
| |
| retval = strscpy(old_core_pattern, core_pattern, CORENAME_MAX_SIZE); |
| |
| error = proc_dostring(table, write, buffer, lenp, ppos); |
| if (error) |
| return error; |
| if (!check_coredump_socket()) { |
| strscpy(core_pattern, old_core_pattern, retval + 1); |
| return -EINVAL; |
| } |
| |
| validate_coredump_safety(); |
| return error; |
| } |
| |
| static const unsigned int core_file_note_size_min = CORE_FILE_NOTE_SIZE_DEFAULT; |
| static const unsigned int core_file_note_size_max = CORE_FILE_NOTE_SIZE_MAX; |
| static char core_modes[] = { |
| "file\npipe" |
| #ifdef CONFIG_UNIX |
| "\nsocket" |
| #endif |
| }; |
| |
| static const struct ctl_table coredump_sysctls[] = { |
| { |
| .procname = "core_uses_pid", |
| .data = &core_uses_pid, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "core_pattern", |
| .data = core_pattern, |
| .maxlen = CORENAME_MAX_SIZE, |
| .mode = 0644, |
| .proc_handler = proc_dostring_coredump, |
| }, |
| { |
| .procname = "core_pipe_limit", |
| .data = &core_pipe_limit, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_INT_MAX, |
| }, |
| { |
| .procname = "core_file_note_size_limit", |
| .data = &core_file_note_size_limit, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = proc_douintvec_minmax, |
| .extra1 = (unsigned int *)&core_file_note_size_min, |
| .extra2 = (unsigned int *)&core_file_note_size_max, |
| }, |
| { |
| .procname = "core_sort_vma", |
| .data = &core_sort_vma, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_douintvec_minmax, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_ONE, |
| }, |
| { |
| .procname = "core_modes", |
| .data = core_modes, |
| .maxlen = sizeof(core_modes) - 1, |
| .mode = 0444, |
| .proc_handler = proc_dostring, |
| }, |
| }; |
| |
| static int __init init_fs_coredump_sysctls(void) |
| { |
| register_sysctl_init("kernel", coredump_sysctls); |
| return 0; |
| } |
| fs_initcall(init_fs_coredump_sysctls); |
| #endif /* CONFIG_SYSCTL */ |
| |
| /* |
| * The purpose of always_dump_vma() is to make sure that special kernel mappings |
| * that are useful for post-mortem analysis are included in every core dump. |
| * In that way we ensure that the core dump is fully interpretable later |
| * without matching up the same kernel and hardware config to see what PC values |
| * meant. These special mappings include - vDSO, vsyscall, and other |
| * architecture specific mappings |
| */ |
| static bool always_dump_vma(struct vm_area_struct *vma) |
| { |
| /* Any vsyscall mappings? */ |
| if (vma == get_gate_vma(vma->vm_mm)) |
| return true; |
| |
| /* |
| * Assume that all vmas with a .name op should always be dumped. |
| * If this changes, a new vm_ops field can easily be added. |
| */ |
| if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) |
| return true; |
| |
| /* |
| * arch_vma_name() returns non-NULL for special architecture mappings, |
| * such as vDSO sections. |
| */ |
| if (arch_vma_name(vma)) |
| return true; |
| |
| return false; |
| } |
| |
| #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1 |
| |
| /* |
| * Decide how much of @vma's contents should be included in a core dump. |
| */ |
| static unsigned long vma_dump_size(struct vm_area_struct *vma, |
| unsigned long mm_flags) |
| { |
| #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) |
| |
| /* always dump the vdso and vsyscall sections */ |
| if (always_dump_vma(vma)) |
| goto whole; |
| |
| if (vma->vm_flags & VM_DONTDUMP) |
| return 0; |
| |
| /* support for DAX */ |
| if (vma_is_dax(vma)) { |
| if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) |
| goto whole; |
| if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) |
| goto whole; |
| return 0; |
| } |
| |
| /* Hugetlb memory check */ |
| if (is_vm_hugetlb_page(vma)) { |
| if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) |
| goto whole; |
| if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) |
| goto whole; |
| return 0; |
| } |
| |
| /* Do not dump I/O mapped devices or special mappings */ |
| if (vma->vm_flags & VM_IO) |
| return 0; |
| |
| /* By default, dump shared memory if mapped from an anonymous file. */ |
| if (vma->vm_flags & VM_SHARED) { |
| if (file_inode(vma->vm_file)->i_nlink == 0 ? |
| FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) |
| goto whole; |
| return 0; |
| } |
| |
| /* Dump segments that have been written to. */ |
| if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) |
| goto whole; |
| if (vma->vm_file == NULL) |
| return 0; |
| |
| if (FILTER(MAPPED_PRIVATE)) |
| goto whole; |
| |
| /* |
| * If this is the beginning of an executable file mapping, |
| * dump the first page to aid in determining what was mapped here. |
| */ |
| if (FILTER(ELF_HEADERS) && |
| vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { |
| if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) |
| return PAGE_SIZE; |
| |
| /* |
| * ELF libraries aren't always executable. |
| * We'll want to check whether the mapping starts with the ELF |
| * magic, but not now - we're holding the mmap lock, |
| * so copy_from_user() doesn't work here. |
| * Use a placeholder instead, and fix it up later in |
| * dump_vma_snapshot(). |
| */ |
| return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER; |
| } |
| |
| #undef FILTER |
| |
| return 0; |
| |
| whole: |
| return vma->vm_end - vma->vm_start; |
| } |
| |
| /* |
| * Helper function for iterating across a vma list. It ensures that the caller |
| * will visit `gate_vma' prior to terminating the search. |
| */ |
| static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi, |
| struct vm_area_struct *vma, |
| struct vm_area_struct *gate_vma) |
| { |
| if (gate_vma && (vma == gate_vma)) |
| return NULL; |
| |
| vma = vma_next(vmi); |
| if (vma) |
| return vma; |
| return gate_vma; |
| } |
| |
| static void free_vma_snapshot(struct coredump_params *cprm) |
| { |
| if (cprm->vma_meta) { |
| int i; |
| for (i = 0; i < cprm->vma_count; i++) { |
| struct file *file = cprm->vma_meta[i].file; |
| if (file) |
| fput(file); |
| } |
| kvfree(cprm->vma_meta); |
| cprm->vma_meta = NULL; |
| } |
| } |
| |
| static int cmp_vma_size(const void *vma_meta_lhs_ptr, const void *vma_meta_rhs_ptr) |
| { |
| const struct core_vma_metadata *vma_meta_lhs = vma_meta_lhs_ptr; |
| const struct core_vma_metadata *vma_meta_rhs = vma_meta_rhs_ptr; |
| |
| if (vma_meta_lhs->dump_size < vma_meta_rhs->dump_size) |
| return -1; |
| if (vma_meta_lhs->dump_size > vma_meta_rhs->dump_size) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Under the mmap_lock, take a snapshot of relevant information about the task's |
| * VMAs. |
| */ |
| static bool dump_vma_snapshot(struct coredump_params *cprm) |
| { |
| struct vm_area_struct *gate_vma, *vma = NULL; |
| struct mm_struct *mm = current->mm; |
| VMA_ITERATOR(vmi, mm, 0); |
| int i = 0; |
| |
| /* |
| * Once the stack expansion code is fixed to not change VMA bounds |
| * under mmap_lock in read mode, this can be changed to take the |
| * mmap_lock in read mode. |
| */ |
| if (mmap_write_lock_killable(mm)) |
| return false; |
| |
| cprm->vma_data_size = 0; |
| gate_vma = get_gate_vma(mm); |
| cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0); |
| |
| cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL); |
| if (!cprm->vma_meta) { |
| mmap_write_unlock(mm); |
| return false; |
| } |
| |
| while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) { |
| struct core_vma_metadata *m = cprm->vma_meta + i; |
| |
| m->start = vma->vm_start; |
| m->end = vma->vm_end; |
| m->flags = vma->vm_flags; |
| m->dump_size = vma_dump_size(vma, cprm->mm_flags); |
| m->pgoff = vma->vm_pgoff; |
| m->file = vma->vm_file; |
| if (m->file) |
| get_file(m->file); |
| i++; |
| } |
| |
| mmap_write_unlock(mm); |
| |
| for (i = 0; i < cprm->vma_count; i++) { |
| struct core_vma_metadata *m = cprm->vma_meta + i; |
| |
| if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) { |
| char elfmag[SELFMAG]; |
| |
| if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) || |
| memcmp(elfmag, ELFMAG, SELFMAG) != 0) { |
| m->dump_size = 0; |
| } else { |
| m->dump_size = PAGE_SIZE; |
| } |
| } |
| |
| cprm->vma_data_size += m->dump_size; |
| } |
| |
| if (core_sort_vma) |
| sort(cprm->vma_meta, cprm->vma_count, sizeof(*cprm->vma_meta), |
| cmp_vma_size, NULL); |
| |
| return true; |
| } |