| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  linux/drivers/mmc/core/core.c | 
 |  * | 
 |  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved. | 
 |  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. | 
 |  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. | 
 |  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/device.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/err.h> | 
 | #include <linux/leds.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/pm_wakeup.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/fault-inject.h> | 
 | #include <linux/random.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/of.h> | 
 |  | 
 | #include <linux/mmc/card.h> | 
 | #include <linux/mmc/host.h> | 
 | #include <linux/mmc/mmc.h> | 
 | #include <linux/mmc/sd.h> | 
 | #include <linux/mmc/slot-gpio.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/mmc.h> | 
 |  | 
 | #include "core.h" | 
 | #include "card.h" | 
 | #include "crypto.h" | 
 | #include "bus.h" | 
 | #include "host.h" | 
 | #include "sdio_bus.h" | 
 | #include "pwrseq.h" | 
 |  | 
 | #include "mmc_ops.h" | 
 | #include "sd_ops.h" | 
 | #include "sdio_ops.h" | 
 |  | 
 | /* The max erase timeout, used when host->max_busy_timeout isn't specified */ | 
 | #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */ | 
 | #define SD_DISCARD_TIMEOUT_MS	(250) | 
 |  | 
 | static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; | 
 |  | 
 | /* | 
 |  * Enabling software CRCs on the data blocks can be a significant (30%) | 
 |  * performance cost, and for other reasons may not always be desired. | 
 |  * So we allow it to be disabled. | 
 |  */ | 
 | bool use_spi_crc = 1; | 
 | module_param(use_spi_crc, bool, 0); | 
 |  | 
 | static int mmc_schedule_delayed_work(struct delayed_work *work, | 
 | 				     unsigned long delay) | 
 | { | 
 | 	/* | 
 | 	 * We use the system_freezable_wq, because of two reasons. | 
 | 	 * First, it allows several works (not the same work item) to be | 
 | 	 * executed simultaneously. Second, the queue becomes frozen when | 
 | 	 * userspace becomes frozen during system PM. | 
 | 	 */ | 
 | 	return queue_delayed_work(system_freezable_wq, work, delay); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIL_MMC_REQUEST | 
 |  | 
 | /* | 
 |  * Internal function. Inject random data errors. | 
 |  * If mmc_data is NULL no errors are injected. | 
 |  */ | 
 | static void mmc_should_fail_request(struct mmc_host *host, | 
 | 				    struct mmc_request *mrq) | 
 | { | 
 | 	struct mmc_command *cmd = mrq->cmd; | 
 | 	struct mmc_data *data = mrq->data; | 
 | 	static const int data_errors[] = { | 
 | 		-ETIMEDOUT, | 
 | 		-EILSEQ, | 
 | 		-EIO, | 
 | 	}; | 
 |  | 
 | 	if (!data) | 
 | 		return; | 
 |  | 
 | 	if ((cmd && cmd->error) || data->error || | 
 | 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) | 
 | 		return; | 
 |  | 
 | 	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))]; | 
 | 	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9; | 
 | } | 
 |  | 
 | #else /* CONFIG_FAIL_MMC_REQUEST */ | 
 |  | 
 | static inline void mmc_should_fail_request(struct mmc_host *host, | 
 | 					   struct mmc_request *mrq) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_FAIL_MMC_REQUEST */ | 
 |  | 
 | static inline void mmc_complete_cmd(struct mmc_request *mrq) | 
 | { | 
 | 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) | 
 | 		complete_all(&mrq->cmd_completion); | 
 | } | 
 |  | 
 | void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	if (!mrq->cap_cmd_during_tfr) | 
 | 		return; | 
 |  | 
 | 	mmc_complete_cmd(mrq); | 
 |  | 
 | 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", | 
 | 		 mmc_hostname(host), mrq->cmd->opcode); | 
 | } | 
 | EXPORT_SYMBOL(mmc_command_done); | 
 |  | 
 | /** | 
 |  *	mmc_request_done - finish processing an MMC request | 
 |  *	@host: MMC host which completed request | 
 |  *	@mrq: MMC request which request | 
 |  * | 
 |  *	MMC drivers should call this function when they have completed | 
 |  *	their processing of a request. | 
 |  */ | 
 | void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	struct mmc_command *cmd = mrq->cmd; | 
 | 	int err = cmd->error; | 
 |  | 
 | 	/* Flag re-tuning needed on CRC errors */ | 
 | 	if (!mmc_op_tuning(cmd->opcode) && | 
 | 	    !host->retune_crc_disable && | 
 | 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || | 
 | 	    (mrq->data && mrq->data->error == -EILSEQ) || | 
 | 	    (mrq->stop && mrq->stop->error == -EILSEQ))) | 
 | 		mmc_retune_needed(host); | 
 |  | 
 | 	if (err && cmd->retries && mmc_host_is_spi(host)) { | 
 | 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) | 
 | 			cmd->retries = 0; | 
 | 	} | 
 |  | 
 | 	if (host->ongoing_mrq == mrq) | 
 | 		host->ongoing_mrq = NULL; | 
 |  | 
 | 	mmc_complete_cmd(mrq); | 
 |  | 
 | 	trace_mmc_request_done(host, mrq); | 
 |  | 
 | 	/* | 
 | 	 * We list various conditions for the command to be considered | 
 | 	 * properly done: | 
 | 	 * | 
 | 	 * - There was no error, OK fine then | 
 | 	 * - We are not doing some kind of retry | 
 | 	 * - The card was removed (...so just complete everything no matter | 
 | 	 *   if there are errors or retries) | 
 | 	 */ | 
 | 	if (!err || !cmd->retries || mmc_card_removed(host->card)) { | 
 | 		mmc_should_fail_request(host, mrq); | 
 |  | 
 | 		if (!host->ongoing_mrq) | 
 | 			led_trigger_event(host->led, LED_OFF); | 
 |  | 
 | 		if (mrq->sbc) { | 
 | 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", | 
 | 				mmc_hostname(host), mrq->sbc->opcode, | 
 | 				mrq->sbc->error, | 
 | 				mrq->sbc->resp[0], mrq->sbc->resp[1], | 
 | 				mrq->sbc->resp[2], mrq->sbc->resp[3]); | 
 | 		} | 
 |  | 
 | 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", | 
 | 			mmc_hostname(host), cmd->opcode, err, | 
 | 			cmd->resp[0], cmd->resp[1], | 
 | 			cmd->resp[2], cmd->resp[3]); | 
 |  | 
 | 		if (mrq->data) { | 
 | 			pr_debug("%s:     %d bytes transferred: %d\n", | 
 | 				mmc_hostname(host), | 
 | 				mrq->data->bytes_xfered, mrq->data->error); | 
 | 		} | 
 |  | 
 | 		if (mrq->stop) { | 
 | 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n", | 
 | 				mmc_hostname(host), mrq->stop->opcode, | 
 | 				mrq->stop->error, | 
 | 				mrq->stop->resp[0], mrq->stop->resp[1], | 
 | 				mrq->stop->resp[2], mrq->stop->resp[3]); | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * Request starter must handle retries - see | 
 | 	 * mmc_wait_for_req_done(). | 
 | 	 */ | 
 | 	if (mrq->done) | 
 | 		mrq->done(mrq); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(mmc_request_done); | 
 |  | 
 | static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* Assumes host controller has been runtime resumed by mmc_claim_host */ | 
 | 	err = mmc_retune(host); | 
 | 	if (err) { | 
 | 		mrq->cmd->error = err; | 
 | 		mmc_request_done(host, mrq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For sdio rw commands we must wait for card busy otherwise some | 
 | 	 * sdio devices won't work properly. | 
 | 	 * And bypass I/O abort, reset and bus suspend operations. | 
 | 	 */ | 
 | 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && | 
 | 	    host->ops->card_busy) { | 
 | 		int tries = 500; /* Wait aprox 500ms at maximum */ | 
 |  | 
 | 		while (host->ops->card_busy(host) && --tries) | 
 | 			mmc_delay(1); | 
 |  | 
 | 		if (tries == 0) { | 
 | 			mrq->cmd->error = -EBUSY; | 
 | 			mmc_request_done(host, mrq); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (mrq->cap_cmd_during_tfr) { | 
 | 		host->ongoing_mrq = mrq; | 
 | 		/* | 
 | 		 * Retry path could come through here without having waiting on | 
 | 		 * cmd_completion, so ensure it is reinitialised. | 
 | 		 */ | 
 | 		reinit_completion(&mrq->cmd_completion); | 
 | 	} | 
 |  | 
 | 	trace_mmc_request_start(host, mrq); | 
 |  | 
 | 	if (host->cqe_on) | 
 | 		host->cqe_ops->cqe_off(host); | 
 |  | 
 | 	host->ops->request(host, mrq); | 
 | } | 
 |  | 
 | static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, | 
 | 			     bool cqe) | 
 | { | 
 | 	if (mrq->sbc) { | 
 | 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", | 
 | 			 mmc_hostname(host), mrq->sbc->opcode, | 
 | 			 mrq->sbc->arg, mrq->sbc->flags); | 
 | 	} | 
 |  | 
 | 	if (mrq->cmd) { | 
 | 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", | 
 | 			 mmc_hostname(host), cqe ? "CQE direct " : "", | 
 | 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); | 
 | 	} else if (cqe) { | 
 | 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", | 
 | 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr); | 
 | 	} | 
 |  | 
 | 	if (mrq->data) { | 
 | 		pr_debug("%s:     blksz %d blocks %d flags %08x " | 
 | 			"tsac %d ms nsac %d\n", | 
 | 			mmc_hostname(host), mrq->data->blksz, | 
 | 			mrq->data->blocks, mrq->data->flags, | 
 | 			mrq->data->timeout_ns / 1000000, | 
 | 			mrq->data->timeout_clks); | 
 | 	} | 
 |  | 
 | 	if (mrq->stop) { | 
 | 		pr_debug("%s:     CMD%u arg %08x flags %08x\n", | 
 | 			 mmc_hostname(host), mrq->stop->opcode, | 
 | 			 mrq->stop->arg, mrq->stop->flags); | 
 | 	} | 
 | } | 
 |  | 
 | static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	unsigned int i, sz = 0; | 
 | 	struct scatterlist *sg; | 
 |  | 
 | 	if (mrq->cmd) { | 
 | 		mrq->cmd->error = 0; | 
 | 		mrq->cmd->mrq = mrq; | 
 | 		mrq->cmd->data = mrq->data; | 
 | 	} | 
 | 	if (mrq->sbc) { | 
 | 		mrq->sbc->error = 0; | 
 | 		mrq->sbc->mrq = mrq; | 
 | 	} | 
 | 	if (mrq->data) { | 
 | 		if (mrq->data->blksz > host->max_blk_size || | 
 | 		    mrq->data->blocks > host->max_blk_count || | 
 | 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size) | 
 | 			return -EINVAL; | 
 |  | 
 | 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) | 
 | 			sz += sg->length; | 
 | 		if (sz != mrq->data->blocks * mrq->data->blksz) | 
 | 			return -EINVAL; | 
 |  | 
 | 		mrq->data->error = 0; | 
 | 		mrq->data->mrq = mrq; | 
 | 		if (mrq->stop) { | 
 | 			mrq->data->stop = mrq->stop; | 
 | 			mrq->stop->error = 0; | 
 | 			mrq->stop->mrq = mrq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	init_completion(&mrq->cmd_completion); | 
 |  | 
 | 	mmc_retune_hold(host); | 
 |  | 
 | 	if (mmc_card_removed(host->card)) | 
 | 		return -ENOMEDIUM; | 
 |  | 
 | 	mmc_mrq_pr_debug(host, mrq, false); | 
 |  | 
 | 	WARN_ON(!host->claimed); | 
 |  | 
 | 	err = mmc_mrq_prep(host, mrq); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	led_trigger_event(host->led, LED_FULL); | 
 | 	__mmc_start_request(host, mrq); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(mmc_start_request); | 
 |  | 
 | static void mmc_wait_done(struct mmc_request *mrq) | 
 | { | 
 | 	complete(&mrq->completion); | 
 | } | 
 |  | 
 | static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) | 
 | { | 
 | 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); | 
 |  | 
 | 	/* | 
 | 	 * If there is an ongoing transfer, wait for the command line to become | 
 | 	 * available. | 
 | 	 */ | 
 | 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) | 
 | 		wait_for_completion(&ongoing_mrq->cmd_completion); | 
 | } | 
 |  | 
 | static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	mmc_wait_ongoing_tfr_cmd(host); | 
 |  | 
 | 	init_completion(&mrq->completion); | 
 | 	mrq->done = mmc_wait_done; | 
 |  | 
 | 	err = mmc_start_request(host, mrq); | 
 | 	if (err) { | 
 | 		mrq->cmd->error = err; | 
 | 		mmc_complete_cmd(mrq); | 
 | 		complete(&mrq->completion); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	struct mmc_command *cmd; | 
 |  | 
 | 	while (1) { | 
 | 		wait_for_completion(&mrq->completion); | 
 |  | 
 | 		cmd = mrq->cmd; | 
 |  | 
 | 		if (!cmd->error || !cmd->retries || | 
 | 		    mmc_card_removed(host->card)) | 
 | 			break; | 
 |  | 
 | 		mmc_retune_recheck(host); | 
 |  | 
 | 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n", | 
 | 			 mmc_hostname(host), cmd->opcode, cmd->error); | 
 | 		cmd->retries--; | 
 | 		cmd->error = 0; | 
 | 		__mmc_start_request(host, mrq); | 
 | 	} | 
 |  | 
 | 	mmc_retune_release(host); | 
 | } | 
 | EXPORT_SYMBOL(mmc_wait_for_req_done); | 
 |  | 
 | /* | 
 |  * mmc_cqe_start_req - Start a CQE request. | 
 |  * @host: MMC host to start the request | 
 |  * @mrq: request to start | 
 |  * | 
 |  * Start the request, re-tuning if needed and it is possible. Returns an error | 
 |  * code if the request fails to start or -EBUSY if CQE is busy. | 
 |  */ | 
 | int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * CQE cannot process re-tuning commands. Caller must hold retuning | 
 | 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no | 
 | 	 * active requests i.e. this is the first.  Note, re-tuning will call | 
 | 	 * ->cqe_off(). | 
 | 	 */ | 
 | 	err = mmc_retune(host); | 
 | 	if (err) | 
 | 		goto out_err; | 
 |  | 
 | 	mrq->host = host; | 
 |  | 
 | 	mmc_mrq_pr_debug(host, mrq, true); | 
 |  | 
 | 	err = mmc_mrq_prep(host, mrq); | 
 | 	if (err) | 
 | 		goto out_err; | 
 |  | 
 | 	err = host->cqe_ops->cqe_request(host, mrq); | 
 | 	if (err) | 
 | 		goto out_err; | 
 |  | 
 | 	trace_mmc_request_start(host, mrq); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_err: | 
 | 	if (mrq->cmd) { | 
 | 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", | 
 | 			 mmc_hostname(host), mrq->cmd->opcode, err); | 
 | 	} else { | 
 | 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", | 
 | 			 mmc_hostname(host), mrq->tag, err); | 
 | 	} | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(mmc_cqe_start_req); | 
 |  | 
 | /** | 
 |  *	mmc_cqe_request_done - CQE has finished processing an MMC request | 
 |  *	@host: MMC host which completed request | 
 |  *	@mrq: MMC request which completed | 
 |  * | 
 |  *	CQE drivers should call this function when they have completed | 
 |  *	their processing of a request. | 
 |  */ | 
 | void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	mmc_should_fail_request(host, mrq); | 
 |  | 
 | 	/* Flag re-tuning needed on CRC errors */ | 
 | 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || | 
 | 	    (mrq->data && mrq->data->error == -EILSEQ)) | 
 | 		mmc_retune_needed(host); | 
 |  | 
 | 	trace_mmc_request_done(host, mrq); | 
 |  | 
 | 	if (mrq->cmd) { | 
 | 		pr_debug("%s: CQE req done (direct CMD%u): %d\n", | 
 | 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); | 
 | 	} else { | 
 | 		pr_debug("%s: CQE transfer done tag %d\n", | 
 | 			 mmc_hostname(host), mrq->tag); | 
 | 	} | 
 |  | 
 | 	if (mrq->data) { | 
 | 		pr_debug("%s:     %d bytes transferred: %d\n", | 
 | 			 mmc_hostname(host), | 
 | 			 mrq->data->bytes_xfered, mrq->data->error); | 
 | 	} | 
 |  | 
 | 	mrq->done(mrq); | 
 | } | 
 | EXPORT_SYMBOL(mmc_cqe_request_done); | 
 |  | 
 | /** | 
 |  *	mmc_cqe_post_req - CQE post process of a completed MMC request | 
 |  *	@host: MMC host | 
 |  *	@mrq: MMC request to be processed | 
 |  */ | 
 | void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	if (host->cqe_ops->cqe_post_req) | 
 | 		host->cqe_ops->cqe_post_req(host, mrq); | 
 | } | 
 | EXPORT_SYMBOL(mmc_cqe_post_req); | 
 |  | 
 | /* Arbitrary 1 second timeout */ | 
 | #define MMC_CQE_RECOVERY_TIMEOUT	1000 | 
 |  | 
 | /* | 
 |  * mmc_cqe_recovery - Recover from CQE errors. | 
 |  * @host: MMC host to recover | 
 |  * | 
 |  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue | 
 |  * in eMMC, and discarding the queue in CQE. CQE must call | 
 |  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC | 
 |  * fails to discard its queue. | 
 |  */ | 
 | int mmc_cqe_recovery(struct mmc_host *host) | 
 | { | 
 | 	struct mmc_command cmd; | 
 | 	int err; | 
 |  | 
 | 	mmc_retune_hold_now(host); | 
 |  | 
 | 	/* | 
 | 	 * Recovery is expected seldom, if at all, but it reduces performance, | 
 | 	 * so make sure it is not completely silent. | 
 | 	 */ | 
 | 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); | 
 |  | 
 | 	host->cqe_ops->cqe_recovery_start(host); | 
 |  | 
 | 	memset(&cmd, 0, sizeof(cmd)); | 
 | 	cmd.opcode       = MMC_STOP_TRANSMISSION; | 
 | 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC; | 
 | 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */ | 
 | 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; | 
 | 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); | 
 |  | 
 | 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO); | 
 |  | 
 | 	memset(&cmd, 0, sizeof(cmd)); | 
 | 	cmd.opcode       = MMC_CMDQ_TASK_MGMT; | 
 | 	cmd.arg          = 1; /* Discard entire queue */ | 
 | 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC; | 
 | 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */ | 
 | 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; | 
 | 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); | 
 |  | 
 | 	host->cqe_ops->cqe_recovery_finish(host); | 
 |  | 
 | 	if (err) | 
 | 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); | 
 |  | 
 | 	mmc_retune_release(host); | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(mmc_cqe_recovery); | 
 |  | 
 | /** | 
 |  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done | 
 |  *	@host: MMC host | 
 |  *	@mrq: MMC request | 
 |  * | 
 |  *	mmc_is_req_done() is used with requests that have | 
 |  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after | 
 |  *	starting a request and before waiting for it to complete. That is, | 
 |  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req() | 
 |  *	and before mmc_wait_for_req_done(). If it is called at other times the | 
 |  *	result is not meaningful. | 
 |  */ | 
 | bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	return completion_done(&mrq->completion); | 
 | } | 
 | EXPORT_SYMBOL(mmc_is_req_done); | 
 |  | 
 | /** | 
 |  *	mmc_wait_for_req - start a request and wait for completion | 
 |  *	@host: MMC host to start command | 
 |  *	@mrq: MMC request to start | 
 |  * | 
 |  *	Start a new MMC custom command request for a host, and wait | 
 |  *	for the command to complete. In the case of 'cap_cmd_during_tfr' | 
 |  *	requests, the transfer is ongoing and the caller can issue further | 
 |  *	commands that do not use the data lines, and then wait by calling | 
 |  *	mmc_wait_for_req_done(). | 
 |  *	Does not attempt to parse the response. | 
 |  */ | 
 | void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) | 
 | { | 
 | 	__mmc_start_req(host, mrq); | 
 |  | 
 | 	if (!mrq->cap_cmd_during_tfr) | 
 | 		mmc_wait_for_req_done(host, mrq); | 
 | } | 
 | EXPORT_SYMBOL(mmc_wait_for_req); | 
 |  | 
 | /** | 
 |  *	mmc_wait_for_cmd - start a command and wait for completion | 
 |  *	@host: MMC host to start command | 
 |  *	@cmd: MMC command to start | 
 |  *	@retries: maximum number of retries | 
 |  * | 
 |  *	Start a new MMC command for a host, and wait for the command | 
 |  *	to complete.  Return any error that occurred while the command | 
 |  *	was executing.  Do not attempt to parse the response. | 
 |  */ | 
 | int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) | 
 | { | 
 | 	struct mmc_request mrq = {}; | 
 |  | 
 | 	WARN_ON(!host->claimed); | 
 |  | 
 | 	memset(cmd->resp, 0, sizeof(cmd->resp)); | 
 | 	cmd->retries = retries; | 
 |  | 
 | 	mrq.cmd = cmd; | 
 | 	cmd->data = NULL; | 
 |  | 
 | 	mmc_wait_for_req(host, &mrq); | 
 |  | 
 | 	return cmd->error; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(mmc_wait_for_cmd); | 
 |  | 
 | /** | 
 |  *	mmc_set_data_timeout - set the timeout for a data command | 
 |  *	@data: data phase for command | 
 |  *	@card: the MMC card associated with the data transfer | 
 |  * | 
 |  *	Computes the data timeout parameters according to the | 
 |  *	correct algorithm given the card type. | 
 |  */ | 
 | void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) | 
 | { | 
 | 	unsigned int mult; | 
 |  | 
 | 	/* | 
 | 	 * SDIO cards only define an upper 1 s limit on access. | 
 | 	 */ | 
 | 	if (mmc_card_sdio(card)) { | 
 | 		data->timeout_ns = 1000000000; | 
 | 		data->timeout_clks = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * SD cards use a 100 multiplier rather than 10 | 
 | 	 */ | 
 | 	mult = mmc_card_sd(card) ? 100 : 10; | 
 |  | 
 | 	/* | 
 | 	 * Scale up the multiplier (and therefore the timeout) by | 
 | 	 * the r2w factor for writes. | 
 | 	 */ | 
 | 	if (data->flags & MMC_DATA_WRITE) | 
 | 		mult <<= card->csd.r2w_factor; | 
 |  | 
 | 	data->timeout_ns = card->csd.taac_ns * mult; | 
 | 	data->timeout_clks = card->csd.taac_clks * mult; | 
 |  | 
 | 	/* | 
 | 	 * SD cards also have an upper limit on the timeout. | 
 | 	 */ | 
 | 	if (mmc_card_sd(card)) { | 
 | 		unsigned int timeout_us, limit_us; | 
 |  | 
 | 		timeout_us = data->timeout_ns / 1000; | 
 | 		if (card->host->ios.clock) | 
 | 			timeout_us += data->timeout_clks * 1000 / | 
 | 				(card->host->ios.clock / 1000); | 
 |  | 
 | 		if (data->flags & MMC_DATA_WRITE) | 
 | 			/* | 
 | 			 * The MMC spec "It is strongly recommended | 
 | 			 * for hosts to implement more than 500ms | 
 | 			 * timeout value even if the card indicates | 
 | 			 * the 250ms maximum busy length."  Even the | 
 | 			 * previous value of 300ms is known to be | 
 | 			 * insufficient for some cards. | 
 | 			 */ | 
 | 			limit_us = 3000000; | 
 | 		else | 
 | 			limit_us = 100000; | 
 |  | 
 | 		/* | 
 | 		 * SDHC cards always use these fixed values. | 
 | 		 */ | 
 | 		if (timeout_us > limit_us) { | 
 | 			data->timeout_ns = limit_us * 1000; | 
 | 			data->timeout_clks = 0; | 
 | 		} | 
 |  | 
 | 		/* assign limit value if invalid */ | 
 | 		if (timeout_us == 0) | 
 | 			data->timeout_ns = limit_us * 1000; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some cards require longer data read timeout than indicated in CSD. | 
 | 	 * Address this by setting the read timeout to a "reasonably high" | 
 | 	 * value. For the cards tested, 600ms has proven enough. If necessary, | 
 | 	 * this value can be increased if other problematic cards require this. | 
 | 	 */ | 
 | 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { | 
 | 		data->timeout_ns = 600000000; | 
 | 		data->timeout_clks = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some cards need very high timeouts if driven in SPI mode. | 
 | 	 * The worst observed timeout was 900ms after writing a | 
 | 	 * continuous stream of data until the internal logic | 
 | 	 * overflowed. | 
 | 	 */ | 
 | 	if (mmc_host_is_spi(card->host)) { | 
 | 		if (data->flags & MMC_DATA_WRITE) { | 
 | 			if (data->timeout_ns < 1000000000) | 
 | 				data->timeout_ns = 1000000000;	/* 1s */ | 
 | 		} else { | 
 | 			if (data->timeout_ns < 100000000) | 
 | 				data->timeout_ns =  100000000;	/* 100ms */ | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(mmc_set_data_timeout); | 
 |  | 
 | /* | 
 |  * Allow claiming an already claimed host if the context is the same or there is | 
 |  * no context but the task is the same. | 
 |  */ | 
 | static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, | 
 | 				   struct task_struct *task) | 
 | { | 
 | 	return host->claimer == ctx || | 
 | 	       (!ctx && task && host->claimer->task == task); | 
 | } | 
 |  | 
 | static inline void mmc_ctx_set_claimer(struct mmc_host *host, | 
 | 				       struct mmc_ctx *ctx, | 
 | 				       struct task_struct *task) | 
 | { | 
 | 	if (!host->claimer) { | 
 | 		if (ctx) | 
 | 			host->claimer = ctx; | 
 | 		else | 
 | 			host->claimer = &host->default_ctx; | 
 | 	} | 
 | 	if (task) | 
 | 		host->claimer->task = task; | 
 | } | 
 |  | 
 | /** | 
 |  *	__mmc_claim_host - exclusively claim a host | 
 |  *	@host: mmc host to claim | 
 |  *	@ctx: context that claims the host or NULL in which case the default | 
 |  *	context will be used | 
 |  *	@abort: whether or not the operation should be aborted | 
 |  * | 
 |  *	Claim a host for a set of operations.  If @abort is non null and | 
 |  *	dereference a non-zero value then this will return prematurely with | 
 |  *	that non-zero value without acquiring the lock.  Returns zero | 
 |  *	with the lock held otherwise. | 
 |  */ | 
 | int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, | 
 | 		     atomic_t *abort) | 
 | { | 
 | 	struct task_struct *task = ctx ? NULL : current; | 
 | 	DECLARE_WAITQUEUE(wait, current); | 
 | 	unsigned long flags; | 
 | 	int stop; | 
 | 	bool pm = false; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	add_wait_queue(&host->wq, &wait); | 
 | 	spin_lock_irqsave(&host->lock, flags); | 
 | 	while (1) { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		stop = abort ? atomic_read(abort) : 0; | 
 | 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) | 
 | 			break; | 
 | 		spin_unlock_irqrestore(&host->lock, flags); | 
 | 		schedule(); | 
 | 		spin_lock_irqsave(&host->lock, flags); | 
 | 	} | 
 | 	set_current_state(TASK_RUNNING); | 
 | 	if (!stop) { | 
 | 		host->claimed = 1; | 
 | 		mmc_ctx_set_claimer(host, ctx, task); | 
 | 		host->claim_cnt += 1; | 
 | 		if (host->claim_cnt == 1) | 
 | 			pm = true; | 
 | 	} else | 
 | 		wake_up(&host->wq); | 
 | 	spin_unlock_irqrestore(&host->lock, flags); | 
 | 	remove_wait_queue(&host->wq, &wait); | 
 |  | 
 | 	if (pm) | 
 | 		pm_runtime_get_sync(mmc_dev(host)); | 
 |  | 
 | 	return stop; | 
 | } | 
 | EXPORT_SYMBOL(__mmc_claim_host); | 
 |  | 
 | /** | 
 |  *	mmc_release_host - release a host | 
 |  *	@host: mmc host to release | 
 |  * | 
 |  *	Release a MMC host, allowing others to claim the host | 
 |  *	for their operations. | 
 |  */ | 
 | void mmc_release_host(struct mmc_host *host) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	WARN_ON(!host->claimed); | 
 |  | 
 | 	spin_lock_irqsave(&host->lock, flags); | 
 | 	if (--host->claim_cnt) { | 
 | 		/* Release for nested claim */ | 
 | 		spin_unlock_irqrestore(&host->lock, flags); | 
 | 	} else { | 
 | 		host->claimed = 0; | 
 | 		host->claimer->task = NULL; | 
 | 		host->claimer = NULL; | 
 | 		spin_unlock_irqrestore(&host->lock, flags); | 
 | 		wake_up(&host->wq); | 
 | 		pm_runtime_mark_last_busy(mmc_dev(host)); | 
 | 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) | 
 | 			pm_runtime_put_sync_suspend(mmc_dev(host)); | 
 | 		else | 
 | 			pm_runtime_put_autosuspend(mmc_dev(host)); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(mmc_release_host); | 
 |  | 
 | /* | 
 |  * This is a helper function, which fetches a runtime pm reference for the | 
 |  * card device and also claims the host. | 
 |  */ | 
 | void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) | 
 | { | 
 | 	pm_runtime_get_sync(&card->dev); | 
 | 	__mmc_claim_host(card->host, ctx, NULL); | 
 | } | 
 | EXPORT_SYMBOL(mmc_get_card); | 
 |  | 
 | /* | 
 |  * This is a helper function, which releases the host and drops the runtime | 
 |  * pm reference for the card device. | 
 |  */ | 
 | void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) | 
 | { | 
 | 	struct mmc_host *host = card->host; | 
 |  | 
 | 	WARN_ON(ctx && host->claimer != ctx); | 
 |  | 
 | 	mmc_release_host(host); | 
 | 	pm_runtime_mark_last_busy(&card->dev); | 
 | 	pm_runtime_put_autosuspend(&card->dev); | 
 | } | 
 | EXPORT_SYMBOL(mmc_put_card); | 
 |  | 
 | /* | 
 |  * Internal function that does the actual ios call to the host driver, | 
 |  * optionally printing some debug output. | 
 |  */ | 
 | static inline void mmc_set_ios(struct mmc_host *host) | 
 | { | 
 | 	struct mmc_ios *ios = &host->ios; | 
 |  | 
 | 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " | 
 | 		"width %u timing %u\n", | 
 | 		 mmc_hostname(host), ios->clock, ios->bus_mode, | 
 | 		 ios->power_mode, ios->chip_select, ios->vdd, | 
 | 		 1 << ios->bus_width, ios->timing); | 
 |  | 
 | 	host->ops->set_ios(host, ios); | 
 | } | 
 |  | 
 | /* | 
 |  * Control chip select pin on a host. | 
 |  */ | 
 | void mmc_set_chip_select(struct mmc_host *host, int mode) | 
 | { | 
 | 	host->ios.chip_select = mode; | 
 | 	mmc_set_ios(host); | 
 | } | 
 |  | 
 | /* | 
 |  * Sets the host clock to the highest possible frequency that | 
 |  * is below "hz". | 
 |  */ | 
 | void mmc_set_clock(struct mmc_host *host, unsigned int hz) | 
 | { | 
 | 	WARN_ON(hz && hz < host->f_min); | 
 |  | 
 | 	if (hz > host->f_max) | 
 | 		hz = host->f_max; | 
 |  | 
 | 	host->ios.clock = hz; | 
 | 	mmc_set_ios(host); | 
 | } | 
 |  | 
 | int mmc_execute_tuning(struct mmc_card *card) | 
 | { | 
 | 	struct mmc_host *host = card->host; | 
 | 	u32 opcode; | 
 | 	int err; | 
 |  | 
 | 	if (!host->ops->execute_tuning) | 
 | 		return 0; | 
 |  | 
 | 	if (host->cqe_on) | 
 | 		host->cqe_ops->cqe_off(host); | 
 |  | 
 | 	if (mmc_card_mmc(card)) | 
 | 		opcode = MMC_SEND_TUNING_BLOCK_HS200; | 
 | 	else | 
 | 		opcode = MMC_SEND_TUNING_BLOCK; | 
 |  | 
 | 	err = host->ops->execute_tuning(host, opcode); | 
 | 	if (!err) { | 
 | 		mmc_retune_clear(host); | 
 | 		mmc_retune_enable(host); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Only print error when we don't check for card removal */ | 
 | 	if (!host->detect_change) { | 
 | 		pr_err("%s: tuning execution failed: %d\n", | 
 | 			mmc_hostname(host), err); | 
 | 		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Change the bus mode (open drain/push-pull) of a host. | 
 |  */ | 
 | void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) | 
 | { | 
 | 	host->ios.bus_mode = mode; | 
 | 	mmc_set_ios(host); | 
 | } | 
 |  | 
 | /* | 
 |  * Change data bus width of a host. | 
 |  */ | 
 | void mmc_set_bus_width(struct mmc_host *host, unsigned int width) | 
 | { | 
 | 	host->ios.bus_width = width; | 
 | 	mmc_set_ios(host); | 
 | } | 
 |  | 
 | /* | 
 |  * Set initial state after a power cycle or a hw_reset. | 
 |  */ | 
 | void mmc_set_initial_state(struct mmc_host *host) | 
 | { | 
 | 	if (host->cqe_on) | 
 | 		host->cqe_ops->cqe_off(host); | 
 |  | 
 | 	mmc_retune_disable(host); | 
 |  | 
 | 	if (mmc_host_is_spi(host)) | 
 | 		host->ios.chip_select = MMC_CS_HIGH; | 
 | 	else | 
 | 		host->ios.chip_select = MMC_CS_DONTCARE; | 
 | 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; | 
 | 	host->ios.bus_width = MMC_BUS_WIDTH_1; | 
 | 	host->ios.timing = MMC_TIMING_LEGACY; | 
 | 	host->ios.drv_type = 0; | 
 | 	host->ios.enhanced_strobe = false; | 
 |  | 
 | 	/* | 
 | 	 * Make sure we are in non-enhanced strobe mode before we | 
 | 	 * actually enable it in ext_csd. | 
 | 	 */ | 
 | 	if ((host->caps2 & MMC_CAP2_HS400_ES) && | 
 | 	     host->ops->hs400_enhanced_strobe) | 
 | 		host->ops->hs400_enhanced_strobe(host, &host->ios); | 
 |  | 
 | 	mmc_set_ios(host); | 
 |  | 
 | 	mmc_crypto_set_initial_state(host); | 
 | } | 
 |  | 
 | /** | 
 |  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number | 
 |  * @vdd:	voltage (mV) | 
 |  * @low_bits:	prefer low bits in boundary cases | 
 |  * | 
 |  * This function returns the OCR bit number according to the provided @vdd | 
 |  * value. If conversion is not possible a negative errno value returned. | 
 |  * | 
 |  * Depending on the @low_bits flag the function prefers low or high OCR bits | 
 |  * on boundary voltages. For example, | 
 |  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); | 
 |  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); | 
 |  * | 
 |  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). | 
 |  */ | 
 | static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) | 
 | { | 
 | 	const int max_bit = ilog2(MMC_VDD_35_36); | 
 | 	int bit; | 
 |  | 
 | 	if (vdd < 1650 || vdd > 3600) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (vdd >= 1650 && vdd <= 1950) | 
 | 		return ilog2(MMC_VDD_165_195); | 
 |  | 
 | 	if (low_bits) | 
 | 		vdd -= 1; | 
 |  | 
 | 	/* Base 2000 mV, step 100 mV, bit's base 8. */ | 
 | 	bit = (vdd - 2000) / 100 + 8; | 
 | 	if (bit > max_bit) | 
 | 		return max_bit; | 
 | 	return bit; | 
 | } | 
 |  | 
 | /** | 
 |  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask | 
 |  * @vdd_min:	minimum voltage value (mV) | 
 |  * @vdd_max:	maximum voltage value (mV) | 
 |  * | 
 |  * This function returns the OCR mask bits according to the provided @vdd_min | 
 |  * and @vdd_max values. If conversion is not possible the function returns 0. | 
 |  * | 
 |  * Notes wrt boundary cases: | 
 |  * This function sets the OCR bits for all boundary voltages, for example | 
 |  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | | 
 |  * MMC_VDD_34_35 mask. | 
 |  */ | 
 | u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) | 
 | { | 
 | 	u32 mask = 0; | 
 |  | 
 | 	if (vdd_max < vdd_min) | 
 | 		return 0; | 
 |  | 
 | 	/* Prefer high bits for the boundary vdd_max values. */ | 
 | 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); | 
 | 	if (vdd_max < 0) | 
 | 		return 0; | 
 |  | 
 | 	/* Prefer low bits for the boundary vdd_min values. */ | 
 | 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); | 
 | 	if (vdd_min < 0) | 
 | 		return 0; | 
 |  | 
 | 	/* Fill the mask, from max bit to min bit. */ | 
 | 	while (vdd_max >= vdd_min) | 
 | 		mask |= 1 << vdd_max--; | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static int mmc_of_get_func_num(struct device_node *node) | 
 | { | 
 | 	u32 reg; | 
 | 	int ret; | 
 |  | 
 | 	ret = of_property_read_u32(node, "reg", ®); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	return reg; | 
 | } | 
 |  | 
 | struct device_node *mmc_of_find_child_device(struct mmc_host *host, | 
 | 		unsigned func_num) | 
 | { | 
 | 	struct device_node *node; | 
 |  | 
 | 	if (!host->parent || !host->parent->of_node) | 
 | 		return NULL; | 
 |  | 
 | 	for_each_child_of_node(host->parent->of_node, node) { | 
 | 		if (mmc_of_get_func_num(node) == func_num) | 
 | 			return node; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Mask off any voltages we don't support and select | 
 |  * the lowest voltage | 
 |  */ | 
 | u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) | 
 | { | 
 | 	int bit; | 
 |  | 
 | 	/* | 
 | 	 * Sanity check the voltages that the card claims to | 
 | 	 * support. | 
 | 	 */ | 
 | 	if (ocr & 0x7F) { | 
 | 		dev_warn(mmc_dev(host), | 
 | 		"card claims to support voltages below defined range\n"); | 
 | 		ocr &= ~0x7F; | 
 | 	} | 
 |  | 
 | 	ocr &= host->ocr_avail; | 
 | 	if (!ocr) { | 
 | 		dev_warn(mmc_dev(host), "no support for card's volts\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { | 
 | 		bit = ffs(ocr) - 1; | 
 | 		ocr &= 3 << bit; | 
 | 		mmc_power_cycle(host, ocr); | 
 | 	} else { | 
 | 		bit = fls(ocr) - 1; | 
 | 		/* | 
 | 		 * The bit variable represents the highest voltage bit set in | 
 | 		 * the OCR register. | 
 | 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V), | 
 | 		 * we must shift the mask '3' with (bit - 1). | 
 | 		 */ | 
 | 		ocr &= 3 << (bit - 1); | 
 | 		if (bit != host->ios.vdd) | 
 | 			dev_warn(mmc_dev(host), "exceeding card's volts\n"); | 
 | 	} | 
 |  | 
 | 	return ocr; | 
 | } | 
 |  | 
 | int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) | 
 | { | 
 | 	int err = 0; | 
 | 	int old_signal_voltage = host->ios.signal_voltage; | 
 |  | 
 | 	host->ios.signal_voltage = signal_voltage; | 
 | 	if (host->ops->start_signal_voltage_switch) | 
 | 		err = host->ops->start_signal_voltage_switch(host, &host->ios); | 
 |  | 
 | 	if (err) | 
 | 		host->ios.signal_voltage = old_signal_voltage; | 
 |  | 
 | 	return err; | 
 |  | 
 | } | 
 |  | 
 | void mmc_set_initial_signal_voltage(struct mmc_host *host) | 
 | { | 
 | 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ | 
 | 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) | 
 | 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); | 
 | 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) | 
 | 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); | 
 | 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) | 
 | 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); | 
 | } | 
 |  | 
 | int mmc_host_set_uhs_voltage(struct mmc_host *host) | 
 | { | 
 | 	u32 clock; | 
 |  | 
 | 	/* | 
 | 	 * During a signal voltage level switch, the clock must be gated | 
 | 	 * for 5 ms according to the SD spec | 
 | 	 */ | 
 | 	clock = host->ios.clock; | 
 | 	host->ios.clock = 0; | 
 | 	mmc_set_ios(host); | 
 |  | 
 | 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */ | 
 | 	mmc_delay(10); | 
 | 	host->ios.clock = clock; | 
 | 	mmc_set_ios(host); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) | 
 | { | 
 | 	struct mmc_command cmd = {}; | 
 | 	int err = 0; | 
 |  | 
 | 	/* | 
 | 	 * If we cannot switch voltages, return failure so the caller | 
 | 	 * can continue without UHS mode | 
 | 	 */ | 
 | 	if (!host->ops->start_signal_voltage_switch) | 
 | 		return -EPERM; | 
 | 	if (!host->ops->card_busy) | 
 | 		pr_warn("%s: cannot verify signal voltage switch\n", | 
 | 			mmc_hostname(host)); | 
 |  | 
 | 	cmd.opcode = SD_SWITCH_VOLTAGE; | 
 | 	cmd.arg = 0; | 
 | 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; | 
 |  | 
 | 	err = mmc_wait_for_cmd(host, &cmd, 0); | 
 | 	if (err) | 
 | 		goto power_cycle; | 
 |  | 
 | 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* | 
 | 	 * The card should drive cmd and dat[0:3] low immediately | 
 | 	 * after the response of cmd11, but wait 1 ms to be sure | 
 | 	 */ | 
 | 	mmc_delay(1); | 
 | 	if (host->ops->card_busy && !host->ops->card_busy(host)) { | 
 | 		err = -EAGAIN; | 
 | 		goto power_cycle; | 
 | 	} | 
 |  | 
 | 	if (mmc_host_set_uhs_voltage(host)) { | 
 | 		/* | 
 | 		 * Voltages may not have been switched, but we've already | 
 | 		 * sent CMD11, so a power cycle is required anyway | 
 | 		 */ | 
 | 		err = -EAGAIN; | 
 | 		goto power_cycle; | 
 | 	} | 
 |  | 
 | 	/* Wait for at least 1 ms according to spec */ | 
 | 	mmc_delay(1); | 
 |  | 
 | 	/* | 
 | 	 * Failure to switch is indicated by the card holding | 
 | 	 * dat[0:3] low | 
 | 	 */ | 
 | 	if (host->ops->card_busy && host->ops->card_busy(host)) | 
 | 		err = -EAGAIN; | 
 |  | 
 | power_cycle: | 
 | 	if (err) { | 
 | 		pr_debug("%s: Signal voltage switch failed, " | 
 | 			"power cycling card\n", mmc_hostname(host)); | 
 | 		mmc_power_cycle(host, ocr); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Select timing parameters for host. | 
 |  */ | 
 | void mmc_set_timing(struct mmc_host *host, unsigned int timing) | 
 | { | 
 | 	host->ios.timing = timing; | 
 | 	mmc_set_ios(host); | 
 | } | 
 |  | 
 | /* | 
 |  * Select appropriate driver type for host. | 
 |  */ | 
 | void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) | 
 | { | 
 | 	host->ios.drv_type = drv_type; | 
 | 	mmc_set_ios(host); | 
 | } | 
 |  | 
 | int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, | 
 | 			      int card_drv_type, int *drv_type) | 
 | { | 
 | 	struct mmc_host *host = card->host; | 
 | 	int host_drv_type = SD_DRIVER_TYPE_B; | 
 |  | 
 | 	*drv_type = 0; | 
 |  | 
 | 	if (!host->ops->select_drive_strength) | 
 | 		return 0; | 
 |  | 
 | 	/* Use SD definition of driver strength for hosts */ | 
 | 	if (host->caps & MMC_CAP_DRIVER_TYPE_A) | 
 | 		host_drv_type |= SD_DRIVER_TYPE_A; | 
 |  | 
 | 	if (host->caps & MMC_CAP_DRIVER_TYPE_C) | 
 | 		host_drv_type |= SD_DRIVER_TYPE_C; | 
 |  | 
 | 	if (host->caps & MMC_CAP_DRIVER_TYPE_D) | 
 | 		host_drv_type |= SD_DRIVER_TYPE_D; | 
 |  | 
 | 	/* | 
 | 	 * The drive strength that the hardware can support | 
 | 	 * depends on the board design.  Pass the appropriate | 
 | 	 * information and let the hardware specific code | 
 | 	 * return what is possible given the options | 
 | 	 */ | 
 | 	return host->ops->select_drive_strength(card, max_dtr, | 
 | 						host_drv_type, | 
 | 						card_drv_type, | 
 | 						drv_type); | 
 | } | 
 |  | 
 | /* | 
 |  * Apply power to the MMC stack.  This is a two-stage process. | 
 |  * First, we enable power to the card without the clock running. | 
 |  * We then wait a bit for the power to stabilise.  Finally, | 
 |  * enable the bus drivers and clock to the card. | 
 |  * | 
 |  * We must _NOT_ enable the clock prior to power stablising. | 
 |  * | 
 |  * If a host does all the power sequencing itself, ignore the | 
 |  * initial MMC_POWER_UP stage. | 
 |  */ | 
 | void mmc_power_up(struct mmc_host *host, u32 ocr) | 
 | { | 
 | 	if (host->ios.power_mode == MMC_POWER_ON) | 
 | 		return; | 
 |  | 
 | 	mmc_pwrseq_pre_power_on(host); | 
 |  | 
 | 	host->ios.vdd = fls(ocr) - 1; | 
 | 	host->ios.power_mode = MMC_POWER_UP; | 
 | 	/* Set initial state and call mmc_set_ios */ | 
 | 	mmc_set_initial_state(host); | 
 |  | 
 | 	mmc_set_initial_signal_voltage(host); | 
 |  | 
 | 	/* | 
 | 	 * This delay should be sufficient to allow the power supply | 
 | 	 * to reach the minimum voltage. | 
 | 	 */ | 
 | 	mmc_delay(host->ios.power_delay_ms); | 
 |  | 
 | 	mmc_pwrseq_post_power_on(host); | 
 |  | 
 | 	host->ios.clock = host->f_init; | 
 |  | 
 | 	host->ios.power_mode = MMC_POWER_ON; | 
 | 	mmc_set_ios(host); | 
 |  | 
 | 	/* | 
 | 	 * This delay must be at least 74 clock sizes, or 1 ms, or the | 
 | 	 * time required to reach a stable voltage. | 
 | 	 */ | 
 | 	mmc_delay(host->ios.power_delay_ms); | 
 | } | 
 |  | 
 | void mmc_power_off(struct mmc_host *host) | 
 | { | 
 | 	if (host->ios.power_mode == MMC_POWER_OFF) | 
 | 		return; | 
 |  | 
 | 	mmc_pwrseq_power_off(host); | 
 |  | 
 | 	host->ios.clock = 0; | 
 | 	host->ios.vdd = 0; | 
 |  | 
 | 	host->ios.power_mode = MMC_POWER_OFF; | 
 | 	/* Set initial state and call mmc_set_ios */ | 
 | 	mmc_set_initial_state(host); | 
 |  | 
 | 	/* | 
 | 	 * Some configurations, such as the 802.11 SDIO card in the OLPC | 
 | 	 * XO-1.5, require a short delay after poweroff before the card | 
 | 	 * can be successfully turned on again. | 
 | 	 */ | 
 | 	mmc_delay(1); | 
 | } | 
 |  | 
 | void mmc_power_cycle(struct mmc_host *host, u32 ocr) | 
 | { | 
 | 	mmc_power_off(host); | 
 | 	/* Wait at least 1 ms according to SD spec */ | 
 | 	mmc_delay(1); | 
 | 	mmc_power_up(host, ocr); | 
 | } | 
 |  | 
 | /* | 
 |  * Assign a mmc bus handler to a host. Only one bus handler may control a | 
 |  * host at any given time. | 
 |  */ | 
 | void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) | 
 | { | 
 | 	host->bus_ops = ops; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the current bus handler from a host. | 
 |  */ | 
 | void mmc_detach_bus(struct mmc_host *host) | 
 | { | 
 | 	host->bus_ops = NULL; | 
 | } | 
 |  | 
 | void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) | 
 | { | 
 | 	/* | 
 | 	 * Prevent system sleep for 5s to allow user space to consume the | 
 | 	 * corresponding uevent. This is especially useful, when CD irq is used | 
 | 	 * as a system wakeup, but doesn't hurt in other cases. | 
 | 	 */ | 
 | 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL)) | 
 | 		__pm_wakeup_event(host->ws, 5000); | 
 |  | 
 | 	host->detect_change = 1; | 
 | 	mmc_schedule_delayed_work(&host->detect, delay); | 
 | } | 
 |  | 
 | /** | 
 |  *	mmc_detect_change - process change of state on a MMC socket | 
 |  *	@host: host which changed state. | 
 |  *	@delay: optional delay to wait before detection (jiffies) | 
 |  * | 
 |  *	MMC drivers should call this when they detect a card has been | 
 |  *	inserted or removed. The MMC layer will confirm that any | 
 |  *	present card is still functional, and initialize any newly | 
 |  *	inserted. | 
 |  */ | 
 | void mmc_detect_change(struct mmc_host *host, unsigned long delay) | 
 | { | 
 | 	_mmc_detect_change(host, delay, true); | 
 | } | 
 | EXPORT_SYMBOL(mmc_detect_change); | 
 |  | 
 | void mmc_init_erase(struct mmc_card *card) | 
 | { | 
 | 	unsigned int sz; | 
 |  | 
 | 	if (is_power_of_2(card->erase_size)) | 
 | 		card->erase_shift = ffs(card->erase_size) - 1; | 
 | 	else | 
 | 		card->erase_shift = 0; | 
 |  | 
 | 	/* | 
 | 	 * It is possible to erase an arbitrarily large area of an SD or MMC | 
 | 	 * card.  That is not desirable because it can take a long time | 
 | 	 * (minutes) potentially delaying more important I/O, and also the | 
 | 	 * timeout calculations become increasingly hugely over-estimated. | 
 | 	 * Consequently, 'pref_erase' is defined as a guide to limit erases | 
 | 	 * to that size and alignment. | 
 | 	 * | 
 | 	 * For SD cards that define Allocation Unit size, limit erases to one | 
 | 	 * Allocation Unit at a time. | 
 | 	 * For MMC, have a stab at ai good value and for modern cards it will | 
 | 	 * end up being 4MiB. Note that if the value is too small, it can end | 
 | 	 * up taking longer to erase. Also note, erase_size is already set to | 
 | 	 * High Capacity Erase Size if available when this function is called. | 
 | 	 */ | 
 | 	if (mmc_card_sd(card) && card->ssr.au) { | 
 | 		card->pref_erase = card->ssr.au; | 
 | 		card->erase_shift = ffs(card->ssr.au) - 1; | 
 | 	} else if (card->erase_size) { | 
 | 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; | 
 | 		if (sz < 128) | 
 | 			card->pref_erase = 512 * 1024 / 512; | 
 | 		else if (sz < 512) | 
 | 			card->pref_erase = 1024 * 1024 / 512; | 
 | 		else if (sz < 1024) | 
 | 			card->pref_erase = 2 * 1024 * 1024 / 512; | 
 | 		else | 
 | 			card->pref_erase = 4 * 1024 * 1024 / 512; | 
 | 		if (card->pref_erase < card->erase_size) | 
 | 			card->pref_erase = card->erase_size; | 
 | 		else { | 
 | 			sz = card->pref_erase % card->erase_size; | 
 | 			if (sz) | 
 | 				card->pref_erase += card->erase_size - sz; | 
 | 		} | 
 | 	} else | 
 | 		card->pref_erase = 0; | 
 | } | 
 |  | 
 | static bool is_trim_arg(unsigned int arg) | 
 | { | 
 | 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG; | 
 | } | 
 |  | 
 | static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, | 
 | 				          unsigned int arg, unsigned int qty) | 
 | { | 
 | 	unsigned int erase_timeout; | 
 |  | 
 | 	if (arg == MMC_DISCARD_ARG || | 
 | 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { | 
 | 		erase_timeout = card->ext_csd.trim_timeout; | 
 | 	} else if (card->ext_csd.erase_group_def & 1) { | 
 | 		/* High Capacity Erase Group Size uses HC timeouts */ | 
 | 		if (arg == MMC_TRIM_ARG) | 
 | 			erase_timeout = card->ext_csd.trim_timeout; | 
 | 		else | 
 | 			erase_timeout = card->ext_csd.hc_erase_timeout; | 
 | 	} else { | 
 | 		/* CSD Erase Group Size uses write timeout */ | 
 | 		unsigned int mult = (10 << card->csd.r2w_factor); | 
 | 		unsigned int timeout_clks = card->csd.taac_clks * mult; | 
 | 		unsigned int timeout_us; | 
 |  | 
 | 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ | 
 | 		if (card->csd.taac_ns < 1000000) | 
 | 			timeout_us = (card->csd.taac_ns * mult) / 1000; | 
 | 		else | 
 | 			timeout_us = (card->csd.taac_ns / 1000) * mult; | 
 |  | 
 | 		/* | 
 | 		 * ios.clock is only a target.  The real clock rate might be | 
 | 		 * less but not that much less, so fudge it by multiplying by 2. | 
 | 		 */ | 
 | 		timeout_clks <<= 1; | 
 | 		timeout_us += (timeout_clks * 1000) / | 
 | 			      (card->host->ios.clock / 1000); | 
 |  | 
 | 		erase_timeout = timeout_us / 1000; | 
 |  | 
 | 		/* | 
 | 		 * Theoretically, the calculation could underflow so round up | 
 | 		 * to 1ms in that case. | 
 | 		 */ | 
 | 		if (!erase_timeout) | 
 | 			erase_timeout = 1; | 
 | 	} | 
 |  | 
 | 	/* Multiplier for secure operations */ | 
 | 	if (arg & MMC_SECURE_ARGS) { | 
 | 		if (arg == MMC_SECURE_ERASE_ARG) | 
 | 			erase_timeout *= card->ext_csd.sec_erase_mult; | 
 | 		else | 
 | 			erase_timeout *= card->ext_csd.sec_trim_mult; | 
 | 	} | 
 |  | 
 | 	erase_timeout *= qty; | 
 |  | 
 | 	/* | 
 | 	 * Ensure at least a 1 second timeout for SPI as per | 
 | 	 * 'mmc_set_data_timeout()' | 
 | 	 */ | 
 | 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000) | 
 | 		erase_timeout = 1000; | 
 |  | 
 | 	return erase_timeout; | 
 | } | 
 |  | 
 | static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, | 
 | 					 unsigned int arg, | 
 | 					 unsigned int qty) | 
 | { | 
 | 	unsigned int erase_timeout; | 
 |  | 
 | 	/* for DISCARD none of the below calculation applies. | 
 | 	 * the busy timeout is 250msec per discard command. | 
 | 	 */ | 
 | 	if (arg == SD_DISCARD_ARG) | 
 | 		return SD_DISCARD_TIMEOUT_MS; | 
 |  | 
 | 	if (card->ssr.erase_timeout) { | 
 | 		/* Erase timeout specified in SD Status Register (SSR) */ | 
 | 		erase_timeout = card->ssr.erase_timeout * qty + | 
 | 				card->ssr.erase_offset; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Erase timeout not specified in SD Status Register (SSR) so | 
 | 		 * use 250ms per write block. | 
 | 		 */ | 
 | 		erase_timeout = 250 * qty; | 
 | 	} | 
 |  | 
 | 	/* Must not be less than 1 second */ | 
 | 	if (erase_timeout < 1000) | 
 | 		erase_timeout = 1000; | 
 |  | 
 | 	return erase_timeout; | 
 | } | 
 |  | 
 | static unsigned int mmc_erase_timeout(struct mmc_card *card, | 
 | 				      unsigned int arg, | 
 | 				      unsigned int qty) | 
 | { | 
 | 	if (mmc_card_sd(card)) | 
 | 		return mmc_sd_erase_timeout(card, arg, qty); | 
 | 	else | 
 | 		return mmc_mmc_erase_timeout(card, arg, qty); | 
 | } | 
 |  | 
 | static int mmc_do_erase(struct mmc_card *card, unsigned int from, | 
 | 			unsigned int to, unsigned int arg) | 
 | { | 
 | 	struct mmc_command cmd = {}; | 
 | 	unsigned int qty = 0, busy_timeout = 0; | 
 | 	bool use_r1b_resp; | 
 | 	int err; | 
 |  | 
 | 	mmc_retune_hold(card->host); | 
 |  | 
 | 	/* | 
 | 	 * qty is used to calculate the erase timeout which depends on how many | 
 | 	 * erase groups (or allocation units in SD terminology) are affected. | 
 | 	 * We count erasing part of an erase group as one erase group. | 
 | 	 * For SD, the allocation units are always a power of 2.  For MMC, the | 
 | 	 * erase group size is almost certainly also power of 2, but it does not | 
 | 	 * seem to insist on that in the JEDEC standard, so we fall back to | 
 | 	 * division in that case.  SD may not specify an allocation unit size, | 
 | 	 * in which case the timeout is based on the number of write blocks. | 
 | 	 * | 
 | 	 * Note that the timeout for secure trim 2 will only be correct if the | 
 | 	 * number of erase groups specified is the same as the total of all | 
 | 	 * preceding secure trim 1 commands.  Since the power may have been | 
 | 	 * lost since the secure trim 1 commands occurred, it is generally | 
 | 	 * impossible to calculate the secure trim 2 timeout correctly. | 
 | 	 */ | 
 | 	if (card->erase_shift) | 
 | 		qty += ((to >> card->erase_shift) - | 
 | 			(from >> card->erase_shift)) + 1; | 
 | 	else if (mmc_card_sd(card)) | 
 | 		qty += to - from + 1; | 
 | 	else | 
 | 		qty += ((to / card->erase_size) - | 
 | 			(from / card->erase_size)) + 1; | 
 |  | 
 | 	if (!mmc_card_blockaddr(card)) { | 
 | 		from <<= 9; | 
 | 		to <<= 9; | 
 | 	} | 
 |  | 
 | 	if (mmc_card_sd(card)) | 
 | 		cmd.opcode = SD_ERASE_WR_BLK_START; | 
 | 	else | 
 | 		cmd.opcode = MMC_ERASE_GROUP_START; | 
 | 	cmd.arg = from; | 
 | 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; | 
 | 	err = mmc_wait_for_cmd(card->host, &cmd, 0); | 
 | 	if (err) { | 
 | 		pr_err("mmc_erase: group start error %d, " | 
 | 		       "status %#x\n", err, cmd.resp[0]); | 
 | 		err = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memset(&cmd, 0, sizeof(struct mmc_command)); | 
 | 	if (mmc_card_sd(card)) | 
 | 		cmd.opcode = SD_ERASE_WR_BLK_END; | 
 | 	else | 
 | 		cmd.opcode = MMC_ERASE_GROUP_END; | 
 | 	cmd.arg = to; | 
 | 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; | 
 | 	err = mmc_wait_for_cmd(card->host, &cmd, 0); | 
 | 	if (err) { | 
 | 		pr_err("mmc_erase: group end error %d, status %#x\n", | 
 | 		       err, cmd.resp[0]); | 
 | 		err = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memset(&cmd, 0, sizeof(struct mmc_command)); | 
 | 	cmd.opcode = MMC_ERASE; | 
 | 	cmd.arg = arg; | 
 | 	busy_timeout = mmc_erase_timeout(card, arg, qty); | 
 | 	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout); | 
 |  | 
 | 	err = mmc_wait_for_cmd(card->host, &cmd, 0); | 
 | 	if (err) { | 
 | 		pr_err("mmc_erase: erase error %d, status %#x\n", | 
 | 		       err, cmd.resp[0]); | 
 | 		err = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (mmc_host_is_spi(card->host)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling | 
 | 	 * shall be avoided. | 
 | 	 */ | 
 | 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) | 
 | 		goto out; | 
 |  | 
 | 	/* Let's poll to find out when the erase operation completes. */ | 
 | 	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE); | 
 |  | 
 | out: | 
 | 	mmc_retune_release(card->host); | 
 | 	return err; | 
 | } | 
 |  | 
 | static unsigned int mmc_align_erase_size(struct mmc_card *card, | 
 | 					 unsigned int *from, | 
 | 					 unsigned int *to, | 
 | 					 unsigned int nr) | 
 | { | 
 | 	unsigned int from_new = *from, nr_new = nr, rem; | 
 |  | 
 | 	/* | 
 | 	 * When the 'card->erase_size' is power of 2, we can use round_up/down() | 
 | 	 * to align the erase size efficiently. | 
 | 	 */ | 
 | 	if (is_power_of_2(card->erase_size)) { | 
 | 		unsigned int temp = from_new; | 
 |  | 
 | 		from_new = round_up(temp, card->erase_size); | 
 | 		rem = from_new - temp; | 
 |  | 
 | 		if (nr_new > rem) | 
 | 			nr_new -= rem; | 
 | 		else | 
 | 			return 0; | 
 |  | 
 | 		nr_new = round_down(nr_new, card->erase_size); | 
 | 	} else { | 
 | 		rem = from_new % card->erase_size; | 
 | 		if (rem) { | 
 | 			rem = card->erase_size - rem; | 
 | 			from_new += rem; | 
 | 			if (nr_new > rem) | 
 | 				nr_new -= rem; | 
 | 			else | 
 | 				return 0; | 
 | 		} | 
 |  | 
 | 		rem = nr_new % card->erase_size; | 
 | 		if (rem) | 
 | 			nr_new -= rem; | 
 | 	} | 
 |  | 
 | 	if (nr_new == 0) | 
 | 		return 0; | 
 |  | 
 | 	*to = from_new + nr_new; | 
 | 	*from = from_new; | 
 |  | 
 | 	return nr_new; | 
 | } | 
 |  | 
 | /** | 
 |  * mmc_erase - erase sectors. | 
 |  * @card: card to erase | 
 |  * @from: first sector to erase | 
 |  * @nr: number of sectors to erase | 
 |  * @arg: erase command argument | 
 |  * | 
 |  * Caller must claim host before calling this function. | 
 |  */ | 
 | int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, | 
 | 	      unsigned int arg) | 
 | { | 
 | 	unsigned int rem, to = from + nr; | 
 | 	int err; | 
 |  | 
 | 	if (!(card->csd.cmdclass & CCC_ERASE)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (!card->erase_size) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && | 
 | 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (mmc_card_mmc(card) && is_trim_arg(arg) && | 
 | 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (arg == MMC_SECURE_ERASE_ARG) { | 
 | 		if (from % card->erase_size || nr % card->erase_size) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (arg == MMC_ERASE_ARG) | 
 | 		nr = mmc_align_erase_size(card, &from, &to, nr); | 
 |  | 
 | 	if (nr == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (to <= from) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* 'from' and 'to' are inclusive */ | 
 | 	to -= 1; | 
 |  | 
 | 	/* | 
 | 	 * Special case where only one erase-group fits in the timeout budget: | 
 | 	 * If the region crosses an erase-group boundary on this particular | 
 | 	 * case, we will be trimming more than one erase-group which, does not | 
 | 	 * fit in the timeout budget of the controller, so we need to split it | 
 | 	 * and call mmc_do_erase() twice if necessary. This special case is | 
 | 	 * identified by the card->eg_boundary flag. | 
 | 	 */ | 
 | 	rem = card->erase_size - (from % card->erase_size); | 
 | 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) { | 
 | 		err = mmc_do_erase(card, from, from + rem - 1, arg); | 
 | 		from += rem; | 
 | 		if ((err) || (to <= from)) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return mmc_do_erase(card, from, to, arg); | 
 | } | 
 | EXPORT_SYMBOL(mmc_erase); | 
 |  | 
 | int mmc_can_erase(struct mmc_card *card) | 
 | { | 
 | 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(mmc_can_erase); | 
 |  | 
 | int mmc_can_trim(struct mmc_card *card) | 
 | { | 
 | 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && | 
 | 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(mmc_can_trim); | 
 |  | 
 | int mmc_can_discard(struct mmc_card *card) | 
 | { | 
 | 	/* | 
 | 	 * As there's no way to detect the discard support bit at v4.5 | 
 | 	 * use the s/w feature support filed. | 
 | 	 */ | 
 | 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(mmc_can_discard); | 
 |  | 
 | int mmc_can_sanitize(struct mmc_card *card) | 
 | { | 
 | 	if (!mmc_can_trim(card) && !mmc_can_erase(card)) | 
 | 		return 0; | 
 | 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int mmc_can_secure_erase_trim(struct mmc_card *card) | 
 | { | 
 | 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && | 
 | 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(mmc_can_secure_erase_trim); | 
 |  | 
 | int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, | 
 | 			    unsigned int nr) | 
 | { | 
 | 	if (!card->erase_size) | 
 | 		return 0; | 
 | 	if (from % card->erase_size || nr % card->erase_size) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(mmc_erase_group_aligned); | 
 |  | 
 | static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, | 
 | 					    unsigned int arg) | 
 | { | 
 | 	struct mmc_host *host = card->host; | 
 | 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; | 
 | 	unsigned int last_timeout = 0; | 
 | 	unsigned int max_busy_timeout = host->max_busy_timeout ? | 
 | 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; | 
 |  | 
 | 	if (card->erase_shift) { | 
 | 		max_qty = UINT_MAX >> card->erase_shift; | 
 | 		min_qty = card->pref_erase >> card->erase_shift; | 
 | 	} else if (mmc_card_sd(card)) { | 
 | 		max_qty = UINT_MAX; | 
 | 		min_qty = card->pref_erase; | 
 | 	} else { | 
 | 		max_qty = UINT_MAX / card->erase_size; | 
 | 		min_qty = card->pref_erase / card->erase_size; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We should not only use 'host->max_busy_timeout' as the limitation | 
 | 	 * when deciding the max discard sectors. We should set a balance value | 
 | 	 * to improve the erase speed, and it can not get too long timeout at | 
 | 	 * the same time. | 
 | 	 * | 
 | 	 * Here we set 'card->pref_erase' as the minimal discard sectors no | 
 | 	 * matter what size of 'host->max_busy_timeout', but if the | 
 | 	 * 'host->max_busy_timeout' is large enough for more discard sectors, | 
 | 	 * then we can continue to increase the max discard sectors until we | 
 | 	 * get a balance value. In cases when the 'host->max_busy_timeout' | 
 | 	 * isn't specified, use the default max erase timeout. | 
 | 	 */ | 
 | 	do { | 
 | 		y = 0; | 
 | 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { | 
 | 			timeout = mmc_erase_timeout(card, arg, qty + x); | 
 |  | 
 | 			if (qty + x > min_qty && timeout > max_busy_timeout) | 
 | 				break; | 
 |  | 
 | 			if (timeout < last_timeout) | 
 | 				break; | 
 | 			last_timeout = timeout; | 
 | 			y = x; | 
 | 		} | 
 | 		qty += y; | 
 | 	} while (y); | 
 |  | 
 | 	if (!qty) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * When specifying a sector range to trim, chances are we might cross | 
 | 	 * an erase-group boundary even if the amount of sectors is less than | 
 | 	 * one erase-group. | 
 | 	 * If we can only fit one erase-group in the controller timeout budget, | 
 | 	 * we have to care that erase-group boundaries are not crossed by a | 
 | 	 * single trim operation. We flag that special case with "eg_boundary". | 
 | 	 * In all other cases we can just decrement qty and pretend that we | 
 | 	 * always touch (qty + 1) erase-groups as a simple optimization. | 
 | 	 */ | 
 | 	if (qty == 1) | 
 | 		card->eg_boundary = 1; | 
 | 	else | 
 | 		qty--; | 
 |  | 
 | 	/* Convert qty to sectors */ | 
 | 	if (card->erase_shift) | 
 | 		max_discard = qty << card->erase_shift; | 
 | 	else if (mmc_card_sd(card)) | 
 | 		max_discard = qty + 1; | 
 | 	else | 
 | 		max_discard = qty * card->erase_size; | 
 |  | 
 | 	return max_discard; | 
 | } | 
 |  | 
 | unsigned int mmc_calc_max_discard(struct mmc_card *card) | 
 | { | 
 | 	struct mmc_host *host = card->host; | 
 | 	unsigned int max_discard, max_trim; | 
 |  | 
 | 	/* | 
 | 	 * Without erase_group_def set, MMC erase timeout depends on clock | 
 | 	 * frequence which can change.  In that case, the best choice is | 
 | 	 * just the preferred erase size. | 
 | 	 */ | 
 | 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) | 
 | 		return card->pref_erase; | 
 |  | 
 | 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); | 
 | 	if (mmc_can_trim(card)) { | 
 | 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); | 
 | 		if (max_trim < max_discard || max_discard == 0) | 
 | 			max_discard = max_trim; | 
 | 	} else if (max_discard < card->erase_size) { | 
 | 		max_discard = 0; | 
 | 	} | 
 | 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", | 
 | 		mmc_hostname(host), max_discard, host->max_busy_timeout ? | 
 | 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); | 
 | 	return max_discard; | 
 | } | 
 | EXPORT_SYMBOL(mmc_calc_max_discard); | 
 |  | 
 | bool mmc_card_is_blockaddr(struct mmc_card *card) | 
 | { | 
 | 	return card ? mmc_card_blockaddr(card) : false; | 
 | } | 
 | EXPORT_SYMBOL(mmc_card_is_blockaddr); | 
 |  | 
 | int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) | 
 | { | 
 | 	struct mmc_command cmd = {}; | 
 |  | 
 | 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || | 
 | 	    mmc_card_hs400(card) || mmc_card_hs400es(card)) | 
 | 		return 0; | 
 |  | 
 | 	cmd.opcode = MMC_SET_BLOCKLEN; | 
 | 	cmd.arg = blocklen; | 
 | 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; | 
 | 	return mmc_wait_for_cmd(card->host, &cmd, 5); | 
 | } | 
 | EXPORT_SYMBOL(mmc_set_blocklen); | 
 |  | 
 | static void mmc_hw_reset_for_init(struct mmc_host *host) | 
 | { | 
 | 	mmc_pwrseq_reset(host); | 
 |  | 
 | 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset) | 
 | 		return; | 
 | 	host->ops->card_hw_reset(host); | 
 | } | 
 |  | 
 | /** | 
 |  * mmc_hw_reset - reset the card in hardware | 
 |  * @card: card to be reset | 
 |  * | 
 |  * Hard reset the card. This function is only for upper layers, like the | 
 |  * block layer or card drivers. You cannot use it in host drivers (struct | 
 |  * mmc_card might be gone then). | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | int mmc_hw_reset(struct mmc_card *card) | 
 | { | 
 | 	struct mmc_host *host = card->host; | 
 | 	int ret; | 
 |  | 
 | 	ret = host->bus_ops->hw_reset(host); | 
 | 	if (ret < 0) | 
 | 		pr_warn("%s: tried to HW reset card, got error %d\n", | 
 | 			mmc_hostname(host), ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(mmc_hw_reset); | 
 |  | 
 | int mmc_sw_reset(struct mmc_card *card) | 
 | { | 
 | 	struct mmc_host *host = card->host; | 
 | 	int ret; | 
 |  | 
 | 	if (!host->bus_ops->sw_reset) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	ret = host->bus_ops->sw_reset(host); | 
 | 	if (ret) | 
 | 		pr_warn("%s: tried to SW reset card, got error %d\n", | 
 | 			mmc_hostname(host), ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(mmc_sw_reset); | 
 |  | 
 | static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) | 
 | { | 
 | 	host->f_init = freq; | 
 |  | 
 | 	pr_debug("%s: %s: trying to init card at %u Hz\n", | 
 | 		mmc_hostname(host), __func__, host->f_init); | 
 |  | 
 | 	mmc_power_up(host, host->ocr_avail); | 
 |  | 
 | 	/* | 
 | 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so | 
 | 	 * do a hardware reset if possible. | 
 | 	 */ | 
 | 	mmc_hw_reset_for_init(host); | 
 |  | 
 | 	/* | 
 | 	 * sdio_reset sends CMD52 to reset card.  Since we do not know | 
 | 	 * if the card is being re-initialized, just send it.  CMD52 | 
 | 	 * should be ignored by SD/eMMC cards. | 
 | 	 * Skip it if we already know that we do not support SDIO commands | 
 | 	 */ | 
 | 	if (!(host->caps2 & MMC_CAP2_NO_SDIO)) | 
 | 		sdio_reset(host); | 
 |  | 
 | 	mmc_go_idle(host); | 
 |  | 
 | 	if (!(host->caps2 & MMC_CAP2_NO_SD)) { | 
 | 		if (mmc_send_if_cond_pcie(host, host->ocr_avail)) | 
 | 			goto out; | 
 | 		if (mmc_card_sd_express(host)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* Order's important: probe SDIO, then SD, then MMC */ | 
 | 	if (!(host->caps2 & MMC_CAP2_NO_SDIO)) | 
 | 		if (!mmc_attach_sdio(host)) | 
 | 			return 0; | 
 |  | 
 | 	if (!(host->caps2 & MMC_CAP2_NO_SD)) | 
 | 		if (!mmc_attach_sd(host)) | 
 | 			return 0; | 
 |  | 
 | 	if (!(host->caps2 & MMC_CAP2_NO_MMC)) | 
 | 		if (!mmc_attach_mmc(host)) | 
 | 			return 0; | 
 |  | 
 | out: | 
 | 	mmc_power_off(host); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | int _mmc_detect_card_removed(struct mmc_host *host) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!host->card || mmc_card_removed(host->card)) | 
 | 		return 1; | 
 |  | 
 | 	ret = host->bus_ops->alive(host); | 
 |  | 
 | 	/* | 
 | 	 * Card detect status and alive check may be out of sync if card is | 
 | 	 * removed slowly, when card detect switch changes while card/slot | 
 | 	 * pads are still contacted in hardware (refer to "SD Card Mechanical | 
 | 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a | 
 | 	 * detect work 200ms later for this case. | 
 | 	 */ | 
 | 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { | 
 | 		mmc_detect_change(host, msecs_to_jiffies(200)); | 
 | 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		mmc_card_set_removed(host->card); | 
 | 		pr_debug("%s: card remove detected\n", mmc_hostname(host)); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int mmc_detect_card_removed(struct mmc_host *host) | 
 | { | 
 | 	struct mmc_card *card = host->card; | 
 | 	int ret; | 
 |  | 
 | 	WARN_ON(!host->claimed); | 
 |  | 
 | 	if (!card) | 
 | 		return 1; | 
 |  | 
 | 	if (!mmc_card_is_removable(host)) | 
 | 		return 0; | 
 |  | 
 | 	ret = mmc_card_removed(card); | 
 | 	/* | 
 | 	 * The card will be considered unchanged unless we have been asked to | 
 | 	 * detect a change or host requires polling to provide card detection. | 
 | 	 */ | 
 | 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) | 
 | 		return ret; | 
 |  | 
 | 	host->detect_change = 0; | 
 | 	if (!ret) { | 
 | 		ret = _mmc_detect_card_removed(host); | 
 | 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { | 
 | 			/* | 
 | 			 * Schedule a detect work as soon as possible to let a | 
 | 			 * rescan handle the card removal. | 
 | 			 */ | 
 | 			cancel_delayed_work(&host->detect); | 
 | 			_mmc_detect_change(host, 0, false); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(mmc_detect_card_removed); | 
 |  | 
 | int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector) | 
 | { | 
 | 	unsigned int boot_sectors_num; | 
 |  | 
 | 	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA))) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* filter out unrelated cards */ | 
 | 	if (card->ext_csd.rev < 3 || | 
 | 	    !mmc_card_mmc(card) || | 
 | 	    !mmc_card_is_blockaddr(card) || | 
 | 	     mmc_card_is_removable(card->host)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * eMMC storage has two special boot partitions in addition to the | 
 | 	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main | 
 | 	 * accesses, this means that the partition table addresses are shifted | 
 | 	 * by the size of boot partitions.  In accordance with the eMMC | 
 | 	 * specification, the boot partition size is calculated as follows: | 
 | 	 * | 
 | 	 *	boot partition size = 128K byte x BOOT_SIZE_MULT | 
 | 	 * | 
 | 	 * Calculate number of sectors occupied by the both boot partitions. | 
 | 	 */ | 
 | 	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K / | 
 | 			   SZ_512 * MMC_NUM_BOOT_PARTITION; | 
 |  | 
 | 	/* Defined by NVIDIA and used by Android devices. */ | 
 | 	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(mmc_card_alternative_gpt_sector); | 
 |  | 
 | void mmc_rescan(struct work_struct *work) | 
 | { | 
 | 	struct mmc_host *host = | 
 | 		container_of(work, struct mmc_host, detect.work); | 
 | 	int i; | 
 |  | 
 | 	if (host->rescan_disable) | 
 | 		return; | 
 |  | 
 | 	/* If there is a non-removable card registered, only scan once */ | 
 | 	if (!mmc_card_is_removable(host) && host->rescan_entered) | 
 | 		return; | 
 | 	host->rescan_entered = 1; | 
 |  | 
 | 	if (host->trigger_card_event && host->ops->card_event) { | 
 | 		mmc_claim_host(host); | 
 | 		host->ops->card_event(host); | 
 | 		mmc_release_host(host); | 
 | 		host->trigger_card_event = false; | 
 | 	} | 
 |  | 
 | 	/* Verify a registered card to be functional, else remove it. */ | 
 | 	if (host->bus_ops) | 
 | 		host->bus_ops->detect(host); | 
 |  | 
 | 	host->detect_change = 0; | 
 |  | 
 | 	/* if there still is a card present, stop here */ | 
 | 	if (host->bus_ops != NULL) | 
 | 		goto out; | 
 |  | 
 | 	mmc_claim_host(host); | 
 | 	if (mmc_card_is_removable(host) && host->ops->get_cd && | 
 | 			host->ops->get_cd(host) == 0) { | 
 | 		mmc_power_off(host); | 
 | 		mmc_release_host(host); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* If an SD express card is present, then leave it as is. */ | 
 | 	if (mmc_card_sd_express(host)) { | 
 | 		mmc_release_host(host); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(freqs); i++) { | 
 | 		unsigned int freq = freqs[i]; | 
 | 		if (freq > host->f_max) { | 
 | 			if (i + 1 < ARRAY_SIZE(freqs)) | 
 | 				continue; | 
 | 			freq = host->f_max; | 
 | 		} | 
 | 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min))) | 
 | 			break; | 
 | 		if (freqs[i] <= host->f_min) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* A non-removable card should have been detected by now. */ | 
 | 	if (!mmc_card_is_removable(host) && !host->bus_ops) | 
 | 		pr_info("%s: Failed to initialize a non-removable card", | 
 | 			mmc_hostname(host)); | 
 |  | 
 | 	/* | 
 | 	 * Ignore the command timeout errors observed during | 
 | 	 * the card init as those are excepted. | 
 | 	 */ | 
 | 	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0; | 
 | 	mmc_release_host(host); | 
 |  | 
 |  out: | 
 | 	if (host->caps & MMC_CAP_NEEDS_POLL) | 
 | 		mmc_schedule_delayed_work(&host->detect, HZ); | 
 | } | 
 |  | 
 | void mmc_start_host(struct mmc_host *host) | 
 | { | 
 | 	host->f_init = max(min(freqs[0], host->f_max), host->f_min); | 
 | 	host->rescan_disable = 0; | 
 |  | 
 | 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { | 
 | 		mmc_claim_host(host); | 
 | 		mmc_power_up(host, host->ocr_avail); | 
 | 		mmc_release_host(host); | 
 | 	} | 
 |  | 
 | 	mmc_gpiod_request_cd_irq(host); | 
 | 	_mmc_detect_change(host, 0, false); | 
 | } | 
 |  | 
 | void __mmc_stop_host(struct mmc_host *host) | 
 | { | 
 | 	if (host->slot.cd_irq >= 0) { | 
 | 		mmc_gpio_set_cd_wake(host, false); | 
 | 		disable_irq(host->slot.cd_irq); | 
 | 	} | 
 |  | 
 | 	host->rescan_disable = 1; | 
 | 	cancel_delayed_work_sync(&host->detect); | 
 | } | 
 |  | 
 | void mmc_stop_host(struct mmc_host *host) | 
 | { | 
 | 	__mmc_stop_host(host); | 
 |  | 
 | 	/* clear pm flags now and let card drivers set them as needed */ | 
 | 	host->pm_flags = 0; | 
 |  | 
 | 	if (host->bus_ops) { | 
 | 		/* Calling bus_ops->remove() with a claimed host can deadlock */ | 
 | 		host->bus_ops->remove(host); | 
 | 		mmc_claim_host(host); | 
 | 		mmc_detach_bus(host); | 
 | 		mmc_power_off(host); | 
 | 		mmc_release_host(host); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mmc_claim_host(host); | 
 | 	mmc_power_off(host); | 
 | 	mmc_release_host(host); | 
 | } | 
 |  | 
 | static int __init mmc_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = mmc_register_bus(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = mmc_register_host_class(); | 
 | 	if (ret) | 
 | 		goto unregister_bus; | 
 |  | 
 | 	ret = sdio_register_bus(); | 
 | 	if (ret) | 
 | 		goto unregister_host_class; | 
 |  | 
 | 	return 0; | 
 |  | 
 | unregister_host_class: | 
 | 	mmc_unregister_host_class(); | 
 | unregister_bus: | 
 | 	mmc_unregister_bus(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit mmc_exit(void) | 
 | { | 
 | 	sdio_unregister_bus(); | 
 | 	mmc_unregister_host_class(); | 
 | 	mmc_unregister_bus(); | 
 | } | 
 |  | 
 | subsys_initcall(mmc_init); | 
 | module_exit(mmc_exit); | 
 |  | 
 | MODULE_DESCRIPTION("MMC core driver"); | 
 | MODULE_LICENSE("GPL"); |