|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2010 Red Hat, Inc. | 
|  | * Copyright (c) 2016-2021 Christoph Hellwig. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/fscrypt.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/iomap.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include "trace.h" | 
|  |  | 
|  | #include "../internal.h" | 
|  |  | 
|  | /* | 
|  | * Private flags for iomap_dio, must not overlap with the public ones in | 
|  | * iomap.h: | 
|  | */ | 
|  | #define IOMAP_DIO_CALLER_COMP	(1U << 26) | 
|  | #define IOMAP_DIO_INLINE_COMP	(1U << 27) | 
|  | #define IOMAP_DIO_WRITE_THROUGH	(1U << 28) | 
|  | #define IOMAP_DIO_NEED_SYNC	(1U << 29) | 
|  | #define IOMAP_DIO_WRITE		(1U << 30) | 
|  | #define IOMAP_DIO_DIRTY		(1U << 31) | 
|  |  | 
|  | /* | 
|  | * Used for sub block zeroing in iomap_dio_zero() | 
|  | */ | 
|  | #define IOMAP_ZERO_PAGE_SIZE (SZ_64K) | 
|  | #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE)) | 
|  | static struct page *zero_page; | 
|  |  | 
|  | struct iomap_dio { | 
|  | struct kiocb		*iocb; | 
|  | const struct iomap_dio_ops *dops; | 
|  | loff_t			i_size; | 
|  | loff_t			size; | 
|  | atomic_t		ref; | 
|  | unsigned		flags; | 
|  | int			error; | 
|  | size_t			done_before; | 
|  | bool			wait_for_completion; | 
|  |  | 
|  | union { | 
|  | /* used during submission and for synchronous completion: */ | 
|  | struct { | 
|  | struct iov_iter		*iter; | 
|  | struct task_struct	*waiter; | 
|  | } submit; | 
|  |  | 
|  | /* used for aio completion: */ | 
|  | struct { | 
|  | struct work_struct	work; | 
|  | } aio; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, | 
|  | struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) | 
|  | { | 
|  | if (dio->dops && dio->dops->bio_set) | 
|  | return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, | 
|  | GFP_KERNEL, dio->dops->bio_set); | 
|  | return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static void iomap_dio_submit_bio(const struct iomap_iter *iter, | 
|  | struct iomap_dio *dio, struct bio *bio, loff_t pos) | 
|  | { | 
|  | struct kiocb *iocb = dio->iocb; | 
|  |  | 
|  | atomic_inc(&dio->ref); | 
|  |  | 
|  | /* Sync dio can't be polled reliably */ | 
|  | if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { | 
|  | bio_set_polled(bio, iocb); | 
|  | WRITE_ONCE(iocb->private, bio); | 
|  | } | 
|  |  | 
|  | if (dio->dops && dio->dops->submit_io) | 
|  | dio->dops->submit_io(iter, bio, pos); | 
|  | else | 
|  | submit_bio(bio); | 
|  | } | 
|  |  | 
|  | ssize_t iomap_dio_complete(struct iomap_dio *dio) | 
|  | { | 
|  | const struct iomap_dio_ops *dops = dio->dops; | 
|  | struct kiocb *iocb = dio->iocb; | 
|  | loff_t offset = iocb->ki_pos; | 
|  | ssize_t ret = dio->error; | 
|  |  | 
|  | if (dops && dops->end_io) | 
|  | ret = dops->end_io(iocb, dio->size, ret, dio->flags); | 
|  |  | 
|  | if (likely(!ret)) { | 
|  | ret = dio->size; | 
|  | /* check for short read */ | 
|  | if (offset + ret > dio->i_size && | 
|  | !(dio->flags & IOMAP_DIO_WRITE)) | 
|  | ret = dio->i_size - offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try again to invalidate clean pages which might have been cached by | 
|  | * non-direct readahead, or faulted in by get_user_pages() if the source | 
|  | * of the write was an mmap'ed region of the file we're writing.  Either | 
|  | * one is a pretty crazy thing to do, so we don't support it 100%.  If | 
|  | * this invalidation fails, tough, the write still worked... | 
|  | * | 
|  | * And this page cache invalidation has to be after ->end_io(), as some | 
|  | * filesystems convert unwritten extents to real allocations in | 
|  | * ->end_io() when necessary, otherwise a racing buffer read would cache | 
|  | * zeros from unwritten extents. | 
|  | */ | 
|  | if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE)) | 
|  | kiocb_invalidate_post_direct_write(iocb, dio->size); | 
|  |  | 
|  | inode_dio_end(file_inode(iocb->ki_filp)); | 
|  |  | 
|  | if (ret > 0) { | 
|  | iocb->ki_pos += ret; | 
|  |  | 
|  | /* | 
|  | * If this is a DSYNC write, make sure we push it to stable | 
|  | * storage now that we've written data. | 
|  | */ | 
|  | if (dio->flags & IOMAP_DIO_NEED_SYNC) | 
|  | ret = generic_write_sync(iocb, ret); | 
|  | if (ret > 0) | 
|  | ret += dio->done_before; | 
|  | } | 
|  | trace_iomap_dio_complete(iocb, dio->error, ret); | 
|  | kfree(dio); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(iomap_dio_complete); | 
|  |  | 
|  | static ssize_t iomap_dio_deferred_complete(void *data) | 
|  | { | 
|  | return iomap_dio_complete(data); | 
|  | } | 
|  |  | 
|  | static void iomap_dio_complete_work(struct work_struct *work) | 
|  | { | 
|  | struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); | 
|  | struct kiocb *iocb = dio->iocb; | 
|  |  | 
|  | iocb->ki_complete(iocb, iomap_dio_complete(dio)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set an error in the dio if none is set yet.  We have to use cmpxchg | 
|  | * as the submission context and the completion context(s) can race to | 
|  | * update the error. | 
|  | */ | 
|  | static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) | 
|  | { | 
|  | cmpxchg(&dio->error, 0, ret); | 
|  | } | 
|  |  | 
|  | void iomap_dio_bio_end_io(struct bio *bio) | 
|  | { | 
|  | struct iomap_dio *dio = bio->bi_private; | 
|  | bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); | 
|  | struct kiocb *iocb = dio->iocb; | 
|  |  | 
|  | if (bio->bi_status) | 
|  | iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); | 
|  | if (!atomic_dec_and_test(&dio->ref)) | 
|  | goto release_bio; | 
|  |  | 
|  | /* | 
|  | * Synchronous dio, task itself will handle any completion work | 
|  | * that needs after IO. All we need to do is wake the task. | 
|  | */ | 
|  | if (dio->wait_for_completion) { | 
|  | struct task_struct *waiter = dio->submit.waiter; | 
|  |  | 
|  | WRITE_ONCE(dio->submit.waiter, NULL); | 
|  | blk_wake_io_task(waiter); | 
|  | goto release_bio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline | 
|  | */ | 
|  | if (dio->flags & IOMAP_DIO_INLINE_COMP) { | 
|  | WRITE_ONCE(iocb->private, NULL); | 
|  | iomap_dio_complete_work(&dio->aio.work); | 
|  | goto release_bio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule | 
|  | * our completion that way to avoid an async punt to a workqueue. | 
|  | */ | 
|  | if (dio->flags & IOMAP_DIO_CALLER_COMP) { | 
|  | /* only polled IO cares about private cleared */ | 
|  | iocb->private = dio; | 
|  | iocb->dio_complete = iomap_dio_deferred_complete; | 
|  |  | 
|  | /* | 
|  | * Invoke ->ki_complete() directly. We've assigned our | 
|  | * dio_complete callback handler, and since the issuer set | 
|  | * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will | 
|  | * notice ->dio_complete being set and will defer calling that | 
|  | * handler until it can be done from a safe task context. | 
|  | * | 
|  | * Note that the 'res' being passed in here is not important | 
|  | * for this case. The actual completion value of the request | 
|  | * will be gotten from dio_complete when that is run by the | 
|  | * issuer. | 
|  | */ | 
|  | iocb->ki_complete(iocb, 0); | 
|  | goto release_bio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Async DIO completion that requires filesystem level completion work | 
|  | * gets punted to a work queue to complete as the operation may require | 
|  | * more IO to be issued to finalise filesystem metadata changes or | 
|  | * guarantee data integrity. | 
|  | */ | 
|  | INIT_WORK(&dio->aio.work, iomap_dio_complete_work); | 
|  | queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq, | 
|  | &dio->aio.work); | 
|  | release_bio: | 
|  | if (should_dirty) { | 
|  | bio_check_pages_dirty(bio); | 
|  | } else { | 
|  | bio_release_pages(bio, false); | 
|  | bio_put(bio); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); | 
|  |  | 
|  | static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, | 
|  | loff_t pos, unsigned len) | 
|  | { | 
|  | struct inode *inode = file_inode(dio->iocb->ki_filp); | 
|  | struct bio *bio; | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  | /* | 
|  | * Max block size supported is 64k | 
|  | */ | 
|  | if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); | 
|  | fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, | 
|  | GFP_KERNEL); | 
|  | bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); | 
|  | bio->bi_private = dio; | 
|  | bio->bi_end_io = iomap_dio_bio_end_io; | 
|  |  | 
|  | __bio_add_page(bio, zero_page, len, 0); | 
|  | iomap_dio_submit_bio(iter, dio, bio, pos); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out the bio's operation flags from the dio request, the | 
|  | * mapping, and whether or not we want FUA.  Note that we can end up | 
|  | * clearing the WRITE_THROUGH flag in the dio request. | 
|  | */ | 
|  | static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio, | 
|  | const struct iomap *iomap, bool use_fua) | 
|  | { | 
|  | blk_opf_t opflags = REQ_SYNC | REQ_IDLE; | 
|  |  | 
|  | if (!(dio->flags & IOMAP_DIO_WRITE)) | 
|  | return REQ_OP_READ; | 
|  |  | 
|  | opflags |= REQ_OP_WRITE; | 
|  | if (use_fua) | 
|  | opflags |= REQ_FUA; | 
|  | else | 
|  | dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; | 
|  |  | 
|  | return opflags; | 
|  | } | 
|  |  | 
|  | static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, | 
|  | struct iomap_dio *dio) | 
|  | { | 
|  | const struct iomap *iomap = &iter->iomap; | 
|  | struct inode *inode = iter->inode; | 
|  | unsigned int fs_block_size = i_blocksize(inode), pad; | 
|  | loff_t length = iomap_length(iter); | 
|  | loff_t pos = iter->pos; | 
|  | blk_opf_t bio_opf; | 
|  | struct bio *bio; | 
|  | bool need_zeroout = false; | 
|  | bool use_fua = false; | 
|  | int nr_pages, ret = 0; | 
|  | size_t copied = 0; | 
|  | size_t orig_count; | 
|  |  | 
|  | if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || | 
|  | !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (iomap->type == IOMAP_UNWRITTEN) { | 
|  | dio->flags |= IOMAP_DIO_UNWRITTEN; | 
|  | need_zeroout = true; | 
|  | } | 
|  |  | 
|  | if (iomap->flags & IOMAP_F_SHARED) | 
|  | dio->flags |= IOMAP_DIO_COW; | 
|  |  | 
|  | if (iomap->flags & IOMAP_F_NEW) { | 
|  | need_zeroout = true; | 
|  | } else if (iomap->type == IOMAP_MAPPED) { | 
|  | /* | 
|  | * Use a FUA write if we need datasync semantics, this is a pure | 
|  | * data IO that doesn't require any metadata updates (including | 
|  | * after IO completion such as unwritten extent conversion) and | 
|  | * the underlying device either supports FUA or doesn't have | 
|  | * a volatile write cache. This allows us to avoid cache flushes | 
|  | * on IO completion. If we can't use writethrough and need to | 
|  | * sync, disable in-task completions as dio completion will | 
|  | * need to call generic_write_sync() which will do a blocking | 
|  | * fsync / cache flush call. | 
|  | */ | 
|  | if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && | 
|  | (dio->flags & IOMAP_DIO_WRITE_THROUGH) && | 
|  | (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev))) | 
|  | use_fua = true; | 
|  | else if (dio->flags & IOMAP_DIO_NEED_SYNC) | 
|  | dio->flags &= ~IOMAP_DIO_CALLER_COMP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save the original count and trim the iter to just the extent we | 
|  | * are operating on right now.  The iter will be re-expanded once | 
|  | * we are done. | 
|  | */ | 
|  | orig_count = iov_iter_count(dio->submit.iter); | 
|  | iov_iter_truncate(dio->submit.iter, length); | 
|  |  | 
|  | if (!iov_iter_count(dio->submit.iter)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We can only do deferred completion for pure overwrites that | 
|  | * don't require additional IO at completion. This rules out | 
|  | * writes that need zeroing or extent conversion, extend | 
|  | * the file size, or issue journal IO or cache flushes | 
|  | * during completion processing. | 
|  | */ | 
|  | if (need_zeroout || | 
|  | ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) || | 
|  | ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) | 
|  | dio->flags &= ~IOMAP_DIO_CALLER_COMP; | 
|  |  | 
|  | /* | 
|  | * The rules for polled IO completions follow the guidelines as the | 
|  | * ones we set for inline and deferred completions. If none of those | 
|  | * are available for this IO, clear the polled flag. | 
|  | */ | 
|  | if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) | 
|  | dio->iocb->ki_flags &= ~IOCB_HIPRI; | 
|  |  | 
|  | if (need_zeroout) { | 
|  | /* zero out from the start of the block to the write offset */ | 
|  | pad = pos & (fs_block_size - 1); | 
|  |  | 
|  | ret = iomap_dio_zero(iter, dio, pos - pad, pad); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the operation flags early so that bio_iov_iter_get_pages | 
|  | * can set up the page vector appropriately for a ZONE_APPEND | 
|  | * operation. | 
|  | */ | 
|  | bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); | 
|  |  | 
|  | nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); | 
|  | do { | 
|  | size_t n; | 
|  | if (dio->error) { | 
|  | iov_iter_revert(dio->submit.iter, copied); | 
|  | copied = ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); | 
|  | fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, | 
|  | GFP_KERNEL); | 
|  | bio->bi_iter.bi_sector = iomap_sector(iomap, pos); | 
|  | bio->bi_write_hint = inode->i_write_hint; | 
|  | bio->bi_ioprio = dio->iocb->ki_ioprio; | 
|  | bio->bi_private = dio; | 
|  | bio->bi_end_io = iomap_dio_bio_end_io; | 
|  |  | 
|  | ret = bio_iov_iter_get_pages(bio, dio->submit.iter); | 
|  | if (unlikely(ret)) { | 
|  | /* | 
|  | * We have to stop part way through an IO. We must fall | 
|  | * through to the sub-block tail zeroing here, otherwise | 
|  | * this short IO may expose stale data in the tail of | 
|  | * the block we haven't written data to. | 
|  | */ | 
|  | bio_put(bio); | 
|  | goto zero_tail; | 
|  | } | 
|  |  | 
|  | n = bio->bi_iter.bi_size; | 
|  | if (dio->flags & IOMAP_DIO_WRITE) { | 
|  | task_io_account_write(n); | 
|  | } else { | 
|  | if (dio->flags & IOMAP_DIO_DIRTY) | 
|  | bio_set_pages_dirty(bio); | 
|  | } | 
|  |  | 
|  | dio->size += n; | 
|  | copied += n; | 
|  |  | 
|  | nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, | 
|  | BIO_MAX_VECS); | 
|  | /* | 
|  | * We can only poll for single bio I/Os. | 
|  | */ | 
|  | if (nr_pages) | 
|  | dio->iocb->ki_flags &= ~IOCB_HIPRI; | 
|  | iomap_dio_submit_bio(iter, dio, bio, pos); | 
|  | pos += n; | 
|  | } while (nr_pages); | 
|  |  | 
|  | /* | 
|  | * We need to zeroout the tail of a sub-block write if the extent type | 
|  | * requires zeroing or the write extends beyond EOF. If we don't zero | 
|  | * the block tail in the latter case, we can expose stale data via mmap | 
|  | * reads of the EOF block. | 
|  | */ | 
|  | zero_tail: | 
|  | if (need_zeroout || | 
|  | ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { | 
|  | /* zero out from the end of the write to the end of the block */ | 
|  | pad = pos & (fs_block_size - 1); | 
|  | if (pad) | 
|  | ret = iomap_dio_zero(iter, dio, pos, | 
|  | fs_block_size - pad); | 
|  | } | 
|  | out: | 
|  | /* Undo iter limitation to current extent */ | 
|  | iov_iter_reexpand(dio->submit.iter, orig_count - copied); | 
|  | if (copied) | 
|  | return copied; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, | 
|  | struct iomap_dio *dio) | 
|  | { | 
|  | loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); | 
|  |  | 
|  | dio->size += length; | 
|  | if (!length) | 
|  | return -EFAULT; | 
|  | return length; | 
|  | } | 
|  |  | 
|  | static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, | 
|  | struct iomap_dio *dio) | 
|  | { | 
|  | const struct iomap *iomap = &iomi->iomap; | 
|  | struct iov_iter *iter = dio->submit.iter; | 
|  | void *inline_data = iomap_inline_data(iomap, iomi->pos); | 
|  | loff_t length = iomap_length(iomi); | 
|  | loff_t pos = iomi->pos; | 
|  | size_t copied; | 
|  |  | 
|  | if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) | 
|  | return -EIO; | 
|  |  | 
|  | if (dio->flags & IOMAP_DIO_WRITE) { | 
|  | loff_t size = iomi->inode->i_size; | 
|  |  | 
|  | if (pos > size) | 
|  | memset(iomap_inline_data(iomap, size), 0, pos - size); | 
|  | copied = copy_from_iter(inline_data, length, iter); | 
|  | if (copied) { | 
|  | if (pos + copied > size) | 
|  | i_size_write(iomi->inode, pos + copied); | 
|  | mark_inode_dirty(iomi->inode); | 
|  | } | 
|  | } else { | 
|  | copied = copy_to_iter(inline_data, length, iter); | 
|  | } | 
|  | dio->size += copied; | 
|  | if (!copied) | 
|  | return -EFAULT; | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | static loff_t iomap_dio_iter(const struct iomap_iter *iter, | 
|  | struct iomap_dio *dio) | 
|  | { | 
|  | switch (iter->iomap.type) { | 
|  | case IOMAP_HOLE: | 
|  | if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) | 
|  | return -EIO; | 
|  | return iomap_dio_hole_iter(iter, dio); | 
|  | case IOMAP_UNWRITTEN: | 
|  | if (!(dio->flags & IOMAP_DIO_WRITE)) | 
|  | return iomap_dio_hole_iter(iter, dio); | 
|  | return iomap_dio_bio_iter(iter, dio); | 
|  | case IOMAP_MAPPED: | 
|  | return iomap_dio_bio_iter(iter, dio); | 
|  | case IOMAP_INLINE: | 
|  | return iomap_dio_inline_iter(iter, dio); | 
|  | case IOMAP_DELALLOC: | 
|  | /* | 
|  | * DIO is not serialised against mmap() access at all, and so | 
|  | * if the page_mkwrite occurs between the writeback and the | 
|  | * iomap_iter() call in the DIO path, then it will see the | 
|  | * DELALLOC block that the page-mkwrite allocated. | 
|  | */ | 
|  | pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", | 
|  | dio->iocb->ki_filp, current->comm); | 
|  | return -EIO; | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO | 
|  | * is being issued as AIO or not.  This allows us to optimise pure data writes | 
|  | * to use REQ_FUA rather than requiring generic_write_sync() to issue a | 
|  | * REQ_FLUSH post write. This is slightly tricky because a single request here | 
|  | * can be mapped into multiple disjoint IOs and only a subset of the IOs issued | 
|  | * may be pure data writes. In that case, we still need to do a full data sync | 
|  | * completion. | 
|  | * | 
|  | * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, | 
|  | * __iomap_dio_rw can return a partial result if it encounters a non-resident | 
|  | * page in @iter after preparing a transfer.  In that case, the non-resident | 
|  | * pages can be faulted in and the request resumed with @done_before set to the | 
|  | * number of bytes previously transferred.  The request will then complete with | 
|  | * the correct total number of bytes transferred; this is essential for | 
|  | * completing partial requests asynchronously. | 
|  | * | 
|  | * Returns -ENOTBLK In case of a page invalidation invalidation failure for | 
|  | * writes.  The callers needs to fall back to buffered I/O in this case. | 
|  | */ | 
|  | struct iomap_dio * | 
|  | __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, | 
|  | const struct iomap_ops *ops, const struct iomap_dio_ops *dops, | 
|  | unsigned int dio_flags, void *private, size_t done_before) | 
|  | { | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  | struct iomap_iter iomi = { | 
|  | .inode		= inode, | 
|  | .pos		= iocb->ki_pos, | 
|  | .len		= iov_iter_count(iter), | 
|  | .flags		= IOMAP_DIRECT, | 
|  | .private	= private, | 
|  | }; | 
|  | bool wait_for_completion = | 
|  | is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); | 
|  | struct blk_plug plug; | 
|  | struct iomap_dio *dio; | 
|  | loff_t ret = 0; | 
|  |  | 
|  | trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); | 
|  |  | 
|  | if (!iomi.len) | 
|  | return NULL; | 
|  |  | 
|  | dio = kmalloc(sizeof(*dio), GFP_KERNEL); | 
|  | if (!dio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | dio->iocb = iocb; | 
|  | atomic_set(&dio->ref, 1); | 
|  | dio->size = 0; | 
|  | dio->i_size = i_size_read(inode); | 
|  | dio->dops = dops; | 
|  | dio->error = 0; | 
|  | dio->flags = 0; | 
|  | dio->done_before = done_before; | 
|  |  | 
|  | dio->submit.iter = iter; | 
|  | dio->submit.waiter = current; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) | 
|  | iomi.flags |= IOMAP_NOWAIT; | 
|  |  | 
|  | if (iov_iter_rw(iter) == READ) { | 
|  | /* reads can always complete inline */ | 
|  | dio->flags |= IOMAP_DIO_INLINE_COMP; | 
|  |  | 
|  | if (iomi.pos >= dio->i_size) | 
|  | goto out_free_dio; | 
|  |  | 
|  | if (user_backed_iter(iter)) | 
|  | dio->flags |= IOMAP_DIO_DIRTY; | 
|  |  | 
|  | ret = kiocb_write_and_wait(iocb, iomi.len); | 
|  | if (ret) | 
|  | goto out_free_dio; | 
|  | } else { | 
|  | iomi.flags |= IOMAP_WRITE; | 
|  | dio->flags |= IOMAP_DIO_WRITE; | 
|  |  | 
|  | /* | 
|  | * Flag as supporting deferred completions, if the issuer | 
|  | * groks it. This can avoid a workqueue punt for writes. | 
|  | * We may later clear this flag if we need to do other IO | 
|  | * as part of this IO completion. | 
|  | */ | 
|  | if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) | 
|  | dio->flags |= IOMAP_DIO_CALLER_COMP; | 
|  |  | 
|  | if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { | 
|  | ret = -EAGAIN; | 
|  | if (iomi.pos >= dio->i_size || | 
|  | iomi.pos + iomi.len > dio->i_size) | 
|  | goto out_free_dio; | 
|  | iomi.flags |= IOMAP_OVERWRITE_ONLY; | 
|  | } | 
|  |  | 
|  | /* for data sync or sync, we need sync completion processing */ | 
|  | if (iocb_is_dsync(iocb)) { | 
|  | dio->flags |= IOMAP_DIO_NEED_SYNC; | 
|  |  | 
|  | /* | 
|  | * For datasync only writes, we optimistically try using | 
|  | * WRITE_THROUGH for this IO. This flag requires either | 
|  | * FUA writes through the device's write cache, or a | 
|  | * normal write to a device without a volatile write | 
|  | * cache. For the former, Any non-FUA write that occurs | 
|  | * will clear this flag, hence we know before completion | 
|  | * whether a cache flush is necessary. | 
|  | */ | 
|  | if (!(iocb->ki_flags & IOCB_SYNC)) | 
|  | dio->flags |= IOMAP_DIO_WRITE_THROUGH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to invalidate cache pages for the range we are writing. | 
|  | * If this invalidation fails, let the caller fall back to | 
|  | * buffered I/O. | 
|  | */ | 
|  | ret = kiocb_invalidate_pages(iocb, iomi.len); | 
|  | if (ret) { | 
|  | if (ret != -EAGAIN) { | 
|  | trace_iomap_dio_invalidate_fail(inode, iomi.pos, | 
|  | iomi.len); | 
|  | ret = -ENOTBLK; | 
|  | } | 
|  | goto out_free_dio; | 
|  | } | 
|  |  | 
|  | if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { | 
|  | ret = sb_init_dio_done_wq(inode->i_sb); | 
|  | if (ret < 0) | 
|  | goto out_free_dio; | 
|  | } | 
|  | } | 
|  |  | 
|  | inode_dio_begin(inode); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | while ((ret = iomap_iter(&iomi, ops)) > 0) { | 
|  | iomi.processed = iomap_dio_iter(&iomi, dio); | 
|  |  | 
|  | /* | 
|  | * We can only poll for single bio I/Os. | 
|  | */ | 
|  | iocb->ki_flags &= ~IOCB_HIPRI; | 
|  | } | 
|  |  | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | /* | 
|  | * We only report that we've read data up to i_size. | 
|  | * Revert iter to a state corresponding to that as some callers (such | 
|  | * as the splice code) rely on it. | 
|  | */ | 
|  | if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) | 
|  | iov_iter_revert(iter, iomi.pos - dio->i_size); | 
|  |  | 
|  | if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { | 
|  | if (!(iocb->ki_flags & IOCB_NOWAIT)) | 
|  | wait_for_completion = true; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* magic error code to fall back to buffered I/O */ | 
|  | if (ret == -ENOTBLK) { | 
|  | wait_for_completion = true; | 
|  | ret = 0; | 
|  | } | 
|  | if (ret < 0) | 
|  | iomap_dio_set_error(dio, ret); | 
|  |  | 
|  | /* | 
|  | * If all the writes we issued were already written through to the | 
|  | * media, we don't need to flush the cache on IO completion. Clear the | 
|  | * sync flag for this case. | 
|  | */ | 
|  | if (dio->flags & IOMAP_DIO_WRITE_THROUGH) | 
|  | dio->flags &= ~IOMAP_DIO_NEED_SYNC; | 
|  |  | 
|  | /* | 
|  | * We are about to drop our additional submission reference, which | 
|  | * might be the last reference to the dio.  There are three different | 
|  | * ways we can progress here: | 
|  | * | 
|  | *  (a) If this is the last reference we will always complete and free | 
|  | *	the dio ourselves. | 
|  | *  (b) If this is not the last reference, and we serve an asynchronous | 
|  | *	iocb, we must never touch the dio after the decrement, the | 
|  | *	I/O completion handler will complete and free it. | 
|  | *  (c) If this is not the last reference, but we serve a synchronous | 
|  | *	iocb, the I/O completion handler will wake us up on the drop | 
|  | *	of the final reference, and we will complete and free it here | 
|  | *	after we got woken by the I/O completion handler. | 
|  | */ | 
|  | dio->wait_for_completion = wait_for_completion; | 
|  | if (!atomic_dec_and_test(&dio->ref)) { | 
|  | if (!wait_for_completion) { | 
|  | trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); | 
|  | return ERR_PTR(-EIOCBQUEUED); | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | if (!READ_ONCE(dio->submit.waiter)) | 
|  | break; | 
|  |  | 
|  | blk_io_schedule(); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | } | 
|  |  | 
|  | return dio; | 
|  |  | 
|  | out_free_dio: | 
|  | kfree(dio); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__iomap_dio_rw); | 
|  |  | 
|  | ssize_t | 
|  | iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, | 
|  | const struct iomap_ops *ops, const struct iomap_dio_ops *dops, | 
|  | unsigned int dio_flags, void *private, size_t done_before) | 
|  | { | 
|  | struct iomap_dio *dio; | 
|  |  | 
|  | dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, | 
|  | done_before); | 
|  | if (IS_ERR_OR_NULL(dio)) | 
|  | return PTR_ERR_OR_ZERO(dio); | 
|  | return iomap_dio_complete(dio); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(iomap_dio_rw); | 
|  |  | 
|  | static int __init iomap_dio_init(void) | 
|  | { | 
|  | zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, | 
|  | IOMAP_ZERO_PAGE_ORDER); | 
|  |  | 
|  | if (!zero_page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(iomap_dio_init); |