|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Device Memory Migration functionality. | 
|  | * | 
|  | * Originally written by Jérôme Glisse. | 
|  | */ | 
|  | #include <linux/export.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/pagewalk.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | static int migrate_vma_collect_skip(unsigned long start, | 
|  | unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct migrate_vma *migrate = walk->private; | 
|  | unsigned long addr; | 
|  |  | 
|  | for (addr = start; addr < end; addr += PAGE_SIZE) { | 
|  | migrate->dst[migrate->npages] = 0; | 
|  | migrate->src[migrate->npages++] = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int migrate_vma_collect_hole(unsigned long start, | 
|  | unsigned long end, | 
|  | __always_unused int depth, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct migrate_vma *migrate = walk->private; | 
|  | unsigned long addr; | 
|  |  | 
|  | /* Only allow populating anonymous memory. */ | 
|  | if (!vma_is_anonymous(walk->vma)) | 
|  | return migrate_vma_collect_skip(start, end, walk); | 
|  |  | 
|  | for (addr = start; addr < end; addr += PAGE_SIZE) { | 
|  | migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; | 
|  | migrate->dst[migrate->npages] = 0; | 
|  | migrate->npages++; | 
|  | migrate->cpages++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int migrate_vma_collect_pmd(pmd_t *pmdp, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct migrate_vma *migrate = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long addr = start, unmapped = 0; | 
|  | spinlock_t *ptl; | 
|  | pte_t *ptep; | 
|  |  | 
|  | again: | 
|  | if (pmd_none(*pmdp)) | 
|  | return migrate_vma_collect_hole(start, end, -1, walk); | 
|  |  | 
|  | if (pmd_trans_huge(*pmdp)) { | 
|  | struct page *page; | 
|  |  | 
|  | ptl = pmd_lock(mm, pmdp); | 
|  | if (unlikely(!pmd_trans_huge(*pmdp))) { | 
|  | spin_unlock(ptl); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | page = pmd_page(*pmdp); | 
|  | if (is_huge_zero_page(page)) { | 
|  | spin_unlock(ptl); | 
|  | split_huge_pmd(vma, pmdp, addr); | 
|  | } else { | 
|  | int ret; | 
|  |  | 
|  | get_page(page); | 
|  | spin_unlock(ptl); | 
|  | if (unlikely(!trylock_page(page))) | 
|  | return migrate_vma_collect_skip(start, end, | 
|  | walk); | 
|  | ret = split_huge_page(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | if (ret) | 
|  | return migrate_vma_collect_skip(start, end, | 
|  | walk); | 
|  | } | 
|  | } | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); | 
|  | if (!ptep) | 
|  | goto again; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE, ptep++) { | 
|  | unsigned long mpfn = 0, pfn; | 
|  | struct folio *folio; | 
|  | struct page *page; | 
|  | swp_entry_t entry; | 
|  | pte_t pte; | 
|  |  | 
|  | pte = ptep_get(ptep); | 
|  |  | 
|  | if (pte_none(pte)) { | 
|  | if (vma_is_anonymous(vma)) { | 
|  | mpfn = MIGRATE_PFN_MIGRATE; | 
|  | migrate->cpages++; | 
|  | } | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (!pte_present(pte)) { | 
|  | /* | 
|  | * Only care about unaddressable device page special | 
|  | * page table entry. Other special swap entries are not | 
|  | * migratable, and we ignore regular swapped page. | 
|  | */ | 
|  | entry = pte_to_swp_entry(pte); | 
|  | if (!is_device_private_entry(entry)) | 
|  | goto next; | 
|  |  | 
|  | page = pfn_swap_entry_to_page(entry); | 
|  | if (!(migrate->flags & | 
|  | MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || | 
|  | page->pgmap->owner != migrate->pgmap_owner) | 
|  | goto next; | 
|  |  | 
|  | mpfn = migrate_pfn(page_to_pfn(page)) | | 
|  | MIGRATE_PFN_MIGRATE; | 
|  | if (is_writable_device_private_entry(entry)) | 
|  | mpfn |= MIGRATE_PFN_WRITE; | 
|  | } else { | 
|  | pfn = pte_pfn(pte); | 
|  | if (is_zero_pfn(pfn) && | 
|  | (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { | 
|  | mpfn = MIGRATE_PFN_MIGRATE; | 
|  | migrate->cpages++; | 
|  | goto next; | 
|  | } | 
|  | page = vm_normal_page(migrate->vma, addr, pte); | 
|  | if (page && !is_zone_device_page(page) && | 
|  | !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) | 
|  | goto next; | 
|  | else if (page && is_device_coherent_page(page) && | 
|  | (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || | 
|  | page->pgmap->owner != migrate->pgmap_owner)) | 
|  | goto next; | 
|  | mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; | 
|  | mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; | 
|  | } | 
|  |  | 
|  | /* FIXME support THP */ | 
|  | if (!page || !page->mapping || PageTransCompound(page)) { | 
|  | mpfn = 0; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By getting a reference on the folio we pin it and that blocks | 
|  | * any kind of migration. Side effect is that it "freezes" the | 
|  | * pte. | 
|  | * | 
|  | * We drop this reference after isolating the folio from the lru | 
|  | * for non device folio (device folio are not on the lru and thus | 
|  | * can't be dropped from it). | 
|  | */ | 
|  | folio = page_folio(page); | 
|  | folio_get(folio); | 
|  |  | 
|  | /* | 
|  | * We rely on folio_trylock() to avoid deadlock between | 
|  | * concurrent migrations where each is waiting on the others | 
|  | * folio lock. If we can't immediately lock the folio we fail this | 
|  | * migration as it is only best effort anyway. | 
|  | * | 
|  | * If we can lock the folio it's safe to set up a migration entry | 
|  | * now. In the common case where the folio is mapped once in a | 
|  | * single process setting up the migration entry now is an | 
|  | * optimisation to avoid walking the rmap later with | 
|  | * try_to_migrate(). | 
|  | */ | 
|  | if (folio_trylock(folio)) { | 
|  | bool anon_exclusive; | 
|  | pte_t swp_pte; | 
|  |  | 
|  | flush_cache_page(vma, addr, pte_pfn(pte)); | 
|  | anon_exclusive = folio_test_anon(folio) && | 
|  | PageAnonExclusive(page); | 
|  | if (anon_exclusive) { | 
|  | pte = ptep_clear_flush(vma, addr, ptep); | 
|  |  | 
|  | if (folio_try_share_anon_rmap_pte(folio, page)) { | 
|  | set_pte_at(mm, addr, ptep, pte); | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | mpfn = 0; | 
|  | goto next; | 
|  | } | 
|  | } else { | 
|  | pte = ptep_get_and_clear(mm, addr, ptep); | 
|  | } | 
|  |  | 
|  | migrate->cpages++; | 
|  |  | 
|  | /* Set the dirty flag on the folio now the pte is gone. */ | 
|  | if (pte_dirty(pte)) | 
|  | folio_mark_dirty(folio); | 
|  |  | 
|  | /* Setup special migration page table entry */ | 
|  | if (mpfn & MIGRATE_PFN_WRITE) | 
|  | entry = make_writable_migration_entry( | 
|  | page_to_pfn(page)); | 
|  | else if (anon_exclusive) | 
|  | entry = make_readable_exclusive_migration_entry( | 
|  | page_to_pfn(page)); | 
|  | else | 
|  | entry = make_readable_migration_entry( | 
|  | page_to_pfn(page)); | 
|  | if (pte_present(pte)) { | 
|  | if (pte_young(pte)) | 
|  | entry = make_migration_entry_young(entry); | 
|  | if (pte_dirty(pte)) | 
|  | entry = make_migration_entry_dirty(entry); | 
|  | } | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  | if (pte_present(pte)) { | 
|  | if (pte_soft_dirty(pte)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | if (pte_uffd_wp(pte)) | 
|  | swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
|  | } else { | 
|  | if (pte_swp_soft_dirty(pte)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | if (pte_swp_uffd_wp(pte)) | 
|  | swp_pte = pte_swp_mkuffd_wp(swp_pte); | 
|  | } | 
|  | set_pte_at(mm, addr, ptep, swp_pte); | 
|  |  | 
|  | /* | 
|  | * This is like regular unmap: we remove the rmap and | 
|  | * drop the folio refcount. The folio won't be freed, as | 
|  | * we took a reference just above. | 
|  | */ | 
|  | folio_remove_rmap_pte(folio, page, vma); | 
|  | folio_put(folio); | 
|  |  | 
|  | if (pte_present(pte)) | 
|  | unmapped++; | 
|  | } else { | 
|  | folio_put(folio); | 
|  | mpfn = 0; | 
|  | } | 
|  |  | 
|  | next: | 
|  | migrate->dst[migrate->npages] = 0; | 
|  | migrate->src[migrate->npages++] = mpfn; | 
|  | } | 
|  |  | 
|  | /* Only flush the TLB if we actually modified any entries */ | 
|  | if (unmapped) | 
|  | flush_tlb_range(walk->vma, start, end); | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(ptep - 1, ptl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mm_walk_ops migrate_vma_walk_ops = { | 
|  | .pmd_entry		= migrate_vma_collect_pmd, | 
|  | .pte_hole		= migrate_vma_collect_hole, | 
|  | .walk_lock		= PGWALK_RDLOCK, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * migrate_vma_collect() - collect pages over a range of virtual addresses | 
|  | * @migrate: migrate struct containing all migration information | 
|  | * | 
|  | * This will walk the CPU page table. For each virtual address backed by a | 
|  | * valid page, it updates the src array and takes a reference on the page, in | 
|  | * order to pin the page until we lock it and unmap it. | 
|  | */ | 
|  | static void migrate_vma_collect(struct migrate_vma *migrate) | 
|  | { | 
|  | struct mmu_notifier_range range; | 
|  |  | 
|  | /* | 
|  | * Note that the pgmap_owner is passed to the mmu notifier callback so | 
|  | * that the registered device driver can skip invalidating device | 
|  | * private page mappings that won't be migrated. | 
|  | */ | 
|  | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, | 
|  | migrate->vma->vm_mm, migrate->start, migrate->end, | 
|  | migrate->pgmap_owner); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, | 
|  | &migrate_vma_walk_ops, migrate); | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migrate_vma_check_page() - check if page is pinned or not | 
|  | * @page: struct page to check | 
|  | * | 
|  | * Pinned pages cannot be migrated. This is the same test as in | 
|  | * folio_migrate_mapping(), except that here we allow migration of a | 
|  | * ZONE_DEVICE page. | 
|  | */ | 
|  | static bool migrate_vma_check_page(struct page *page, struct page *fault_page) | 
|  | { | 
|  | /* | 
|  | * One extra ref because caller holds an extra reference, either from | 
|  | * isolate_lru_page() for a regular page, or migrate_vma_collect() for | 
|  | * a device page. | 
|  | */ | 
|  | int extra = 1 + (page == fault_page); | 
|  |  | 
|  | /* | 
|  | * FIXME support THP (transparent huge page), it is bit more complex to | 
|  | * check them than regular pages, because they can be mapped with a pmd | 
|  | * or with a pte (split pte mapping). | 
|  | */ | 
|  | if (PageCompound(page)) | 
|  | return false; | 
|  |  | 
|  | /* Page from ZONE_DEVICE have one extra reference */ | 
|  | if (is_zone_device_page(page)) | 
|  | extra++; | 
|  |  | 
|  | /* For file back page */ | 
|  | if (page_mapping(page)) | 
|  | extra += 1 + page_has_private(page); | 
|  |  | 
|  | if ((page_count(page) - extra) > page_mapcount(page)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmaps pages for migration. Returns number of source pfns marked as | 
|  | * migrating. | 
|  | */ | 
|  | static unsigned long migrate_device_unmap(unsigned long *src_pfns, | 
|  | unsigned long npages, | 
|  | struct page *fault_page) | 
|  | { | 
|  | unsigned long i, restore = 0; | 
|  | bool allow_drain = true; | 
|  | unsigned long unmapped = 0; | 
|  |  | 
|  | lru_add_drain(); | 
|  |  | 
|  | for (i = 0; i < npages; i++) { | 
|  | struct page *page = migrate_pfn_to_page(src_pfns[i]); | 
|  | struct folio *folio; | 
|  |  | 
|  | if (!page) { | 
|  | if (src_pfns[i] & MIGRATE_PFN_MIGRATE) | 
|  | unmapped++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* ZONE_DEVICE pages are not on LRU */ | 
|  | if (!is_zone_device_page(page)) { | 
|  | if (!PageLRU(page) && allow_drain) { | 
|  | /* Drain CPU's lru cache */ | 
|  | lru_add_drain_all(); | 
|  | allow_drain = false; | 
|  | } | 
|  |  | 
|  | if (!isolate_lru_page(page)) { | 
|  | src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | restore++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Drop the reference we took in collect */ | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | folio = page_folio(page); | 
|  | if (folio_mapped(folio)) | 
|  | try_to_migrate(folio, 0); | 
|  |  | 
|  | if (page_mapped(page) || | 
|  | !migrate_vma_check_page(page, fault_page)) { | 
|  | if (!is_zone_device_page(page)) { | 
|  | get_page(page); | 
|  | putback_lru_page(page); | 
|  | } | 
|  |  | 
|  | src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | restore++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unmapped++; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < npages && restore; i++) { | 
|  | struct page *page = migrate_pfn_to_page(src_pfns[i]); | 
|  | struct folio *folio; | 
|  |  | 
|  | if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) | 
|  | continue; | 
|  |  | 
|  | folio = page_folio(page); | 
|  | remove_migration_ptes(folio, folio, false); | 
|  |  | 
|  | src_pfns[i] = 0; | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | restore--; | 
|  | } | 
|  |  | 
|  | return unmapped; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migrate_vma_unmap() - replace page mapping with special migration pte entry | 
|  | * @migrate: migrate struct containing all migration information | 
|  | * | 
|  | * Isolate pages from the LRU and replace mappings (CPU page table pte) with a | 
|  | * special migration pte entry and check if it has been pinned. Pinned pages are | 
|  | * restored because we cannot migrate them. | 
|  | * | 
|  | * This is the last step before we call the device driver callback to allocate | 
|  | * destination memory and copy contents of original page over to new page. | 
|  | */ | 
|  | static void migrate_vma_unmap(struct migrate_vma *migrate) | 
|  | { | 
|  | migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, | 
|  | migrate->fault_page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * migrate_vma_setup() - prepare to migrate a range of memory | 
|  | * @args: contains the vma, start, and pfns arrays for the migration | 
|  | * | 
|  | * Returns: negative errno on failures, 0 when 0 or more pages were migrated | 
|  | * without an error. | 
|  | * | 
|  | * Prepare to migrate a range of memory virtual address range by collecting all | 
|  | * the pages backing each virtual address in the range, saving them inside the | 
|  | * src array.  Then lock those pages and unmap them. Once the pages are locked | 
|  | * and unmapped, check whether each page is pinned or not.  Pages that aren't | 
|  | * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the | 
|  | * corresponding src array entry.  Then restores any pages that are pinned, by | 
|  | * remapping and unlocking those pages. | 
|  | * | 
|  | * The caller should then allocate destination memory and copy source memory to | 
|  | * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE | 
|  | * flag set).  Once these are allocated and copied, the caller must update each | 
|  | * corresponding entry in the dst array with the pfn value of the destination | 
|  | * page and with MIGRATE_PFN_VALID. Destination pages must be locked via | 
|  | * lock_page(). | 
|  | * | 
|  | * Note that the caller does not have to migrate all the pages that are marked | 
|  | * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from | 
|  | * device memory to system memory.  If the caller cannot migrate a device page | 
|  | * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe | 
|  | * consequences for the userspace process, so it must be avoided if at all | 
|  | * possible. | 
|  | * | 
|  | * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we | 
|  | * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus | 
|  | * allowing the caller to allocate device memory for those unbacked virtual | 
|  | * addresses.  For this the caller simply has to allocate device memory and | 
|  | * properly set the destination entry like for regular migration.  Note that | 
|  | * this can still fail, and thus inside the device driver you must check if the | 
|  | * migration was successful for those entries after calling migrate_vma_pages(), | 
|  | * just like for regular migration. | 
|  | * | 
|  | * After that, the callers must call migrate_vma_pages() to go over each entry | 
|  | * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag | 
|  | * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, | 
|  | * then migrate_vma_pages() to migrate struct page information from the source | 
|  | * struct page to the destination struct page.  If it fails to migrate the | 
|  | * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the | 
|  | * src array. | 
|  | * | 
|  | * At this point all successfully migrated pages have an entry in the src | 
|  | * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst | 
|  | * array entry with MIGRATE_PFN_VALID flag set. | 
|  | * | 
|  | * Once migrate_vma_pages() returns the caller may inspect which pages were | 
|  | * successfully migrated, and which were not.  Successfully migrated pages will | 
|  | * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. | 
|  | * | 
|  | * It is safe to update device page table after migrate_vma_pages() because | 
|  | * both destination and source page are still locked, and the mmap_lock is held | 
|  | * in read mode (hence no one can unmap the range being migrated). | 
|  | * | 
|  | * Once the caller is done cleaning up things and updating its page table (if it | 
|  | * chose to do so, this is not an obligation) it finally calls | 
|  | * migrate_vma_finalize() to update the CPU page table to point to new pages | 
|  | * for successfully migrated pages or otherwise restore the CPU page table to | 
|  | * point to the original source pages. | 
|  | */ | 
|  | int migrate_vma_setup(struct migrate_vma *args) | 
|  | { | 
|  | long nr_pages = (args->end - args->start) >> PAGE_SHIFT; | 
|  |  | 
|  | args->start &= PAGE_MASK; | 
|  | args->end &= PAGE_MASK; | 
|  | if (!args->vma || is_vm_hugetlb_page(args->vma) || | 
|  | (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) | 
|  | return -EINVAL; | 
|  | if (nr_pages <= 0) | 
|  | return -EINVAL; | 
|  | if (args->start < args->vma->vm_start || | 
|  | args->start >= args->vma->vm_end) | 
|  | return -EINVAL; | 
|  | if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) | 
|  | return -EINVAL; | 
|  | if (!args->src || !args->dst) | 
|  | return -EINVAL; | 
|  | if (args->fault_page && !is_device_private_page(args->fault_page)) | 
|  | return -EINVAL; | 
|  |  | 
|  | memset(args->src, 0, sizeof(*args->src) * nr_pages); | 
|  | args->cpages = 0; | 
|  | args->npages = 0; | 
|  |  | 
|  | migrate_vma_collect(args); | 
|  |  | 
|  | if (args->cpages) | 
|  | migrate_vma_unmap(args); | 
|  |  | 
|  | /* | 
|  | * At this point pages are locked and unmapped, and thus they have | 
|  | * stable content and can safely be copied to destination memory that | 
|  | * is allocated by the drivers. | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_vma_setup); | 
|  |  | 
|  | /* | 
|  | * This code closely matches the code in: | 
|  | *   __handle_mm_fault() | 
|  | *     handle_pte_fault() | 
|  | *       do_anonymous_page() | 
|  | * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE | 
|  | * private or coherent page. | 
|  | */ | 
|  | static void migrate_vma_insert_page(struct migrate_vma *migrate, | 
|  | unsigned long addr, | 
|  | struct page *page, | 
|  | unsigned long *src) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  | struct vm_area_struct *vma = migrate->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | bool flush = false; | 
|  | spinlock_t *ptl; | 
|  | pte_t entry; | 
|  | pgd_t *pgdp; | 
|  | p4d_t *p4dp; | 
|  | pud_t *pudp; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep; | 
|  | pte_t orig_pte; | 
|  |  | 
|  | /* Only allow populating anonymous memory */ | 
|  | if (!vma_is_anonymous(vma)) | 
|  | goto abort; | 
|  |  | 
|  | pgdp = pgd_offset(mm, addr); | 
|  | p4dp = p4d_alloc(mm, pgdp, addr); | 
|  | if (!p4dp) | 
|  | goto abort; | 
|  | pudp = pud_alloc(mm, p4dp, addr); | 
|  | if (!pudp) | 
|  | goto abort; | 
|  | pmdp = pmd_alloc(mm, pudp, addr); | 
|  | if (!pmdp) | 
|  | goto abort; | 
|  | if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) | 
|  | goto abort; | 
|  | if (pte_alloc(mm, pmdp)) | 
|  | goto abort; | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto abort; | 
|  | if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) | 
|  | goto abort; | 
|  |  | 
|  | /* | 
|  | * The memory barrier inside __folio_mark_uptodate makes sure that | 
|  | * preceding stores to the folio contents become visible before | 
|  | * the set_pte_at() write. | 
|  | */ | 
|  | __folio_mark_uptodate(folio); | 
|  |  | 
|  | if (folio_is_device_private(folio)) { | 
|  | swp_entry_t swp_entry; | 
|  |  | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | swp_entry = make_writable_device_private_entry( | 
|  | page_to_pfn(page)); | 
|  | else | 
|  | swp_entry = make_readable_device_private_entry( | 
|  | page_to_pfn(page)); | 
|  | entry = swp_entry_to_pte(swp_entry); | 
|  | } else { | 
|  | if (folio_is_zone_device(folio) && | 
|  | !folio_is_device_coherent(folio)) { | 
|  | pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); | 
|  | goto abort; | 
|  | } | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | entry = pte_mkwrite(pte_mkdirty(entry), vma); | 
|  | } | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); | 
|  | if (!ptep) | 
|  | goto abort; | 
|  | orig_pte = ptep_get(ptep); | 
|  |  | 
|  | if (check_stable_address_space(mm)) | 
|  | goto unlock_abort; | 
|  |  | 
|  | if (pte_present(orig_pte)) { | 
|  | unsigned long pfn = pte_pfn(orig_pte); | 
|  |  | 
|  | if (!is_zero_pfn(pfn)) | 
|  | goto unlock_abort; | 
|  | flush = true; | 
|  | } else if (!pte_none(orig_pte)) | 
|  | goto unlock_abort; | 
|  |  | 
|  | /* | 
|  | * Check for userfaultfd but do not deliver the fault. Instead, | 
|  | * just back off. | 
|  | */ | 
|  | if (userfaultfd_missing(vma)) | 
|  | goto unlock_abort; | 
|  |  | 
|  | inc_mm_counter(mm, MM_ANONPAGES); | 
|  | folio_add_new_anon_rmap(folio, vma, addr); | 
|  | if (!folio_is_zone_device(folio)) | 
|  | folio_add_lru_vma(folio, vma); | 
|  | folio_get(folio); | 
|  |  | 
|  | if (flush) { | 
|  | flush_cache_page(vma, addr, pte_pfn(orig_pte)); | 
|  | ptep_clear_flush(vma, addr, ptep); | 
|  | set_pte_at_notify(mm, addr, ptep, entry); | 
|  | update_mmu_cache(vma, addr, ptep); | 
|  | } else { | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | set_pte_at(mm, addr, ptep, entry); | 
|  | update_mmu_cache(vma, addr, ptep); | 
|  | } | 
|  |  | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | *src = MIGRATE_PFN_MIGRATE; | 
|  | return; | 
|  |  | 
|  | unlock_abort: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | abort: | 
|  | *src &= ~MIGRATE_PFN_MIGRATE; | 
|  | } | 
|  |  | 
|  | static void __migrate_device_pages(unsigned long *src_pfns, | 
|  | unsigned long *dst_pfns, unsigned long npages, | 
|  | struct migrate_vma *migrate) | 
|  | { | 
|  | struct mmu_notifier_range range; | 
|  | unsigned long i; | 
|  | bool notified = false; | 
|  |  | 
|  | for (i = 0; i < npages; i++) { | 
|  | struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); | 
|  | struct page *page = migrate_pfn_to_page(src_pfns[i]); | 
|  | struct address_space *mapping; | 
|  | int r; | 
|  |  | 
|  | if (!newpage) { | 
|  | src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!page) { | 
|  | unsigned long addr; | 
|  |  | 
|  | if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * The only time there is no vma is when called from | 
|  | * migrate_device_coherent_page(). However this isn't | 
|  | * called if the page could not be unmapped. | 
|  | */ | 
|  | VM_BUG_ON(!migrate); | 
|  | addr = migrate->start + i*PAGE_SIZE; | 
|  | if (!notified) { | 
|  | notified = true; | 
|  |  | 
|  | mmu_notifier_range_init_owner(&range, | 
|  | MMU_NOTIFY_MIGRATE, 0, | 
|  | migrate->vma->vm_mm, addr, migrate->end, | 
|  | migrate->pgmap_owner); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | } | 
|  | migrate_vma_insert_page(migrate, addr, newpage, | 
|  | &src_pfns[i]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  |  | 
|  | if (is_device_private_page(newpage) || | 
|  | is_device_coherent_page(newpage)) { | 
|  | if (mapping) { | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = page_folio(page); | 
|  |  | 
|  | /* | 
|  | * For now only support anonymous memory migrating to | 
|  | * device private or coherent memory. | 
|  | * | 
|  | * Try to get rid of swap cache if possible. | 
|  | */ | 
|  | if (!folio_test_anon(folio) || | 
|  | !folio_free_swap(folio)) { | 
|  | src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } else if (is_zone_device_page(newpage)) { | 
|  | /* | 
|  | * Other types of ZONE_DEVICE page are not supported. | 
|  | */ | 
|  | src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (migrate && migrate->fault_page == page) | 
|  | r = migrate_folio_extra(mapping, page_folio(newpage), | 
|  | page_folio(page), | 
|  | MIGRATE_SYNC_NO_COPY, 1); | 
|  | else | 
|  | r = migrate_folio(mapping, page_folio(newpage), | 
|  | page_folio(page), MIGRATE_SYNC_NO_COPY); | 
|  | if (r != MIGRATEPAGE_SUCCESS) | 
|  | src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; | 
|  | } | 
|  |  | 
|  | if (notified) | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * migrate_device_pages() - migrate meta-data from src page to dst page | 
|  | * @src_pfns: src_pfns returned from migrate_device_range() | 
|  | * @dst_pfns: array of pfns allocated by the driver to migrate memory to | 
|  | * @npages: number of pages in the range | 
|  | * | 
|  | * Equivalent to migrate_vma_pages(). This is called to migrate struct page | 
|  | * meta-data from source struct page to destination. | 
|  | */ | 
|  | void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, | 
|  | unsigned long npages) | 
|  | { | 
|  | __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_device_pages); | 
|  |  | 
|  | /** | 
|  | * migrate_vma_pages() - migrate meta-data from src page to dst page | 
|  | * @migrate: migrate struct containing all migration information | 
|  | * | 
|  | * This migrates struct page meta-data from source struct page to destination | 
|  | * struct page. This effectively finishes the migration from source page to the | 
|  | * destination page. | 
|  | */ | 
|  | void migrate_vma_pages(struct migrate_vma *migrate) | 
|  | { | 
|  | __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_vma_pages); | 
|  |  | 
|  | /* | 
|  | * migrate_device_finalize() - complete page migration | 
|  | * @src_pfns: src_pfns returned from migrate_device_range() | 
|  | * @dst_pfns: array of pfns allocated by the driver to migrate memory to | 
|  | * @npages: number of pages in the range | 
|  | * | 
|  | * Completes migration of the page by removing special migration entries. | 
|  | * Drivers must ensure copying of page data is complete and visible to the CPU | 
|  | * before calling this. | 
|  | */ | 
|  | void migrate_device_finalize(unsigned long *src_pfns, | 
|  | unsigned long *dst_pfns, unsigned long npages) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < npages; i++) { | 
|  | struct folio *dst, *src; | 
|  | struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); | 
|  | struct page *page = migrate_pfn_to_page(src_pfns[i]); | 
|  |  | 
|  | if (!page) { | 
|  | if (newpage) { | 
|  | unlock_page(newpage); | 
|  | put_page(newpage); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { | 
|  | if (newpage) { | 
|  | unlock_page(newpage); | 
|  | put_page(newpage); | 
|  | } | 
|  | newpage = page; | 
|  | } | 
|  |  | 
|  | src = page_folio(page); | 
|  | dst = page_folio(newpage); | 
|  | remove_migration_ptes(src, dst, false); | 
|  | folio_unlock(src); | 
|  |  | 
|  | if (is_zone_device_page(page)) | 
|  | put_page(page); | 
|  | else | 
|  | putback_lru_page(page); | 
|  |  | 
|  | if (newpage != page) { | 
|  | unlock_page(newpage); | 
|  | if (is_zone_device_page(newpage)) | 
|  | put_page(newpage); | 
|  | else | 
|  | putback_lru_page(newpage); | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_device_finalize); | 
|  |  | 
|  | /** | 
|  | * migrate_vma_finalize() - restore CPU page table entry | 
|  | * @migrate: migrate struct containing all migration information | 
|  | * | 
|  | * This replaces the special migration pte entry with either a mapping to the | 
|  | * new page if migration was successful for that page, or to the original page | 
|  | * otherwise. | 
|  | * | 
|  | * This also unlocks the pages and puts them back on the lru, or drops the extra | 
|  | * refcount, for device pages. | 
|  | */ | 
|  | void migrate_vma_finalize(struct migrate_vma *migrate) | 
|  | { | 
|  | migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_vma_finalize); | 
|  |  | 
|  | /** | 
|  | * migrate_device_range() - migrate device private pfns to normal memory. | 
|  | * @src_pfns: array large enough to hold migrating source device private pfns. | 
|  | * @start: starting pfn in the range to migrate. | 
|  | * @npages: number of pages to migrate. | 
|  | * | 
|  | * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that | 
|  | * instead of looking up pages based on virtual address mappings a range of | 
|  | * device pfns that should be migrated to system memory is used instead. | 
|  | * | 
|  | * This is useful when a driver needs to free device memory but doesn't know the | 
|  | * virtual mappings of every page that may be in device memory. For example this | 
|  | * is often the case when a driver is being unloaded or unbound from a device. | 
|  | * | 
|  | * Like migrate_vma_setup() this function will take a reference and lock any | 
|  | * migrating pages that aren't free before unmapping them. Drivers may then | 
|  | * allocate destination pages and start copying data from the device to CPU | 
|  | * memory before calling migrate_device_pages(). | 
|  | */ | 
|  | int migrate_device_range(unsigned long *src_pfns, unsigned long start, | 
|  | unsigned long npages) | 
|  | { | 
|  | unsigned long i, pfn; | 
|  |  | 
|  | for (pfn = start, i = 0; i < npages; pfn++, i++) { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | if (!get_page_unless_zero(page)) { | 
|  | src_pfns[i] = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!trylock_page(page)) { | 
|  | src_pfns[i] = 0; | 
|  | put_page(page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; | 
|  | } | 
|  |  | 
|  | migrate_device_unmap(src_pfns, npages, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_device_range); | 
|  |  | 
|  | /* | 
|  | * Migrate a device coherent page back to normal memory. The caller should have | 
|  | * a reference on page which will be copied to the new page if migration is | 
|  | * successful or dropped on failure. | 
|  | */ | 
|  | int migrate_device_coherent_page(struct page *page) | 
|  | { | 
|  | unsigned long src_pfn, dst_pfn = 0; | 
|  | struct page *dpage; | 
|  |  | 
|  | WARN_ON_ONCE(PageCompound(page)); | 
|  |  | 
|  | lock_page(page); | 
|  | src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; | 
|  |  | 
|  | /* | 
|  | * We don't have a VMA and don't need to walk the page tables to find | 
|  | * the source page. So call migrate_vma_unmap() directly to unmap the | 
|  | * page as migrate_vma_setup() will fail if args.vma == NULL. | 
|  | */ | 
|  | migrate_device_unmap(&src_pfn, 1, NULL); | 
|  | if (!(src_pfn & MIGRATE_PFN_MIGRATE)) | 
|  | return -EBUSY; | 
|  |  | 
|  | dpage = alloc_page(GFP_USER | __GFP_NOWARN); | 
|  | if (dpage) { | 
|  | lock_page(dpage); | 
|  | dst_pfn = migrate_pfn(page_to_pfn(dpage)); | 
|  | } | 
|  |  | 
|  | migrate_device_pages(&src_pfn, &dst_pfn, 1); | 
|  | if (src_pfn & MIGRATE_PFN_MIGRATE) | 
|  | copy_highpage(dpage, page); | 
|  | migrate_device_finalize(&src_pfn, &dst_pfn, 1); | 
|  |  | 
|  | if (src_pfn & MIGRATE_PFN_MIGRATE) | 
|  | return 0; | 
|  | return -EBUSY; | 
|  | } |