| /* SPDX-License-Identifier: GPL-2.0-or-later */ | 
 | /* internal.h: mm/ internal definitions | 
 |  * | 
 |  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. | 
 |  * Written by David Howells (dhowells@redhat.com) | 
 |  */ | 
 | #ifndef __MM_INTERNAL_H | 
 | #define __MM_INTERNAL_H | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/tracepoint-defs.h> | 
 |  | 
 | struct folio_batch; | 
 |  | 
 | /* | 
 |  * The set of flags that only affect watermark checking and reclaim | 
 |  * behaviour. This is used by the MM to obey the caller constraints | 
 |  * about IO, FS and watermark checking while ignoring placement | 
 |  * hints such as HIGHMEM usage. | 
 |  */ | 
 | #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ | 
 | 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ | 
 | 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ | 
 | 			__GFP_NOLOCKDEP) | 
 |  | 
 | /* The GFP flags allowed during early boot */ | 
 | #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) | 
 |  | 
 | /* Control allocation cpuset and node placement constraints */ | 
 | #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) | 
 |  | 
 | /* Do not use these with a slab allocator */ | 
 | #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) | 
 |  | 
 | /* | 
 |  * Different from WARN_ON_ONCE(), no warning will be issued | 
 |  * when we specify __GFP_NOWARN. | 
 |  */ | 
 | #define WARN_ON_ONCE_GFP(cond, gfp)	({				\ | 
 | 	static bool __section(".data..once") __warned;			\ | 
 | 	int __ret_warn_once = !!(cond);					\ | 
 | 									\ | 
 | 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ | 
 | 		__warned = true;					\ | 
 | 		WARN_ON(1);						\ | 
 | 	}								\ | 
 | 	unlikely(__ret_warn_once);					\ | 
 | }) | 
 |  | 
 | void page_writeback_init(void); | 
 |  | 
 | /* | 
 |  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, | 
 |  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit | 
 |  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently | 
 |  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. | 
 |  */ | 
 | #define ENTIRELY_MAPPED		0x800000 | 
 | #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1) | 
 |  | 
 | /* | 
 |  * Flags passed to __show_mem() and show_free_areas() to suppress output in | 
 |  * various contexts. | 
 |  */ | 
 | #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */ | 
 |  | 
 | /* | 
 |  * How many individual pages have an elevated _mapcount.  Excludes | 
 |  * the folio's entire_mapcount. | 
 |  * | 
 |  * Don't use this function outside of debugging code. | 
 |  */ | 
 | static inline int folio_nr_pages_mapped(const struct folio *folio) | 
 | { | 
 | 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the first entry of a folio based on a provided entry within the | 
 |  * folio. We cannot rely on folio->swap as there is no guarantee that it has | 
 |  * been initialized. Used for calling arch_swap_restore() | 
 |  */ | 
 | static inline swp_entry_t folio_swap(swp_entry_t entry, | 
 | 		const struct folio *folio) | 
 | { | 
 | 	swp_entry_t swap = { | 
 | 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)), | 
 | 	}; | 
 |  | 
 | 	return swap; | 
 | } | 
 |  | 
 | static inline void *folio_raw_mapping(const struct folio *folio) | 
 | { | 
 | 	unsigned long mapping = (unsigned long)folio->mapping; | 
 |  | 
 | 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 | /* Flags for folio_pte_batch(). */ | 
 | typedef int __bitwise fpb_t; | 
 |  | 
 | /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */ | 
 | #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0)) | 
 |  | 
 | /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */ | 
 | #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1)) | 
 |  | 
 | static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags) | 
 | { | 
 | 	if (flags & FPB_IGNORE_DIRTY) | 
 | 		pte = pte_mkclean(pte); | 
 | 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY)) | 
 | 		pte = pte_clear_soft_dirty(pte); | 
 | 	return pte_wrprotect(pte_mkold(pte)); | 
 | } | 
 |  | 
 | /** | 
 |  * folio_pte_batch - detect a PTE batch for a large folio | 
 |  * @folio: The large folio to detect a PTE batch for. | 
 |  * @addr: The user virtual address the first page is mapped at. | 
 |  * @start_ptep: Page table pointer for the first entry. | 
 |  * @pte: Page table entry for the first page. | 
 |  * @max_nr: The maximum number of table entries to consider. | 
 |  * @flags: Flags to modify the PTE batch semantics. | 
 |  * @any_writable: Optional pointer to indicate whether any entry except the | 
 |  *		  first one is writable. | 
 |  * @any_young: Optional pointer to indicate whether any entry except the | 
 |  *		  first one is young. | 
 |  * @any_dirty: Optional pointer to indicate whether any entry except the | 
 |  *		  first one is dirty. | 
 |  * | 
 |  * Detect a PTE batch: consecutive (present) PTEs that map consecutive | 
 |  * pages of the same large folio. | 
 |  * | 
 |  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, | 
 |  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and | 
 |  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY). | 
 |  * | 
 |  * start_ptep must map any page of the folio. max_nr must be at least one and | 
 |  * must be limited by the caller so scanning cannot exceed a single page table. | 
 |  * | 
 |  * Return: the number of table entries in the batch. | 
 |  */ | 
 | static inline int folio_pte_batch(struct folio *folio, unsigned long addr, | 
 | 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags, | 
 | 		bool *any_writable, bool *any_young, bool *any_dirty) | 
 | { | 
 | 	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio); | 
 | 	const pte_t *end_ptep = start_ptep + max_nr; | 
 | 	pte_t expected_pte, *ptep; | 
 | 	bool writable, young, dirty; | 
 | 	int nr; | 
 |  | 
 | 	if (any_writable) | 
 | 		*any_writable = false; | 
 | 	if (any_young) | 
 | 		*any_young = false; | 
 | 	if (any_dirty) | 
 | 		*any_dirty = false; | 
 |  | 
 | 	VM_WARN_ON_FOLIO(!pte_present(pte), folio); | 
 | 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio); | 
 | 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio); | 
 |  | 
 | 	nr = pte_batch_hint(start_ptep, pte); | 
 | 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags); | 
 | 	ptep = start_ptep + nr; | 
 |  | 
 | 	while (ptep < end_ptep) { | 
 | 		pte = ptep_get(ptep); | 
 | 		if (any_writable) | 
 | 			writable = !!pte_write(pte); | 
 | 		if (any_young) | 
 | 			young = !!pte_young(pte); | 
 | 		if (any_dirty) | 
 | 			dirty = !!pte_dirty(pte); | 
 | 		pte = __pte_batch_clear_ignored(pte, flags); | 
 |  | 
 | 		if (!pte_same(pte, expected_pte)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Stop immediately once we reached the end of the folio. In | 
 | 		 * corner cases the next PFN might fall into a different | 
 | 		 * folio. | 
 | 		 */ | 
 | 		if (pte_pfn(pte) >= folio_end_pfn) | 
 | 			break; | 
 |  | 
 | 		if (any_writable) | 
 | 			*any_writable |= writable; | 
 | 		if (any_young) | 
 | 			*any_young |= young; | 
 | 		if (any_dirty) | 
 | 			*any_dirty |= dirty; | 
 |  | 
 | 		nr = pte_batch_hint(ptep, pte); | 
 | 		expected_pte = pte_advance_pfn(expected_pte, nr); | 
 | 		ptep += nr; | 
 | 	} | 
 |  | 
 | 	return min(ptep - start_ptep, max_nr); | 
 | } | 
 |  | 
 | /** | 
 |  * pte_move_swp_offset - Move the swap entry offset field of a swap pte | 
 |  *	 forward or backward by delta | 
 |  * @pte: The initial pte state; is_swap_pte(pte) must be true and | 
 |  *	 non_swap_entry() must be false. | 
 |  * @delta: The direction and the offset we are moving; forward if delta | 
 |  *	 is positive; backward if delta is negative | 
 |  * | 
 |  * Moves the swap offset, while maintaining all other fields, including | 
 |  * swap type, and any swp pte bits. The resulting pte is returned. | 
 |  */ | 
 | static inline pte_t pte_move_swp_offset(pte_t pte, long delta) | 
 | { | 
 | 	swp_entry_t entry = pte_to_swp_entry(pte); | 
 | 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry), | 
 | 						   (swp_offset(entry) + delta))); | 
 |  | 
 | 	if (pte_swp_soft_dirty(pte)) | 
 | 		new = pte_swp_mksoft_dirty(new); | 
 | 	if (pte_swp_exclusive(pte)) | 
 | 		new = pte_swp_mkexclusive(new); | 
 | 	if (pte_swp_uffd_wp(pte)) | 
 | 		new = pte_swp_mkuffd_wp(new); | 
 |  | 
 | 	return new; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte. | 
 |  * @pte: The initial pte state; is_swap_pte(pte) must be true and | 
 |  *	 non_swap_entry() must be false. | 
 |  * | 
 |  * Increments the swap offset, while maintaining all other fields, including | 
 |  * swap type, and any swp pte bits. The resulting pte is returned. | 
 |  */ | 
 | static inline pte_t pte_next_swp_offset(pte_t pte) | 
 | { | 
 | 	return pte_move_swp_offset(pte, 1); | 
 | } | 
 |  | 
 | /** | 
 |  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries | 
 |  * @start_ptep: Page table pointer for the first entry. | 
 |  * @max_nr: The maximum number of table entries to consider. | 
 |  * @pte: Page table entry for the first entry. | 
 |  * | 
 |  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs | 
 |  * containing swap entries all with consecutive offsets and targeting the same | 
 |  * swap type, all with matching swp pte bits. | 
 |  * | 
 |  * max_nr must be at least one and must be limited by the caller so scanning | 
 |  * cannot exceed a single page table. | 
 |  * | 
 |  * Return: the number of table entries in the batch. | 
 |  */ | 
 | static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte) | 
 | { | 
 | 	pte_t expected_pte = pte_next_swp_offset(pte); | 
 | 	const pte_t *end_ptep = start_ptep + max_nr; | 
 | 	pte_t *ptep = start_ptep + 1; | 
 |  | 
 | 	VM_WARN_ON(max_nr < 1); | 
 | 	VM_WARN_ON(!is_swap_pte(pte)); | 
 | 	VM_WARN_ON(non_swap_entry(pte_to_swp_entry(pte))); | 
 |  | 
 | 	while (ptep < end_ptep) { | 
 | 		pte = ptep_get(ptep); | 
 |  | 
 | 		if (!pte_same(pte, expected_pte)) | 
 | 			break; | 
 |  | 
 | 		expected_pte = pte_next_swp_offset(expected_pte); | 
 | 		ptep++; | 
 | 	} | 
 |  | 
 | 	return ptep - start_ptep; | 
 | } | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, | 
 | 						int nr_throttled); | 
 | static inline void acct_reclaim_writeback(struct folio *folio) | 
 | { | 
 | 	pg_data_t *pgdat = folio_pgdat(folio); | 
 | 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); | 
 |  | 
 | 	if (nr_throttled) | 
 | 		__acct_reclaim_writeback(pgdat, folio, nr_throttled); | 
 | } | 
 |  | 
 | static inline void wake_throttle_isolated(pg_data_t *pgdat) | 
 | { | 
 | 	wait_queue_head_t *wqh; | 
 |  | 
 | 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; | 
 | 	if (waitqueue_active(wqh)) | 
 | 		wake_up(wqh); | 
 | } | 
 |  | 
 | vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf); | 
 | static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) | 
 | { | 
 | 	vm_fault_t ret = __vmf_anon_prepare(vmf); | 
 |  | 
 | 	if (unlikely(ret & VM_FAULT_RETRY)) | 
 | 		vma_end_read(vmf->vma); | 
 | 	return ret; | 
 | } | 
 |  | 
 | vm_fault_t do_swap_page(struct vm_fault *vmf); | 
 | void folio_rotate_reclaimable(struct folio *folio); | 
 | bool __folio_end_writeback(struct folio *folio); | 
 | void deactivate_file_folio(struct folio *folio); | 
 | void folio_activate(struct folio *folio); | 
 |  | 
 | void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, | 
 | 		   struct vm_area_struct *start_vma, unsigned long floor, | 
 | 		   unsigned long ceiling, bool mm_wr_locked); | 
 | void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); | 
 |  | 
 | struct zap_details; | 
 | void unmap_page_range(struct mmu_gather *tlb, | 
 | 			     struct vm_area_struct *vma, | 
 | 			     unsigned long addr, unsigned long end, | 
 | 			     struct zap_details *details); | 
 |  | 
 | void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, | 
 | 		unsigned int order); | 
 | void force_page_cache_ra(struct readahead_control *, unsigned long nr); | 
 | static inline void force_page_cache_readahead(struct address_space *mapping, | 
 | 		struct file *file, pgoff_t index, unsigned long nr_to_read) | 
 | { | 
 | 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); | 
 | 	force_page_cache_ra(&ractl, nr_to_read); | 
 | } | 
 |  | 
 | unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, | 
 | 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); | 
 | unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, | 
 | 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); | 
 | void filemap_free_folio(struct address_space *mapping, struct folio *folio); | 
 | int truncate_inode_folio(struct address_space *mapping, struct folio *folio); | 
 | bool truncate_inode_partial_folio(struct folio *folio, loff_t start, | 
 | 		loff_t end); | 
 | long mapping_evict_folio(struct address_space *mapping, struct folio *folio); | 
 | unsigned long mapping_try_invalidate(struct address_space *mapping, | 
 | 		pgoff_t start, pgoff_t end, unsigned long *nr_failed); | 
 |  | 
 | /** | 
 |  * folio_evictable - Test whether a folio is evictable. | 
 |  * @folio: The folio to test. | 
 |  * | 
 |  * Test whether @folio is evictable -- i.e., should be placed on | 
 |  * active/inactive lists vs unevictable list. | 
 |  * | 
 |  * Reasons folio might not be evictable: | 
 |  * 1. folio's mapping marked unevictable | 
 |  * 2. One of the pages in the folio is part of an mlocked VMA | 
 |  */ | 
 | static inline bool folio_evictable(struct folio *folio) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	/* Prevent address_space of inode and swap cache from being freed */ | 
 | 	rcu_read_lock(); | 
 | 	ret = !mapping_unevictable(folio_mapping(folio)) && | 
 | 			!folio_test_mlocked(folio); | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Turn a non-refcounted page (->_refcount == 0) into refcounted with | 
 |  * a count of one. | 
 |  */ | 
 | static inline void set_page_refcounted(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 	VM_BUG_ON_PAGE(page_ref_count(page), page); | 
 | 	set_page_count(page, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Return true if a folio needs ->release_folio() calling upon it. | 
 |  */ | 
 | static inline bool folio_needs_release(struct folio *folio) | 
 | { | 
 | 	struct address_space *mapping = folio_mapping(folio); | 
 |  | 
 | 	return folio_has_private(folio) || | 
 | 		(mapping && mapping_release_always(mapping)); | 
 | } | 
 |  | 
 | extern unsigned long highest_memmap_pfn; | 
 |  | 
 | /* | 
 |  * Maximum number of reclaim retries without progress before the OOM | 
 |  * killer is consider the only way forward. | 
 |  */ | 
 | #define MAX_RECLAIM_RETRIES 16 | 
 |  | 
 | /* | 
 |  * in mm/vmscan.c: | 
 |  */ | 
 | bool isolate_lru_page(struct page *page); | 
 | bool folio_isolate_lru(struct folio *folio); | 
 | void putback_lru_page(struct page *page); | 
 | void folio_putback_lru(struct folio *folio); | 
 | extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); | 
 |  | 
 | /* | 
 |  * in mm/rmap.c: | 
 |  */ | 
 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); | 
 |  | 
 | /* | 
 |  * in mm/page_alloc.c | 
 |  */ | 
 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 |  | 
 | extern char * const zone_names[MAX_NR_ZONES]; | 
 |  | 
 | /* perform sanity checks on struct pages being allocated or freed */ | 
 | DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); | 
 |  | 
 | extern int min_free_kbytes; | 
 |  | 
 | void setup_per_zone_wmarks(void); | 
 | void calculate_min_free_kbytes(void); | 
 | int __meminit init_per_zone_wmark_min(void); | 
 | void page_alloc_sysctl_init(void); | 
 |  | 
 | /* | 
 |  * Structure for holding the mostly immutable allocation parameters passed | 
 |  * between functions involved in allocations, including the alloc_pages* | 
 |  * family of functions. | 
 |  * | 
 |  * nodemask, migratetype and highest_zoneidx are initialized only once in | 
 |  * __alloc_pages() and then never change. | 
 |  * | 
 |  * zonelist, preferred_zone and highest_zoneidx are set first in | 
 |  * __alloc_pages() for the fast path, and might be later changed | 
 |  * in __alloc_pages_slowpath(). All other functions pass the whole structure | 
 |  * by a const pointer. | 
 |  */ | 
 | struct alloc_context { | 
 | 	struct zonelist *zonelist; | 
 | 	nodemask_t *nodemask; | 
 | 	struct zoneref *preferred_zoneref; | 
 | 	int migratetype; | 
 |  | 
 | 	/* | 
 | 	 * highest_zoneidx represents highest usable zone index of | 
 | 	 * the allocation request. Due to the nature of the zone, | 
 | 	 * memory on lower zone than the highest_zoneidx will be | 
 | 	 * protected by lowmem_reserve[highest_zoneidx]. | 
 | 	 * | 
 | 	 * highest_zoneidx is also used by reclaim/compaction to limit | 
 | 	 * the target zone since higher zone than this index cannot be | 
 | 	 * usable for this allocation request. | 
 | 	 */ | 
 | 	enum zone_type highest_zoneidx; | 
 | 	bool spread_dirty_pages; | 
 | }; | 
 |  | 
 | /* | 
 |  * This function returns the order of a free page in the buddy system. In | 
 |  * general, page_zone(page)->lock must be held by the caller to prevent the | 
 |  * page from being allocated in parallel and returning garbage as the order. | 
 |  * If a caller does not hold page_zone(page)->lock, it must guarantee that the | 
 |  * page cannot be allocated or merged in parallel. Alternatively, it must | 
 |  * handle invalid values gracefully, and use buddy_order_unsafe() below. | 
 |  */ | 
 | static inline unsigned int buddy_order(struct page *page) | 
 | { | 
 | 	/* PageBuddy() must be checked by the caller */ | 
 | 	return page_private(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Like buddy_order(), but for callers who cannot afford to hold the zone lock. | 
 |  * PageBuddy() should be checked first by the caller to minimize race window, | 
 |  * and invalid values must be handled gracefully. | 
 |  * | 
 |  * READ_ONCE is used so that if the caller assigns the result into a local | 
 |  * variable and e.g. tests it for valid range before using, the compiler cannot | 
 |  * decide to remove the variable and inline the page_private(page) multiple | 
 |  * times, potentially observing different values in the tests and the actual | 
 |  * use of the result. | 
 |  */ | 
 | #define buddy_order_unsafe(page)	READ_ONCE(page_private(page)) | 
 |  | 
 | /* | 
 |  * This function checks whether a page is free && is the buddy | 
 |  * we can coalesce a page and its buddy if | 
 |  * (a) the buddy is not in a hole (check before calling!) && | 
 |  * (b) the buddy is in the buddy system && | 
 |  * (c) a page and its buddy have the same order && | 
 |  * (d) a page and its buddy are in the same zone. | 
 |  * | 
 |  * For recording whether a page is in the buddy system, we set PageBuddy. | 
 |  * Setting, clearing, and testing PageBuddy is serialized by zone->lock. | 
 |  * | 
 |  * For recording page's order, we use page_private(page). | 
 |  */ | 
 | static inline bool page_is_buddy(struct page *page, struct page *buddy, | 
 | 				 unsigned int order) | 
 | { | 
 | 	if (!page_is_guard(buddy) && !PageBuddy(buddy)) | 
 | 		return false; | 
 |  | 
 | 	if (buddy_order(buddy) != order) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * zone check is done late to avoid uselessly calculating | 
 | 	 * zone/node ids for pages that could never merge. | 
 | 	 */ | 
 | 	if (page_zone_id(page) != page_zone_id(buddy)) | 
 | 		return false; | 
 |  | 
 | 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Locate the struct page for both the matching buddy in our | 
 |  * pair (buddy1) and the combined O(n+1) page they form (page). | 
 |  * | 
 |  * 1) Any buddy B1 will have an order O twin B2 which satisfies | 
 |  * the following equation: | 
 |  *     B2 = B1 ^ (1 << O) | 
 |  * For example, if the starting buddy (buddy2) is #8 its order | 
 |  * 1 buddy is #10: | 
 |  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | 
 |  * | 
 |  * 2) Any buddy B will have an order O+1 parent P which | 
 |  * satisfies the following equation: | 
 |  *     P = B & ~(1 << O) | 
 |  * | 
 |  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER | 
 |  */ | 
 | static inline unsigned long | 
 | __find_buddy_pfn(unsigned long page_pfn, unsigned int order) | 
 | { | 
 | 	return page_pfn ^ (1 << order); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the buddy of @page and validate it. | 
 |  * @page: The input page | 
 |  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the | 
 |  *       function is used in the performance-critical __free_one_page(). | 
 |  * @order: The order of the page | 
 |  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to | 
 |  *             page_to_pfn(). | 
 |  * | 
 |  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is | 
 |  * not the same as @page. The validation is necessary before use it. | 
 |  * | 
 |  * Return: the found buddy page or NULL if not found. | 
 |  */ | 
 | static inline struct page *find_buddy_page_pfn(struct page *page, | 
 | 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) | 
 | { | 
 | 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); | 
 | 	struct page *buddy; | 
 |  | 
 | 	buddy = page + (__buddy_pfn - pfn); | 
 | 	if (buddy_pfn) | 
 | 		*buddy_pfn = __buddy_pfn; | 
 |  | 
 | 	if (page_is_buddy(page, buddy, order)) | 
 | 		return buddy; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | 
 | 				unsigned long end_pfn, struct zone *zone); | 
 |  | 
 | static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, | 
 | 				unsigned long end_pfn, struct zone *zone) | 
 | { | 
 | 	if (zone->contiguous) | 
 | 		return pfn_to_page(start_pfn); | 
 |  | 
 | 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); | 
 | } | 
 |  | 
 | void set_zone_contiguous(struct zone *zone); | 
 |  | 
 | static inline void clear_zone_contiguous(struct zone *zone) | 
 | { | 
 | 	zone->contiguous = false; | 
 | } | 
 |  | 
 | extern int __isolate_free_page(struct page *page, unsigned int order); | 
 | extern void __putback_isolated_page(struct page *page, unsigned int order, | 
 | 				    int mt); | 
 | extern void memblock_free_pages(struct page *page, unsigned long pfn, | 
 | 					unsigned int order); | 
 | extern void __free_pages_core(struct page *page, unsigned int order, | 
 | 		enum meminit_context context); | 
 |  | 
 | /* | 
 |  * This will have no effect, other than possibly generating a warning, if the | 
 |  * caller passes in a non-large folio. | 
 |  */ | 
 | static inline void folio_set_order(struct folio *folio, unsigned int order) | 
 | { | 
 | 	if (WARN_ON_ONCE(!order || !folio_test_large(folio))) | 
 | 		return; | 
 |  | 
 | 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; | 
 | #ifdef CONFIG_64BIT | 
 | 	folio->_folio_nr_pages = 1U << order; | 
 | #endif | 
 | } | 
 |  | 
 | bool __folio_unqueue_deferred_split(struct folio *folio); | 
 | static inline bool folio_unqueue_deferred_split(struct folio *folio) | 
 | { | 
 | 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * At this point, there is no one trying to add the folio to | 
 | 	 * deferred_list. If folio is not in deferred_list, it's safe | 
 | 	 * to check without acquiring the split_queue_lock. | 
 | 	 */ | 
 | 	if (data_race(list_empty(&folio->_deferred_list))) | 
 | 		return false; | 
 |  | 
 | 	return __folio_unqueue_deferred_split(folio); | 
 | } | 
 |  | 
 | static inline struct folio *page_rmappable_folio(struct page *page) | 
 | { | 
 | 	struct folio *folio = (struct folio *)page; | 
 |  | 
 | 	if (folio && folio_test_large(folio)) | 
 | 		folio_set_large_rmappable(folio); | 
 | 	return folio; | 
 | } | 
 |  | 
 | static inline void prep_compound_head(struct page *page, unsigned int order) | 
 | { | 
 | 	struct folio *folio = (struct folio *)page; | 
 |  | 
 | 	folio_set_order(folio, order); | 
 | 	atomic_set(&folio->_large_mapcount, -1); | 
 | 	atomic_set(&folio->_entire_mapcount, -1); | 
 | 	atomic_set(&folio->_nr_pages_mapped, 0); | 
 | 	atomic_set(&folio->_pincount, 0); | 
 | 	if (order > 1) | 
 | 		INIT_LIST_HEAD(&folio->_deferred_list); | 
 | } | 
 |  | 
 | static inline void prep_compound_tail(struct page *head, int tail_idx) | 
 | { | 
 | 	struct page *p = head + tail_idx; | 
 |  | 
 | 	p->mapping = TAIL_MAPPING; | 
 | 	set_compound_head(p, head); | 
 | 	set_page_private(p, 0); | 
 | } | 
 |  | 
 | extern void prep_compound_page(struct page *page, unsigned int order); | 
 |  | 
 | extern void post_alloc_hook(struct page *page, unsigned int order, | 
 | 					gfp_t gfp_flags); | 
 | extern bool free_pages_prepare(struct page *page, unsigned int order); | 
 |  | 
 | extern int user_min_free_kbytes; | 
 |  | 
 | void free_unref_page(struct page *page, unsigned int order); | 
 | void free_unref_folios(struct folio_batch *fbatch); | 
 |  | 
 | extern void zone_pcp_reset(struct zone *zone); | 
 | extern void zone_pcp_disable(struct zone *zone); | 
 | extern void zone_pcp_enable(struct zone *zone); | 
 | extern void zone_pcp_init(struct zone *zone); | 
 |  | 
 | extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, | 
 | 			  phys_addr_t min_addr, | 
 | 			  int nid, bool exact_nid); | 
 |  | 
 | void memmap_init_range(unsigned long, int, unsigned long, unsigned long, | 
 | 		unsigned long, enum meminit_context, struct vmem_altmap *, int); | 
 |  | 
 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA | 
 |  | 
 | /* | 
 |  * in mm/compaction.c | 
 |  */ | 
 | /* | 
 |  * compact_control is used to track pages being migrated and the free pages | 
 |  * they are being migrated to during memory compaction. The free_pfn starts | 
 |  * at the end of a zone and migrate_pfn begins at the start. Movable pages | 
 |  * are moved to the end of a zone during a compaction run and the run | 
 |  * completes when free_pfn <= migrate_pfn | 
 |  */ | 
 | struct compact_control { | 
 | 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */ | 
 | 	struct list_head migratepages;	/* List of pages being migrated */ | 
 | 	unsigned int nr_freepages;	/* Number of isolated free pages */ | 
 | 	unsigned int nr_migratepages;	/* Number of pages to migrate */ | 
 | 	unsigned long free_pfn;		/* isolate_freepages search base */ | 
 | 	/* | 
 | 	 * Acts as an in/out parameter to page isolation for migration. | 
 | 	 * isolate_migratepages uses it as a search base. | 
 | 	 * isolate_migratepages_block will update the value to the next pfn | 
 | 	 * after the last isolated one. | 
 | 	 */ | 
 | 	unsigned long migrate_pfn; | 
 | 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */ | 
 | 	struct zone *zone; | 
 | 	unsigned long total_migrate_scanned; | 
 | 	unsigned long total_free_scanned; | 
 | 	unsigned short fast_search_fail;/* failures to use free list searches */ | 
 | 	short search_order;		/* order to start a fast search at */ | 
 | 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */ | 
 | 	int order;			/* order a direct compactor needs */ | 
 | 	int migratetype;		/* migratetype of direct compactor */ | 
 | 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */ | 
 | 	const int highest_zoneidx;	/* zone index of a direct compactor */ | 
 | 	enum migrate_mode mode;		/* Async or sync migration mode */ | 
 | 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */ | 
 | 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */ | 
 | 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */ | 
 | 	bool direct_compaction;		/* False from kcompactd or /proc/... */ | 
 | 	bool proactive_compaction;	/* kcompactd proactive compaction */ | 
 | 	bool whole_zone;		/* Whole zone should/has been scanned */ | 
 | 	bool contended;			/* Signal lock contention */ | 
 | 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used | 
 | 					 * when there are potentially transient | 
 | 					 * isolation or migration failures to | 
 | 					 * ensure forward progress. | 
 | 					 */ | 
 | 	bool alloc_contig;		/* alloc_contig_range allocation */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Used in direct compaction when a page should be taken from the freelists | 
 |  * immediately when one is created during the free path. | 
 |  */ | 
 | struct capture_control { | 
 | 	struct compact_control *cc; | 
 | 	struct page *page; | 
 | }; | 
 |  | 
 | unsigned long | 
 | isolate_freepages_range(struct compact_control *cc, | 
 | 			unsigned long start_pfn, unsigned long end_pfn); | 
 | int | 
 | isolate_migratepages_range(struct compact_control *cc, | 
 | 			   unsigned long low_pfn, unsigned long end_pfn); | 
 |  | 
 | int __alloc_contig_migrate_range(struct compact_control *cc, | 
 | 					unsigned long start, unsigned long end, | 
 | 					int migratetype); | 
 |  | 
 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ | 
 | void init_cma_reserved_pageblock(struct page *page); | 
 |  | 
 | #endif /* CONFIG_COMPACTION || CONFIG_CMA */ | 
 |  | 
 | int find_suitable_fallback(struct free_area *area, unsigned int order, | 
 | 			int migratetype, bool only_stealable, bool *can_steal); | 
 |  | 
 | static inline bool free_area_empty(struct free_area *area, int migratetype) | 
 | { | 
 | 	return list_empty(&area->free_list[migratetype]); | 
 | } | 
 |  | 
 | /* | 
 |  * These three helpers classifies VMAs for virtual memory accounting. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Executable code area - executable, not writable, not stack | 
 |  */ | 
 | static inline bool is_exec_mapping(vm_flags_t flags) | 
 | { | 
 | 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; | 
 | } | 
 |  | 
 | /* | 
 |  * Stack area (including shadow stacks) | 
 |  * | 
 |  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: | 
 |  * do_mmap() forbids all other combinations. | 
 |  */ | 
 | static inline bool is_stack_mapping(vm_flags_t flags) | 
 | { | 
 | 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); | 
 | } | 
 |  | 
 | /* | 
 |  * Data area - private, writable, not stack | 
 |  */ | 
 | static inline bool is_data_mapping(vm_flags_t flags) | 
 | { | 
 | 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; | 
 | } | 
 |  | 
 | /* mm/util.c */ | 
 | struct anon_vma *folio_anon_vma(struct folio *folio); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | void unmap_mapping_folio(struct folio *folio); | 
 | extern long populate_vma_page_range(struct vm_area_struct *vma, | 
 | 		unsigned long start, unsigned long end, int *locked); | 
 | extern long faultin_page_range(struct mm_struct *mm, unsigned long start, | 
 | 		unsigned long end, bool write, int *locked); | 
 | extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, | 
 | 			       unsigned long bytes); | 
 |  | 
 | /* | 
 |  * NOTE: This function can't tell whether the folio is "fully mapped" in the | 
 |  * range. | 
 |  * "fully mapped" means all the pages of folio is associated with the page | 
 |  * table of range while this function just check whether the folio range is | 
 |  * within the range [start, end). Function caller needs to do page table | 
 |  * check if it cares about the page table association. | 
 |  * | 
 |  * Typical usage (like mlock or madvise) is: | 
 |  * Caller knows at least 1 page of folio is associated with page table of VMA | 
 |  * and the range [start, end) is intersect with the VMA range. Caller wants | 
 |  * to know whether the folio is fully associated with the range. It calls | 
 |  * this function to check whether the folio is in the range first. Then checks | 
 |  * the page table to know whether the folio is fully mapped to the range. | 
 |  */ | 
 | static inline bool | 
 | folio_within_range(struct folio *folio, struct vm_area_struct *vma, | 
 | 		unsigned long start, unsigned long end) | 
 | { | 
 | 	pgoff_t pgoff, addr; | 
 | 	unsigned long vma_pglen = vma_pages(vma); | 
 |  | 
 | 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio); | 
 | 	if (start > end) | 
 | 		return false; | 
 |  | 
 | 	if (start < vma->vm_start) | 
 | 		start = vma->vm_start; | 
 |  | 
 | 	if (end > vma->vm_end) | 
 | 		end = vma->vm_end; | 
 |  | 
 | 	pgoff = folio_pgoff(folio); | 
 |  | 
 | 	/* if folio start address is not in vma range */ | 
 | 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen)) | 
 | 		return false; | 
 |  | 
 | 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
 |  | 
 | 	return !(addr < start || end - addr < folio_size(folio)); | 
 | } | 
 |  | 
 | static inline bool | 
 | folio_within_vma(struct folio *folio, struct vm_area_struct *vma) | 
 | { | 
 | 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end); | 
 | } | 
 |  | 
 | /* | 
 |  * mlock_vma_folio() and munlock_vma_folio(): | 
 |  * should be called with vma's mmap_lock held for read or write, | 
 |  * under page table lock for the pte/pmd being added or removed. | 
 |  * | 
 |  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at | 
 |  * the end of folio_remove_rmap_*(); but new anon folios are managed by | 
 |  * folio_add_lru_vma() calling mlock_new_folio(). | 
 |  */ | 
 | void mlock_folio(struct folio *folio); | 
 | static inline void mlock_vma_folio(struct folio *folio, | 
 | 				struct vm_area_struct *vma) | 
 | { | 
 | 	/* | 
 | 	 * The VM_SPECIAL check here serves two purposes. | 
 | 	 * 1) VM_IO check prevents migration from double-counting during mlock. | 
 | 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED | 
 | 	 *    is never left set on a VM_SPECIAL vma, there is an interval while | 
 | 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may | 
 | 	 *    still be set while VM_SPECIAL bits are added: so ignore it then. | 
 | 	 */ | 
 | 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED)) | 
 | 		mlock_folio(folio); | 
 | } | 
 |  | 
 | void munlock_folio(struct folio *folio); | 
 | static inline void munlock_vma_folio(struct folio *folio, | 
 | 					struct vm_area_struct *vma) | 
 | { | 
 | 	/* | 
 | 	 * munlock if the function is called. Ideally, we should only | 
 | 	 * do munlock if any page of folio is unmapped from VMA and | 
 | 	 * cause folio not fully mapped to VMA. | 
 | 	 * | 
 | 	 * But it's not easy to confirm that's the situation. So we | 
 | 	 * always munlock the folio and page reclaim will correct it | 
 | 	 * if it's wrong. | 
 | 	 */ | 
 | 	if (unlikely(vma->vm_flags & VM_LOCKED)) | 
 | 		munlock_folio(folio); | 
 | } | 
 |  | 
 | void mlock_new_folio(struct folio *folio); | 
 | bool need_mlock_drain(int cpu); | 
 | void mlock_drain_local(void); | 
 | void mlock_drain_remote(int cpu); | 
 |  | 
 | extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); | 
 |  | 
 | /** | 
 |  * vma_address - Find the virtual address a page range is mapped at | 
 |  * @vma: The vma which maps this object. | 
 |  * @pgoff: The page offset within its object. | 
 |  * @nr_pages: The number of pages to consider. | 
 |  * | 
 |  * If any page in this range is mapped by this VMA, return the first address | 
 |  * where any of these pages appear.  Otherwise, return -EFAULT. | 
 |  */ | 
 | static inline unsigned long vma_address(struct vm_area_struct *vma, | 
 | 		pgoff_t pgoff, unsigned long nr_pages) | 
 | { | 
 | 	unsigned long address; | 
 |  | 
 | 	if (pgoff >= vma->vm_pgoff) { | 
 | 		address = vma->vm_start + | 
 | 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
 | 		/* Check for address beyond vma (or wrapped through 0?) */ | 
 | 		if (address < vma->vm_start || address >= vma->vm_end) | 
 | 			address = -EFAULT; | 
 | 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { | 
 | 		/* Test above avoids possibility of wrap to 0 on 32-bit */ | 
 | 		address = vma->vm_start; | 
 | 	} else { | 
 | 		address = -EFAULT; | 
 | 	} | 
 | 	return address; | 
 | } | 
 |  | 
 | /* | 
 |  * Then at what user virtual address will none of the range be found in vma? | 
 |  * Assumes that vma_address() already returned a good starting address. | 
 |  */ | 
 | static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) | 
 | { | 
 | 	struct vm_area_struct *vma = pvmw->vma; | 
 | 	pgoff_t pgoff; | 
 | 	unsigned long address; | 
 |  | 
 | 	/* Common case, plus ->pgoff is invalid for KSM */ | 
 | 	if (pvmw->nr_pages == 1) | 
 | 		return pvmw->address + PAGE_SIZE; | 
 |  | 
 | 	pgoff = pvmw->pgoff + pvmw->nr_pages; | 
 | 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
 | 	/* Check for address beyond vma (or wrapped through 0?) */ | 
 | 	if (address < vma->vm_start || address > vma->vm_end) | 
 | 		address = vma->vm_end; | 
 | 	return address; | 
 | } | 
 |  | 
 | static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, | 
 | 						    struct file *fpin) | 
 | { | 
 | 	int flags = vmf->flags; | 
 |  | 
 | 	if (fpin) | 
 | 		return fpin; | 
 |  | 
 | 	/* | 
 | 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or | 
 | 	 * anything, so we only pin the file and drop the mmap_lock if only | 
 | 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. | 
 | 	 */ | 
 | 	if (fault_flag_allow_retry_first(flags) && | 
 | 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) { | 
 | 		fpin = get_file(vmf->vma->vm_file); | 
 | 		release_fault_lock(vmf); | 
 | 	} | 
 | 	return fpin; | 
 | } | 
 | #else /* !CONFIG_MMU */ | 
 | static inline void unmap_mapping_folio(struct folio *folio) { } | 
 | static inline void mlock_new_folio(struct folio *folio) { } | 
 | static inline bool need_mlock_drain(int cpu) { return false; } | 
 | static inline void mlock_drain_local(void) { } | 
 | static inline void mlock_drain_remote(int cpu) { } | 
 | static inline void vunmap_range_noflush(unsigned long start, unsigned long end) | 
 | { | 
 | } | 
 | #endif /* !CONFIG_MMU */ | 
 |  | 
 | /* Memory initialisation debug and verification */ | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | DECLARE_STATIC_KEY_TRUE(deferred_pages); | 
 |  | 
 | bool __init deferred_grow_zone(struct zone *zone, unsigned int order); | 
 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
 |  | 
 | enum mminit_level { | 
 | 	MMINIT_WARNING, | 
 | 	MMINIT_VERIFY, | 
 | 	MMINIT_TRACE | 
 | }; | 
 |  | 
 | #ifdef CONFIG_DEBUG_MEMORY_INIT | 
 |  | 
 | extern int mminit_loglevel; | 
 |  | 
 | #define mminit_dprintk(level, prefix, fmt, arg...) \ | 
 | do { \ | 
 | 	if (level < mminit_loglevel) { \ | 
 | 		if (level <= MMINIT_WARNING) \ | 
 | 			pr_warn("mminit::" prefix " " fmt, ##arg);	\ | 
 | 		else \ | 
 | 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ | 
 | 	} \ | 
 | } while (0) | 
 |  | 
 | extern void mminit_verify_pageflags_layout(void); | 
 | extern void mminit_verify_zonelist(void); | 
 | #else | 
 |  | 
 | static inline void mminit_dprintk(enum mminit_level level, | 
 | 				const char *prefix, const char *fmt, ...) | 
 | { | 
 | } | 
 |  | 
 | static inline void mminit_verify_pageflags_layout(void) | 
 | { | 
 | } | 
 |  | 
 | static inline void mminit_verify_zonelist(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ | 
 |  | 
 | #define NODE_RECLAIM_NOSCAN	-2 | 
 | #define NODE_RECLAIM_FULL	-1 | 
 | #define NODE_RECLAIM_SOME	0 | 
 | #define NODE_RECLAIM_SUCCESS	1 | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); | 
 | extern int find_next_best_node(int node, nodemask_t *used_node_mask); | 
 | #else | 
 | static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, | 
 | 				unsigned int order) | 
 | { | 
 | 	return NODE_RECLAIM_NOSCAN; | 
 | } | 
 | static inline int find_next_best_node(int node, nodemask_t *used_node_mask) | 
 | { | 
 | 	return NUMA_NO_NODE; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * mm/memory-failure.c | 
 |  */ | 
 | void shake_folio(struct folio *folio); | 
 | extern int hwpoison_filter(struct page *p); | 
 |  | 
 | extern u32 hwpoison_filter_dev_major; | 
 | extern u32 hwpoison_filter_dev_minor; | 
 | extern u64 hwpoison_filter_flags_mask; | 
 | extern u64 hwpoison_filter_flags_value; | 
 | extern u64 hwpoison_filter_memcg; | 
 | extern u32 hwpoison_filter_enable; | 
 | #define MAGIC_HWPOISON	0x48575053U	/* HWPS */ | 
 | void SetPageHWPoisonTakenOff(struct page *page); | 
 | void ClearPageHWPoisonTakenOff(struct page *page); | 
 | bool take_page_off_buddy(struct page *page); | 
 | bool put_page_back_buddy(struct page *page); | 
 | struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); | 
 | void add_to_kill_ksm(struct task_struct *tsk, struct page *p, | 
 | 		     struct vm_area_struct *vma, struct list_head *to_kill, | 
 | 		     unsigned long ksm_addr); | 
 | unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); | 
 |  | 
 | extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long, | 
 |         unsigned long, unsigned long, | 
 |         unsigned long, unsigned long); | 
 |  | 
 | extern void set_pageblock_order(void); | 
 | struct folio *alloc_migrate_folio(struct folio *src, unsigned long private); | 
 | unsigned long reclaim_pages(struct list_head *folio_list); | 
 | unsigned int reclaim_clean_pages_from_list(struct zone *zone, | 
 | 					    struct list_head *folio_list); | 
 | /* The ALLOC_WMARK bits are used as an index to zone->watermark */ | 
 | #define ALLOC_WMARK_MIN		WMARK_MIN | 
 | #define ALLOC_WMARK_LOW		WMARK_LOW | 
 | #define ALLOC_WMARK_HIGH	WMARK_HIGH | 
 | #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */ | 
 |  | 
 | /* Mask to get the watermark bits */ | 
 | #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1) | 
 |  | 
 | /* | 
 |  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we | 
 |  * cannot assume a reduced access to memory reserves is sufficient for | 
 |  * !MMU | 
 |  */ | 
 | #ifdef CONFIG_MMU | 
 | #define ALLOC_OOM		0x08 | 
 | #else | 
 | #define ALLOC_OOM		ALLOC_NO_WATERMARKS | 
 | #endif | 
 |  | 
 | #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access | 
 | 				       * to 25% of the min watermark or | 
 | 				       * 62.5% if __GFP_HIGH is set. | 
 | 				       */ | 
 | #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50% | 
 | 				       * of the min watermark. | 
 | 				       */ | 
 | #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */ | 
 | #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */ | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */ | 
 | #else | 
 | #define ALLOC_NOFRAGMENT	  0x0 | 
 | #endif | 
 | #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */ | 
 | #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ | 
 |  | 
 | /* Flags that allow allocations below the min watermark. */ | 
 | #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) | 
 |  | 
 | enum ttu_flags; | 
 | struct tlbflush_unmap_batch; | 
 |  | 
 |  | 
 | /* | 
 |  * only for MM internal work items which do not depend on | 
 |  * any allocations or locks which might depend on allocations | 
 |  */ | 
 | extern struct workqueue_struct *mm_percpu_wq; | 
 |  | 
 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH | 
 | void try_to_unmap_flush(void); | 
 | void try_to_unmap_flush_dirty(void); | 
 | void flush_tlb_batched_pending(struct mm_struct *mm); | 
 | #else | 
 | static inline void try_to_unmap_flush(void) | 
 | { | 
 | } | 
 | static inline void try_to_unmap_flush_dirty(void) | 
 | { | 
 | } | 
 | static inline void flush_tlb_batched_pending(struct mm_struct *mm) | 
 | { | 
 | } | 
 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | 
 |  | 
 | extern const struct trace_print_flags pageflag_names[]; | 
 | extern const struct trace_print_flags pagetype_names[]; | 
 | extern const struct trace_print_flags vmaflag_names[]; | 
 | extern const struct trace_print_flags gfpflag_names[]; | 
 |  | 
 | static inline bool is_migrate_highatomic(enum migratetype migratetype) | 
 | { | 
 | 	return migratetype == MIGRATE_HIGHATOMIC; | 
 | } | 
 |  | 
 | void setup_zone_pageset(struct zone *zone); | 
 |  | 
 | struct migration_target_control { | 
 | 	int nid;		/* preferred node id */ | 
 | 	nodemask_t *nmask; | 
 | 	gfp_t gfp_mask; | 
 | 	enum migrate_reason reason; | 
 | }; | 
 |  | 
 | /* | 
 |  * mm/filemap.c | 
 |  */ | 
 | size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, | 
 | 			      struct folio *folio, loff_t fpos, size_t size); | 
 |  | 
 | /* | 
 |  * mm/vmalloc.c | 
 |  */ | 
 | #ifdef CONFIG_MMU | 
 | void __init vmalloc_init(void); | 
 | int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, | 
 |                 pgprot_t prot, struct page **pages, unsigned int page_shift); | 
 | #else | 
 | static inline void vmalloc_init(void) | 
 | { | 
 | } | 
 |  | 
 | static inline | 
 | int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, | 
 |                 pgprot_t prot, struct page **pages, unsigned int page_shift) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 | #endif | 
 |  | 
 | int __must_check __vmap_pages_range_noflush(unsigned long addr, | 
 | 			       unsigned long end, pgprot_t prot, | 
 | 			       struct page **pages, unsigned int page_shift); | 
 |  | 
 | void vunmap_range_noflush(unsigned long start, unsigned long end); | 
 |  | 
 | void __vunmap_range_noflush(unsigned long start, unsigned long end); | 
 |  | 
 | int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf, | 
 | 		      unsigned long addr, int page_nid, int *flags); | 
 |  | 
 | void free_zone_device_folio(struct folio *folio); | 
 | int migrate_device_coherent_page(struct page *page); | 
 |  | 
 | /* | 
 |  * mm/gup.c | 
 |  */ | 
 | int __must_check try_grab_folio(struct folio *folio, int refs, | 
 | 				unsigned int flags); | 
 |  | 
 | /* | 
 |  * mm/huge_memory.c | 
 |  */ | 
 | void touch_pud(struct vm_area_struct *vma, unsigned long addr, | 
 | 	       pud_t *pud, bool write); | 
 | void touch_pmd(struct vm_area_struct *vma, unsigned long addr, | 
 | 	       pmd_t *pmd, bool write); | 
 |  | 
 | /* | 
 |  * mm/mmap.c | 
 |  */ | 
 | struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, | 
 | 					struct vm_area_struct *vma, | 
 | 					unsigned long delta); | 
 |  | 
 | enum { | 
 | 	/* mark page accessed */ | 
 | 	FOLL_TOUCH = 1 << 16, | 
 | 	/* a retry, previous pass started an IO */ | 
 | 	FOLL_TRIED = 1 << 17, | 
 | 	/* we are working on non-current tsk/mm */ | 
 | 	FOLL_REMOTE = 1 << 18, | 
 | 	/* pages must be released via unpin_user_page */ | 
 | 	FOLL_PIN = 1 << 19, | 
 | 	/* gup_fast: prevent fall-back to slow gup */ | 
 | 	FOLL_FAST_ONLY = 1 << 20, | 
 | 	/* allow unlocking the mmap lock */ | 
 | 	FOLL_UNLOCKABLE = 1 << 21, | 
 | 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */ | 
 | 	FOLL_MADV_POPULATE = 1 << 22, | 
 | }; | 
 |  | 
 | #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \ | 
 | 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \ | 
 | 			    FOLL_MADV_POPULATE) | 
 |  | 
 | /* | 
 |  * Indicates for which pages that are write-protected in the page table, | 
 |  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the | 
 |  * GUP pin will remain consistent with the pages mapped into the page tables | 
 |  * of the MM. | 
 |  * | 
 |  * Temporary unmapping of PageAnonExclusive() pages or clearing of | 
 |  * PageAnonExclusive() has to protect against concurrent GUP: | 
 |  * * Ordinary GUP: Using the PT lock | 
 |  * * GUP-fast and fork(): mm->write_protect_seq | 
 |  * * GUP-fast and KSM or temporary unmapping (swap, migration): see | 
 |  *    folio_try_share_anon_rmap_*() | 
 |  * | 
 |  * Must be called with the (sub)page that's actually referenced via the | 
 |  * page table entry, which might not necessarily be the head page for a | 
 |  * PTE-mapped THP. | 
 |  * | 
 |  * If the vma is NULL, we're coming from the GUP-fast path and might have | 
 |  * to fallback to the slow path just to lookup the vma. | 
 |  */ | 
 | static inline bool gup_must_unshare(struct vm_area_struct *vma, | 
 | 				    unsigned int flags, struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * FOLL_WRITE is implicitly handled correctly as the page table entry | 
 | 	 * has to be writable -- and if it references (part of) an anonymous | 
 | 	 * folio, that part is required to be marked exclusive. | 
 | 	 */ | 
 | 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) | 
 | 		return false; | 
 | 	/* | 
 | 	 * Note: PageAnon(page) is stable until the page is actually getting | 
 | 	 * freed. | 
 | 	 */ | 
 | 	if (!PageAnon(page)) { | 
 | 		/* | 
 | 		 * We only care about R/O long-term pining: R/O short-term | 
 | 		 * pinning does not have the semantics to observe successive | 
 | 		 * changes through the process page tables. | 
 | 		 */ | 
 | 		if (!(flags & FOLL_LONGTERM)) | 
 | 			return false; | 
 |  | 
 | 		/* We really need the vma ... */ | 
 | 		if (!vma) | 
 | 			return true; | 
 |  | 
 | 		/* | 
 | 		 * ... because we only care about writable private ("COW") | 
 | 		 * mappings where we have to break COW early. | 
 | 		 */ | 
 | 		return is_cow_mapping(vma->vm_flags); | 
 | 	} | 
 |  | 
 | 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */ | 
 | 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) | 
 | 		smp_rmb(); | 
 |  | 
 | 	/* | 
 | 	 * Note that PageKsm() pages cannot be exclusive, and consequently, | 
 | 	 * cannot get pinned. | 
 | 	 */ | 
 | 	return !PageAnonExclusive(page); | 
 | } | 
 |  | 
 | extern bool mirrored_kernelcore; | 
 | extern bool memblock_has_mirror(void); | 
 |  | 
 | static __always_inline void vma_set_range(struct vm_area_struct *vma, | 
 | 					  unsigned long start, unsigned long end, | 
 | 					  pgoff_t pgoff) | 
 | { | 
 | 	vma->vm_start = start; | 
 | 	vma->vm_end = end; | 
 | 	vma->vm_pgoff = pgoff; | 
 | } | 
 |  | 
 | static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) | 
 | { | 
 | 	/* | 
 | 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty | 
 | 	 * enablements, because when without soft-dirty being compiled in, | 
 | 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) | 
 | 	 * will be constantly true. | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Soft-dirty is kind of special: its tracking is enabled when the | 
 | 	 * vma flags not set. | 
 | 	 */ | 
 | 	return !(vma->vm_flags & VM_SOFTDIRTY); | 
 | } | 
 |  | 
 | static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd) | 
 | { | 
 | 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd); | 
 | } | 
 |  | 
 | static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte) | 
 | { | 
 | 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte); | 
 | } | 
 |  | 
 | static inline void vma_iter_config(struct vma_iterator *vmi, | 
 | 		unsigned long index, unsigned long last) | 
 | { | 
 | 	__mas_set_range(&vmi->mas, index, last - 1); | 
 | } | 
 |  | 
 | static inline void vma_iter_reset(struct vma_iterator *vmi) | 
 | { | 
 | 	mas_reset(&vmi->mas); | 
 | } | 
 |  | 
 | static inline | 
 | struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) | 
 | { | 
 | 	return mas_prev_range(&vmi->mas, min); | 
 | } | 
 |  | 
 | static inline | 
 | struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) | 
 | { | 
 | 	return mas_next_range(&vmi->mas, max); | 
 | } | 
 |  | 
 | static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, | 
 | 				       unsigned long max, unsigned long size) | 
 | { | 
 | 	return mas_empty_area(&vmi->mas, min, max - 1, size); | 
 | } | 
 |  | 
 | static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, | 
 | 					unsigned long max, unsigned long size) | 
 | { | 
 | 	return mas_empty_area_rev(&vmi->mas, min, max - 1, size); | 
 | } | 
 |  | 
 | /* | 
 |  * VMA Iterator functions shared between nommu and mmap | 
 |  */ | 
 | static inline int vma_iter_prealloc(struct vma_iterator *vmi, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); | 
 | } | 
 |  | 
 | static inline void vma_iter_clear(struct vma_iterator *vmi) | 
 | { | 
 | 	mas_store_prealloc(&vmi->mas, NULL); | 
 | } | 
 |  | 
 | static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) | 
 | { | 
 | 	return mas_walk(&vmi->mas); | 
 | } | 
 |  | 
 | /* Store a VMA with preallocated memory */ | 
 | static inline void vma_iter_store(struct vma_iterator *vmi, | 
 | 				  struct vm_area_struct *vma) | 
 | { | 
 |  | 
 | #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) | 
 | 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && | 
 | 			vmi->mas.index > vma->vm_start)) { | 
 | 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", | 
 | 			vmi->mas.index, vma->vm_start, vma->vm_start, | 
 | 			vma->vm_end, vmi->mas.index, vmi->mas.last); | 
 | 	} | 
 | 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && | 
 | 			vmi->mas.last <  vma->vm_start)) { | 
 | 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", | 
 | 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, | 
 | 		       vmi->mas.index, vmi->mas.last); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (vmi->mas.status != ma_start && | 
 | 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) | 
 | 		vma_iter_invalidate(vmi); | 
 |  | 
 | 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); | 
 | 	mas_store_prealloc(&vmi->mas, vma); | 
 | } | 
 |  | 
 | static inline int vma_iter_store_gfp(struct vma_iterator *vmi, | 
 | 			struct vm_area_struct *vma, gfp_t gfp) | 
 | { | 
 | 	if (vmi->mas.status != ma_start && | 
 | 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) | 
 | 		vma_iter_invalidate(vmi); | 
 |  | 
 | 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); | 
 | 	mas_store_gfp(&vmi->mas, vma, gfp); | 
 | 	if (unlikely(mas_is_err(&vmi->mas))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * VMA lock generalization | 
 |  */ | 
 | struct vma_prepare { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct vm_area_struct *adj_next; | 
 | 	struct file *file; | 
 | 	struct address_space *mapping; | 
 | 	struct anon_vma *anon_vma; | 
 | 	struct vm_area_struct *insert; | 
 | 	struct vm_area_struct *remove; | 
 | 	struct vm_area_struct *remove2; | 
 | }; | 
 |  | 
 | void __meminit __init_single_page(struct page *page, unsigned long pfn, | 
 | 				unsigned long zone, int nid); | 
 |  | 
 | /* shrinker related functions */ | 
 | unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, | 
 | 			  int priority); | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | static inline int can_do_mseal(unsigned long flags) | 
 | { | 
 | 	if (flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool can_modify_mm(struct mm_struct *mm, unsigned long start, | 
 | 		unsigned long end); | 
 | bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start, | 
 | 		unsigned long end, int behavior); | 
 | #else | 
 | static inline int can_do_mseal(unsigned long flags) | 
 | { | 
 | 	return -EPERM; | 
 | } | 
 |  | 
 | static inline bool can_modify_mm(struct mm_struct *mm, unsigned long start, | 
 | 		unsigned long end) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool can_modify_mm_madv(struct mm_struct *mm, unsigned long start, | 
 | 		unsigned long end, int behavior) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SHRINKER_DEBUG | 
 | static inline __printf(2, 0) int shrinker_debugfs_name_alloc( | 
 | 			struct shrinker *shrinker, const char *fmt, va_list ap) | 
 | { | 
 | 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); | 
 |  | 
 | 	return shrinker->name ? 0 : -ENOMEM; | 
 | } | 
 |  | 
 | static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) | 
 | { | 
 | 	kfree_const(shrinker->name); | 
 | 	shrinker->name = NULL; | 
 | } | 
 |  | 
 | extern int shrinker_debugfs_add(struct shrinker *shrinker); | 
 | extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, | 
 | 					      int *debugfs_id); | 
 | extern void shrinker_debugfs_remove(struct dentry *debugfs_entry, | 
 | 				    int debugfs_id); | 
 | #else /* CONFIG_SHRINKER_DEBUG */ | 
 | static inline int shrinker_debugfs_add(struct shrinker *shrinker) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker, | 
 | 					      const char *fmt, va_list ap) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) | 
 | { | 
 | } | 
 | static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, | 
 | 						     int *debugfs_id) | 
 | { | 
 | 	*debugfs_id = -1; | 
 | 	return NULL; | 
 | } | 
 | static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry, | 
 | 					   int debugfs_id) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SHRINKER_DEBUG */ | 
 |  | 
 | /* Only track the nodes of mappings with shadow entries */ | 
 | void workingset_update_node(struct xa_node *node); | 
 | extern struct list_lru shadow_nodes; | 
 |  | 
 | struct unlink_vma_file_batch { | 
 | 	int count; | 
 | 	struct vm_area_struct *vmas[8]; | 
 | }; | 
 |  | 
 | void unlink_file_vma_batch_init(struct unlink_vma_file_batch *); | 
 | void unlink_file_vma_batch_add(struct unlink_vma_file_batch *, struct vm_area_struct *); | 
 | void unlink_file_vma_batch_final(struct unlink_vma_file_batch *); | 
 |  | 
 | #endif	/* __MM_INTERNAL_H */ |