|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * zswap.c - zswap driver file | 
|  | * | 
|  | * zswap is a cache that takes pages that are in the process | 
|  | * of being swapped out and attempts to compress and store them in a | 
|  | * RAM-based memory pool.  This can result in a significant I/O reduction on | 
|  | * the swap device and, in the case where decompressing from RAM is faster | 
|  | * than reading from the swap device, can also improve workload performance. | 
|  | * | 
|  | * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/zpool.h> | 
|  | #include <crypto/acompress.h> | 
|  | #include <linux/zswap.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/list_lru.h> | 
|  |  | 
|  | #include "swap.h" | 
|  | #include "internal.h" | 
|  |  | 
|  | /********************************* | 
|  | * statistics | 
|  | **********************************/ | 
|  | /* Total bytes used by the compressed storage */ | 
|  | u64 zswap_pool_total_size; | 
|  | /* The number of compressed pages currently stored in zswap */ | 
|  | atomic_t zswap_stored_pages = ATOMIC_INIT(0); | 
|  | /* The number of same-value filled pages currently stored in zswap */ | 
|  | static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0); | 
|  |  | 
|  | /* | 
|  | * The statistics below are not protected from concurrent access for | 
|  | * performance reasons so they may not be a 100% accurate.  However, | 
|  | * they do provide useful information on roughly how many times a | 
|  | * certain event is occurring. | 
|  | */ | 
|  |  | 
|  | /* Pool limit was hit (see zswap_max_pool_percent) */ | 
|  | static u64 zswap_pool_limit_hit; | 
|  | /* Pages written back when pool limit was reached */ | 
|  | static u64 zswap_written_back_pages; | 
|  | /* Store failed due to a reclaim failure after pool limit was reached */ | 
|  | static u64 zswap_reject_reclaim_fail; | 
|  | /* Store failed due to compression algorithm failure */ | 
|  | static u64 zswap_reject_compress_fail; | 
|  | /* Compressed page was too big for the allocator to (optimally) store */ | 
|  | static u64 zswap_reject_compress_poor; | 
|  | /* Store failed because underlying allocator could not get memory */ | 
|  | static u64 zswap_reject_alloc_fail; | 
|  | /* Store failed because the entry metadata could not be allocated (rare) */ | 
|  | static u64 zswap_reject_kmemcache_fail; | 
|  | /* Duplicate store was encountered (rare) */ | 
|  | static u64 zswap_duplicate_entry; | 
|  |  | 
|  | /* Shrinker work queue */ | 
|  | static struct workqueue_struct *shrink_wq; | 
|  | /* Pool limit was hit, we need to calm down */ | 
|  | static bool zswap_pool_reached_full; | 
|  |  | 
|  | /********************************* | 
|  | * tunables | 
|  | **********************************/ | 
|  |  | 
|  | #define ZSWAP_PARAM_UNSET "" | 
|  |  | 
|  | static int zswap_setup(void); | 
|  |  | 
|  | /* Enable/disable zswap */ | 
|  | static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); | 
|  | static int zswap_enabled_param_set(const char *, | 
|  | const struct kernel_param *); | 
|  | static const struct kernel_param_ops zswap_enabled_param_ops = { | 
|  | .set =		zswap_enabled_param_set, | 
|  | .get =		param_get_bool, | 
|  | }; | 
|  | module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); | 
|  |  | 
|  | /* Crypto compressor to use */ | 
|  | static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; | 
|  | static int zswap_compressor_param_set(const char *, | 
|  | const struct kernel_param *); | 
|  | static const struct kernel_param_ops zswap_compressor_param_ops = { | 
|  | .set =		zswap_compressor_param_set, | 
|  | .get =		param_get_charp, | 
|  | .free =		param_free_charp, | 
|  | }; | 
|  | module_param_cb(compressor, &zswap_compressor_param_ops, | 
|  | &zswap_compressor, 0644); | 
|  |  | 
|  | /* Compressed storage zpool to use */ | 
|  | static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; | 
|  | static int zswap_zpool_param_set(const char *, const struct kernel_param *); | 
|  | static const struct kernel_param_ops zswap_zpool_param_ops = { | 
|  | .set =		zswap_zpool_param_set, | 
|  | .get =		param_get_charp, | 
|  | .free =		param_free_charp, | 
|  | }; | 
|  | module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); | 
|  |  | 
|  | /* The maximum percentage of memory that the compressed pool can occupy */ | 
|  | static unsigned int zswap_max_pool_percent = 20; | 
|  | module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); | 
|  |  | 
|  | /* The threshold for accepting new pages after the max_pool_percent was hit */ | 
|  | static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ | 
|  | module_param_named(accept_threshold_percent, zswap_accept_thr_percent, | 
|  | uint, 0644); | 
|  |  | 
|  | /* | 
|  | * Enable/disable handling same-value filled pages (enabled by default). | 
|  | * If disabled every page is considered non-same-value filled. | 
|  | */ | 
|  | static bool zswap_same_filled_pages_enabled = true; | 
|  | module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled, | 
|  | bool, 0644); | 
|  |  | 
|  | /* Enable/disable handling non-same-value filled pages (enabled by default) */ | 
|  | static bool zswap_non_same_filled_pages_enabled = true; | 
|  | module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled, | 
|  | bool, 0644); | 
|  |  | 
|  | static bool zswap_exclusive_loads_enabled = IS_ENABLED( | 
|  | CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON); | 
|  | module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644); | 
|  |  | 
|  | /* Number of zpools in zswap_pool (empirically determined for scalability) */ | 
|  | #define ZSWAP_NR_ZPOOLS 32 | 
|  |  | 
|  | /* Enable/disable memory pressure-based shrinker. */ | 
|  | static bool zswap_shrinker_enabled = IS_ENABLED( | 
|  | CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); | 
|  | module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); | 
|  |  | 
|  | bool is_zswap_enabled(void) | 
|  | { | 
|  | return zswap_enabled; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * data structures | 
|  | **********************************/ | 
|  |  | 
|  | struct crypto_acomp_ctx { | 
|  | struct crypto_acomp *acomp; | 
|  | struct acomp_req *req; | 
|  | struct crypto_wait wait; | 
|  | u8 *buffer; | 
|  | struct mutex mutex; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. | 
|  | * The only case where lru_lock is not acquired while holding tree.lock is | 
|  | * when a zswap_entry is taken off the lru for writeback, in that case it | 
|  | * needs to be verified that it's still valid in the tree. | 
|  | */ | 
|  | struct zswap_pool { | 
|  | struct zpool *zpools[ZSWAP_NR_ZPOOLS]; | 
|  | struct crypto_acomp_ctx __percpu *acomp_ctx; | 
|  | struct kref kref; | 
|  | struct list_head list; | 
|  | struct work_struct release_work; | 
|  | struct work_struct shrink_work; | 
|  | struct hlist_node node; | 
|  | char tfm_name[CRYPTO_MAX_ALG_NAME]; | 
|  | struct list_lru list_lru; | 
|  | struct mem_cgroup *next_shrink; | 
|  | struct shrinker *shrinker; | 
|  | atomic_t nr_stored; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct zswap_entry | 
|  | * | 
|  | * This structure contains the metadata for tracking a single compressed | 
|  | * page within zswap. | 
|  | * | 
|  | * rbnode - links the entry into red-black tree for the appropriate swap type | 
|  | * swpentry - associated swap entry, the offset indexes into the red-black tree | 
|  | * refcount - the number of outstanding reference to the entry. This is needed | 
|  | *            to protect against premature freeing of the entry by code | 
|  | *            concurrent calls to load, invalidate, and writeback.  The lock | 
|  | *            for the zswap_tree structure that contains the entry must | 
|  | *            be held while changing the refcount.  Since the lock must | 
|  | *            be held, there is no reason to also make refcount atomic. | 
|  | * length - the length in bytes of the compressed page data.  Needed during | 
|  | *          decompression. For a same value filled page length is 0, and both | 
|  | *          pool and lru are invalid and must be ignored. | 
|  | * pool - the zswap_pool the entry's data is in | 
|  | * handle - zpool allocation handle that stores the compressed page data | 
|  | * value - value of the same-value filled pages which have same content | 
|  | * objcg - the obj_cgroup that the compressed memory is charged to | 
|  | * lru - handle to the pool's lru used to evict pages. | 
|  | */ | 
|  | struct zswap_entry { | 
|  | struct rb_node rbnode; | 
|  | swp_entry_t swpentry; | 
|  | int refcount; | 
|  | unsigned int length; | 
|  | struct zswap_pool *pool; | 
|  | union { | 
|  | unsigned long handle; | 
|  | unsigned long value; | 
|  | }; | 
|  | struct obj_cgroup *objcg; | 
|  | struct list_head lru; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The tree lock in the zswap_tree struct protects a few things: | 
|  | * - the rbtree | 
|  | * - the refcount field of each entry in the tree | 
|  | */ | 
|  | struct zswap_tree { | 
|  | struct rb_root rbroot; | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; | 
|  |  | 
|  | /* RCU-protected iteration */ | 
|  | static LIST_HEAD(zswap_pools); | 
|  | /* protects zswap_pools list modification */ | 
|  | static DEFINE_SPINLOCK(zswap_pools_lock); | 
|  | /* pool counter to provide unique names to zpool */ | 
|  | static atomic_t zswap_pools_count = ATOMIC_INIT(0); | 
|  |  | 
|  | enum zswap_init_type { | 
|  | ZSWAP_UNINIT, | 
|  | ZSWAP_INIT_SUCCEED, | 
|  | ZSWAP_INIT_FAILED | 
|  | }; | 
|  |  | 
|  | static enum zswap_init_type zswap_init_state; | 
|  |  | 
|  | /* used to ensure the integrity of initialization */ | 
|  | static DEFINE_MUTEX(zswap_init_lock); | 
|  |  | 
|  | /* init completed, but couldn't create the initial pool */ | 
|  | static bool zswap_has_pool; | 
|  |  | 
|  | /********************************* | 
|  | * helpers and fwd declarations | 
|  | **********************************/ | 
|  |  | 
|  | #define zswap_pool_debug(msg, p)				\ | 
|  | pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\ | 
|  | zpool_get_type((p)->zpools[0])) | 
|  |  | 
|  | static int zswap_writeback_entry(struct zswap_entry *entry, | 
|  | struct zswap_tree *tree); | 
|  | static int zswap_pool_get(struct zswap_pool *pool); | 
|  | static void zswap_pool_put(struct zswap_pool *pool); | 
|  |  | 
|  | static bool zswap_is_full(void) | 
|  | { | 
|  | return totalram_pages() * zswap_max_pool_percent / 100 < | 
|  | DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static bool zswap_can_accept(void) | 
|  | { | 
|  | return totalram_pages() * zswap_accept_thr_percent / 100 * | 
|  | zswap_max_pool_percent / 100 > | 
|  | DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static u64 get_zswap_pool_size(struct zswap_pool *pool) | 
|  | { | 
|  | u64 pool_size = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) | 
|  | pool_size += zpool_get_total_size(pool->zpools[i]); | 
|  |  | 
|  | return pool_size; | 
|  | } | 
|  |  | 
|  | static void zswap_update_total_size(void) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  | u64 total = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | list_for_each_entry_rcu(pool, &zswap_pools, list) | 
|  | total += get_zswap_pool_size(pool); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | zswap_pool_total_size = total; | 
|  | } | 
|  |  | 
|  | /* should be called under RCU */ | 
|  | #ifdef CONFIG_MEMCG | 
|  | static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) | 
|  | { | 
|  | return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; | 
|  | } | 
|  | #else | 
|  | static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int entry_to_nid(struct zswap_entry *entry) | 
|  | { | 
|  | return page_to_nid(virt_to_page(entry)); | 
|  | } | 
|  |  | 
|  | void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | /* lock out zswap pools list modification */ | 
|  | spin_lock(&zswap_pools_lock); | 
|  | list_for_each_entry(pool, &zswap_pools, list) { | 
|  | if (pool->next_shrink == memcg) | 
|  | pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL); | 
|  | } | 
|  | spin_unlock(&zswap_pools_lock); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * zswap entry functions | 
|  | **********************************/ | 
|  | static struct kmem_cache *zswap_entry_cache; | 
|  |  | 
|  | static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) | 
|  | { | 
|  | struct zswap_entry *entry; | 
|  | entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); | 
|  | if (!entry) | 
|  | return NULL; | 
|  | entry->refcount = 1; | 
|  | RB_CLEAR_NODE(&entry->rbnode); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void zswap_entry_cache_free(struct zswap_entry *entry) | 
|  | { | 
|  | kmem_cache_free(zswap_entry_cache, entry); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * zswap lruvec functions | 
|  | **********************************/ | 
|  | void zswap_lruvec_state_init(struct lruvec *lruvec) | 
|  | { | 
|  | atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0); | 
|  | } | 
|  |  | 
|  | void zswap_folio_swapin(struct folio *folio) | 
|  | { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | if (folio) { | 
|  | lruvec = folio_lruvec(folio); | 
|  | atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected); | 
|  | } | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * lru functions | 
|  | **********************************/ | 
|  | static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) | 
|  | { | 
|  | atomic_long_t *nr_zswap_protected; | 
|  | unsigned long lru_size, old, new; | 
|  | int nid = entry_to_nid(entry); | 
|  | struct mem_cgroup *memcg; | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | /* | 
|  | * Note that it is safe to use rcu_read_lock() here, even in the face of | 
|  | * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection | 
|  | * used in list_lru lookup, only two scenarios are possible: | 
|  | * | 
|  | * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The | 
|  | *    new entry will be reparented to memcg's parent's list_lru. | 
|  | * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The | 
|  | *    new entry will be added directly to memcg's parent's list_lru. | 
|  | * | 
|  | * Similar reasoning holds for list_lru_del() and list_lru_putback(). | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_entry(entry); | 
|  | /* will always succeed */ | 
|  | list_lru_add(list_lru, &entry->lru, nid, memcg); | 
|  |  | 
|  | /* Update the protection area */ | 
|  | lru_size = list_lru_count_one(list_lru, nid, memcg); | 
|  | lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); | 
|  | nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected; | 
|  | old = atomic_long_inc_return(nr_zswap_protected); | 
|  | /* | 
|  | * Decay to avoid overflow and adapt to changing workloads. | 
|  | * This is based on LRU reclaim cost decaying heuristics. | 
|  | */ | 
|  | do { | 
|  | new = old > lru_size / 4 ? old / 2 : old; | 
|  | } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new)); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) | 
|  | { | 
|  | int nid = entry_to_nid(entry); | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_entry(entry); | 
|  | /* will always succeed */ | 
|  | list_lru_del(list_lru, &entry->lru, nid, memcg); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void zswap_lru_putback(struct list_lru *list_lru, | 
|  | struct zswap_entry *entry) | 
|  | { | 
|  | int nid = entry_to_nid(entry); | 
|  | spinlock_t *lock = &list_lru->node[nid].lock; | 
|  | struct mem_cgroup *memcg; | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_entry(entry); | 
|  | spin_lock(lock); | 
|  | /* we cannot use list_lru_add here, because it increments node's lru count */ | 
|  | list_lru_putback(list_lru, &entry->lru, nid, memcg); | 
|  | spin_unlock(lock); | 
|  |  | 
|  | lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry))); | 
|  | /* increment the protection area to account for the LRU rotation. */ | 
|  | atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * rbtree functions | 
|  | **********************************/ | 
|  | static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) | 
|  | { | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct zswap_entry *entry; | 
|  | pgoff_t entry_offset; | 
|  |  | 
|  | while (node) { | 
|  | entry = rb_entry(node, struct zswap_entry, rbnode); | 
|  | entry_offset = swp_offset(entry->swpentry); | 
|  | if (entry_offset > offset) | 
|  | node = node->rb_left; | 
|  | else if (entry_offset < offset) | 
|  | node = node->rb_right; | 
|  | else | 
|  | return entry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the case that a entry with the same offset is found, a pointer to | 
|  | * the existing entry is stored in dupentry and the function returns -EEXIST | 
|  | */ | 
|  | static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, | 
|  | struct zswap_entry **dupentry) | 
|  | { | 
|  | struct rb_node **link = &root->rb_node, *parent = NULL; | 
|  | struct zswap_entry *myentry; | 
|  | pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry); | 
|  |  | 
|  | while (*link) { | 
|  | parent = *link; | 
|  | myentry = rb_entry(parent, struct zswap_entry, rbnode); | 
|  | myentry_offset = swp_offset(myentry->swpentry); | 
|  | if (myentry_offset > entry_offset) | 
|  | link = &(*link)->rb_left; | 
|  | else if (myentry_offset < entry_offset) | 
|  | link = &(*link)->rb_right; | 
|  | else { | 
|  | *dupentry = myentry; | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  | rb_link_node(&entry->rbnode, parent, link); | 
|  | rb_insert_color(&entry->rbnode, root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry) | 
|  | { | 
|  | if (!RB_EMPTY_NODE(&entry->rbnode)) { | 
|  | rb_erase(&entry->rbnode, root); | 
|  | RB_CLEAR_NODE(&entry->rbnode); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct zpool *zswap_find_zpool(struct zswap_entry *entry) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | if (ZSWAP_NR_ZPOOLS > 1) | 
|  | i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS)); | 
|  |  | 
|  | return entry->pool->zpools[i]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Carries out the common pattern of freeing and entry's zpool allocation, | 
|  | * freeing the entry itself, and decrementing the number of stored pages. | 
|  | */ | 
|  | static void zswap_free_entry(struct zswap_entry *entry) | 
|  | { | 
|  | if (!entry->length) | 
|  | atomic_dec(&zswap_same_filled_pages); | 
|  | else { | 
|  | zswap_lru_del(&entry->pool->list_lru, entry); | 
|  | zpool_free(zswap_find_zpool(entry), entry->handle); | 
|  | atomic_dec(&entry->pool->nr_stored); | 
|  | zswap_pool_put(entry->pool); | 
|  | } | 
|  | if (entry->objcg) { | 
|  | obj_cgroup_uncharge_zswap(entry->objcg, entry->length); | 
|  | obj_cgroup_put(entry->objcg); | 
|  | } | 
|  | zswap_entry_cache_free(entry); | 
|  | atomic_dec(&zswap_stored_pages); | 
|  | zswap_update_total_size(); | 
|  | } | 
|  |  | 
|  | /* caller must hold the tree lock */ | 
|  | static void zswap_entry_get(struct zswap_entry *entry) | 
|  | { | 
|  | entry->refcount++; | 
|  | } | 
|  |  | 
|  | /* caller must hold the tree lock | 
|  | * remove from the tree and free it, if nobody reference the entry | 
|  | */ | 
|  | static void zswap_entry_put(struct zswap_tree *tree, | 
|  | struct zswap_entry *entry) | 
|  | { | 
|  | int refcount = --entry->refcount; | 
|  |  | 
|  | WARN_ON_ONCE(refcount < 0); | 
|  | if (refcount == 0) { | 
|  | WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode)); | 
|  | zswap_free_entry(entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* caller must hold the tree lock */ | 
|  | static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, | 
|  | pgoff_t offset) | 
|  | { | 
|  | struct zswap_entry *entry; | 
|  |  | 
|  | entry = zswap_rb_search(root, offset); | 
|  | if (entry) | 
|  | zswap_entry_get(entry); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * shrinker functions | 
|  | **********************************/ | 
|  | static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, | 
|  | spinlock_t *lock, void *arg); | 
|  |  | 
|  | static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid)); | 
|  | unsigned long shrink_ret, nr_protected, lru_size; | 
|  | struct zswap_pool *pool = shrinker->private_data; | 
|  | bool encountered_page_in_swapcache = false; | 
|  |  | 
|  | if (!zswap_shrinker_enabled || | 
|  | !mem_cgroup_zswap_writeback_enabled(sc->memcg)) { | 
|  | sc->nr_scanned = 0; | 
|  | return SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | nr_protected = | 
|  | atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected); | 
|  | lru_size = list_lru_shrink_count(&pool->list_lru, sc); | 
|  |  | 
|  | /* | 
|  | * Abort if we are shrinking into the protected region. | 
|  | * | 
|  | * This short-circuiting is necessary because if we have too many multiple | 
|  | * concurrent reclaimers getting the freeable zswap object counts at the | 
|  | * same time (before any of them made reasonable progress), the total | 
|  | * number of reclaimed objects might be more than the number of unprotected | 
|  | * objects (i.e the reclaimers will reclaim into the protected area of the | 
|  | * zswap LRU). | 
|  | */ | 
|  | if (nr_protected >= lru_size - sc->nr_to_scan) { | 
|  | sc->nr_scanned = 0; | 
|  | return SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb, | 
|  | &encountered_page_in_swapcache); | 
|  |  | 
|  | if (encountered_page_in_swapcache) | 
|  | return SHRINK_STOP; | 
|  |  | 
|  | return shrink_ret ? shrink_ret : SHRINK_STOP; | 
|  | } | 
|  |  | 
|  | static unsigned long zswap_shrinker_count(struct shrinker *shrinker, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct zswap_pool *pool = shrinker->private_data; | 
|  | struct mem_cgroup *memcg = sc->memcg; | 
|  | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); | 
|  | unsigned long nr_backing, nr_stored, nr_freeable, nr_protected; | 
|  |  | 
|  | if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | mem_cgroup_flush_stats(memcg); | 
|  | nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; | 
|  | nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); | 
|  | #else | 
|  | /* use pool stats instead of memcg stats */ | 
|  | nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT; | 
|  | nr_stored = atomic_read(&pool->nr_stored); | 
|  | #endif | 
|  |  | 
|  | if (!nr_stored) | 
|  | return 0; | 
|  |  | 
|  | nr_protected = | 
|  | atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected); | 
|  | nr_freeable = list_lru_shrink_count(&pool->list_lru, sc); | 
|  | /* | 
|  | * Subtract the lru size by an estimate of the number of pages | 
|  | * that should be protected. | 
|  | */ | 
|  | nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0; | 
|  |  | 
|  | /* | 
|  | * Scale the number of freeable pages by the memory saving factor. | 
|  | * This ensures that the better zswap compresses memory, the fewer | 
|  | * pages we will evict to swap (as it will otherwise incur IO for | 
|  | * relatively small memory saving). | 
|  | */ | 
|  | return mult_frac(nr_freeable, nr_backing, nr_stored); | 
|  | } | 
|  |  | 
|  | static void zswap_alloc_shrinker(struct zswap_pool *pool) | 
|  | { | 
|  | pool->shrinker = | 
|  | shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); | 
|  | if (!pool->shrinker) | 
|  | return; | 
|  |  | 
|  | pool->shrinker->private_data = pool; | 
|  | pool->shrinker->scan_objects = zswap_shrinker_scan; | 
|  | pool->shrinker->count_objects = zswap_shrinker_count; | 
|  | pool->shrinker->batch = 0; | 
|  | pool->shrinker->seeks = DEFAULT_SEEKS; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * per-cpu code | 
|  | **********************************/ | 
|  | static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); | 
|  | struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); | 
|  | struct crypto_acomp *acomp; | 
|  | struct acomp_req *req; | 
|  | int ret; | 
|  |  | 
|  | mutex_init(&acomp_ctx->mutex); | 
|  |  | 
|  | acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); | 
|  | if (!acomp_ctx->buffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); | 
|  | if (IS_ERR(acomp)) { | 
|  | pr_err("could not alloc crypto acomp %s : %ld\n", | 
|  | pool->tfm_name, PTR_ERR(acomp)); | 
|  | ret = PTR_ERR(acomp); | 
|  | goto acomp_fail; | 
|  | } | 
|  | acomp_ctx->acomp = acomp; | 
|  |  | 
|  | req = acomp_request_alloc(acomp_ctx->acomp); | 
|  | if (!req) { | 
|  | pr_err("could not alloc crypto acomp_request %s\n", | 
|  | pool->tfm_name); | 
|  | ret = -ENOMEM; | 
|  | goto req_fail; | 
|  | } | 
|  | acomp_ctx->req = req; | 
|  |  | 
|  | crypto_init_wait(&acomp_ctx->wait); | 
|  | /* | 
|  | * if the backend of acomp is async zip, crypto_req_done() will wakeup | 
|  | * crypto_wait_req(); if the backend of acomp is scomp, the callback | 
|  | * won't be called, crypto_wait_req() will return without blocking. | 
|  | */ | 
|  | acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | crypto_req_done, &acomp_ctx->wait); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | req_fail: | 
|  | crypto_free_acomp(acomp_ctx->acomp); | 
|  | acomp_fail: | 
|  | kfree(acomp_ctx->buffer); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); | 
|  | struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); | 
|  |  | 
|  | if (!IS_ERR_OR_NULL(acomp_ctx)) { | 
|  | if (!IS_ERR_OR_NULL(acomp_ctx->req)) | 
|  | acomp_request_free(acomp_ctx->req); | 
|  | if (!IS_ERR_OR_NULL(acomp_ctx->acomp)) | 
|  | crypto_free_acomp(acomp_ctx->acomp); | 
|  | kfree(acomp_ctx->buffer); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * pool functions | 
|  | **********************************/ | 
|  |  | 
|  | static struct zswap_pool *__zswap_pool_current(void) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); | 
|  | WARN_ONCE(!pool && zswap_has_pool, | 
|  | "%s: no page storage pool!\n", __func__); | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *zswap_pool_current(void) | 
|  | { | 
|  | assert_spin_locked(&zswap_pools_lock); | 
|  |  | 
|  | return __zswap_pool_current(); | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *zswap_pool_current_get(void) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | pool = __zswap_pool_current(); | 
|  | if (!zswap_pool_get(pool)) | 
|  | pool = NULL; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *zswap_pool_last_get(void) | 
|  | { | 
|  | struct zswap_pool *pool, *last = NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | list_for_each_entry_rcu(pool, &zswap_pools, list) | 
|  | last = pool; | 
|  | WARN_ONCE(!last && zswap_has_pool, | 
|  | "%s: no page storage pool!\n", __func__); | 
|  | if (!zswap_pool_get(last)) | 
|  | last = NULL; | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return last; | 
|  | } | 
|  |  | 
|  | /* type and compressor must be null-terminated */ | 
|  | static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | assert_spin_locked(&zswap_pools_lock); | 
|  |  | 
|  | list_for_each_entry_rcu(pool, &zswap_pools, list) { | 
|  | if (strcmp(pool->tfm_name, compressor)) | 
|  | continue; | 
|  | /* all zpools share the same type */ | 
|  | if (strcmp(zpool_get_type(pool->zpools[0]), type)) | 
|  | continue; | 
|  | /* if we can't get it, it's about to be destroyed */ | 
|  | if (!zswap_pool_get(pool)) | 
|  | continue; | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the entry is still valid in the tree, drop the initial ref and remove it | 
|  | * from the tree. This function must be called with an additional ref held, | 
|  | * otherwise it may race with another invalidation freeing the entry. | 
|  | */ | 
|  | static void zswap_invalidate_entry(struct zswap_tree *tree, | 
|  | struct zswap_entry *entry) | 
|  | { | 
|  | if (zswap_rb_erase(&tree->rbroot, entry)) | 
|  | zswap_entry_put(tree, entry); | 
|  | } | 
|  |  | 
|  | static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, | 
|  | spinlock_t *lock, void *arg) | 
|  | { | 
|  | struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); | 
|  | bool *encountered_page_in_swapcache = (bool *)arg; | 
|  | struct zswap_tree *tree; | 
|  | pgoff_t swpoffset; | 
|  | enum lru_status ret = LRU_REMOVED_RETRY; | 
|  | int writeback_result; | 
|  |  | 
|  | /* | 
|  | * Once the lru lock is dropped, the entry might get freed. The | 
|  | * swpoffset is copied to the stack, and entry isn't deref'd again | 
|  | * until the entry is verified to still be alive in the tree. | 
|  | */ | 
|  | swpoffset = swp_offset(entry->swpentry); | 
|  | tree = zswap_trees[swp_type(entry->swpentry)]; | 
|  | list_lru_isolate(l, item); | 
|  | /* | 
|  | * It's safe to drop the lock here because we return either | 
|  | * LRU_REMOVED_RETRY or LRU_RETRY. | 
|  | */ | 
|  | spin_unlock(lock); | 
|  |  | 
|  | /* Check for invalidate() race */ | 
|  | spin_lock(&tree->lock); | 
|  | if (entry != zswap_rb_search(&tree->rbroot, swpoffset)) | 
|  | goto unlock; | 
|  |  | 
|  | /* Hold a reference to prevent a free during writeback */ | 
|  | zswap_entry_get(entry); | 
|  | spin_unlock(&tree->lock); | 
|  |  | 
|  | writeback_result = zswap_writeback_entry(entry, tree); | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | if (writeback_result) { | 
|  | zswap_reject_reclaim_fail++; | 
|  | zswap_lru_putback(&entry->pool->list_lru, entry); | 
|  | ret = LRU_RETRY; | 
|  |  | 
|  | /* | 
|  | * Encountering a page already in swap cache is a sign that we are shrinking | 
|  | * into the warmer region. We should terminate shrinking (if we're in the dynamic | 
|  | * shrinker context). | 
|  | */ | 
|  | if (writeback_result == -EEXIST && encountered_page_in_swapcache) | 
|  | *encountered_page_in_swapcache = true; | 
|  |  | 
|  | goto put_unlock; | 
|  | } | 
|  | zswap_written_back_pages++; | 
|  |  | 
|  | if (entry->objcg) | 
|  | count_objcg_event(entry->objcg, ZSWPWB); | 
|  |  | 
|  | count_vm_event(ZSWPWB); | 
|  | /* | 
|  | * Writeback started successfully, the page now belongs to the | 
|  | * swapcache. Drop the entry from zswap - unless invalidate already | 
|  | * took it out while we had the tree->lock released for IO. | 
|  | */ | 
|  | zswap_invalidate_entry(tree, entry); | 
|  |  | 
|  | put_unlock: | 
|  | /* Drop local reference */ | 
|  | zswap_entry_put(tree, entry); | 
|  | unlock: | 
|  | spin_unlock(&tree->lock); | 
|  | spin_lock(lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int shrink_memcg(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  | int nid, shrunk = 0; | 
|  |  | 
|  | if (!mem_cgroup_zswap_writeback_enabled(memcg)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Skip zombies because their LRUs are reparented and we would be | 
|  | * reclaiming from the parent instead of the dead memcg. | 
|  | */ | 
|  | if (memcg && !mem_cgroup_online(memcg)) | 
|  | return -ENOENT; | 
|  |  | 
|  | pool = zswap_pool_current_get(); | 
|  | if (!pool) | 
|  | return -EINVAL; | 
|  |  | 
|  | for_each_node_state(nid, N_NORMAL_MEMORY) { | 
|  | unsigned long nr_to_walk = 1; | 
|  |  | 
|  | shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg, | 
|  | &shrink_memcg_cb, NULL, &nr_to_walk); | 
|  | } | 
|  | zswap_pool_put(pool); | 
|  | return shrunk ? 0 : -EAGAIN; | 
|  | } | 
|  |  | 
|  | static void shrink_worker(struct work_struct *w) | 
|  | { | 
|  | struct zswap_pool *pool = container_of(w, typeof(*pool), | 
|  | shrink_work); | 
|  | struct mem_cgroup *memcg; | 
|  | int ret, failures = 0; | 
|  |  | 
|  | /* global reclaim will select cgroup in a round-robin fashion. */ | 
|  | do { | 
|  | spin_lock(&zswap_pools_lock); | 
|  | pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL); | 
|  | memcg = pool->next_shrink; | 
|  |  | 
|  | /* | 
|  | * We need to retry if we have gone through a full round trip, or if we | 
|  | * got an offline memcg (or else we risk undoing the effect of the | 
|  | * zswap memcg offlining cleanup callback). This is not catastrophic | 
|  | * per se, but it will keep the now offlined memcg hostage for a while. | 
|  | * | 
|  | * Note that if we got an online memcg, we will keep the extra | 
|  | * reference in case the original reference obtained by mem_cgroup_iter | 
|  | * is dropped by the zswap memcg offlining callback, ensuring that the | 
|  | * memcg is not killed when we are reclaiming. | 
|  | */ | 
|  | if (!memcg) { | 
|  | spin_unlock(&zswap_pools_lock); | 
|  | if (++failures == MAX_RECLAIM_RETRIES) | 
|  | break; | 
|  |  | 
|  | goto resched; | 
|  | } | 
|  |  | 
|  | if (!mem_cgroup_tryget_online(memcg)) { | 
|  | /* drop the reference from mem_cgroup_iter() */ | 
|  | mem_cgroup_iter_break(NULL, memcg); | 
|  | pool->next_shrink = NULL; | 
|  | spin_unlock(&zswap_pools_lock); | 
|  |  | 
|  | if (++failures == MAX_RECLAIM_RETRIES) | 
|  | break; | 
|  |  | 
|  | goto resched; | 
|  | } | 
|  | spin_unlock(&zswap_pools_lock); | 
|  |  | 
|  | ret = shrink_memcg(memcg); | 
|  | /* drop the extra reference */ | 
|  | mem_cgroup_put(memcg); | 
|  |  | 
|  | if (ret == -EINVAL) | 
|  | break; | 
|  | if (ret && ++failures == MAX_RECLAIM_RETRIES) | 
|  | break; | 
|  |  | 
|  | resched: | 
|  | cond_resched(); | 
|  | } while (!zswap_can_accept()); | 
|  | zswap_pool_put(pool); | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *zswap_pool_create(char *type, char *compressor) | 
|  | { | 
|  | int i; | 
|  | struct zswap_pool *pool; | 
|  | char name[38]; /* 'zswap' + 32 char (max) num + \0 */ | 
|  | gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; | 
|  | int ret; | 
|  |  | 
|  | if (!zswap_has_pool) { | 
|  | /* if either are unset, pool initialization failed, and we | 
|  | * need both params to be set correctly before trying to | 
|  | * create a pool. | 
|  | */ | 
|  | if (!strcmp(type, ZSWAP_PARAM_UNSET)) | 
|  | return NULL; | 
|  | if (!strcmp(compressor, ZSWAP_PARAM_UNSET)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) | 
|  | return NULL; | 
|  |  | 
|  | for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) { | 
|  | /* unique name for each pool specifically required by zsmalloc */ | 
|  | snprintf(name, 38, "zswap%x", | 
|  | atomic_inc_return(&zswap_pools_count)); | 
|  |  | 
|  | pool->zpools[i] = zpool_create_pool(type, name, gfp); | 
|  | if (!pool->zpools[i]) { | 
|  | pr_err("%s zpool not available\n", type); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0])); | 
|  |  | 
|  | strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); | 
|  |  | 
|  | pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); | 
|  | if (!pool->acomp_ctx) { | 
|  | pr_err("percpu alloc failed\n"); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, | 
|  | &pool->node); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | zswap_alloc_shrinker(pool); | 
|  | if (!pool->shrinker) | 
|  | goto error; | 
|  |  | 
|  | pr_debug("using %s compressor\n", pool->tfm_name); | 
|  |  | 
|  | /* being the current pool takes 1 ref; this func expects the | 
|  | * caller to always add the new pool as the current pool | 
|  | */ | 
|  | kref_init(&pool->kref); | 
|  | INIT_LIST_HEAD(&pool->list); | 
|  | if (list_lru_init_memcg(&pool->list_lru, pool->shrinker)) | 
|  | goto lru_fail; | 
|  | shrinker_register(pool->shrinker); | 
|  | INIT_WORK(&pool->shrink_work, shrink_worker); | 
|  | atomic_set(&pool->nr_stored, 0); | 
|  |  | 
|  | zswap_pool_debug("created", pool); | 
|  |  | 
|  | return pool; | 
|  |  | 
|  | lru_fail: | 
|  | list_lru_destroy(&pool->list_lru); | 
|  | shrinker_free(pool->shrinker); | 
|  | error: | 
|  | if (pool->acomp_ctx) | 
|  | free_percpu(pool->acomp_ctx); | 
|  | while (i--) | 
|  | zpool_destroy_pool(pool->zpools[i]); | 
|  | kfree(pool); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct zswap_pool *__zswap_pool_create_fallback(void) | 
|  | { | 
|  | bool has_comp, has_zpool; | 
|  |  | 
|  | has_comp = crypto_has_acomp(zswap_compressor, 0, 0); | 
|  | if (!has_comp && strcmp(zswap_compressor, | 
|  | CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { | 
|  | pr_err("compressor %s not available, using default %s\n", | 
|  | zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); | 
|  | param_free_charp(&zswap_compressor); | 
|  | zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; | 
|  | has_comp = crypto_has_acomp(zswap_compressor, 0, 0); | 
|  | } | 
|  | if (!has_comp) { | 
|  | pr_err("default compressor %s not available\n", | 
|  | zswap_compressor); | 
|  | param_free_charp(&zswap_compressor); | 
|  | zswap_compressor = ZSWAP_PARAM_UNSET; | 
|  | } | 
|  |  | 
|  | has_zpool = zpool_has_pool(zswap_zpool_type); | 
|  | if (!has_zpool && strcmp(zswap_zpool_type, | 
|  | CONFIG_ZSWAP_ZPOOL_DEFAULT)) { | 
|  | pr_err("zpool %s not available, using default %s\n", | 
|  | zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT); | 
|  | param_free_charp(&zswap_zpool_type); | 
|  | zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; | 
|  | has_zpool = zpool_has_pool(zswap_zpool_type); | 
|  | } | 
|  | if (!has_zpool) { | 
|  | pr_err("default zpool %s not available\n", | 
|  | zswap_zpool_type); | 
|  | param_free_charp(&zswap_zpool_type); | 
|  | zswap_zpool_type = ZSWAP_PARAM_UNSET; | 
|  | } | 
|  |  | 
|  | if (!has_comp || !has_zpool) | 
|  | return NULL; | 
|  |  | 
|  | return zswap_pool_create(zswap_zpool_type, zswap_compressor); | 
|  | } | 
|  |  | 
|  | static void zswap_pool_destroy(struct zswap_pool *pool) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | zswap_pool_debug("destroying", pool); | 
|  |  | 
|  | shrinker_free(pool->shrinker); | 
|  | cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); | 
|  | free_percpu(pool->acomp_ctx); | 
|  | list_lru_destroy(&pool->list_lru); | 
|  |  | 
|  | spin_lock(&zswap_pools_lock); | 
|  | mem_cgroup_iter_break(NULL, pool->next_shrink); | 
|  | pool->next_shrink = NULL; | 
|  | spin_unlock(&zswap_pools_lock); | 
|  |  | 
|  | for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) | 
|  | zpool_destroy_pool(pool->zpools[i]); | 
|  | kfree(pool); | 
|  | } | 
|  |  | 
|  | static int __must_check zswap_pool_get(struct zswap_pool *pool) | 
|  | { | 
|  | if (!pool) | 
|  | return 0; | 
|  |  | 
|  | return kref_get_unless_zero(&pool->kref); | 
|  | } | 
|  |  | 
|  | static void __zswap_pool_release(struct work_struct *work) | 
|  | { | 
|  | struct zswap_pool *pool = container_of(work, typeof(*pool), | 
|  | release_work); | 
|  |  | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* nobody should have been able to get a kref... */ | 
|  | WARN_ON(kref_get_unless_zero(&pool->kref)); | 
|  |  | 
|  | /* pool is now off zswap_pools list and has no references. */ | 
|  | zswap_pool_destroy(pool); | 
|  | } | 
|  |  | 
|  | static void __zswap_pool_empty(struct kref *kref) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  |  | 
|  | pool = container_of(kref, typeof(*pool), kref); | 
|  |  | 
|  | spin_lock(&zswap_pools_lock); | 
|  |  | 
|  | WARN_ON(pool == zswap_pool_current()); | 
|  |  | 
|  | list_del_rcu(&pool->list); | 
|  |  | 
|  | INIT_WORK(&pool->release_work, __zswap_pool_release); | 
|  | schedule_work(&pool->release_work); | 
|  |  | 
|  | spin_unlock(&zswap_pools_lock); | 
|  | } | 
|  |  | 
|  | static void zswap_pool_put(struct zswap_pool *pool) | 
|  | { | 
|  | kref_put(&pool->kref, __zswap_pool_empty); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * param callbacks | 
|  | **********************************/ | 
|  |  | 
|  | static bool zswap_pool_changed(const char *s, const struct kernel_param *kp) | 
|  | { | 
|  | /* no change required */ | 
|  | if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* val must be a null-terminated string */ | 
|  | static int __zswap_param_set(const char *val, const struct kernel_param *kp, | 
|  | char *type, char *compressor) | 
|  | { | 
|  | struct zswap_pool *pool, *put_pool = NULL; | 
|  | char *s = strstrip((char *)val); | 
|  | int ret = 0; | 
|  | bool new_pool = false; | 
|  |  | 
|  | mutex_lock(&zswap_init_lock); | 
|  | switch (zswap_init_state) { | 
|  | case ZSWAP_UNINIT: | 
|  | /* if this is load-time (pre-init) param setting, | 
|  | * don't create a pool; that's done during init. | 
|  | */ | 
|  | ret = param_set_charp(s, kp); | 
|  | break; | 
|  | case ZSWAP_INIT_SUCCEED: | 
|  | new_pool = zswap_pool_changed(s, kp); | 
|  | break; | 
|  | case ZSWAP_INIT_FAILED: | 
|  | pr_err("can't set param, initialization failed\n"); | 
|  | ret = -ENODEV; | 
|  | } | 
|  | mutex_unlock(&zswap_init_lock); | 
|  |  | 
|  | /* no need to create a new pool, return directly */ | 
|  | if (!new_pool) | 
|  | return ret; | 
|  |  | 
|  | if (!type) { | 
|  | if (!zpool_has_pool(s)) { | 
|  | pr_err("zpool %s not available\n", s); | 
|  | return -ENOENT; | 
|  | } | 
|  | type = s; | 
|  | } else if (!compressor) { | 
|  | if (!crypto_has_acomp(s, 0, 0)) { | 
|  | pr_err("compressor %s not available\n", s); | 
|  | return -ENOENT; | 
|  | } | 
|  | compressor = s; | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock(&zswap_pools_lock); | 
|  |  | 
|  | pool = zswap_pool_find_get(type, compressor); | 
|  | if (pool) { | 
|  | zswap_pool_debug("using existing", pool); | 
|  | WARN_ON(pool == zswap_pool_current()); | 
|  | list_del_rcu(&pool->list); | 
|  | } | 
|  |  | 
|  | spin_unlock(&zswap_pools_lock); | 
|  |  | 
|  | if (!pool) | 
|  | pool = zswap_pool_create(type, compressor); | 
|  |  | 
|  | if (pool) | 
|  | ret = param_set_charp(s, kp); | 
|  | else | 
|  | ret = -EINVAL; | 
|  |  | 
|  | spin_lock(&zswap_pools_lock); | 
|  |  | 
|  | if (!ret) { | 
|  | put_pool = zswap_pool_current(); | 
|  | list_add_rcu(&pool->list, &zswap_pools); | 
|  | zswap_has_pool = true; | 
|  | } else if (pool) { | 
|  | /* add the possibly pre-existing pool to the end of the pools | 
|  | * list; if it's new (and empty) then it'll be removed and | 
|  | * destroyed by the put after we drop the lock | 
|  | */ | 
|  | list_add_tail_rcu(&pool->list, &zswap_pools); | 
|  | put_pool = pool; | 
|  | } | 
|  |  | 
|  | spin_unlock(&zswap_pools_lock); | 
|  |  | 
|  | if (!zswap_has_pool && !pool) { | 
|  | /* if initial pool creation failed, and this pool creation also | 
|  | * failed, maybe both compressor and zpool params were bad. | 
|  | * Allow changing this param, so pool creation will succeed | 
|  | * when the other param is changed. We already verified this | 
|  | * param is ok in the zpool_has_pool() or crypto_has_acomp() | 
|  | * checks above. | 
|  | */ | 
|  | ret = param_set_charp(s, kp); | 
|  | } | 
|  |  | 
|  | /* drop the ref from either the old current pool, | 
|  | * or the new pool we failed to add | 
|  | */ | 
|  | if (put_pool) | 
|  | zswap_pool_put(put_pool); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zswap_compressor_param_set(const char *val, | 
|  | const struct kernel_param *kp) | 
|  | { | 
|  | return __zswap_param_set(val, kp, zswap_zpool_type, NULL); | 
|  | } | 
|  |  | 
|  | static int zswap_zpool_param_set(const char *val, | 
|  | const struct kernel_param *kp) | 
|  | { | 
|  | return __zswap_param_set(val, kp, NULL, zswap_compressor); | 
|  | } | 
|  |  | 
|  | static int zswap_enabled_param_set(const char *val, | 
|  | const struct kernel_param *kp) | 
|  | { | 
|  | int ret = -ENODEV; | 
|  |  | 
|  | /* if this is load-time (pre-init) param setting, only set param. */ | 
|  | if (system_state != SYSTEM_RUNNING) | 
|  | return param_set_bool(val, kp); | 
|  |  | 
|  | mutex_lock(&zswap_init_lock); | 
|  | switch (zswap_init_state) { | 
|  | case ZSWAP_UNINIT: | 
|  | if (zswap_setup()) | 
|  | break; | 
|  | fallthrough; | 
|  | case ZSWAP_INIT_SUCCEED: | 
|  | if (!zswap_has_pool) | 
|  | pr_err("can't enable, no pool configured\n"); | 
|  | else | 
|  | ret = param_set_bool(val, kp); | 
|  | break; | 
|  | case ZSWAP_INIT_FAILED: | 
|  | pr_err("can't enable, initialization failed\n"); | 
|  | } | 
|  | mutex_unlock(&zswap_init_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __zswap_load(struct zswap_entry *entry, struct page *page) | 
|  | { | 
|  | struct zpool *zpool = zswap_find_zpool(entry); | 
|  | struct scatterlist input, output; | 
|  | struct crypto_acomp_ctx *acomp_ctx; | 
|  | u8 *src; | 
|  |  | 
|  | acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); | 
|  | mutex_lock(&acomp_ctx->mutex); | 
|  |  | 
|  | src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO); | 
|  | if (!zpool_can_sleep_mapped(zpool)) { | 
|  | memcpy(acomp_ctx->buffer, src, entry->length); | 
|  | src = acomp_ctx->buffer; | 
|  | zpool_unmap_handle(zpool, entry->handle); | 
|  | } | 
|  |  | 
|  | sg_init_one(&input, src, entry->length); | 
|  | sg_init_table(&output, 1); | 
|  | sg_set_page(&output, page, PAGE_SIZE, 0); | 
|  | acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); | 
|  | BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait)); | 
|  | BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE); | 
|  | mutex_unlock(&acomp_ctx->mutex); | 
|  |  | 
|  | if (zpool_can_sleep_mapped(zpool)) | 
|  | zpool_unmap_handle(zpool, entry->handle); | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * writeback code | 
|  | **********************************/ | 
|  | /* | 
|  | * Attempts to free an entry by adding a folio to the swap cache, | 
|  | * decompressing the entry data into the folio, and issuing a | 
|  | * bio write to write the folio back to the swap device. | 
|  | * | 
|  | * This can be thought of as a "resumed writeback" of the folio | 
|  | * to the swap device.  We are basically resuming the same swap | 
|  | * writeback path that was intercepted with the zswap_store() | 
|  | * in the first place.  After the folio has been decompressed into | 
|  | * the swap cache, the compressed version stored by zswap can be | 
|  | * freed. | 
|  | */ | 
|  | static int zswap_writeback_entry(struct zswap_entry *entry, | 
|  | struct zswap_tree *tree) | 
|  | { | 
|  | swp_entry_t swpentry = entry->swpentry; | 
|  | struct folio *folio; | 
|  | struct mempolicy *mpol; | 
|  | bool folio_was_allocated; | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | }; | 
|  |  | 
|  | /* try to allocate swap cache folio */ | 
|  | mpol = get_task_policy(current); | 
|  | folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, | 
|  | NO_INTERLEAVE_INDEX, &folio_was_allocated, true); | 
|  | if (!folio) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Found an existing folio, we raced with load/swapin. We generally | 
|  | * writeback cold folios from zswap, and swapin means the folio just | 
|  | * became hot. Skip this folio and let the caller find another one. | 
|  | */ | 
|  | if (!folio_was_allocated) { | 
|  | folio_put(folio); | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * folio is locked, and the swapcache is now secured against | 
|  | * concurrent swapping to and from the slot. Verify that the | 
|  | * swap entry hasn't been invalidated and recycled behind our | 
|  | * backs (our zswap_entry reference doesn't prevent that), to | 
|  | * avoid overwriting a new swap folio with old compressed data. | 
|  | */ | 
|  | spin_lock(&tree->lock); | 
|  | if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) { | 
|  | spin_unlock(&tree->lock); | 
|  | delete_from_swap_cache(folio); | 
|  | return -ENOMEM; | 
|  | } | 
|  | spin_unlock(&tree->lock); | 
|  |  | 
|  | __zswap_load(entry, &folio->page); | 
|  |  | 
|  | /* folio is up to date */ | 
|  | folio_mark_uptodate(folio); | 
|  |  | 
|  | /* move it to the tail of the inactive list after end_writeback */ | 
|  | folio_set_reclaim(folio); | 
|  |  | 
|  | /* start writeback */ | 
|  | __swap_writepage(folio, &wbc); | 
|  | folio_put(folio); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int zswap_is_page_same_filled(void *ptr, unsigned long *value) | 
|  | { | 
|  | unsigned long *page; | 
|  | unsigned long val; | 
|  | unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; | 
|  |  | 
|  | page = (unsigned long *)ptr; | 
|  | val = page[0]; | 
|  |  | 
|  | if (val != page[last_pos]) | 
|  | return 0; | 
|  |  | 
|  | for (pos = 1; pos < last_pos; pos++) { | 
|  | if (val != page[pos]) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *value = val; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void zswap_fill_page(void *ptr, unsigned long value) | 
|  | { | 
|  | unsigned long *page; | 
|  |  | 
|  | page = (unsigned long *)ptr; | 
|  | memset_l(page, value, PAGE_SIZE / sizeof(unsigned long)); | 
|  | } | 
|  |  | 
|  | bool zswap_store(struct folio *folio) | 
|  | { | 
|  | swp_entry_t swp = folio->swap; | 
|  | int type = swp_type(swp); | 
|  | pgoff_t offset = swp_offset(swp); | 
|  | struct page *page = &folio->page; | 
|  | struct zswap_tree *tree = zswap_trees[type]; | 
|  | struct zswap_entry *entry, *dupentry; | 
|  | struct scatterlist input, output; | 
|  | struct crypto_acomp_ctx *acomp_ctx; | 
|  | struct obj_cgroup *objcg = NULL; | 
|  | struct mem_cgroup *memcg = NULL; | 
|  | struct zswap_pool *pool; | 
|  | struct zpool *zpool; | 
|  | unsigned int dlen = PAGE_SIZE; | 
|  | unsigned long handle, value; | 
|  | char *buf; | 
|  | u8 *src, *dst; | 
|  | gfp_t gfp; | 
|  | int ret; | 
|  |  | 
|  | VM_WARN_ON_ONCE(!folio_test_locked(folio)); | 
|  | VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); | 
|  |  | 
|  | /* Large folios aren't supported */ | 
|  | if (folio_test_large(folio)) | 
|  | return false; | 
|  |  | 
|  | if (!zswap_enabled || !tree) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If this is a duplicate, it must be removed before attempting to store | 
|  | * it, otherwise, if the store fails the old page won't be removed from | 
|  | * the tree, and it might be written back overriding the new data. | 
|  | */ | 
|  | spin_lock(&tree->lock); | 
|  | dupentry = zswap_rb_search(&tree->rbroot, offset); | 
|  | if (dupentry) { | 
|  | zswap_duplicate_entry++; | 
|  | zswap_invalidate_entry(tree, dupentry); | 
|  | } | 
|  | spin_unlock(&tree->lock); | 
|  | objcg = get_obj_cgroup_from_folio(folio); | 
|  | if (objcg && !obj_cgroup_may_zswap(objcg)) { | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  | if (shrink_memcg(memcg)) { | 
|  | mem_cgroup_put(memcg); | 
|  | goto reject; | 
|  | } | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  |  | 
|  | /* reclaim space if needed */ | 
|  | if (zswap_is_full()) { | 
|  | zswap_pool_limit_hit++; | 
|  | zswap_pool_reached_full = true; | 
|  | goto shrink; | 
|  | } | 
|  |  | 
|  | if (zswap_pool_reached_full) { | 
|  | if (!zswap_can_accept()) | 
|  | goto shrink; | 
|  | else | 
|  | zswap_pool_reached_full = false; | 
|  | } | 
|  |  | 
|  | /* allocate entry */ | 
|  | entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page)); | 
|  | if (!entry) { | 
|  | zswap_reject_kmemcache_fail++; | 
|  | goto reject; | 
|  | } | 
|  |  | 
|  | if (zswap_same_filled_pages_enabled) { | 
|  | src = kmap_local_page(page); | 
|  | if (zswap_is_page_same_filled(src, &value)) { | 
|  | kunmap_local(src); | 
|  | entry->swpentry = swp_entry(type, offset); | 
|  | entry->length = 0; | 
|  | entry->value = value; | 
|  | atomic_inc(&zswap_same_filled_pages); | 
|  | goto insert_entry; | 
|  | } | 
|  | kunmap_local(src); | 
|  | } | 
|  |  | 
|  | if (!zswap_non_same_filled_pages_enabled) | 
|  | goto freepage; | 
|  |  | 
|  | /* if entry is successfully added, it keeps the reference */ | 
|  | entry->pool = zswap_pool_current_get(); | 
|  | if (!entry->pool) | 
|  | goto freepage; | 
|  |  | 
|  | if (objcg) { | 
|  | memcg = get_mem_cgroup_from_objcg(objcg); | 
|  | if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) { | 
|  | mem_cgroup_put(memcg); | 
|  | goto put_pool; | 
|  | } | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  |  | 
|  | /* compress */ | 
|  | acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); | 
|  |  | 
|  | mutex_lock(&acomp_ctx->mutex); | 
|  |  | 
|  | dst = acomp_ctx->buffer; | 
|  | sg_init_table(&input, 1); | 
|  | sg_set_page(&input, &folio->page, PAGE_SIZE, 0); | 
|  |  | 
|  | /* | 
|  | * We need PAGE_SIZE * 2 here since there maybe over-compression case, | 
|  | * and hardware-accelerators may won't check the dst buffer size, so | 
|  | * giving the dst buffer with enough length to avoid buffer overflow. | 
|  | */ | 
|  | sg_init_one(&output, dst, PAGE_SIZE * 2); | 
|  | acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); | 
|  | /* | 
|  | * it maybe looks a little bit silly that we send an asynchronous request, | 
|  | * then wait for its completion synchronously. This makes the process look | 
|  | * synchronous in fact. | 
|  | * Theoretically, acomp supports users send multiple acomp requests in one | 
|  | * acomp instance, then get those requests done simultaneously. but in this | 
|  | * case, zswap actually does store and load page by page, there is no | 
|  | * existing method to send the second page before the first page is done | 
|  | * in one thread doing zwap. | 
|  | * but in different threads running on different cpu, we have different | 
|  | * acomp instance, so multiple threads can do (de)compression in parallel. | 
|  | */ | 
|  | ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); | 
|  | dlen = acomp_ctx->req->dlen; | 
|  |  | 
|  | if (ret) { | 
|  | zswap_reject_compress_fail++; | 
|  | goto put_dstmem; | 
|  | } | 
|  |  | 
|  | /* store */ | 
|  | zpool = zswap_find_zpool(entry); | 
|  | gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; | 
|  | if (zpool_malloc_support_movable(zpool)) | 
|  | gfp |= __GFP_HIGHMEM | __GFP_MOVABLE; | 
|  | ret = zpool_malloc(zpool, dlen, gfp, &handle); | 
|  | if (ret == -ENOSPC) { | 
|  | zswap_reject_compress_poor++; | 
|  | goto put_dstmem; | 
|  | } | 
|  | if (ret) { | 
|  | zswap_reject_alloc_fail++; | 
|  | goto put_dstmem; | 
|  | } | 
|  | buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO); | 
|  | memcpy(buf, dst, dlen); | 
|  | zpool_unmap_handle(zpool, handle); | 
|  | mutex_unlock(&acomp_ctx->mutex); | 
|  |  | 
|  | /* populate entry */ | 
|  | entry->swpentry = swp_entry(type, offset); | 
|  | entry->handle = handle; | 
|  | entry->length = dlen; | 
|  |  | 
|  | insert_entry: | 
|  | entry->objcg = objcg; | 
|  | if (objcg) { | 
|  | obj_cgroup_charge_zswap(objcg, entry->length); | 
|  | /* Account before objcg ref is moved to tree */ | 
|  | count_objcg_event(objcg, ZSWPOUT); | 
|  | } | 
|  |  | 
|  | /* map */ | 
|  | spin_lock(&tree->lock); | 
|  | /* | 
|  | * A duplicate entry should have been removed at the beginning of this | 
|  | * function. Since the swap entry should be pinned, if a duplicate is | 
|  | * found again here it means that something went wrong in the swap | 
|  | * cache. | 
|  | */ | 
|  | while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) { | 
|  | WARN_ON(1); | 
|  | zswap_duplicate_entry++; | 
|  | zswap_invalidate_entry(tree, dupentry); | 
|  | } | 
|  | if (entry->length) { | 
|  | INIT_LIST_HEAD(&entry->lru); | 
|  | zswap_lru_add(&entry->pool->list_lru, entry); | 
|  | atomic_inc(&entry->pool->nr_stored); | 
|  | } | 
|  | spin_unlock(&tree->lock); | 
|  |  | 
|  | /* update stats */ | 
|  | atomic_inc(&zswap_stored_pages); | 
|  | zswap_update_total_size(); | 
|  | count_vm_event(ZSWPOUT); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | put_dstmem: | 
|  | mutex_unlock(&acomp_ctx->mutex); | 
|  | put_pool: | 
|  | zswap_pool_put(entry->pool); | 
|  | freepage: | 
|  | zswap_entry_cache_free(entry); | 
|  | reject: | 
|  | if (objcg) | 
|  | obj_cgroup_put(objcg); | 
|  | return false; | 
|  |  | 
|  | shrink: | 
|  | pool = zswap_pool_last_get(); | 
|  | if (pool && !queue_work(shrink_wq, &pool->shrink_work)) | 
|  | zswap_pool_put(pool); | 
|  | goto reject; | 
|  | } | 
|  |  | 
|  | bool zswap_load(struct folio *folio) | 
|  | { | 
|  | swp_entry_t swp = folio->swap; | 
|  | int type = swp_type(swp); | 
|  | pgoff_t offset = swp_offset(swp); | 
|  | struct page *page = &folio->page; | 
|  | struct zswap_tree *tree = zswap_trees[type]; | 
|  | struct zswap_entry *entry; | 
|  | u8 *dst; | 
|  |  | 
|  | VM_WARN_ON_ONCE(!folio_test_locked(folio)); | 
|  |  | 
|  | /* find */ | 
|  | spin_lock(&tree->lock); | 
|  | entry = zswap_entry_find_get(&tree->rbroot, offset); | 
|  | if (!entry) { | 
|  | spin_unlock(&tree->lock); | 
|  | return false; | 
|  | } | 
|  | spin_unlock(&tree->lock); | 
|  |  | 
|  | if (entry->length) | 
|  | __zswap_load(entry, page); | 
|  | else { | 
|  | dst = kmap_local_page(page); | 
|  | zswap_fill_page(dst, entry->value); | 
|  | kunmap_local(dst); | 
|  | } | 
|  |  | 
|  | count_vm_event(ZSWPIN); | 
|  | if (entry->objcg) | 
|  | count_objcg_event(entry->objcg, ZSWPIN); | 
|  |  | 
|  | spin_lock(&tree->lock); | 
|  | if (zswap_exclusive_loads_enabled) { | 
|  | zswap_invalidate_entry(tree, entry); | 
|  | folio_mark_dirty(folio); | 
|  | } else if (entry->length) { | 
|  | zswap_lru_del(&entry->pool->list_lru, entry); | 
|  | zswap_lru_add(&entry->pool->list_lru, entry); | 
|  | } | 
|  | zswap_entry_put(tree, entry); | 
|  | spin_unlock(&tree->lock); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void zswap_invalidate(int type, pgoff_t offset) | 
|  | { | 
|  | struct zswap_tree *tree = zswap_trees[type]; | 
|  | struct zswap_entry *entry; | 
|  |  | 
|  | /* find */ | 
|  | spin_lock(&tree->lock); | 
|  | entry = zswap_rb_search(&tree->rbroot, offset); | 
|  | if (!entry) { | 
|  | /* entry was written back */ | 
|  | spin_unlock(&tree->lock); | 
|  | return; | 
|  | } | 
|  | zswap_invalidate_entry(tree, entry); | 
|  | spin_unlock(&tree->lock); | 
|  | } | 
|  |  | 
|  | void zswap_swapon(int type) | 
|  | { | 
|  | struct zswap_tree *tree; | 
|  |  | 
|  | tree = kzalloc(sizeof(*tree), GFP_KERNEL); | 
|  | if (!tree) { | 
|  | pr_err("alloc failed, zswap disabled for swap type %d\n", type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tree->rbroot = RB_ROOT; | 
|  | spin_lock_init(&tree->lock); | 
|  | zswap_trees[type] = tree; | 
|  | } | 
|  |  | 
|  | void zswap_swapoff(int type) | 
|  | { | 
|  | struct zswap_tree *tree = zswap_trees[type]; | 
|  | struct zswap_entry *entry, *n; | 
|  |  | 
|  | if (!tree) | 
|  | return; | 
|  |  | 
|  | /* walk the tree and free everything */ | 
|  | spin_lock(&tree->lock); | 
|  | rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) | 
|  | zswap_free_entry(entry); | 
|  | tree->rbroot = RB_ROOT; | 
|  | spin_unlock(&tree->lock); | 
|  | kfree(tree); | 
|  | zswap_trees[type] = NULL; | 
|  | } | 
|  |  | 
|  | /********************************* | 
|  | * debugfs functions | 
|  | **********************************/ | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | #include <linux/debugfs.h> | 
|  |  | 
|  | static struct dentry *zswap_debugfs_root; | 
|  |  | 
|  | static int zswap_debugfs_init(void) | 
|  | { | 
|  | if (!debugfs_initialized()) | 
|  | return -ENODEV; | 
|  |  | 
|  | zswap_debugfs_root = debugfs_create_dir("zswap", NULL); | 
|  |  | 
|  | debugfs_create_u64("pool_limit_hit", 0444, | 
|  | zswap_debugfs_root, &zswap_pool_limit_hit); | 
|  | debugfs_create_u64("reject_reclaim_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_reclaim_fail); | 
|  | debugfs_create_u64("reject_alloc_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_alloc_fail); | 
|  | debugfs_create_u64("reject_kmemcache_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_kmemcache_fail); | 
|  | debugfs_create_u64("reject_compress_fail", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_compress_fail); | 
|  | debugfs_create_u64("reject_compress_poor", 0444, | 
|  | zswap_debugfs_root, &zswap_reject_compress_poor); | 
|  | debugfs_create_u64("written_back_pages", 0444, | 
|  | zswap_debugfs_root, &zswap_written_back_pages); | 
|  | debugfs_create_u64("duplicate_entry", 0444, | 
|  | zswap_debugfs_root, &zswap_duplicate_entry); | 
|  | debugfs_create_u64("pool_total_size", 0444, | 
|  | zswap_debugfs_root, &zswap_pool_total_size); | 
|  | debugfs_create_atomic_t("stored_pages", 0444, | 
|  | zswap_debugfs_root, &zswap_stored_pages); | 
|  | debugfs_create_atomic_t("same_filled_pages", 0444, | 
|  | zswap_debugfs_root, &zswap_same_filled_pages); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int zswap_debugfs_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********************************* | 
|  | * module init and exit | 
|  | **********************************/ | 
|  | static int zswap_setup(void) | 
|  | { | 
|  | struct zswap_pool *pool; | 
|  | int ret; | 
|  |  | 
|  | zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); | 
|  | if (!zswap_entry_cache) { | 
|  | pr_err("entry cache creation failed\n"); | 
|  | goto cache_fail; | 
|  | } | 
|  |  | 
|  | ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, | 
|  | "mm/zswap_pool:prepare", | 
|  | zswap_cpu_comp_prepare, | 
|  | zswap_cpu_comp_dead); | 
|  | if (ret) | 
|  | goto hp_fail; | 
|  |  | 
|  | pool = __zswap_pool_create_fallback(); | 
|  | if (pool) { | 
|  | pr_info("loaded using pool %s/%s\n", pool->tfm_name, | 
|  | zpool_get_type(pool->zpools[0])); | 
|  | list_add(&pool->list, &zswap_pools); | 
|  | zswap_has_pool = true; | 
|  | } else { | 
|  | pr_err("pool creation failed\n"); | 
|  | zswap_enabled = false; | 
|  | } | 
|  |  | 
|  | shrink_wq = create_workqueue("zswap-shrink"); | 
|  | if (!shrink_wq) | 
|  | goto fallback_fail; | 
|  |  | 
|  | if (zswap_debugfs_init()) | 
|  | pr_warn("debugfs initialization failed\n"); | 
|  | zswap_init_state = ZSWAP_INIT_SUCCEED; | 
|  | return 0; | 
|  |  | 
|  | fallback_fail: | 
|  | if (pool) | 
|  | zswap_pool_destroy(pool); | 
|  | hp_fail: | 
|  | kmem_cache_destroy(zswap_entry_cache); | 
|  | cache_fail: | 
|  | /* if built-in, we aren't unloaded on failure; don't allow use */ | 
|  | zswap_init_state = ZSWAP_INIT_FAILED; | 
|  | zswap_enabled = false; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int __init zswap_init(void) | 
|  | { | 
|  | if (!zswap_enabled) | 
|  | return 0; | 
|  | return zswap_setup(); | 
|  | } | 
|  | /* must be late so crypto has time to come up */ | 
|  | late_initcall(zswap_init); | 
|  |  | 
|  | MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); | 
|  | MODULE_DESCRIPTION("Compressed cache for swap pages"); |