| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * mm_init.c - Memory initialisation verification and debugging | 
 |  * | 
 |  * Copyright 2008 IBM Corporation, 2008 | 
 |  * Author Mel Gorman <mel@csn.ul.ie> | 
 |  * | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kobject.h> | 
 | #include <linux/export.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/page-isolation.h> | 
 | #include <linux/padata.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/kfence.h> | 
 | #include <linux/page_ext.h> | 
 | #include <linux/pti.h> | 
 | #include <linux/pgtable.h> | 
 | #include <linux/stackdepot.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/cma.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/execmem.h> | 
 | #include <linux/vmstat.h> | 
 | #include "internal.h" | 
 | #include "slab.h" | 
 | #include "shuffle.h" | 
 |  | 
 | #include <asm/setup.h> | 
 |  | 
 | #ifdef CONFIG_DEBUG_MEMORY_INIT | 
 | int __meminitdata mminit_loglevel; | 
 |  | 
 | /* The zonelists are simply reported, validation is manual. */ | 
 | void __init mminit_verify_zonelist(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	if (mminit_loglevel < MMINIT_VERIFY) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		pg_data_t *pgdat = NODE_DATA(nid); | 
 | 		struct zone *zone; | 
 | 		struct zoneref *z; | 
 | 		struct zonelist *zonelist; | 
 | 		int i, listid, zoneid; | 
 |  | 
 | 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { | 
 |  | 
 | 			/* Identify the zone and nodelist */ | 
 | 			zoneid = i % MAX_NR_ZONES; | 
 | 			listid = i / MAX_NR_ZONES; | 
 | 			zonelist = &pgdat->node_zonelists[listid]; | 
 | 			zone = &pgdat->node_zones[zoneid]; | 
 | 			if (!populated_zone(zone)) | 
 | 				continue; | 
 |  | 
 | 			/* Print information about the zonelist */ | 
 | 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", | 
 | 				listid > 0 ? "thisnode" : "general", nid, | 
 | 				zone->name); | 
 |  | 
 | 			/* Iterate the zonelist */ | 
 | 			for_each_zone_zonelist(zone, z, zonelist, zoneid) | 
 | 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name); | 
 | 			pr_cont("\n"); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __init mminit_verify_pageflags_layout(void) | 
 | { | 
 | 	int shift, width; | 
 | 	unsigned long or_mask, add_mask; | 
 |  | 
 | 	shift = BITS_PER_LONG; | 
 | 	width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH | 
 | 		- LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; | 
 | 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", | 
 | 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", | 
 | 		SECTIONS_WIDTH, | 
 | 		NODES_WIDTH, | 
 | 		ZONES_WIDTH, | 
 | 		LAST_CPUPID_WIDTH, | 
 | 		KASAN_TAG_WIDTH, | 
 | 		LRU_GEN_WIDTH, | 
 | 		LRU_REFS_WIDTH, | 
 | 		NR_PAGEFLAGS); | 
 | 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", | 
 | 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", | 
 | 		SECTIONS_SHIFT, | 
 | 		NODES_SHIFT, | 
 | 		ZONES_SHIFT, | 
 | 		LAST_CPUPID_SHIFT, | 
 | 		KASAN_TAG_WIDTH); | 
 | 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", | 
 | 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", | 
 | 		(unsigned long)SECTIONS_PGSHIFT, | 
 | 		(unsigned long)NODES_PGSHIFT, | 
 | 		(unsigned long)ZONES_PGSHIFT, | 
 | 		(unsigned long)LAST_CPUPID_PGSHIFT, | 
 | 		(unsigned long)KASAN_TAG_PGSHIFT); | 
 | 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", | 
 | 		"Node/Zone ID: %lu -> %lu\n", | 
 | 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), | 
 | 		(unsigned long)ZONEID_PGOFF); | 
 | 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", | 
 | 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", | 
 | 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); | 
 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
 | 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", | 
 | 		"Node not in page flags"); | 
 | #endif | 
 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS | 
 | 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", | 
 | 		"Last cpupid not in page flags"); | 
 | #endif | 
 |  | 
 | 	if (SECTIONS_WIDTH) { | 
 | 		shift -= SECTIONS_WIDTH; | 
 | 		BUG_ON(shift != SECTIONS_PGSHIFT); | 
 | 	} | 
 | 	if (NODES_WIDTH) { | 
 | 		shift -= NODES_WIDTH; | 
 | 		BUG_ON(shift != NODES_PGSHIFT); | 
 | 	} | 
 | 	if (ZONES_WIDTH) { | 
 | 		shift -= ZONES_WIDTH; | 
 | 		BUG_ON(shift != ZONES_PGSHIFT); | 
 | 	} | 
 |  | 
 | 	/* Check for bitmask overlaps */ | 
 | 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) | | 
 | 			(NODES_MASK << NODES_PGSHIFT) | | 
 | 			(SECTIONS_MASK << SECTIONS_PGSHIFT); | 
 | 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) + | 
 | 			(NODES_MASK << NODES_PGSHIFT) + | 
 | 			(SECTIONS_MASK << SECTIONS_PGSHIFT); | 
 | 	BUG_ON(or_mask != add_mask); | 
 | } | 
 |  | 
 | static __init int set_mminit_loglevel(char *str) | 
 | { | 
 | 	get_option(&str, &mminit_loglevel); | 
 | 	return 0; | 
 | } | 
 | early_param("mminit_loglevel", set_mminit_loglevel); | 
 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ | 
 |  | 
 | struct kobject *mm_kobj; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | s32 vm_committed_as_batch = 32; | 
 |  | 
 | void mm_compute_batch(int overcommit_policy) | 
 | { | 
 | 	u64 memsized_batch; | 
 | 	s32 nr = num_present_cpus(); | 
 | 	s32 batch = max_t(s32, nr*2, 32); | 
 | 	unsigned long ram_pages = totalram_pages(); | 
 |  | 
 | 	/* | 
 | 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of | 
 | 	 * (total memory/#cpus), and lift it to 25% for other policies | 
 | 	 * to easy the possible lock contention for percpu_counter | 
 | 	 * vm_committed_as, while the max limit is INT_MAX | 
 | 	 */ | 
 | 	if (overcommit_policy == OVERCOMMIT_NEVER) | 
 | 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); | 
 | 	else | 
 | 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); | 
 |  | 
 | 	vm_committed_as_batch = max_t(s32, memsized_batch, batch); | 
 | } | 
 |  | 
 | static int __meminit mm_compute_batch_notifier(struct notifier_block *self, | 
 | 					unsigned long action, void *arg) | 
 | { | 
 | 	switch (action) { | 
 | 	case MEM_ONLINE: | 
 | 	case MEM_OFFLINE: | 
 | 		mm_compute_batch(sysctl_overcommit_memory); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static int __init mm_compute_batch_init(void) | 
 | { | 
 | 	mm_compute_batch(sysctl_overcommit_memory); | 
 | 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initcall(mm_compute_batch_init); | 
 |  | 
 | #endif | 
 |  | 
 | static int __init mm_sysfs_init(void) | 
 | { | 
 | 	mm_kobj = kobject_create_and_add("mm", kernel_kobj); | 
 | 	if (!mm_kobj) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 | postcore_initcall(mm_sysfs_init); | 
 |  | 
 | static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; | 
 | static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; | 
 | static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; | 
 |  | 
 | static unsigned long required_kernelcore __initdata; | 
 | static unsigned long required_kernelcore_percent __initdata; | 
 | static unsigned long required_movablecore __initdata; | 
 | static unsigned long required_movablecore_percent __initdata; | 
 |  | 
 | static unsigned long nr_kernel_pages __initdata; | 
 | static unsigned long nr_all_pages __initdata; | 
 |  | 
 | static bool deferred_struct_pages __meminitdata; | 
 |  | 
 | static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); | 
 |  | 
 | static int __init cmdline_parse_core(char *p, unsigned long *core, | 
 | 				     unsigned long *percent) | 
 | { | 
 | 	unsigned long long coremem; | 
 | 	char *endptr; | 
 |  | 
 | 	if (!p) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Value may be a percentage of total memory, otherwise bytes */ | 
 | 	coremem = simple_strtoull(p, &endptr, 0); | 
 | 	if (*endptr == '%') { | 
 | 		/* Paranoid check for percent values greater than 100 */ | 
 | 		WARN_ON(coremem > 100); | 
 |  | 
 | 		*percent = coremem; | 
 | 	} else { | 
 | 		coremem = memparse(p, &p); | 
 | 		/* Paranoid check that UL is enough for the coremem value */ | 
 | 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | 
 |  | 
 | 		*core = coremem >> PAGE_SHIFT; | 
 | 		*percent = 0UL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool mirrored_kernelcore __initdata_memblock; | 
 |  | 
 | /* | 
 |  * kernelcore=size sets the amount of memory for use for allocations that | 
 |  * cannot be reclaimed or migrated. | 
 |  */ | 
 | static int __init cmdline_parse_kernelcore(char *p) | 
 | { | 
 | 	/* parse kernelcore=mirror */ | 
 | 	if (parse_option_str(p, "mirror")) { | 
 | 		mirrored_kernelcore = true; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return cmdline_parse_core(p, &required_kernelcore, | 
 | 				  &required_kernelcore_percent); | 
 | } | 
 | early_param("kernelcore", cmdline_parse_kernelcore); | 
 |  | 
 | /* | 
 |  * movablecore=size sets the amount of memory for use for allocations that | 
 |  * can be reclaimed or migrated. | 
 |  */ | 
 | static int __init cmdline_parse_movablecore(char *p) | 
 | { | 
 | 	return cmdline_parse_core(p, &required_movablecore, | 
 | 				  &required_movablecore_percent); | 
 | } | 
 | early_param("movablecore", cmdline_parse_movablecore); | 
 |  | 
 | /* | 
 |  * early_calculate_totalpages() | 
 |  * Sum pages in active regions for movable zone. | 
 |  * Populate N_MEMORY for calculating usable_nodes. | 
 |  */ | 
 | static unsigned long __init early_calculate_totalpages(void) | 
 | { | 
 | 	unsigned long totalpages = 0; | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
 | 		unsigned long pages = end_pfn - start_pfn; | 
 |  | 
 | 		totalpages += pages; | 
 | 		if (pages) | 
 | 			node_set_state(nid, N_MEMORY); | 
 | 	} | 
 | 	return totalpages; | 
 | } | 
 |  | 
 | /* | 
 |  * This finds a zone that can be used for ZONE_MOVABLE pages. The | 
 |  * assumption is made that zones within a node are ordered in monotonic | 
 |  * increasing memory addresses so that the "highest" populated zone is used | 
 |  */ | 
 | static void __init find_usable_zone_for_movable(void) | 
 | { | 
 | 	int zone_index; | 
 | 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | 
 | 		if (zone_index == ZONE_MOVABLE) | 
 | 			continue; | 
 |  | 
 | 		if (arch_zone_highest_possible_pfn[zone_index] > | 
 | 				arch_zone_lowest_possible_pfn[zone_index]) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON(zone_index == -1); | 
 | 	movable_zone = zone_index; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the PFN the Movable zone begins in each node. Kernel memory | 
 |  * is spread evenly between nodes as long as the nodes have enough | 
 |  * memory. When they don't, some nodes will have more kernelcore than | 
 |  * others | 
 |  */ | 
 | static void __init find_zone_movable_pfns_for_nodes(void) | 
 | { | 
 | 	int i, nid; | 
 | 	unsigned long usable_startpfn; | 
 | 	unsigned long kernelcore_node, kernelcore_remaining; | 
 | 	/* save the state before borrow the nodemask */ | 
 | 	nodemask_t saved_node_state = node_states[N_MEMORY]; | 
 | 	unsigned long totalpages = early_calculate_totalpages(); | 
 | 	int usable_nodes = nodes_weight(node_states[N_MEMORY]); | 
 | 	struct memblock_region *r; | 
 |  | 
 | 	/* Need to find movable_zone earlier when movable_node is specified. */ | 
 | 	find_usable_zone_for_movable(); | 
 |  | 
 | 	/* | 
 | 	 * If movable_node is specified, ignore kernelcore and movablecore | 
 | 	 * options. | 
 | 	 */ | 
 | 	if (movable_node_is_enabled()) { | 
 | 		for_each_mem_region(r) { | 
 | 			if (!memblock_is_hotpluggable(r)) | 
 | 				continue; | 
 |  | 
 | 			nid = memblock_get_region_node(r); | 
 |  | 
 | 			usable_startpfn = memblock_region_memory_base_pfn(r); | 
 | 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
 | 				min(usable_startpfn, zone_movable_pfn[nid]) : | 
 | 				usable_startpfn; | 
 | 		} | 
 |  | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If kernelcore=mirror is specified, ignore movablecore option | 
 | 	 */ | 
 | 	if (mirrored_kernelcore) { | 
 | 		bool mem_below_4gb_not_mirrored = false; | 
 |  | 
 | 		if (!memblock_has_mirror()) { | 
 | 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (is_kdump_kernel()) { | 
 | 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		for_each_mem_region(r) { | 
 | 			if (memblock_is_mirror(r)) | 
 | 				continue; | 
 |  | 
 | 			nid = memblock_get_region_node(r); | 
 |  | 
 | 			usable_startpfn = memblock_region_memory_base_pfn(r); | 
 |  | 
 | 			if (usable_startpfn < PHYS_PFN(SZ_4G)) { | 
 | 				mem_below_4gb_not_mirrored = true; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
 | 				min(usable_startpfn, zone_movable_pfn[nid]) : | 
 | 				usable_startpfn; | 
 | 		} | 
 |  | 
 | 		if (mem_below_4gb_not_mirrored) | 
 | 			pr_warn("This configuration results in unmirrored kernel memory.\n"); | 
 |  | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the | 
 | 	 * amount of necessary memory. | 
 | 	 */ | 
 | 	if (required_kernelcore_percent) | 
 | 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / | 
 | 				       10000UL; | 
 | 	if (required_movablecore_percent) | 
 | 		required_movablecore = (totalpages * 100 * required_movablecore_percent) / | 
 | 					10000UL; | 
 |  | 
 | 	/* | 
 | 	 * If movablecore= was specified, calculate what size of | 
 | 	 * kernelcore that corresponds so that memory usable for | 
 | 	 * any allocation type is evenly spread. If both kernelcore | 
 | 	 * and movablecore are specified, then the value of kernelcore | 
 | 	 * will be used for required_kernelcore if it's greater than | 
 | 	 * what movablecore would have allowed. | 
 | 	 */ | 
 | 	if (required_movablecore) { | 
 | 		unsigned long corepages; | 
 |  | 
 | 		/* | 
 | 		 * Round-up so that ZONE_MOVABLE is at least as large as what | 
 | 		 * was requested by the user | 
 | 		 */ | 
 | 		required_movablecore = | 
 | 			roundup(required_movablecore, MAX_ORDER_NR_PAGES); | 
 | 		required_movablecore = min(totalpages, required_movablecore); | 
 | 		corepages = totalpages - required_movablecore; | 
 |  | 
 | 		required_kernelcore = max(required_kernelcore, corepages); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If kernelcore was not specified or kernelcore size is larger | 
 | 	 * than totalpages, there is no ZONE_MOVABLE. | 
 | 	 */ | 
 | 	if (!required_kernelcore || required_kernelcore >= totalpages) | 
 | 		goto out; | 
 |  | 
 | 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | 
 | 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | 
 |  | 
 | restart: | 
 | 	/* Spread kernelcore memory as evenly as possible throughout nodes */ | 
 | 	kernelcore_node = required_kernelcore / usable_nodes; | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 |  | 
 | 		/* | 
 | 		 * Recalculate kernelcore_node if the division per node | 
 | 		 * now exceeds what is necessary to satisfy the requested | 
 | 		 * amount of memory for the kernel | 
 | 		 */ | 
 | 		if (required_kernelcore < kernelcore_node) | 
 | 			kernelcore_node = required_kernelcore / usable_nodes; | 
 |  | 
 | 		/* | 
 | 		 * As the map is walked, we track how much memory is usable | 
 | 		 * by the kernel using kernelcore_remaining. When it is | 
 | 		 * 0, the rest of the node is usable by ZONE_MOVABLE | 
 | 		 */ | 
 | 		kernelcore_remaining = kernelcore_node; | 
 |  | 
 | 		/* Go through each range of PFNs within this node */ | 
 | 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
 | 			unsigned long size_pages; | 
 |  | 
 | 			start_pfn = max(start_pfn, zone_movable_pfn[nid]); | 
 | 			if (start_pfn >= end_pfn) | 
 | 				continue; | 
 |  | 
 | 			/* Account for what is only usable for kernelcore */ | 
 | 			if (start_pfn < usable_startpfn) { | 
 | 				unsigned long kernel_pages; | 
 | 				kernel_pages = min(end_pfn, usable_startpfn) | 
 | 								- start_pfn; | 
 |  | 
 | 				kernelcore_remaining -= min(kernel_pages, | 
 | 							kernelcore_remaining); | 
 | 				required_kernelcore -= min(kernel_pages, | 
 | 							required_kernelcore); | 
 |  | 
 | 				/* Continue if range is now fully accounted */ | 
 | 				if (end_pfn <= usable_startpfn) { | 
 |  | 
 | 					/* | 
 | 					 * Push zone_movable_pfn to the end so | 
 | 					 * that if we have to rebalance | 
 | 					 * kernelcore across nodes, we will | 
 | 					 * not double account here | 
 | 					 */ | 
 | 					zone_movable_pfn[nid] = end_pfn; | 
 | 					continue; | 
 | 				} | 
 | 				start_pfn = usable_startpfn; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * The usable PFN range for ZONE_MOVABLE is from | 
 | 			 * start_pfn->end_pfn. Calculate size_pages as the | 
 | 			 * number of pages used as kernelcore | 
 | 			 */ | 
 | 			size_pages = end_pfn - start_pfn; | 
 | 			if (size_pages > kernelcore_remaining) | 
 | 				size_pages = kernelcore_remaining; | 
 | 			zone_movable_pfn[nid] = start_pfn + size_pages; | 
 |  | 
 | 			/* | 
 | 			 * Some kernelcore has been met, update counts and | 
 | 			 * break if the kernelcore for this node has been | 
 | 			 * satisfied | 
 | 			 */ | 
 | 			required_kernelcore -= min(required_kernelcore, | 
 | 								size_pages); | 
 | 			kernelcore_remaining -= size_pages; | 
 | 			if (!kernelcore_remaining) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there is still required_kernelcore, we do another pass with one | 
 | 	 * less node in the count. This will push zone_movable_pfn[nid] further | 
 | 	 * along on the nodes that still have memory until kernelcore is | 
 | 	 * satisfied | 
 | 	 */ | 
 | 	usable_nodes--; | 
 | 	if (usable_nodes && required_kernelcore > usable_nodes) | 
 | 		goto restart; | 
 |  | 
 | out2: | 
 | 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | 
 | 	for (nid = 0; nid < MAX_NUMNODES; nid++) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 |  | 
 | 		zone_movable_pfn[nid] = | 
 | 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | 
 |  | 
 | 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 | 		if (zone_movable_pfn[nid] >= end_pfn) | 
 | 			zone_movable_pfn[nid] = 0; | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* restore the node_state */ | 
 | 	node_states[N_MEMORY] = saved_node_state; | 
 | } | 
 |  | 
 | void __meminit __init_single_page(struct page *page, unsigned long pfn, | 
 | 				unsigned long zone, int nid) | 
 | { | 
 | 	mm_zero_struct_page(page); | 
 | 	set_page_links(page, zone, nid, pfn); | 
 | 	init_page_count(page); | 
 | 	atomic_set(&page->_mapcount, -1); | 
 | 	page_cpupid_reset_last(page); | 
 | 	page_kasan_tag_reset(page); | 
 |  | 
 | 	INIT_LIST_HEAD(&page->lru); | 
 | #ifdef WANT_PAGE_VIRTUAL | 
 | 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
 | 	if (!is_highmem_idx(zone)) | 
 | 		set_page_address(page, __va(pfn << PAGE_SHIFT)); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * During memory init memblocks map pfns to nids. The search is expensive and | 
 |  * this caches recent lookups. The implementation of __early_pfn_to_nid | 
 |  * treats start/end as pfns. | 
 |  */ | 
 | struct mminit_pfnnid_cache { | 
 | 	unsigned long last_start; | 
 | 	unsigned long last_end; | 
 | 	int last_nid; | 
 | }; | 
 |  | 
 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; | 
 |  | 
 | /* | 
 |  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | 
 |  */ | 
 | static int __meminit __early_pfn_to_nid(unsigned long pfn, | 
 | 					struct mminit_pfnnid_cache *state) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int nid; | 
 |  | 
 | 	if (state->last_start <= pfn && pfn < state->last_end) | 
 | 		return state->last_nid; | 
 |  | 
 | 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); | 
 | 	if (nid != NUMA_NO_NODE) { | 
 | 		state->last_start = start_pfn; | 
 | 		state->last_end = end_pfn; | 
 | 		state->last_nid = nid; | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | int __meminit early_pfn_to_nid(unsigned long pfn) | 
 | { | 
 | 	static DEFINE_SPINLOCK(early_pfn_lock); | 
 | 	int nid; | 
 |  | 
 | 	spin_lock(&early_pfn_lock); | 
 | 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); | 
 | 	if (nid < 0) | 
 | 		nid = first_online_node; | 
 | 	spin_unlock(&early_pfn_lock); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | int hashdist = HASHDIST_DEFAULT; | 
 |  | 
 | static int __init set_hashdist(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return 0; | 
 | 	hashdist = simple_strtoul(str, &str, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("hashdist=", set_hashdist); | 
 |  | 
 | static inline void fixup_hashdist(void) | 
 | { | 
 | 	if (num_node_state(N_MEMORY) == 1) | 
 | 		hashdist = 0; | 
 | } | 
 | #else | 
 | static inline void fixup_hashdist(void) {} | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) | 
 | { | 
 | 	pgdat->first_deferred_pfn = ULONG_MAX; | 
 | } | 
 |  | 
 | /* Returns true if the struct page for the pfn is initialised */ | 
 | static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) | 
 | { | 
 | 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true when the remaining initialisation should be deferred until | 
 |  * later in the boot cycle when it can be parallelised. | 
 |  */ | 
 | static bool __meminit | 
 | defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | 
 | { | 
 | 	static unsigned long prev_end_pfn, nr_initialised; | 
 |  | 
 | 	if (early_page_ext_enabled()) | 
 | 		return false; | 
 |  | 
 | 	/* Always populate low zones for address-constrained allocations */ | 
 | 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) | 
 | 		return false; | 
 |  | 
 | 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * prev_end_pfn static that contains the end of previous zone | 
 | 	 * No need to protect because called very early in boot before smp_init. | 
 | 	 */ | 
 | 	if (prev_end_pfn != end_pfn) { | 
 | 		prev_end_pfn = end_pfn; | 
 | 		nr_initialised = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We start only with one section of pages, more pages are added as | 
 | 	 * needed until the rest of deferred pages are initialized. | 
 | 	 */ | 
 | 	nr_initialised++; | 
 | 	if ((nr_initialised > PAGES_PER_SECTION) && | 
 | 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) { | 
 | 		NODE_DATA(nid)->first_deferred_pfn = pfn; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static void __meminit init_reserved_page(unsigned long pfn, int nid) | 
 | { | 
 | 	pg_data_t *pgdat; | 
 | 	int zid; | 
 |  | 
 | 	if (early_page_initialised(pfn, nid)) | 
 | 		return; | 
 |  | 
 | 	pgdat = NODE_DATA(nid); | 
 |  | 
 | 	for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zid]; | 
 |  | 
 | 		if (zone_spans_pfn(zone, pfn)) | 
 | 			break; | 
 | 	} | 
 | 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid); | 
 | } | 
 | #else | 
 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} | 
 |  | 
 | static inline bool early_page_initialised(unsigned long pfn, int nid) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void init_reserved_page(unsigned long pfn, int nid) | 
 | { | 
 | } | 
 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
 |  | 
 | /* | 
 |  * Initialised pages do not have PageReserved set. This function is | 
 |  * called for each range allocated by the bootmem allocator and | 
 |  * marks the pages PageReserved. The remaining valid pages are later | 
 |  * sent to the buddy page allocator. | 
 |  */ | 
 | void __meminit reserve_bootmem_region(phys_addr_t start, | 
 | 				      phys_addr_t end, int nid) | 
 | { | 
 | 	unsigned long start_pfn = PFN_DOWN(start); | 
 | 	unsigned long end_pfn = PFN_UP(end); | 
 |  | 
 | 	for (; start_pfn < end_pfn; start_pfn++) { | 
 | 		if (pfn_valid(start_pfn)) { | 
 | 			struct page *page = pfn_to_page(start_pfn); | 
 |  | 
 | 			init_reserved_page(start_pfn, nid); | 
 |  | 
 | 			/* | 
 | 			 * no need for atomic set_bit because the struct | 
 | 			 * page is not visible yet so nobody should | 
 | 			 * access it yet. | 
 | 			 */ | 
 | 			__SetPageReserved(page); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ | 
 | static bool __meminit | 
 | overlap_memmap_init(unsigned long zone, unsigned long *pfn) | 
 | { | 
 | 	static struct memblock_region *r; | 
 |  | 
 | 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | 
 | 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { | 
 | 			for_each_mem_region(r) { | 
 | 				if (*pfn < memblock_region_memory_end_pfn(r)) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 | 		if (*pfn >= memblock_region_memory_base_pfn(r) && | 
 | 		    memblock_is_mirror(r)) { | 
 | 			*pfn = memblock_region_memory_end_pfn(r); | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Only struct pages that correspond to ranges defined by memblock.memory | 
 |  * are zeroed and initialized by going through __init_single_page() during | 
 |  * memmap_init_zone_range(). | 
 |  * | 
 |  * But, there could be struct pages that correspond to holes in | 
 |  * memblock.memory. This can happen because of the following reasons: | 
 |  * - physical memory bank size is not necessarily the exact multiple of the | 
 |  *   arbitrary section size | 
 |  * - early reserved memory may not be listed in memblock.memory | 
 |  * - non-memory regions covered by the contigious flatmem mapping | 
 |  * - memory layouts defined with memmap= kernel parameter may not align | 
 |  *   nicely with memmap sections | 
 |  * | 
 |  * Explicitly initialize those struct pages so that: | 
 |  * - PG_Reserved is set | 
 |  * - zone and node links point to zone and node that span the page if the | 
 |  *   hole is in the middle of a zone | 
 |  * - zone and node links point to adjacent zone/node if the hole falls on | 
 |  *   the zone boundary; the pages in such holes will be prepended to the | 
 |  *   zone/node above the hole except for the trailing pages in the last | 
 |  *   section that will be appended to the zone/node below. | 
 |  */ | 
 | static void __init init_unavailable_range(unsigned long spfn, | 
 | 					  unsigned long epfn, | 
 | 					  int zone, int node) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	u64 pgcnt = 0; | 
 |  | 
 | 	for (pfn = spfn; pfn < epfn; pfn++) { | 
 | 		if (!pfn_valid(pageblock_start_pfn(pfn))) { | 
 | 			pfn = pageblock_end_pfn(pfn) - 1; | 
 | 			continue; | 
 | 		} | 
 | 		__init_single_page(pfn_to_page(pfn), pfn, zone, node); | 
 | 		__SetPageReserved(pfn_to_page(pfn)); | 
 | 		pgcnt++; | 
 | 	} | 
 |  | 
 | 	if (pgcnt) | 
 | 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n", | 
 | 			node, zone_names[zone], pgcnt); | 
 | } | 
 |  | 
 | /* | 
 |  * Initially all pages are reserved - free ones are freed | 
 |  * up by memblock_free_all() once the early boot process is | 
 |  * done. Non-atomic initialization, single-pass. | 
 |  * | 
 |  * All aligned pageblocks are initialized to the specified migratetype | 
 |  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related | 
 |  * zone stats (e.g., nr_isolate_pageblock) are touched. | 
 |  */ | 
 | void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, | 
 | 		unsigned long start_pfn, unsigned long zone_end_pfn, | 
 | 		enum meminit_context context, | 
 | 		struct vmem_altmap *altmap, int migratetype) | 
 | { | 
 | 	unsigned long pfn, end_pfn = start_pfn + size; | 
 | 	struct page *page; | 
 |  | 
 | 	if (highest_memmap_pfn < end_pfn - 1) | 
 | 		highest_memmap_pfn = end_pfn - 1; | 
 |  | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | 	/* | 
 | 	 * Honor reservation requested by the driver for this ZONE_DEVICE | 
 | 	 * memory. We limit the total number of pages to initialize to just | 
 | 	 * those that might contain the memory mapping. We will defer the | 
 | 	 * ZONE_DEVICE page initialization until after we have released | 
 | 	 * the hotplug lock. | 
 | 	 */ | 
 | 	if (zone == ZONE_DEVICE) { | 
 | 		if (!altmap) | 
 | 			return; | 
 |  | 
 | 		if (start_pfn == altmap->base_pfn) | 
 | 			start_pfn += altmap->reserve; | 
 | 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; ) { | 
 | 		/* | 
 | 		 * There can be holes in boot-time mem_map[]s handed to this | 
 | 		 * function.  They do not exist on hotplugged memory. | 
 | 		 */ | 
 | 		if (context == MEMINIT_EARLY) { | 
 | 			if (overlap_memmap_init(zone, &pfn)) | 
 | 				continue; | 
 | 			if (defer_init(nid, pfn, zone_end_pfn)) { | 
 | 				deferred_struct_pages = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		page = pfn_to_page(pfn); | 
 | 		__init_single_page(page, pfn, zone, nid); | 
 | 		if (context == MEMINIT_HOTPLUG) { | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | 			if (zone == ZONE_DEVICE) | 
 | 				__SetPageReserved(page); | 
 | 			else | 
 | #endif | 
 | 				__SetPageOffline(page); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, | 
 | 		 * such that unmovable allocations won't be scattered all | 
 | 		 * over the place during system boot. | 
 | 		 */ | 
 | 		if (pageblock_aligned(pfn)) { | 
 | 			set_pageblock_migratetype(page, migratetype); | 
 | 			cond_resched(); | 
 | 		} | 
 | 		pfn++; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init memmap_init_zone_range(struct zone *zone, | 
 | 					  unsigned long start_pfn, | 
 | 					  unsigned long end_pfn, | 
 | 					  unsigned long *hole_pfn) | 
 | { | 
 | 	unsigned long zone_start_pfn = zone->zone_start_pfn; | 
 | 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; | 
 | 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone); | 
 |  | 
 | 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); | 
 | 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); | 
 |  | 
 | 	if (start_pfn >= end_pfn) | 
 | 		return; | 
 |  | 
 | 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, | 
 | 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); | 
 |  | 
 | 	if (*hole_pfn < start_pfn) | 
 | 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); | 
 |  | 
 | 	*hole_pfn = end_pfn; | 
 | } | 
 |  | 
 | static void __init memmap_init(void) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	unsigned long hole_pfn = 0; | 
 | 	int i, j, zone_id = 0, nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
 | 		struct pglist_data *node = NODE_DATA(nid); | 
 |  | 
 | 		for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 			struct zone *zone = node->node_zones + j; | 
 |  | 
 | 			if (!populated_zone(zone)) | 
 | 				continue; | 
 |  | 
 | 			memmap_init_zone_range(zone, start_pfn, end_pfn, | 
 | 					       &hole_pfn); | 
 | 			zone_id = j; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 	/* | 
 | 	 * Initialize the memory map for hole in the range [memory_end, | 
 | 	 * section_end]. | 
 | 	 * Append the pages in this hole to the highest zone in the last | 
 | 	 * node. | 
 | 	 * The call to init_unavailable_range() is outside the ifdef to | 
 | 	 * silence the compiler warining about zone_id set but not used; | 
 | 	 * for FLATMEM it is a nop anyway | 
 | 	 */ | 
 | 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION); | 
 | 	if (hole_pfn < end_pfn) | 
 | #endif | 
 | 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZONE_DEVICE | 
 | static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, | 
 | 					  unsigned long zone_idx, int nid, | 
 | 					  struct dev_pagemap *pgmap) | 
 | { | 
 |  | 
 | 	__init_single_page(page, pfn, zone_idx, nid); | 
 |  | 
 | 	/* | 
 | 	 * Mark page reserved as it will need to wait for onlining | 
 | 	 * phase for it to be fully associated with a zone. | 
 | 	 * | 
 | 	 * We can use the non-atomic __set_bit operation for setting | 
 | 	 * the flag as we are still initializing the pages. | 
 | 	 */ | 
 | 	__SetPageReserved(page); | 
 |  | 
 | 	/* | 
 | 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer | 
 | 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is | 
 | 	 * ever freed or placed on a driver-private list. | 
 | 	 */ | 
 | 	page->pgmap = pgmap; | 
 | 	page->zone_device_data = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Mark the block movable so that blocks are reserved for | 
 | 	 * movable at startup. This will force kernel allocations | 
 | 	 * to reserve their blocks rather than leaking throughout | 
 | 	 * the address space during boot when many long-lived | 
 | 	 * kernel allocations are made. | 
 | 	 * | 
 | 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap | 
 | 	 * because this is done early in section_activate() | 
 | 	 */ | 
 | 	if (pageblock_aligned(pfn)) { | 
 | 		set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * ZONE_DEVICE pages are released directly to the driver page allocator | 
 | 	 * which will set the page count to 1 when allocating the page. | 
 | 	 */ | 
 | 	if (pgmap->type == MEMORY_DEVICE_PRIVATE || | 
 | 	    pgmap->type == MEMORY_DEVICE_COHERENT) | 
 | 		set_page_count(page, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * With compound page geometry and when struct pages are stored in ram most | 
 |  * tail pages are reused. Consequently, the amount of unique struct pages to | 
 |  * initialize is a lot smaller that the total amount of struct pages being | 
 |  * mapped. This is a paired / mild layering violation with explicit knowledge | 
 |  * of how the sparse_vmemmap internals handle compound pages in the lack | 
 |  * of an altmap. See vmemmap_populate_compound_pages(). | 
 |  */ | 
 | static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, | 
 | 					      struct dev_pagemap *pgmap) | 
 | { | 
 | 	if (!vmemmap_can_optimize(altmap, pgmap)) | 
 | 		return pgmap_vmemmap_nr(pgmap); | 
 |  | 
 | 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); | 
 | } | 
 |  | 
 | static void __ref memmap_init_compound(struct page *head, | 
 | 				       unsigned long head_pfn, | 
 | 				       unsigned long zone_idx, int nid, | 
 | 				       struct dev_pagemap *pgmap, | 
 | 				       unsigned long nr_pages) | 
 | { | 
 | 	unsigned long pfn, end_pfn = head_pfn + nr_pages; | 
 | 	unsigned int order = pgmap->vmemmap_shift; | 
 |  | 
 | 	__SetPageHead(head); | 
 | 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap); | 
 | 		prep_compound_tail(head, pfn - head_pfn); | 
 | 		set_page_count(page, 0); | 
 |  | 
 | 		/* | 
 | 		 * The first tail page stores important compound page info. | 
 | 		 * Call prep_compound_head() after the first tail page has | 
 | 		 * been initialized, to not have the data overwritten. | 
 | 		 */ | 
 | 		if (pfn == head_pfn + 1) | 
 | 			prep_compound_head(head, order); | 
 | 	} | 
 | } | 
 |  | 
 | void __ref memmap_init_zone_device(struct zone *zone, | 
 | 				   unsigned long start_pfn, | 
 | 				   unsigned long nr_pages, | 
 | 				   struct dev_pagemap *pgmap) | 
 | { | 
 | 	unsigned long pfn, end_pfn = start_pfn + nr_pages; | 
 | 	struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 	struct vmem_altmap *altmap = pgmap_altmap(pgmap); | 
 | 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); | 
 | 	unsigned long zone_idx = zone_idx(zone); | 
 | 	unsigned long start = jiffies; | 
 | 	int nid = pgdat->node_id; | 
 |  | 
 | 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * The call to memmap_init should have already taken care | 
 | 	 * of the pages reserved for the memmap, so we can just jump to | 
 | 	 * the end of that region and start processing the device pages. | 
 | 	 */ | 
 | 	if (altmap) { | 
 | 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | 
 | 		nr_pages = end_pfn - start_pfn; | 
 | 	} | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap); | 
 |  | 
 | 		if (pfns_per_compound == 1) | 
 | 			continue; | 
 |  | 
 | 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap, | 
 | 				     compound_nr_pages(altmap, pgmap)); | 
 | 	} | 
 |  | 
 | 	pr_debug("%s initialised %lu pages in %ums\n", __func__, | 
 | 		nr_pages, jiffies_to_msecs(jiffies - start)); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The zone ranges provided by the architecture do not include ZONE_MOVABLE | 
 |  * because it is sized independent of architecture. Unlike the other zones, | 
 |  * the starting point for ZONE_MOVABLE is not fixed. It may be different | 
 |  * in each node depending on the size of each node and how evenly kernelcore | 
 |  * is distributed. This helper function adjusts the zone ranges | 
 |  * provided by the architecture for a given node by using the end of the | 
 |  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | 
 |  * zones within a node are in order of monotonic increases memory addresses | 
 |  */ | 
 | static void __init adjust_zone_range_for_zone_movable(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_end_pfn, | 
 | 					unsigned long *zone_start_pfn, | 
 | 					unsigned long *zone_end_pfn) | 
 | { | 
 | 	/* Only adjust if ZONE_MOVABLE is on this node */ | 
 | 	if (zone_movable_pfn[nid]) { | 
 | 		/* Size ZONE_MOVABLE */ | 
 | 		if (zone_type == ZONE_MOVABLE) { | 
 | 			*zone_start_pfn = zone_movable_pfn[nid]; | 
 | 			*zone_end_pfn = min(node_end_pfn, | 
 | 				arch_zone_highest_possible_pfn[movable_zone]); | 
 |  | 
 | 		/* Adjust for ZONE_MOVABLE starting within this range */ | 
 | 		} else if (!mirrored_kernelcore && | 
 | 			*zone_start_pfn < zone_movable_pfn[nid] && | 
 | 			*zone_end_pfn > zone_movable_pfn[nid]) { | 
 | 			*zone_end_pfn = zone_movable_pfn[nid]; | 
 |  | 
 | 		/* Check if this whole range is within ZONE_MOVABLE */ | 
 | 		} else if (*zone_start_pfn >= zone_movable_pfn[nid]) | 
 | 			*zone_start_pfn = *zone_end_pfn; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 
 |  * then all holes in the requested range will be accounted for. | 
 |  */ | 
 | static unsigned long __init __absent_pages_in_range(int nid, | 
 | 				unsigned long range_start_pfn, | 
 | 				unsigned long range_end_pfn) | 
 | { | 
 | 	unsigned long nr_absent = range_end_pfn - range_start_pfn; | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
 | 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | 
 | 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | 
 | 		nr_absent -= end_pfn - start_pfn; | 
 | 	} | 
 | 	return nr_absent; | 
 | } | 
 |  | 
 | /** | 
 |  * absent_pages_in_range - Return number of page frames in holes within a range | 
 |  * @start_pfn: The start PFN to start searching for holes | 
 |  * @end_pfn: The end PFN to stop searching for holes | 
 |  * | 
 |  * Return: the number of pages frames in memory holes within a range. | 
 |  */ | 
 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | 
 | 							unsigned long end_pfn) | 
 | { | 
 | 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | 
 | } | 
 |  | 
 | /* Return the number of page frames in holes in a zone on a node */ | 
 | static unsigned long __init zone_absent_pages_in_node(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long zone_start_pfn, | 
 | 					unsigned long zone_end_pfn) | 
 | { | 
 | 	unsigned long nr_absent; | 
 |  | 
 | 	/* zone is empty, we don't have any absent pages */ | 
 | 	if (zone_start_pfn == zone_end_pfn) | 
 | 		return 0; | 
 |  | 
 | 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); | 
 |  | 
 | 	/* | 
 | 	 * ZONE_MOVABLE handling. | 
 | 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | 
 | 	 * and vice versa. | 
 | 	 */ | 
 | 	if (mirrored_kernelcore && zone_movable_pfn[nid]) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 | 		struct memblock_region *r; | 
 |  | 
 | 		for_each_mem_region(r) { | 
 | 			start_pfn = clamp(memblock_region_memory_base_pfn(r), | 
 | 					  zone_start_pfn, zone_end_pfn); | 
 | 			end_pfn = clamp(memblock_region_memory_end_pfn(r), | 
 | 					zone_start_pfn, zone_end_pfn); | 
 |  | 
 | 			if (zone_type == ZONE_MOVABLE && | 
 | 			    memblock_is_mirror(r)) | 
 | 				nr_absent += end_pfn - start_pfn; | 
 |  | 
 | 			if (zone_type == ZONE_NORMAL && | 
 | 			    !memblock_is_mirror(r)) | 
 | 				nr_absent += end_pfn - start_pfn; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return nr_absent; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of pages a zone spans in a node, including holes | 
 |  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | 
 |  */ | 
 | static unsigned long __init zone_spanned_pages_in_node(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_start_pfn, | 
 | 					unsigned long node_end_pfn, | 
 | 					unsigned long *zone_start_pfn, | 
 | 					unsigned long *zone_end_pfn) | 
 | { | 
 | 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
 | 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
 |  | 
 | 	/* Get the start and end of the zone */ | 
 | 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
 | 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
 | 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, | 
 | 					   zone_start_pfn, zone_end_pfn); | 
 |  | 
 | 	/* Check that this node has pages within the zone's required range */ | 
 | 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) | 
 | 		return 0; | 
 |  | 
 | 	/* Move the zone boundaries inside the node if necessary */ | 
 | 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn); | 
 | 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | 
 |  | 
 | 	/* Return the spanned pages */ | 
 | 	return *zone_end_pfn - *zone_start_pfn; | 
 | } | 
 |  | 
 | static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) | 
 | { | 
 | 	struct zone *z; | 
 |  | 
 | 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { | 
 | 		z->zone_start_pfn = 0; | 
 | 		z->spanned_pages = 0; | 
 | 		z->present_pages = 0; | 
 | #if defined(CONFIG_MEMORY_HOTPLUG) | 
 | 		z->present_early_pages = 0; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	pgdat->node_spanned_pages = 0; | 
 | 	pgdat->node_present_pages = 0; | 
 | 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id); | 
 | } | 
 |  | 
 | static void __init calc_nr_kernel_pages(void) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	phys_addr_t start_addr, end_addr; | 
 | 	u64 u; | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]; | 
 | #endif | 
 |  | 
 | 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { | 
 | 		start_pfn = PFN_UP(start_addr); | 
 | 		end_pfn   = PFN_DOWN(end_addr); | 
 |  | 
 | 		if (start_pfn < end_pfn) { | 
 | 			nr_all_pages += end_pfn - start_pfn; | 
 | #ifdef CONFIG_HIGHMEM | 
 | 			start_pfn = clamp(start_pfn, 0, high_zone_low); | 
 | 			end_pfn = clamp(end_pfn, 0, high_zone_low); | 
 | #endif | 
 | 			nr_kernel_pages += end_pfn - start_pfn; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void __init calculate_node_totalpages(struct pglist_data *pgdat, | 
 | 						unsigned long node_start_pfn, | 
 | 						unsigned long node_end_pfn) | 
 | { | 
 | 	unsigned long realtotalpages = 0, totalpages = 0; | 
 | 	enum zone_type i; | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 		struct zone *zone = pgdat->node_zones + i; | 
 | 		unsigned long zone_start_pfn, zone_end_pfn; | 
 | 		unsigned long spanned, absent; | 
 | 		unsigned long real_size; | 
 |  | 
 | 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i, | 
 | 						     node_start_pfn, | 
 | 						     node_end_pfn, | 
 | 						     &zone_start_pfn, | 
 | 						     &zone_end_pfn); | 
 | 		absent = zone_absent_pages_in_node(pgdat->node_id, i, | 
 | 						   zone_start_pfn, | 
 | 						   zone_end_pfn); | 
 |  | 
 | 		real_size = spanned - absent; | 
 |  | 
 | 		if (spanned) | 
 | 			zone->zone_start_pfn = zone_start_pfn; | 
 | 		else | 
 | 			zone->zone_start_pfn = 0; | 
 | 		zone->spanned_pages = spanned; | 
 | 		zone->present_pages = real_size; | 
 | #if defined(CONFIG_MEMORY_HOTPLUG) | 
 | 		zone->present_early_pages = real_size; | 
 | #endif | 
 |  | 
 | 		totalpages += spanned; | 
 | 		realtotalpages += real_size; | 
 | 	} | 
 |  | 
 | 	pgdat->node_spanned_pages = totalpages; | 
 | 	pgdat->node_present_pages = realtotalpages; | 
 | 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | static void pgdat_init_split_queue(struct pglist_data *pgdat) | 
 | { | 
 | 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue; | 
 |  | 
 | 	spin_lock_init(&ds_queue->split_queue_lock); | 
 | 	INIT_LIST_HEAD(&ds_queue->split_queue); | 
 | 	ds_queue->split_queue_len = 0; | 
 | } | 
 | #else | 
 | static void pgdat_init_split_queue(struct pglist_data *pgdat) {} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) | 
 | { | 
 | 	init_waitqueue_head(&pgdat->kcompactd_wait); | 
 | } | 
 | #else | 
 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} | 
 | #endif | 
 |  | 
 | static void __meminit pgdat_init_internals(struct pglist_data *pgdat) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	pgdat_resize_init(pgdat); | 
 | 	pgdat_kswapd_lock_init(pgdat); | 
 |  | 
 | 	pgdat_init_split_queue(pgdat); | 
 | 	pgdat_init_kcompactd(pgdat); | 
 |  | 
 | 	init_waitqueue_head(&pgdat->kswapd_wait); | 
 | 	init_waitqueue_head(&pgdat->pfmemalloc_wait); | 
 |  | 
 | 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++) | 
 | 		init_waitqueue_head(&pgdat->reclaim_wait[i]); | 
 |  | 
 | 	pgdat_page_ext_init(pgdat); | 
 | 	lruvec_init(&pgdat->__lruvec); | 
 | } | 
 |  | 
 | static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, | 
 | 							unsigned long remaining_pages) | 
 | { | 
 | 	atomic_long_set(&zone->managed_pages, remaining_pages); | 
 | 	zone_set_nid(zone, nid); | 
 | 	zone->name = zone_names[idx]; | 
 | 	zone->zone_pgdat = NODE_DATA(nid); | 
 | 	spin_lock_init(&zone->lock); | 
 | 	zone_seqlock_init(zone); | 
 | 	zone_pcp_init(zone); | 
 | } | 
 |  | 
 | static void __meminit zone_init_free_lists(struct zone *zone) | 
 | { | 
 | 	unsigned int order, t; | 
 | 	for_each_migratetype_order(order, t) { | 
 | 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | 
 | 		zone->free_area[order].nr_free = 0; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_UNACCEPTED_MEMORY | 
 | 	INIT_LIST_HEAD(&zone->unaccepted_pages); | 
 | #endif | 
 | } | 
 |  | 
 | void __meminit init_currently_empty_zone(struct zone *zone, | 
 | 					unsigned long zone_start_pfn, | 
 | 					unsigned long size) | 
 | { | 
 | 	struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 	int zone_idx = zone_idx(zone) + 1; | 
 |  | 
 | 	if (zone_idx > pgdat->nr_zones) | 
 | 		pgdat->nr_zones = zone_idx; | 
 |  | 
 | 	zone->zone_start_pfn = zone_start_pfn; | 
 |  | 
 | 	mminit_dprintk(MMINIT_TRACE, "memmap_init", | 
 | 			"Initialising map node %d zone %lu pfns %lu -> %lu\n", | 
 | 			pgdat->node_id, | 
 | 			(unsigned long)zone_idx(zone), | 
 | 			zone_start_pfn, (zone_start_pfn + size)); | 
 |  | 
 | 	zone_init_free_lists(zone); | 
 | 	zone->initialized = 1; | 
 | } | 
 |  | 
 | #ifndef CONFIG_SPARSEMEM | 
 | /* | 
 |  * Calculate the size of the zone->blockflags rounded to an unsigned long | 
 |  * Start by making sure zonesize is a multiple of pageblock_order by rounding | 
 |  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | 
 |  * round what is now in bits to nearest long in bits, then return it in | 
 |  * bytes. | 
 |  */ | 
 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) | 
 | { | 
 | 	unsigned long usemapsize; | 
 |  | 
 | 	zonesize += zone_start_pfn & (pageblock_nr_pages-1); | 
 | 	usemapsize = roundup(zonesize, pageblock_nr_pages); | 
 | 	usemapsize = usemapsize >> pageblock_order; | 
 | 	usemapsize *= NR_PAGEBLOCK_BITS; | 
 | 	usemapsize = roundup(usemapsize, BITS_PER_LONG); | 
 |  | 
 | 	return usemapsize / BITS_PER_BYTE; | 
 | } | 
 |  | 
 | static void __ref setup_usemap(struct zone *zone) | 
 | { | 
 | 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn, | 
 | 					       zone->spanned_pages); | 
 | 	zone->pageblock_flags = NULL; | 
 | 	if (usemapsize) { | 
 | 		zone->pageblock_flags = | 
 | 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, | 
 | 					    zone_to_nid(zone)); | 
 | 		if (!zone->pageblock_flags) | 
 | 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", | 
 | 			      usemapsize, zone->name, zone_to_nid(zone)); | 
 | 	} | 
 | } | 
 | #else | 
 | static inline void setup_usemap(struct zone *zone) {} | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
 |  | 
 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ | 
 | void __init set_pageblock_order(void) | 
 | { | 
 | 	unsigned int order = MAX_PAGE_ORDER; | 
 |  | 
 | 	/* Check that pageblock_nr_pages has not already been setup */ | 
 | 	if (pageblock_order) | 
 | 		return; | 
 |  | 
 | 	/* Don't let pageblocks exceed the maximum allocation granularity. */ | 
 | 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) | 
 | 		order = HUGETLB_PAGE_ORDER; | 
 |  | 
 | 	/* | 
 | 	 * Assume the largest contiguous order of interest is a huge page. | 
 | 	 * This value may be variable depending on boot parameters on powerpc. | 
 | 	 */ | 
 | 	pageblock_order = order; | 
 | } | 
 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
 |  | 
 | /* | 
 |  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | 
 |  * is unused as pageblock_order is set at compile-time. See | 
 |  * include/linux/pageblock-flags.h for the values of pageblock_order based on | 
 |  * the kernel config | 
 |  */ | 
 | void __init set_pageblock_order(void) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
 |  | 
 | /* | 
 |  * Set up the zone data structures | 
 |  * - init pgdat internals | 
 |  * - init all zones belonging to this node | 
 |  * | 
 |  * NOTE: this function is only called during memory hotplug | 
 |  */ | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) | 
 | { | 
 | 	int nid = pgdat->node_id; | 
 | 	enum zone_type z; | 
 | 	int cpu; | 
 |  | 
 | 	pgdat_init_internals(pgdat); | 
 |  | 
 | 	if (pgdat->per_cpu_nodestats == &boot_nodestats) | 
 | 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); | 
 |  | 
 | 	/* | 
 | 	 * Reset the nr_zones, order and highest_zoneidx before reuse. | 
 | 	 * Note that kswapd will init kswapd_highest_zoneidx properly | 
 | 	 * when it starts in the near future. | 
 | 	 */ | 
 | 	pgdat->nr_zones = 0; | 
 | 	pgdat->kswapd_order = 0; | 
 | 	pgdat->kswapd_highest_zoneidx = 0; | 
 | 	pgdat->node_start_pfn = 0; | 
 | 	pgdat->node_present_pages = 0; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct per_cpu_nodestat *p; | 
 |  | 
 | 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); | 
 | 		memset(p, 0, sizeof(*p)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When memory is hot-added, all the memory is in offline state. So | 
 | 	 * clear all zones' present_pages and managed_pages because they will | 
 | 	 * be updated in online_pages() and offline_pages(). | 
 | 	 */ | 
 | 	for (z = 0; z < MAX_NR_ZONES; z++) { | 
 | 		struct zone *zone = pgdat->node_zones + z; | 
 |  | 
 | 		zone->present_pages = 0; | 
 | 		zone_init_internals(zone, z, nid, 0); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static void __init free_area_init_core(struct pglist_data *pgdat) | 
 | { | 
 | 	enum zone_type j; | 
 | 	int nid = pgdat->node_id; | 
 |  | 
 | 	pgdat_init_internals(pgdat); | 
 | 	pgdat->per_cpu_nodestats = &boot_nodestats; | 
 |  | 
 | 	for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 		struct zone *zone = pgdat->node_zones + j; | 
 | 		unsigned long size = zone->spanned_pages; | 
 |  | 
 | 		/* | 
 | 		 * Initialize zone->managed_pages as 0 , it will be reset | 
 | 		 * when memblock allocator frees pages into buddy system. | 
 | 		 */ | 
 | 		zone_init_internals(zone, j, nid, zone->present_pages); | 
 |  | 
 | 		if (!size) | 
 | 			continue; | 
 |  | 
 | 		setup_usemap(zone); | 
 | 		init_currently_empty_zone(zone, zone->zone_start_pfn, size); | 
 | 	} | 
 | } | 
 |  | 
 | void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, | 
 | 			  phys_addr_t min_addr, int nid, bool exact_nid) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	if (exact_nid) | 
 | 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, | 
 | 						   MEMBLOCK_ALLOC_ACCESSIBLE, | 
 | 						   nid); | 
 | 	else | 
 | 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr, | 
 | 						 MEMBLOCK_ALLOC_ACCESSIBLE, | 
 | 						 nid); | 
 |  | 
 | 	if (ptr && size > 0) | 
 | 		page_init_poison(ptr, size); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FLATMEM | 
 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | 
 | { | 
 | 	unsigned long start, offset, size, end; | 
 | 	struct page *map; | 
 |  | 
 | 	/* Skip empty nodes */ | 
 | 	if (!pgdat->node_spanned_pages) | 
 | 		return; | 
 |  | 
 | 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | 
 | 	offset = pgdat->node_start_pfn - start; | 
 | 	/* | 
 | 		 * The zone's endpoints aren't required to be MAX_PAGE_ORDER | 
 | 	 * aligned but the node_mem_map endpoints must be in order | 
 | 	 * for the buddy allocator to function correctly. | 
 | 	 */ | 
 | 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES); | 
 | 	size =  (end - start) * sizeof(struct page); | 
 | 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, | 
 | 			   pgdat->node_id, false); | 
 | 	if (!map) | 
 | 		panic("Failed to allocate %ld bytes for node %d memory map\n", | 
 | 		      size, pgdat->node_id); | 
 | 	pgdat->node_mem_map = map + offset; | 
 | 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); | 
 | 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", | 
 | 		 __func__, pgdat->node_id, (unsigned long)pgdat, | 
 | 		 (unsigned long)pgdat->node_mem_map); | 
 | #ifndef CONFIG_NUMA | 
 | 	/* the global mem_map is just set as node 0's */ | 
 | 	if (pgdat == NODE_DATA(0)) { | 
 | 		mem_map = NODE_DATA(0)->node_mem_map; | 
 | 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | 
 | 			mem_map -= offset; | 
 | 	} | 
 | #endif | 
 | } | 
 | #else | 
 | static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } | 
 | #endif /* CONFIG_FLATMEM */ | 
 |  | 
 | /** | 
 |  * get_pfn_range_for_nid - Return the start and end page frames for a node | 
 |  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | 
 |  * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | 
 |  * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | 
 |  * | 
 |  * It returns the start and end page frame of a node based on information | 
 |  * provided by memblock_set_node(). If called for a node | 
 |  * with no available memory, the start and end PFNs will be 0. | 
 |  */ | 
 | void __init get_pfn_range_for_nid(unsigned int nid, | 
 | 			unsigned long *start_pfn, unsigned long *end_pfn) | 
 | { | 
 | 	unsigned long this_start_pfn, this_end_pfn; | 
 | 	int i; | 
 |  | 
 | 	*start_pfn = -1UL; | 
 | 	*end_pfn = 0; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { | 
 | 		*start_pfn = min(*start_pfn, this_start_pfn); | 
 | 		*end_pfn = max(*end_pfn, this_end_pfn); | 
 | 	} | 
 |  | 
 | 	if (*start_pfn == -1UL) | 
 | 		*start_pfn = 0; | 
 | } | 
 |  | 
 | static void __init free_area_init_node(int nid) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 | 	unsigned long start_pfn = 0; | 
 | 	unsigned long end_pfn = 0; | 
 |  | 
 | 	/* pg_data_t should be reset to zero when it's allocated */ | 
 | 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); | 
 |  | 
 | 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 |  | 
 | 	pgdat->node_id = nid; | 
 | 	pgdat->node_start_pfn = start_pfn; | 
 | 	pgdat->per_cpu_nodestats = NULL; | 
 |  | 
 | 	if (start_pfn != end_pfn) { | 
 | 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, | 
 | 			(u64)start_pfn << PAGE_SHIFT, | 
 | 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | 
 |  | 
 | 		calculate_node_totalpages(pgdat, start_pfn, end_pfn); | 
 | 	} else { | 
 | 		pr_info("Initmem setup node %d as memoryless\n", nid); | 
 |  | 
 | 		reset_memoryless_node_totalpages(pgdat); | 
 | 	} | 
 |  | 
 | 	alloc_node_mem_map(pgdat); | 
 | 	pgdat_set_deferred_range(pgdat); | 
 |  | 
 | 	free_area_init_core(pgdat); | 
 | 	lru_gen_init_pgdat(pgdat); | 
 | } | 
 |  | 
 | /* Any regular or high memory on that node ? */ | 
 | static void __init check_for_memory(pg_data_t *pgdat) | 
 | { | 
 | 	enum zone_type zone_type; | 
 |  | 
 | 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zone_type]; | 
 | 		if (populated_zone(zone)) { | 
 | 			if (IS_ENABLED(CONFIG_HIGHMEM)) | 
 | 				node_set_state(pgdat->node_id, N_HIGH_MEMORY); | 
 | 			if (zone_type <= ZONE_NORMAL) | 
 | 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #if MAX_NUMNODES > 1 | 
 | /* | 
 |  * Figure out the number of possible node ids. | 
 |  */ | 
 | void __init setup_nr_node_ids(void) | 
 | { | 
 | 	unsigned int highest; | 
 |  | 
 | 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); | 
 | 	nr_node_ids = highest + 1; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For | 
 |  * such cases we allow max_zone_pfn sorted in the descending order | 
 |  */ | 
 | static bool arch_has_descending_max_zone_pfns(void) | 
 | { | 
 | 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); | 
 | } | 
 |  | 
 | /** | 
 |  * free_area_init - Initialise all pg_data_t and zone data | 
 |  * @max_zone_pfn: an array of max PFNs for each zone | 
 |  * | 
 |  * This will call free_area_init_node() for each active node in the system. | 
 |  * Using the page ranges provided by memblock_set_node(), the size of each | 
 |  * zone in each node and their holes is calculated. If the maximum PFN | 
 |  * between two adjacent zones match, it is assumed that the zone is empty. | 
 |  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | 
 |  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | 
 |  * starts where the previous one ended. For example, ZONE_DMA32 starts | 
 |  * at arch_max_dma_pfn. | 
 |  */ | 
 | void __init free_area_init(unsigned long *max_zone_pfn) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, nid, zone; | 
 | 	bool descending; | 
 |  | 
 | 	/* Record where the zone boundaries are */ | 
 | 	memset(arch_zone_lowest_possible_pfn, 0, | 
 | 				sizeof(arch_zone_lowest_possible_pfn)); | 
 | 	memset(arch_zone_highest_possible_pfn, 0, | 
 | 				sizeof(arch_zone_highest_possible_pfn)); | 
 |  | 
 | 	start_pfn = PHYS_PFN(memblock_start_of_DRAM()); | 
 | 	descending = arch_has_descending_max_zone_pfns(); | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 		if (descending) | 
 | 			zone = MAX_NR_ZONES - i - 1; | 
 | 		else | 
 | 			zone = i; | 
 |  | 
 | 		if (zone == ZONE_MOVABLE) | 
 | 			continue; | 
 |  | 
 | 		end_pfn = max(max_zone_pfn[zone], start_pfn); | 
 | 		arch_zone_lowest_possible_pfn[zone] = start_pfn; | 
 | 		arch_zone_highest_possible_pfn[zone] = end_pfn; | 
 |  | 
 | 		start_pfn = end_pfn; | 
 | 	} | 
 |  | 
 | 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */ | 
 | 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | 
 | 	find_zone_movable_pfns_for_nodes(); | 
 |  | 
 | 	/* Print out the zone ranges */ | 
 | 	pr_info("Zone ranges:\n"); | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 		if (i == ZONE_MOVABLE) | 
 | 			continue; | 
 | 		pr_info("  %-8s ", zone_names[i]); | 
 | 		if (arch_zone_lowest_possible_pfn[i] == | 
 | 				arch_zone_highest_possible_pfn[i]) | 
 | 			pr_cont("empty\n"); | 
 | 		else | 
 | 			pr_cont("[mem %#018Lx-%#018Lx]\n", | 
 | 				(u64)arch_zone_lowest_possible_pfn[i] | 
 | 					<< PAGE_SHIFT, | 
 | 				((u64)arch_zone_highest_possible_pfn[i] | 
 | 					<< PAGE_SHIFT) - 1); | 
 | 	} | 
 |  | 
 | 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */ | 
 | 	pr_info("Movable zone start for each node\n"); | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		if (zone_movable_pfn[i]) | 
 | 			pr_info("  Node %d: %#018Lx\n", i, | 
 | 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Print out the early node map, and initialize the | 
 | 	 * subsection-map relative to active online memory ranges to | 
 | 	 * enable future "sub-section" extensions of the memory map. | 
 | 	 */ | 
 | 	pr_info("Early memory node ranges\n"); | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
 | 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid, | 
 | 			(u64)start_pfn << PAGE_SHIFT, | 
 | 			((u64)end_pfn << PAGE_SHIFT) - 1); | 
 | 		subsection_map_init(start_pfn, end_pfn - start_pfn); | 
 | 	} | 
 |  | 
 | 	/* Initialise every node */ | 
 | 	mminit_verify_pageflags_layout(); | 
 | 	setup_nr_node_ids(); | 
 | 	set_pageblock_order(); | 
 |  | 
 | 	for_each_node(nid) { | 
 | 		pg_data_t *pgdat; | 
 |  | 
 | 		if (!node_online(nid)) { | 
 | 			/* Allocator not initialized yet */ | 
 | 			pgdat = arch_alloc_nodedata(nid); | 
 | 			if (!pgdat) | 
 | 				panic("Cannot allocate %zuB for node %d.\n", | 
 | 				       sizeof(*pgdat), nid); | 
 | 			arch_refresh_nodedata(nid, pgdat); | 
 | 		} | 
 |  | 
 | 		pgdat = NODE_DATA(nid); | 
 | 		free_area_init_node(nid); | 
 |  | 
 | 		/* | 
 | 		 * No sysfs hierarcy will be created via register_one_node() | 
 | 		 *for memory-less node because here it's not marked as N_MEMORY | 
 | 		 *and won't be set online later. The benefit is userspace | 
 | 		 *program won't be confused by sysfs files/directories of | 
 | 		 *memory-less node. The pgdat will get fully initialized by | 
 | 		 *hotadd_init_pgdat() when memory is hotplugged into this node. | 
 | 		 */ | 
 | 		if (pgdat->node_present_pages) { | 
 | 			node_set_state(nid, N_MEMORY); | 
 | 			check_for_memory(pgdat); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	calc_nr_kernel_pages(); | 
 | 	memmap_init(); | 
 |  | 
 | 	/* disable hash distribution for systems with a single node */ | 
 | 	fixup_hashdist(); | 
 | } | 
 |  | 
 | /** | 
 |  * node_map_pfn_alignment - determine the maximum internode alignment | 
 |  * | 
 |  * This function should be called after node map is populated and sorted. | 
 |  * It calculates the maximum power of two alignment which can distinguish | 
 |  * all the nodes. | 
 |  * | 
 |  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | 
 |  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the | 
 |  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is | 
 |  * shifted, 1GiB is enough and this function will indicate so. | 
 |  * | 
 |  * This is used to test whether pfn -> nid mapping of the chosen memory | 
 |  * model has fine enough granularity to avoid incorrect mapping for the | 
 |  * populated node map. | 
 |  * | 
 |  * Return: the determined alignment in pfn's.  0 if there is no alignment | 
 |  * requirement (single node). | 
 |  */ | 
 | unsigned long __init node_map_pfn_alignment(void) | 
 | { | 
 | 	unsigned long accl_mask = 0, last_end = 0; | 
 | 	unsigned long start, end, mask; | 
 | 	int last_nid = NUMA_NO_NODE; | 
 | 	int i, nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { | 
 | 		if (!start || last_nid < 0 || last_nid == nid) { | 
 | 			last_nid = nid; | 
 | 			last_end = end; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Start with a mask granular enough to pin-point to the | 
 | 		 * start pfn and tick off bits one-by-one until it becomes | 
 | 		 * too coarse to separate the current node from the last. | 
 | 		 */ | 
 | 		mask = ~((1 << __ffs(start)) - 1); | 
 | 		while (mask && last_end <= (start & (mask << 1))) | 
 | 			mask <<= 1; | 
 |  | 
 | 		/* accumulate all internode masks */ | 
 | 		accl_mask |= mask; | 
 | 	} | 
 |  | 
 | 	/* convert mask to number of pages */ | 
 | 	return ~accl_mask + 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 | static void __init deferred_free_pages(unsigned long pfn, | 
 | 		unsigned long nr_pages) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return; | 
 |  | 
 | 	page = pfn_to_page(pfn); | 
 |  | 
 | 	/* Free a large naturally-aligned chunk if possible */ | 
 | 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { | 
 | 		for (i = 0; i < nr_pages; i += pageblock_nr_pages) | 
 | 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); | 
 | 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */ | 
 | 	accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages)); | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++, page++, pfn++) { | 
 | 		if (pageblock_aligned(pfn)) | 
 | 			set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
 | 		__free_pages_core(page, 0, MEMINIT_EARLY); | 
 | 	} | 
 | } | 
 |  | 
 | /* Completion tracking for deferred_init_memmap() threads */ | 
 | static atomic_t pgdat_init_n_undone __initdata; | 
 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | 
 |  | 
 | static inline void __init pgdat_init_report_one_done(void) | 
 | { | 
 | 	if (atomic_dec_and_test(&pgdat_init_n_undone)) | 
 | 		complete(&pgdat_init_all_done_comp); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks | 
 |  * by performing it only once every MAX_ORDER_NR_PAGES. | 
 |  * Return number of pages initialized. | 
 |  */ | 
 | static unsigned long __init deferred_init_pages(struct zone *zone, | 
 | 		unsigned long pfn, unsigned long end_pfn) | 
 | { | 
 | 	int nid = zone_to_nid(zone); | 
 | 	unsigned long nr_pages = end_pfn - pfn; | 
 | 	int zid = zone_idx(zone); | 
 | 	struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 	for (; pfn < end_pfn; pfn++, page++) | 
 | 		__init_single_page(page, pfn, zid, nid); | 
 | 	return nr_pages; | 
 | } | 
 |  | 
 | /* | 
 |  * This function is meant to pre-load the iterator for the zone init from | 
 |  * a given point. | 
 |  * Specifically it walks through the ranges starting with initial index | 
 |  * passed to it until we are caught up to the first_init_pfn value and | 
 |  * exits there. If we never encounter the value we return false indicating | 
 |  * there are no valid ranges left. | 
 |  */ | 
 | static bool __init | 
 | deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, | 
 | 				    unsigned long *spfn, unsigned long *epfn, | 
 | 				    unsigned long first_init_pfn) | 
 | { | 
 | 	u64 j = *i; | 
 |  | 
 | 	if (j == 0) | 
 | 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn); | 
 |  | 
 | 	/* | 
 | 	 * Start out by walking through the ranges in this zone that have | 
 | 	 * already been initialized. We don't need to do anything with them | 
 | 	 * so we just need to flush them out of the system. | 
 | 	 */ | 
 | 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) { | 
 | 		if (*epfn <= first_init_pfn) | 
 | 			continue; | 
 | 		if (*spfn < first_init_pfn) | 
 | 			*spfn = first_init_pfn; | 
 | 		*i = j; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize and free pages. We do it in two loops: first we initialize | 
 |  * struct page, then free to buddy allocator, because while we are | 
 |  * freeing pages we can access pages that are ahead (computing buddy | 
 |  * page in __free_one_page()). | 
 |  * | 
 |  * In order to try and keep some memory in the cache we have the loop | 
 |  * broken along max page order boundaries. This way we will not cause | 
 |  * any issues with the buddy page computation. | 
 |  */ | 
 | static unsigned long __init | 
 | deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, | 
 | 		       unsigned long *end_pfn) | 
 | { | 
 | 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); | 
 | 	unsigned long spfn = *start_pfn, epfn = *end_pfn; | 
 | 	unsigned long nr_pages = 0; | 
 | 	u64 j = *i; | 
 |  | 
 | 	/* First we loop through and initialize the page values */ | 
 | 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { | 
 | 		unsigned long t; | 
 |  | 
 | 		if (mo_pfn <= *start_pfn) | 
 | 			break; | 
 |  | 
 | 		t = min(mo_pfn, *end_pfn); | 
 | 		nr_pages += deferred_init_pages(zone, *start_pfn, t); | 
 |  | 
 | 		if (mo_pfn < *end_pfn) { | 
 | 			*start_pfn = mo_pfn; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Reset values and now loop through freeing pages as needed */ | 
 | 	swap(j, *i); | 
 |  | 
 | 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { | 
 | 		unsigned long t; | 
 |  | 
 | 		if (mo_pfn <= spfn) | 
 | 			break; | 
 |  | 
 | 		t = min(mo_pfn, epfn); | 
 | 		deferred_free_pages(spfn, t - spfn); | 
 |  | 
 | 		if (mo_pfn <= epfn) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return nr_pages; | 
 | } | 
 |  | 
 | static void __init | 
 | deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, | 
 | 			   void *arg) | 
 | { | 
 | 	unsigned long spfn, epfn; | 
 | 	struct zone *zone = arg; | 
 | 	u64 i = 0; | 
 |  | 
 | 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); | 
 |  | 
 | 	/* | 
 | 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that | 
 | 	 * we can avoid introducing any issues with the buddy allocator. | 
 | 	 */ | 
 | 	while (spfn < end_pfn) { | 
 | 		deferred_init_maxorder(&i, zone, &spfn, &epfn); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned int __init | 
 | deferred_page_init_max_threads(const struct cpumask *node_cpumask) | 
 | { | 
 | 	return max(cpumask_weight(node_cpumask), 1U); | 
 | } | 
 |  | 
 | /* Initialise remaining memory on a node */ | 
 | static int __init deferred_init_memmap(void *data) | 
 | { | 
 | 	pg_data_t *pgdat = data; | 
 | 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | 
 | 	unsigned long spfn = 0, epfn = 0; | 
 | 	unsigned long first_init_pfn, flags; | 
 | 	unsigned long start = jiffies; | 
 | 	struct zone *zone; | 
 | 	int max_threads; | 
 | 	u64 i = 0; | 
 |  | 
 | 	/* Bind memory initialisation thread to a local node if possible */ | 
 | 	if (!cpumask_empty(cpumask)) | 
 | 		set_cpus_allowed_ptr(current, cpumask); | 
 |  | 
 | 	pgdat_resize_lock(pgdat, &flags); | 
 | 	first_init_pfn = pgdat->first_deferred_pfn; | 
 | 	if (first_init_pfn == ULONG_MAX) { | 
 | 		pgdat_resize_unlock(pgdat, &flags); | 
 | 		pgdat_init_report_one_done(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Sanity check boundaries */ | 
 | 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | 
 | 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | 
 | 	pgdat->first_deferred_pfn = ULONG_MAX; | 
 |  | 
 | 	/* | 
 | 	 * Once we unlock here, the zone cannot be grown anymore, thus if an | 
 | 	 * interrupt thread must allocate this early in boot, zone must be | 
 | 	 * pre-grown prior to start of deferred page initialization. | 
 | 	 */ | 
 | 	pgdat_resize_unlock(pgdat, &flags); | 
 |  | 
 | 	/* Only the highest zone is deferred */ | 
 | 	zone = pgdat->node_zones + pgdat->nr_zones - 1; | 
 |  | 
 | 	max_threads = deferred_page_init_max_threads(cpumask); | 
 |  | 
 | 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) { | 
 | 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION); | 
 | 		struct padata_mt_job job = { | 
 | 			.thread_fn   = deferred_init_memmap_chunk, | 
 | 			.fn_arg      = zone, | 
 | 			.start       = spfn, | 
 | 			.size        = first_init_pfn - spfn, | 
 | 			.align       = PAGES_PER_SECTION, | 
 | 			.min_chunk   = PAGES_PER_SECTION, | 
 | 			.max_threads = max_threads, | 
 | 			.numa_aware  = false, | 
 | 		}; | 
 |  | 
 | 		padata_do_multithreaded(&job); | 
 | 	} | 
 |  | 
 | 	/* Sanity check that the next zone really is unpopulated */ | 
 | 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone)); | 
 |  | 
 | 	pr_info("node %d deferred pages initialised in %ums\n", | 
 | 		pgdat->node_id, jiffies_to_msecs(jiffies - start)); | 
 |  | 
 | 	pgdat_init_report_one_done(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If this zone has deferred pages, try to grow it by initializing enough | 
 |  * deferred pages to satisfy the allocation specified by order, rounded up to | 
 |  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments | 
 |  * of SECTION_SIZE bytes by initializing struct pages in increments of | 
 |  * PAGES_PER_SECTION * sizeof(struct page) bytes. | 
 |  * | 
 |  * Return true when zone was grown, otherwise return false. We return true even | 
 |  * when we grow less than requested, to let the caller decide if there are | 
 |  * enough pages to satisfy the allocation. | 
 |  */ | 
 | bool __init deferred_grow_zone(struct zone *zone, unsigned int order) | 
 | { | 
 | 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); | 
 | 	pg_data_t *pgdat = zone->zone_pgdat; | 
 | 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; | 
 | 	unsigned long spfn, epfn, flags; | 
 | 	unsigned long nr_pages = 0; | 
 | 	u64 i = 0; | 
 |  | 
 | 	/* Only the last zone may have deferred pages */ | 
 | 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) | 
 | 		return false; | 
 |  | 
 | 	pgdat_resize_lock(pgdat, &flags); | 
 |  | 
 | 	/* | 
 | 	 * If someone grew this zone while we were waiting for spinlock, return | 
 | 	 * true, as there might be enough pages already. | 
 | 	 */ | 
 | 	if (first_deferred_pfn != pgdat->first_deferred_pfn) { | 
 | 		pgdat_resize_unlock(pgdat, &flags); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* If the zone is empty somebody else may have cleared out the zone */ | 
 | 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | 
 | 						 first_deferred_pfn)) { | 
 | 		pgdat->first_deferred_pfn = ULONG_MAX; | 
 | 		pgdat_resize_unlock(pgdat, &flags); | 
 | 		/* Retry only once. */ | 
 | 		return first_deferred_pfn != ULONG_MAX; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so | 
 | 	 * that we can avoid introducing any issues with the buddy | 
 | 	 * allocator. | 
 | 	 */ | 
 | 	while (spfn < epfn) { | 
 | 		/* update our first deferred PFN for this section */ | 
 | 		first_deferred_pfn = spfn; | 
 |  | 
 | 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); | 
 | 		touch_nmi_watchdog(); | 
 |  | 
 | 		/* We should only stop along section boundaries */ | 
 | 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) | 
 | 			continue; | 
 |  | 
 | 		/* If our quota has been met we can stop here */ | 
 | 		if (nr_pages >= nr_pages_needed) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	pgdat->first_deferred_pfn = spfn; | 
 | 	pgdat_resize_unlock(pgdat, &flags); | 
 |  | 
 | 	return nr_pages > 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | void __init init_cma_reserved_pageblock(struct page *page) | 
 | { | 
 | 	unsigned i = pageblock_nr_pages; | 
 | 	struct page *p = page; | 
 |  | 
 | 	do { | 
 | 		__ClearPageReserved(p); | 
 | 		set_page_count(p, 0); | 
 | 	} while (++p, --i); | 
 |  | 
 | 	set_pageblock_migratetype(page, MIGRATE_CMA); | 
 | 	set_page_refcounted(page); | 
 | 	/* pages were reserved and not allocated */ | 
 | 	clear_page_tag_ref(page); | 
 | 	__free_pages(page, pageblock_order); | 
 |  | 
 | 	adjust_managed_page_count(page, pageblock_nr_pages); | 
 | 	page_zone(page)->cma_pages += pageblock_nr_pages; | 
 | } | 
 | #endif | 
 |  | 
 | void set_zone_contiguous(struct zone *zone) | 
 | { | 
 | 	unsigned long block_start_pfn = zone->zone_start_pfn; | 
 | 	unsigned long block_end_pfn; | 
 |  | 
 | 	block_end_pfn = pageblock_end_pfn(block_start_pfn); | 
 | 	for (; block_start_pfn < zone_end_pfn(zone); | 
 | 			block_start_pfn = block_end_pfn, | 
 | 			 block_end_pfn += pageblock_nr_pages) { | 
 |  | 
 | 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | 
 |  | 
 | 		if (!__pageblock_pfn_to_page(block_start_pfn, | 
 | 					     block_end_pfn, zone)) | 
 | 			return; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* We confirm that there is no hole */ | 
 | 	zone->contiguous = true; | 
 | } | 
 |  | 
 | static void __init mem_init_print_info(void); | 
 | void __init page_alloc_init_late(void) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int nid; | 
 |  | 
 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | 
 |  | 
 | 	/* There will be num_node_state(N_MEMORY) threads */ | 
 | 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); | 
 | 	} | 
 |  | 
 | 	/* Block until all are initialised */ | 
 | 	wait_for_completion(&pgdat_init_all_done_comp); | 
 |  | 
 | 	/* | 
 | 	 * We initialized the rest of the deferred pages.  Permanently disable | 
 | 	 * on-demand struct page initialization. | 
 | 	 */ | 
 | 	static_branch_disable(&deferred_pages); | 
 |  | 
 | 	/* Reinit limits that are based on free pages after the kernel is up */ | 
 | 	files_maxfiles_init(); | 
 | #endif | 
 |  | 
 | 	/* Accounting of total+free memory is stable at this point. */ | 
 | 	mem_init_print_info(); | 
 | 	buffer_init(); | 
 |  | 
 | 	/* Discard memblock private memory */ | 
 | 	memblock_discard(); | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 | 		shuffle_free_memory(NODE_DATA(nid)); | 
 |  | 
 | 	for_each_populated_zone(zone) | 
 | 		set_zone_contiguous(zone); | 
 |  | 
 | 	/* Initialize page ext after all struct pages are initialized. */ | 
 | 	if (deferred_struct_pages) | 
 | 		page_ext_init(); | 
 |  | 
 | 	page_alloc_sysctl_init(); | 
 | } | 
 |  | 
 | /* | 
 |  * Adaptive scale is meant to reduce sizes of hash tables on large memory | 
 |  * machines. As memory size is increased the scale is also increased but at | 
 |  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory | 
 |  * quadruples the scale is increased by one, which means the size of hash table | 
 |  * only doubles, instead of quadrupling as well. | 
 |  * Because 32-bit systems cannot have large physical memory, where this scaling | 
 |  * makes sense, it is disabled on such platforms. | 
 |  */ | 
 | #if __BITS_PER_LONG > 32 | 
 | #define ADAPT_SCALE_BASE	(64ul << 30) | 
 | #define ADAPT_SCALE_SHIFT	2 | 
 | #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT) | 
 | #endif | 
 |  | 
 | /* | 
 |  * allocate a large system hash table from bootmem | 
 |  * - it is assumed that the hash table must contain an exact power-of-2 | 
 |  *   quantity of entries | 
 |  * - limit is the number of hash buckets, not the total allocation size | 
 |  */ | 
 | void *__init alloc_large_system_hash(const char *tablename, | 
 | 				     unsigned long bucketsize, | 
 | 				     unsigned long numentries, | 
 | 				     int scale, | 
 | 				     int flags, | 
 | 				     unsigned int *_hash_shift, | 
 | 				     unsigned int *_hash_mask, | 
 | 				     unsigned long low_limit, | 
 | 				     unsigned long high_limit) | 
 | { | 
 | 	unsigned long long max = high_limit; | 
 | 	unsigned long log2qty, size; | 
 | 	void *table; | 
 | 	gfp_t gfp_flags; | 
 | 	bool virt; | 
 | 	bool huge; | 
 |  | 
 | 	/* allow the kernel cmdline to have a say */ | 
 | 	if (!numentries) { | 
 | 		/* round applicable memory size up to nearest megabyte */ | 
 | 		numentries = nr_kernel_pages; | 
 |  | 
 | 		/* It isn't necessary when PAGE_SIZE >= 1MB */ | 
 | 		if (PAGE_SIZE < SZ_1M) | 
 | 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE); | 
 |  | 
 | #if __BITS_PER_LONG > 32 | 
 | 		if (!high_limit) { | 
 | 			unsigned long adapt; | 
 |  | 
 | 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; | 
 | 			     adapt <<= ADAPT_SCALE_SHIFT) | 
 | 				scale++; | 
 | 		} | 
 | #endif | 
 |  | 
 | 		/* limit to 1 bucket per 2^scale bytes of low memory */ | 
 | 		if (scale > PAGE_SHIFT) | 
 | 			numentries >>= (scale - PAGE_SHIFT); | 
 | 		else | 
 | 			numentries <<= (PAGE_SHIFT - scale); | 
 |  | 
 | 		if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | 
 | 			numentries = PAGE_SIZE / bucketsize; | 
 | 	} | 
 | 	numentries = roundup_pow_of_two(numentries); | 
 |  | 
 | 	/* limit allocation size to 1/16 total memory by default */ | 
 | 	if (max == 0) { | 
 | 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
 | 		do_div(max, bucketsize); | 
 | 	} | 
 | 	max = min(max, 0x80000000ULL); | 
 |  | 
 | 	if (numentries < low_limit) | 
 | 		numentries = low_limit; | 
 | 	if (numentries > max) | 
 | 		numentries = max; | 
 |  | 
 | 	log2qty = ilog2(numentries); | 
 |  | 
 | 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; | 
 | 	do { | 
 | 		virt = false; | 
 | 		size = bucketsize << log2qty; | 
 | 		if (flags & HASH_EARLY) { | 
 | 			if (flags & HASH_ZERO) | 
 | 				table = memblock_alloc(size, SMP_CACHE_BYTES); | 
 | 			else | 
 | 				table = memblock_alloc_raw(size, | 
 | 							   SMP_CACHE_BYTES); | 
 | 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) { | 
 | 			table = vmalloc_huge(size, gfp_flags); | 
 | 			virt = true; | 
 | 			if (table) | 
 | 				huge = is_vm_area_hugepages(table); | 
 | 		} else { | 
 | 			/* | 
 | 			 * If bucketsize is not a power-of-two, we may free | 
 | 			 * some pages at the end of hash table which | 
 | 			 * alloc_pages_exact() automatically does | 
 | 			 */ | 
 | 			table = alloc_pages_exact(size, gfp_flags); | 
 | 			kmemleak_alloc(table, size, 1, gfp_flags); | 
 | 		} | 
 | 	} while (!table && size > PAGE_SIZE && --log2qty); | 
 |  | 
 | 	if (!table) | 
 | 		panic("Failed to allocate %s hash table\n", tablename); | 
 |  | 
 | 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", | 
 | 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, | 
 | 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); | 
 |  | 
 | 	if (_hash_shift) | 
 | 		*_hash_shift = log2qty; | 
 | 	if (_hash_mask) | 
 | 		*_hash_mask = (1 << log2qty) - 1; | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | void __init memblock_free_pages(struct page *page, unsigned long pfn, | 
 | 							unsigned int order) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { | 
 | 		int nid = early_pfn_to_nid(pfn); | 
 |  | 
 | 		if (!early_page_initialised(pfn, nid)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	if (!kmsan_memblock_free_pages(page, order)) { | 
 | 		/* KMSAN will take care of these pages. */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* pages were reserved and not allocated */ | 
 | 	clear_page_tag_ref(page); | 
 | 	__free_pages_core(page, order, MEMINIT_EARLY); | 
 | } | 
 |  | 
 | DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); | 
 | EXPORT_SYMBOL(init_on_alloc); | 
 |  | 
 | DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); | 
 | EXPORT_SYMBOL(init_on_free); | 
 |  | 
 | static bool _init_on_alloc_enabled_early __read_mostly | 
 | 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); | 
 | static int __init early_init_on_alloc(char *buf) | 
 | { | 
 |  | 
 | 	return kstrtobool(buf, &_init_on_alloc_enabled_early); | 
 | } | 
 | early_param("init_on_alloc", early_init_on_alloc); | 
 |  | 
 | static bool _init_on_free_enabled_early __read_mostly | 
 | 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); | 
 | static int __init early_init_on_free(char *buf) | 
 | { | 
 | 	return kstrtobool(buf, &_init_on_free_enabled_early); | 
 | } | 
 | early_param("init_on_free", early_init_on_free); | 
 |  | 
 | DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); | 
 |  | 
 | /* | 
 |  * Enable static keys related to various memory debugging and hardening options. | 
 |  * Some override others, and depend on early params that are evaluated in the | 
 |  * order of appearance. So we need to first gather the full picture of what was | 
 |  * enabled, and then make decisions. | 
 |  */ | 
 | static void __init mem_debugging_and_hardening_init(void) | 
 | { | 
 | 	bool page_poisoning_requested = false; | 
 | 	bool want_check_pages = false; | 
 |  | 
 | #ifdef CONFIG_PAGE_POISONING | 
 | 	/* | 
 | 	 * Page poisoning is debug page alloc for some arches. If | 
 | 	 * either of those options are enabled, enable poisoning. | 
 | 	 */ | 
 | 	if (page_poisoning_enabled() || | 
 | 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && | 
 | 	      debug_pagealloc_enabled())) { | 
 | 		static_branch_enable(&_page_poisoning_enabled); | 
 | 		page_poisoning_requested = true; | 
 | 		want_check_pages = true; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && | 
 | 	    page_poisoning_requested) { | 
 | 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " | 
 | 			"will take precedence over init_on_alloc and init_on_free\n"); | 
 | 		_init_on_alloc_enabled_early = false; | 
 | 		_init_on_free_enabled_early = false; | 
 | 	} | 
 |  | 
 | 	if (_init_on_alloc_enabled_early) { | 
 | 		want_check_pages = true; | 
 | 		static_branch_enable(&init_on_alloc); | 
 | 	} else { | 
 | 		static_branch_disable(&init_on_alloc); | 
 | 	} | 
 |  | 
 | 	if (_init_on_free_enabled_early) { | 
 | 		want_check_pages = true; | 
 | 		static_branch_enable(&init_on_free); | 
 | 	} else { | 
 | 		static_branch_disable(&init_on_free); | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_KMSAN) && | 
 | 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) | 
 | 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	if (debug_pagealloc_enabled()) { | 
 | 		want_check_pages = true; | 
 | 		static_branch_enable(&_debug_pagealloc_enabled); | 
 |  | 
 | 		if (debug_guardpage_minorder()) | 
 | 			static_branch_enable(&_debug_guardpage_enabled); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Any page debugging or hardening option also enables sanity checking | 
 | 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's | 
 | 	 * enabled already. | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) | 
 | 		static_branch_enable(&check_pages_enabled); | 
 | } | 
 |  | 
 | /* Report memory auto-initialization states for this boot. */ | 
 | static void __init report_meminit(void) | 
 | { | 
 | 	const char *stack; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) | 
 | 		stack = "all(pattern)"; | 
 | 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) | 
 | 		stack = "all(zero)"; | 
 | 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) | 
 | 		stack = "byref_all(zero)"; | 
 | 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) | 
 | 		stack = "byref(zero)"; | 
 | 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) | 
 | 		stack = "__user(zero)"; | 
 | 	else | 
 | 		stack = "off"; | 
 |  | 
 | 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", | 
 | 		stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", | 
 | 		want_init_on_free() ? "on" : "off"); | 
 | 	if (want_init_on_free()) | 
 | 		pr_info("mem auto-init: clearing system memory may take some time...\n"); | 
 | } | 
 |  | 
 | static void __init mem_init_print_info(void) | 
 | { | 
 | 	unsigned long physpages, codesize, datasize, rosize, bss_size; | 
 | 	unsigned long init_code_size, init_data_size; | 
 |  | 
 | 	physpages = get_num_physpages(); | 
 | 	codesize = _etext - _stext; | 
 | 	datasize = _edata - _sdata; | 
 | 	rosize = __end_rodata - __start_rodata; | 
 | 	bss_size = __bss_stop - __bss_start; | 
 | 	init_data_size = __init_end - __init_begin; | 
 | 	init_code_size = _einittext - _sinittext; | 
 |  | 
 | 	/* | 
 | 	 * Detect special cases and adjust section sizes accordingly: | 
 | 	 * 1) .init.* may be embedded into .data sections | 
 | 	 * 2) .init.text.* may be out of [__init_begin, __init_end], | 
 | 	 *    please refer to arch/tile/kernel/vmlinux.lds.S. | 
 | 	 * 3) .rodata.* may be embedded into .text or .data sections. | 
 | 	 */ | 
 | #define adj_init_size(start, end, size, pos, adj) \ | 
 | 	do { \ | 
 | 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ | 
 | 			size -= adj; \ | 
 | 	} while (0) | 
 |  | 
 | 	adj_init_size(__init_begin, __init_end, init_data_size, | 
 | 		     _sinittext, init_code_size); | 
 | 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | 
 | 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | 
 | 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | 
 | 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | 
 |  | 
 | #undef	adj_init_size | 
 |  | 
 | 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" | 
 | #ifdef	CONFIG_HIGHMEM | 
 | 		", %luK highmem" | 
 | #endif | 
 | 		")\n", | 
 | 		K(nr_free_pages()), K(physpages), | 
 | 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, | 
 | 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, | 
 | 		K(physpages - totalram_pages() - totalcma_pages), | 
 | 		K(totalcma_pages) | 
 | #ifdef	CONFIG_HIGHMEM | 
 | 		, K(totalhigh_pages()) | 
 | #endif | 
 | 		); | 
 | } | 
 |  | 
 | /* | 
 |  * Set up kernel memory allocators | 
 |  */ | 
 | void __init mm_core_init(void) | 
 | { | 
 | 	/* Initializations relying on SMP setup */ | 
 | 	BUILD_BUG_ON(MAX_ZONELISTS > 2); | 
 | 	build_all_zonelists(NULL); | 
 | 	page_alloc_init_cpuhp(); | 
 |  | 
 | 	/* | 
 | 	 * page_ext requires contiguous pages, | 
 | 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM. | 
 | 	 */ | 
 | 	page_ext_init_flatmem(); | 
 | 	mem_debugging_and_hardening_init(); | 
 | 	kfence_alloc_pool_and_metadata(); | 
 | 	report_meminit(); | 
 | 	kmsan_init_shadow(); | 
 | 	stack_depot_early_init(); | 
 | 	mem_init(); | 
 | 	kmem_cache_init(); | 
 | 	/* | 
 | 	 * page_owner must be initialized after buddy is ready, and also after | 
 | 	 * slab is ready so that stack_depot_init() works properly | 
 | 	 */ | 
 | 	page_ext_init_flatmem_late(); | 
 | 	kmemleak_init(); | 
 | 	ptlock_cache_init(); | 
 | 	pgtable_cache_init(); | 
 | 	debug_objects_mem_init(); | 
 | 	vmalloc_init(); | 
 | 	/* If no deferred init page_ext now, as vmap is fully initialized */ | 
 | 	if (!deferred_struct_pages) | 
 | 		page_ext_init(); | 
 | 	/* Should be run before the first non-init thread is created */ | 
 | 	init_espfix_bsp(); | 
 | 	/* Should be run after espfix64 is set up. */ | 
 | 	pti_init(); | 
 | 	kmsan_init_runtime(); | 
 | 	mm_cache_init(); | 
 | 	execmem_init(); | 
 | } |