| // SPDX-License-Identifier: GPL-2.0+ |
| /* Microchip Sparx5 Switch driver |
| * |
| * Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries. |
| * |
| * The Sparx5 Chip Register Model can be browsed at this location: |
| * https://github.com/microchip-ung/sparx-5_reginfo |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> |
| #include <linux/dma-mapping.h> |
| |
| #include "sparx5_main_regs.h" |
| #include "sparx5_main.h" |
| #include "sparx5_port.h" |
| |
| #define FDMA_XTR_CHANNEL 6 |
| #define FDMA_INJ_CHANNEL 0 |
| |
| #define FDMA_XTR_BUFFER_SIZE 2048 |
| #define FDMA_WEIGHT 4 |
| |
| static int sparx5_fdma_tx_dataptr_cb(struct fdma *fdma, int dcb, int db, |
| u64 *dataptr) |
| { |
| *dataptr = fdma->dma + (sizeof(struct fdma_dcb) * fdma->n_dcbs) + |
| ((dcb * fdma->n_dbs + db) * fdma->db_size); |
| |
| return 0; |
| } |
| |
| static int sparx5_fdma_rx_dataptr_cb(struct fdma *fdma, int dcb, int db, |
| u64 *dataptr) |
| { |
| struct sparx5 *sparx5 = fdma->priv; |
| struct sparx5_rx *rx = &sparx5->rx; |
| struct sk_buff *skb; |
| |
| skb = __netdev_alloc_skb(rx->ndev, fdma->db_size, GFP_ATOMIC); |
| if (unlikely(!skb)) |
| return -ENOMEM; |
| |
| *dataptr = virt_to_phys(skb->data); |
| |
| rx->skb[dcb][db] = skb; |
| |
| return 0; |
| } |
| |
| static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx) |
| { |
| struct fdma *fdma = &rx->fdma; |
| |
| /* Write the buffer address in the LLP and LLP1 regs */ |
| spx5_wr(((u64)fdma->dma) & GENMASK(31, 0), sparx5, |
| FDMA_DCB_LLP(fdma->channel_id)); |
| spx5_wr(((u64)fdma->dma) >> 32, sparx5, |
| FDMA_DCB_LLP1(fdma->channel_id)); |
| |
| /* Set the number of RX DBs to be used, and DB end-of-frame interrupt */ |
| spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(fdma->n_dbs) | |
| FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) | |
| FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE), |
| sparx5, FDMA_CH_CFG(fdma->channel_id)); |
| |
| /* Set the RX Watermark to max */ |
| spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM, |
| sparx5, |
| FDMA_XTR_CFG); |
| |
| /* Start RX fdma */ |
| spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP, |
| sparx5, FDMA_PORT_CTRL(0)); |
| |
| /* Enable RX channel DB interrupt */ |
| spx5_rmw(BIT(fdma->channel_id), |
| BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, |
| sparx5, FDMA_INTR_DB_ENA); |
| |
| /* Activate the RX channel */ |
| spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_ACTIVATE); |
| } |
| |
| static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx) |
| { |
| struct fdma *fdma = &rx->fdma; |
| |
| /* Deactivate the RX channel */ |
| spx5_rmw(0, BIT(fdma->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE, |
| sparx5, FDMA_CH_ACTIVATE); |
| |
| /* Disable RX channel DB interrupt */ |
| spx5_rmw(0, BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, |
| sparx5, FDMA_INTR_DB_ENA); |
| |
| /* Stop RX fdma */ |
| spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP, |
| sparx5, FDMA_PORT_CTRL(0)); |
| } |
| |
| static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx) |
| { |
| struct fdma *fdma = &tx->fdma; |
| |
| /* Write the buffer address in the LLP and LLP1 regs */ |
| spx5_wr(((u64)fdma->dma) & GENMASK(31, 0), sparx5, |
| FDMA_DCB_LLP(fdma->channel_id)); |
| spx5_wr(((u64)fdma->dma) >> 32, sparx5, |
| FDMA_DCB_LLP1(fdma->channel_id)); |
| |
| /* Set the number of TX DBs to be used, and DB end-of-frame interrupt */ |
| spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(fdma->n_dbs) | |
| FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) | |
| FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE), |
| sparx5, FDMA_CH_CFG(fdma->channel_id)); |
| |
| /* Start TX fdma */ |
| spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP, |
| sparx5, FDMA_PORT_CTRL(0)); |
| |
| /* Activate the channel */ |
| spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_ACTIVATE); |
| } |
| |
| static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx) |
| { |
| /* Disable the channel */ |
| spx5_rmw(0, BIT(tx->fdma.channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE, |
| sparx5, FDMA_CH_ACTIVATE); |
| } |
| |
| static void sparx5_fdma_reload(struct sparx5 *sparx5, struct fdma *fdma) |
| { |
| /* Reload the RX channel */ |
| spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_RELOAD); |
| } |
| |
| static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx) |
| { |
| struct fdma *fdma = &rx->fdma; |
| struct sparx5_port *port; |
| struct fdma_db *db_hw; |
| struct frame_info fi; |
| struct sk_buff *skb; |
| |
| /* Check if the DCB is done */ |
| db_hw = fdma_db_next_get(fdma); |
| if (unlikely(!fdma_db_is_done(db_hw))) |
| return false; |
| skb = rx->skb[fdma->dcb_index][fdma->db_index]; |
| skb_put(skb, fdma_db_len_get(db_hw)); |
| /* Now do the normal processing of the skb */ |
| sparx5_ifh_parse((u32 *)skb->data, &fi); |
| /* Map to port netdev */ |
| port = fi.src_port < SPX5_PORTS ? sparx5->ports[fi.src_port] : NULL; |
| if (!port || !port->ndev) { |
| dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port); |
| sparx5_xtr_flush(sparx5, XTR_QUEUE); |
| return false; |
| } |
| skb->dev = port->ndev; |
| skb_pull(skb, IFH_LEN * sizeof(u32)); |
| if (likely(!(skb->dev->features & NETIF_F_RXFCS))) |
| skb_trim(skb, skb->len - ETH_FCS_LEN); |
| |
| sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp); |
| skb->protocol = eth_type_trans(skb, skb->dev); |
| /* Everything we see on an interface that is in the HW bridge |
| * has already been forwarded |
| */ |
| if (test_bit(port->portno, sparx5->bridge_mask)) |
| skb->offload_fwd_mark = 1; |
| skb->dev->stats.rx_bytes += skb->len; |
| skb->dev->stats.rx_packets++; |
| rx->packets++; |
| netif_receive_skb(skb); |
| return true; |
| } |
| |
| static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight) |
| { |
| struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi); |
| struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx); |
| struct fdma *fdma = &rx->fdma; |
| int counter = 0; |
| |
| while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) { |
| fdma_db_advance(fdma); |
| counter++; |
| /* Check if the DCB can be reused */ |
| if (fdma_dcb_is_reusable(fdma)) |
| continue; |
| fdma_dcb_add(fdma, fdma->dcb_index, |
| FDMA_DCB_INFO_DATAL(fdma->db_size), |
| FDMA_DCB_STATUS_INTR); |
| fdma_db_reset(fdma); |
| fdma_dcb_advance(fdma); |
| } |
| if (counter < weight) { |
| napi_complete_done(&rx->napi, counter); |
| spx5_rmw(BIT(fdma->channel_id), |
| BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, |
| sparx5, FDMA_INTR_DB_ENA); |
| } |
| if (counter) |
| sparx5_fdma_reload(sparx5, fdma); |
| return counter; |
| } |
| |
| int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb) |
| { |
| struct sparx5_tx *tx = &sparx5->tx; |
| struct fdma *fdma = &tx->fdma; |
| static bool first_time = true; |
| void *virt_addr; |
| |
| fdma_dcb_advance(fdma); |
| if (!fdma_db_is_done(fdma_db_get(fdma, fdma->dcb_index, 0))) |
| return -EINVAL; |
| |
| /* Get the virtual address of the dataptr for the next DB */ |
| virt_addr = ((u8 *)fdma->dcbs + |
| (sizeof(struct fdma_dcb) * fdma->n_dcbs) + |
| ((fdma->dcb_index * fdma->n_dbs) * fdma->db_size)); |
| |
| memcpy(virt_addr, ifh, IFH_LEN * 4); |
| memcpy(virt_addr + IFH_LEN * 4, skb->data, skb->len); |
| |
| fdma_dcb_add(fdma, fdma->dcb_index, 0, |
| FDMA_DCB_STATUS_SOF | |
| FDMA_DCB_STATUS_EOF | |
| FDMA_DCB_STATUS_BLOCKO(0) | |
| FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4)); |
| |
| if (first_time) { |
| sparx5_fdma_tx_activate(sparx5, tx); |
| first_time = false; |
| } else { |
| sparx5_fdma_reload(sparx5, fdma); |
| } |
| return NETDEV_TX_OK; |
| } |
| |
| static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5) |
| { |
| struct sparx5_rx *rx = &sparx5->rx; |
| struct fdma *fdma = &rx->fdma; |
| int err; |
| |
| err = fdma_alloc_phys(fdma); |
| if (err) |
| return err; |
| |
| fdma_dcbs_init(fdma, FDMA_DCB_INFO_DATAL(fdma->db_size), |
| FDMA_DCB_STATUS_INTR); |
| |
| netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback, |
| FDMA_WEIGHT); |
| napi_enable(&rx->napi); |
| sparx5_fdma_rx_activate(sparx5, rx); |
| return 0; |
| } |
| |
| static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5) |
| { |
| struct sparx5_tx *tx = &sparx5->tx; |
| struct fdma *fdma = &tx->fdma; |
| int err; |
| |
| err = fdma_alloc_phys(fdma); |
| if (err) |
| return err; |
| |
| fdma_dcbs_init(fdma, FDMA_DCB_INFO_DATAL(fdma->db_size), |
| FDMA_DCB_STATUS_DONE); |
| |
| return 0; |
| } |
| |
| static void sparx5_fdma_rx_init(struct sparx5 *sparx5, |
| struct sparx5_rx *rx, int channel) |
| { |
| struct fdma *fdma = &rx->fdma; |
| int idx; |
| |
| fdma->channel_id = channel; |
| fdma->n_dcbs = FDMA_DCB_MAX; |
| fdma->n_dbs = FDMA_RX_DCB_MAX_DBS; |
| fdma->priv = sparx5; |
| fdma->db_size = ALIGN(FDMA_XTR_BUFFER_SIZE, PAGE_SIZE); |
| fdma->size = fdma_get_size(&sparx5->rx.fdma); |
| fdma->ops.dataptr_cb = &sparx5_fdma_rx_dataptr_cb; |
| fdma->ops.nextptr_cb = &fdma_nextptr_cb; |
| /* Fetch a netdev for SKB and NAPI use, any will do */ |
| for (idx = 0; idx < SPX5_PORTS; ++idx) { |
| struct sparx5_port *port = sparx5->ports[idx]; |
| |
| if (port && port->ndev) { |
| rx->ndev = port->ndev; |
| break; |
| } |
| } |
| } |
| |
| static void sparx5_fdma_tx_init(struct sparx5 *sparx5, |
| struct sparx5_tx *tx, int channel) |
| { |
| struct fdma *fdma = &tx->fdma; |
| |
| fdma->channel_id = channel; |
| fdma->n_dcbs = FDMA_DCB_MAX; |
| fdma->n_dbs = FDMA_TX_DCB_MAX_DBS; |
| fdma->priv = sparx5; |
| fdma->db_size = ALIGN(FDMA_XTR_BUFFER_SIZE, PAGE_SIZE); |
| fdma->size = fdma_get_size_contiguous(&sparx5->tx.fdma); |
| fdma->ops.dataptr_cb = &sparx5_fdma_tx_dataptr_cb; |
| fdma->ops.nextptr_cb = &fdma_nextptr_cb; |
| } |
| |
| irqreturn_t sparx5_fdma_handler(int irq, void *args) |
| { |
| struct sparx5 *sparx5 = args; |
| u32 db = 0, err = 0; |
| |
| db = spx5_rd(sparx5, FDMA_INTR_DB); |
| err = spx5_rd(sparx5, FDMA_INTR_ERR); |
| /* Clear interrupt */ |
| if (db) { |
| spx5_wr(0, sparx5, FDMA_INTR_DB_ENA); |
| spx5_wr(db, sparx5, FDMA_INTR_DB); |
| napi_schedule(&sparx5->rx.napi); |
| } |
| if (err) { |
| u32 err_type = spx5_rd(sparx5, FDMA_ERRORS); |
| |
| dev_err_ratelimited(sparx5->dev, |
| "ERR: int: %#x, type: %#x\n", |
| err, err_type); |
| spx5_wr(err, sparx5, FDMA_INTR_ERR); |
| spx5_wr(err_type, sparx5, FDMA_ERRORS); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static void sparx5_fdma_injection_mode(struct sparx5 *sparx5) |
| { |
| const int byte_swap = 1; |
| int portno; |
| int urgency; |
| |
| /* Change mode to fdma extraction and injection */ |
| spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) | |
| QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) | |
| QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap), |
| sparx5, QS_XTR_GRP_CFG(XTR_QUEUE)); |
| spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) | |
| QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap), |
| sparx5, QS_INJ_GRP_CFG(INJ_QUEUE)); |
| |
| /* CPU ports capture setup */ |
| for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) { |
| /* ASM CPU port: No preamble, IFH, enable padding */ |
| spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) | |
| ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) | |
| ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */ |
| sparx5, ASM_PORT_CFG(portno)); |
| |
| /* Reset WM cnt to unclog queued frames */ |
| spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1), |
| DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR, |
| sparx5, |
| DSM_DEV_TX_STOP_WM_CFG(portno)); |
| |
| /* Set Disassembler Stop Watermark level */ |
| spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100), |
| DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM, |
| sparx5, |
| DSM_DEV_TX_STOP_WM_CFG(portno)); |
| |
| /* Enable port in queue system */ |
| urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500); |
| spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) | |
| QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency), |
| QFWD_SWITCH_PORT_MODE_PORT_ENA | |
| QFWD_SWITCH_PORT_MODE_FWD_URGENCY, |
| sparx5, |
| QFWD_SWITCH_PORT_MODE(portno)); |
| |
| /* Disable Disassembler buffer underrun watchdog |
| * to avoid truncated packets in XTR |
| */ |
| spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1), |
| DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS, |
| sparx5, |
| DSM_BUF_CFG(portno)); |
| |
| /* Disabling frame aging */ |
| spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1), |
| HSCH_PORT_MODE_AGE_DIS, |
| sparx5, |
| HSCH_PORT_MODE(portno)); |
| } |
| } |
| |
| int sparx5_fdma_start(struct sparx5 *sparx5) |
| { |
| int err; |
| |
| /* Reset FDMA state */ |
| spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL); |
| spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL); |
| |
| /* Force ACP caching but disable read/write allocation */ |
| spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) | |
| CPU_PROC_CTRL_ACP_AWCACHE_SET(0) | |
| CPU_PROC_CTRL_ACP_ARCACHE_SET(0), |
| CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA | |
| CPU_PROC_CTRL_ACP_AWCACHE | |
| CPU_PROC_CTRL_ACP_ARCACHE, |
| sparx5, CPU_PROC_CTRL); |
| |
| sparx5_fdma_injection_mode(sparx5); |
| sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL); |
| sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL); |
| err = sparx5_fdma_rx_alloc(sparx5); |
| if (err) { |
| dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err); |
| return err; |
| } |
| err = sparx5_fdma_tx_alloc(sparx5); |
| if (err) { |
| dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err); |
| return err; |
| } |
| return err; |
| } |
| |
| static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5) |
| { |
| return spx5_rd(sparx5, FDMA_PORT_CTRL(0)); |
| } |
| |
| int sparx5_fdma_stop(struct sparx5 *sparx5) |
| { |
| u32 val; |
| |
| napi_disable(&sparx5->rx.napi); |
| /* Stop the fdma and channel interrupts */ |
| sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx); |
| sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx); |
| /* Wait for the RX channel to stop */ |
| read_poll_timeout(sparx5_fdma_port_ctrl, val, |
| FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0, |
| 500, 10000, 0, sparx5); |
| fdma_free_phys(&sparx5->rx.fdma); |
| fdma_free_phys(&sparx5->tx.fdma); |
| return 0; |
| } |