|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		Implementation of the Transmission Control Protocol(TCP). | 
|  | * | 
|  | * Authors:	Ross Biro | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
|  | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
|  | *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
|  | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
|  | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | *		Jorge Cwik, <jorge@laser.satlink.net> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Changes: | 
|  | *		Pedro Roque	:	Fast Retransmit/Recovery. | 
|  | *					Two receive queues. | 
|  | *					Retransmit queue handled by TCP. | 
|  | *					Better retransmit timer handling. | 
|  | *					New congestion avoidance. | 
|  | *					Header prediction. | 
|  | *					Variable renaming. | 
|  | * | 
|  | *		Eric		:	Fast Retransmit. | 
|  | *		Randy Scott	:	MSS option defines. | 
|  | *		Eric Schenk	:	Fixes to slow start algorithm. | 
|  | *		Eric Schenk	:	Yet another double ACK bug. | 
|  | *		Eric Schenk	:	Delayed ACK bug fixes. | 
|  | *		Eric Schenk	:	Floyd style fast retrans war avoidance. | 
|  | *		David S. Miller	:	Don't allow zero congestion window. | 
|  | *		Eric Schenk	:	Fix retransmitter so that it sends | 
|  | *					next packet on ack of previous packet. | 
|  | *		Andi Kleen	:	Moved open_request checking here | 
|  | *					and process RSTs for open_requests. | 
|  | *		Andi Kleen	:	Better prune_queue, and other fixes. | 
|  | *		Andrey Savochkin:	Fix RTT measurements in the presence of | 
|  | *					timestamps. | 
|  | *		Andrey Savochkin:	Check sequence numbers correctly when | 
|  | *					removing SACKs due to in sequence incoming | 
|  | *					data segments. | 
|  | *		Andi Kleen:		Make sure we never ack data there is not | 
|  | *					enough room for. Also make this condition | 
|  | *					a fatal error if it might still happen. | 
|  | *		Andi Kleen:		Add tcp_measure_rcv_mss to make | 
|  | *					connections with MSS<min(MTU,ann. MSS) | 
|  | *					work without delayed acks. | 
|  | *		Andi Kleen:		Process packets with PSH set in the | 
|  | *					fast path. | 
|  | *		J Hadi Salim:		ECN support | 
|  | *	 	Andrei Gurtov, | 
|  | *		Pasi Sarolahti, | 
|  | *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission | 
|  | *					engine. Lots of bugs are found. | 
|  | *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "TCP: " fmt | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <net/dst.h> | 
|  | #include <net/tcp.h> | 
|  | #include <net/inet_common.h> | 
|  | #include <linux/ipsec.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <linux/errqueue.h> | 
|  | #include <trace/events/tcp.h> | 
|  | #include <linux/jump_label_ratelimit.h> | 
|  | #include <net/busy_poll.h> | 
|  | #include <net/mptcp.h> | 
|  |  | 
|  | int sysctl_tcp_max_orphans __read_mostly = NR_FILE; | 
|  |  | 
|  | #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/ | 
|  | #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/ | 
|  | #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/ | 
|  | #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/ | 
|  | #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/ | 
|  | #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/ | 
|  | #define FLAG_ECE		0x40 /* ECE in this ACK				*/ | 
|  | #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */ | 
|  | #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/ | 
|  | #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/ | 
|  | #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ | 
|  | #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */ | 
|  | #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */ | 
|  | #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */ | 
|  | #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */ | 
|  | #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/ | 
|  | #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */ | 
|  | #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */ | 
|  |  | 
|  | #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED) | 
|  | #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) | 
|  | #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) | 
|  | #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED) | 
|  |  | 
|  | #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) | 
|  | #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) | 
|  |  | 
|  | #define REXMIT_NONE	0 /* no loss recovery to do */ | 
|  | #define REXMIT_LOST	1 /* retransmit packets marked lost */ | 
|  | #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */ | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_TLS_DEVICE) | 
|  | static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); | 
|  |  | 
|  | void clean_acked_data_enable(struct inet_connection_sock *icsk, | 
|  | void (*cad)(struct sock *sk, u32 ack_seq)) | 
|  | { | 
|  | icsk->icsk_clean_acked = cad; | 
|  | static_branch_deferred_inc(&clean_acked_data_enabled); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(clean_acked_data_enable); | 
|  |  | 
|  | void clean_acked_data_disable(struct inet_connection_sock *icsk) | 
|  | { | 
|  | static_branch_slow_dec_deferred(&clean_acked_data_enabled); | 
|  | icsk->icsk_clean_acked = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(clean_acked_data_disable); | 
|  |  | 
|  | void clean_acked_data_flush(void) | 
|  | { | 
|  | static_key_deferred_flush(&clean_acked_data_enabled); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(clean_acked_data_flush); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_BPF | 
|  | static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && | 
|  | BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), | 
|  | BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); | 
|  | bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), | 
|  | BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); | 
|  | struct bpf_sock_ops_kern sock_ops; | 
|  |  | 
|  | if (likely(!unknown_opt && !parse_all_opt)) | 
|  | return; | 
|  |  | 
|  | /* The skb will be handled in the | 
|  | * bpf_skops_established() or | 
|  | * bpf_skops_write_hdr_opt(). | 
|  | */ | 
|  | switch (sk->sk_state) { | 
|  | case TCP_SYN_RECV: | 
|  | case TCP_SYN_SENT: | 
|  | case TCP_LISTEN: | 
|  | return; | 
|  | } | 
|  |  | 
|  | sock_owned_by_me(sk); | 
|  |  | 
|  | memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); | 
|  | sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; | 
|  | sock_ops.is_fullsock = 1; | 
|  | sock_ops.sk = sk; | 
|  | bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); | 
|  |  | 
|  | BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); | 
|  | } | 
|  |  | 
|  | static void bpf_skops_established(struct sock *sk, int bpf_op, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct bpf_sock_ops_kern sock_ops; | 
|  |  | 
|  | sock_owned_by_me(sk); | 
|  |  | 
|  | memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); | 
|  | sock_ops.op = bpf_op; | 
|  | sock_ops.is_fullsock = 1; | 
|  | sock_ops.sk = sk; | 
|  | /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ | 
|  | if (skb) | 
|  | bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); | 
|  |  | 
|  | BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); | 
|  | } | 
|  | #else | 
|  | static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void bpf_skops_established(struct sock *sk, int bpf_op, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, | 
|  | unsigned int len) | 
|  | { | 
|  | struct net_device *dev; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); | 
|  | if (!dev || len >= READ_ONCE(dev->mtu)) | 
|  | pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", | 
|  | dev ? dev->name : "Unknown driver"); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* Adapt the MSS value used to make delayed ack decision to the | 
|  | * real world. | 
|  | */ | 
|  | static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | const unsigned int lss = icsk->icsk_ack.last_seg_size; | 
|  | unsigned int len; | 
|  |  | 
|  | icsk->icsk_ack.last_seg_size = 0; | 
|  |  | 
|  | /* skb->len may jitter because of SACKs, even if peer | 
|  | * sends good full-sized frames. | 
|  | */ | 
|  | len = skb_shinfo(skb)->gso_size ? : skb->len; | 
|  | if (len >= icsk->icsk_ack.rcv_mss) { | 
|  | /* Note: divides are still a bit expensive. | 
|  | * For the moment, only adjust scaling_ratio | 
|  | * when we update icsk_ack.rcv_mss. | 
|  | */ | 
|  | if (unlikely(len != icsk->icsk_ack.rcv_mss)) { | 
|  | u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; | 
|  |  | 
|  | do_div(val, skb->truesize); | 
|  | tcp_sk(sk)->scaling_ratio = val ? val : 1; | 
|  | } | 
|  | icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, | 
|  | tcp_sk(sk)->advmss); | 
|  | /* Account for possibly-removed options */ | 
|  | DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, | 
|  | tcp_gro_dev_warn, sk, skb, len); | 
|  | /* If the skb has a len of exactly 1*MSS and has the PSH bit | 
|  | * set then it is likely the end of an application write. So | 
|  | * more data may not be arriving soon, and yet the data sender | 
|  | * may be waiting for an ACK if cwnd-bound or using TX zero | 
|  | * copy. So we set ICSK_ACK_PUSHED here so that | 
|  | * tcp_cleanup_rbuf() will send an ACK immediately if the app | 
|  | * reads all of the data and is not ping-pong. If len > MSS | 
|  | * then this logic does not matter (and does not hurt) because | 
|  | * tcp_cleanup_rbuf() will always ACK immediately if the app | 
|  | * reads data and there is more than an MSS of unACKed data. | 
|  | */ | 
|  | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) | 
|  | icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; | 
|  | } else { | 
|  | /* Otherwise, we make more careful check taking into account, | 
|  | * that SACKs block is variable. | 
|  | * | 
|  | * "len" is invariant segment length, including TCP header. | 
|  | */ | 
|  | len += skb->data - skb_transport_header(skb); | 
|  | if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || | 
|  | /* If PSH is not set, packet should be | 
|  | * full sized, provided peer TCP is not badly broken. | 
|  | * This observation (if it is correct 8)) allows | 
|  | * to handle super-low mtu links fairly. | 
|  | */ | 
|  | (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && | 
|  | !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { | 
|  | /* Subtract also invariant (if peer is RFC compliant), | 
|  | * tcp header plus fixed timestamp option length. | 
|  | * Resulting "len" is MSS free of SACK jitter. | 
|  | */ | 
|  | len -= tcp_sk(sk)->tcp_header_len; | 
|  | icsk->icsk_ack.last_seg_size = len; | 
|  | if (len == lss) { | 
|  | icsk->icsk_ack.rcv_mss = len; | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) | 
|  | icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; | 
|  | icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); | 
|  |  | 
|  | if (quickacks == 0) | 
|  | quickacks = 2; | 
|  | quickacks = min(quickacks, max_quickacks); | 
|  | if (quickacks > icsk->icsk_ack.quick) | 
|  | icsk->icsk_ack.quick = quickacks; | 
|  | } | 
|  |  | 
|  | static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | tcp_incr_quickack(sk, max_quickacks); | 
|  | inet_csk_exit_pingpong_mode(sk); | 
|  | icsk->icsk_ack.ato = TCP_ATO_MIN; | 
|  | } | 
|  |  | 
|  | /* Send ACKs quickly, if "quick" count is not exhausted | 
|  | * and the session is not interactive. | 
|  | */ | 
|  |  | 
|  | static bool tcp_in_quickack_mode(struct sock *sk) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | const struct dst_entry *dst = __sk_dst_get(sk); | 
|  |  | 
|  | return (dst && dst_metric(dst, RTAX_QUICKACK)) || | 
|  | (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); | 
|  | } | 
|  |  | 
|  | static void tcp_ecn_queue_cwr(struct tcp_sock *tp) | 
|  | { | 
|  | if (tp->ecn_flags & TCP_ECN_OK) | 
|  | tp->ecn_flags |= TCP_ECN_QUEUE_CWR; | 
|  | } | 
|  |  | 
|  | static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | if (tcp_hdr(skb)->cwr) { | 
|  | tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; | 
|  |  | 
|  | /* If the sender is telling us it has entered CWR, then its | 
|  | * cwnd may be very low (even just 1 packet), so we should ACK | 
|  | * immediately. | 
|  | */ | 
|  | if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) | 
|  | inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) | 
|  | { | 
|  | tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; | 
|  | } | 
|  |  | 
|  | static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { | 
|  | case INET_ECN_NOT_ECT: | 
|  | /* Funny extension: if ECT is not set on a segment, | 
|  | * and we already seen ECT on a previous segment, | 
|  | * it is probably a retransmit. | 
|  | */ | 
|  | if (tp->ecn_flags & TCP_ECN_SEEN) | 
|  | tcp_enter_quickack_mode(sk, 2); | 
|  | break; | 
|  | case INET_ECN_CE: | 
|  | if (tcp_ca_needs_ecn(sk)) | 
|  | tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); | 
|  |  | 
|  | if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { | 
|  | /* Better not delay acks, sender can have a very low cwnd */ | 
|  | tcp_enter_quickack_mode(sk, 2); | 
|  | tp->ecn_flags |= TCP_ECN_DEMAND_CWR; | 
|  | } | 
|  | tp->ecn_flags |= TCP_ECN_SEEN; | 
|  | break; | 
|  | default: | 
|  | if (tcp_ca_needs_ecn(sk)) | 
|  | tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); | 
|  | tp->ecn_flags |= TCP_ECN_SEEN; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) | 
|  | __tcp_ecn_check_ce(sk, skb); | 
|  | } | 
|  |  | 
|  | static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) | 
|  | { | 
|  | if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) | 
|  | tp->ecn_flags &= ~TCP_ECN_OK; | 
|  | } | 
|  |  | 
|  | static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) | 
|  | { | 
|  | if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) | 
|  | tp->ecn_flags &= ~TCP_ECN_OK; | 
|  | } | 
|  |  | 
|  | static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) | 
|  | { | 
|  | if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Buffer size and advertised window tuning. | 
|  | * | 
|  | * 1. Tuning sk->sk_sndbuf, when connection enters established state. | 
|  | */ | 
|  |  | 
|  | static void tcp_sndbuf_expand(struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; | 
|  | int sndmem, per_mss; | 
|  | u32 nr_segs; | 
|  |  | 
|  | /* Worst case is non GSO/TSO : each frame consumes one skb | 
|  | * and skb->head is kmalloced using power of two area of memory | 
|  | */ | 
|  | per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + | 
|  | MAX_TCP_HEADER + | 
|  | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
|  |  | 
|  | per_mss = roundup_pow_of_two(per_mss) + | 
|  | SKB_DATA_ALIGN(sizeof(struct sk_buff)); | 
|  |  | 
|  | nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); | 
|  | nr_segs = max_t(u32, nr_segs, tp->reordering + 1); | 
|  |  | 
|  | /* Fast Recovery (RFC 5681 3.2) : | 
|  | * Cubic needs 1.7 factor, rounded to 2 to include | 
|  | * extra cushion (application might react slowly to EPOLLOUT) | 
|  | */ | 
|  | sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; | 
|  | sndmem *= nr_segs * per_mss; | 
|  |  | 
|  | if (sk->sk_sndbuf < sndmem) | 
|  | WRITE_ONCE(sk->sk_sndbuf, | 
|  | min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); | 
|  | } | 
|  |  | 
|  | /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) | 
|  | * | 
|  | * All tcp_full_space() is split to two parts: "network" buffer, allocated | 
|  | * forward and advertised in receiver window (tp->rcv_wnd) and | 
|  | * "application buffer", required to isolate scheduling/application | 
|  | * latencies from network. | 
|  | * window_clamp is maximal advertised window. It can be less than | 
|  | * tcp_full_space(), in this case tcp_full_space() - window_clamp | 
|  | * is reserved for "application" buffer. The less window_clamp is | 
|  | * the smoother our behaviour from viewpoint of network, but the lower | 
|  | * throughput and the higher sensitivity of the connection to losses. 8) | 
|  | * | 
|  | * rcv_ssthresh is more strict window_clamp used at "slow start" | 
|  | * phase to predict further behaviour of this connection. | 
|  | * It is used for two goals: | 
|  | * - to enforce header prediction at sender, even when application | 
|  | *   requires some significant "application buffer". It is check #1. | 
|  | * - to prevent pruning of receive queue because of misprediction | 
|  | *   of receiver window. Check #2. | 
|  | * | 
|  | * The scheme does not work when sender sends good segments opening | 
|  | * window and then starts to feed us spaghetti. But it should work | 
|  | * in common situations. Otherwise, we have to rely on queue collapsing. | 
|  | */ | 
|  |  | 
|  | /* Slow part of check#2. */ | 
|  | static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, | 
|  | unsigned int skbtruesize) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | /* Optimize this! */ | 
|  | int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; | 
|  | int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; | 
|  |  | 
|  | while (tp->rcv_ssthresh <= window) { | 
|  | if (truesize <= skb->len) | 
|  | return 2 * inet_csk(sk)->icsk_ack.rcv_mss; | 
|  |  | 
|  | truesize >>= 1; | 
|  | window >>= 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing | 
|  | * can play nice with us, as sk_buff and skb->head might be either | 
|  | * freed or shared with up to MAX_SKB_FRAGS segments. | 
|  | * Only give a boost to drivers using page frag(s) to hold the frame(s), | 
|  | * and if no payload was pulled in skb->head before reaching us. | 
|  | */ | 
|  | static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) | 
|  | { | 
|  | u32 truesize = skb->truesize; | 
|  |  | 
|  | if (adjust && !skb_headlen(skb)) { | 
|  | truesize -= SKB_TRUESIZE(skb_end_offset(skb)); | 
|  | /* paranoid check, some drivers might be buggy */ | 
|  | if (unlikely((int)truesize < (int)skb->len)) | 
|  | truesize = skb->truesize; | 
|  | } | 
|  | return truesize; | 
|  | } | 
|  |  | 
|  | static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, | 
|  | bool adjust) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int room; | 
|  |  | 
|  | room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; | 
|  |  | 
|  | if (room <= 0) | 
|  | return; | 
|  |  | 
|  | /* Check #1 */ | 
|  | if (!tcp_under_memory_pressure(sk)) { | 
|  | unsigned int truesize = truesize_adjust(adjust, skb); | 
|  | int incr; | 
|  |  | 
|  | /* Check #2. Increase window, if skb with such overhead | 
|  | * will fit to rcvbuf in future. | 
|  | */ | 
|  | if (tcp_win_from_space(sk, truesize) <= skb->len) | 
|  | incr = 2 * tp->advmss; | 
|  | else | 
|  | incr = __tcp_grow_window(sk, skb, truesize); | 
|  |  | 
|  | if (incr) { | 
|  | incr = max_t(int, incr, 2 * skb->len); | 
|  | tp->rcv_ssthresh += min(room, incr); | 
|  | inet_csk(sk)->icsk_ack.quick |= 1; | 
|  | } | 
|  | } else { | 
|  | /* Under pressure: | 
|  | * Adjust rcv_ssthresh according to reserved mem | 
|  | */ | 
|  | tcp_adjust_rcv_ssthresh(sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 3. Try to fixup all. It is made immediately after connection enters | 
|  | *    established state. | 
|  | */ | 
|  | static void tcp_init_buffer_space(struct sock *sk) | 
|  | { | 
|  | int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int maxwin; | 
|  |  | 
|  | if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) | 
|  | tcp_sndbuf_expand(sk); | 
|  |  | 
|  | tcp_mstamp_refresh(tp); | 
|  | tp->rcvq_space.time = tp->tcp_mstamp; | 
|  | tp->rcvq_space.seq = tp->copied_seq; | 
|  |  | 
|  | maxwin = tcp_full_space(sk); | 
|  |  | 
|  | if (tp->window_clamp >= maxwin) { | 
|  | tp->window_clamp = maxwin; | 
|  |  | 
|  | if (tcp_app_win && maxwin > 4 * tp->advmss) | 
|  | tp->window_clamp = max(maxwin - | 
|  | (maxwin >> tcp_app_win), | 
|  | 4 * tp->advmss); | 
|  | } | 
|  |  | 
|  | /* Force reservation of one segment. */ | 
|  | if (tcp_app_win && | 
|  | tp->window_clamp > 2 * tp->advmss && | 
|  | tp->window_clamp + tp->advmss > maxwin) | 
|  | tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); | 
|  |  | 
|  | tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); | 
|  | tp->snd_cwnd_stamp = tcp_jiffies32; | 
|  | tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, | 
|  | (u32)TCP_INIT_CWND * tp->advmss); | 
|  | } | 
|  |  | 
|  | /* 4. Recalculate window clamp after socket hit its memory bounds. */ | 
|  | static void tcp_clamp_window(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct net *net = sock_net(sk); | 
|  | int rmem2; | 
|  |  | 
|  | icsk->icsk_ack.quick = 0; | 
|  | rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); | 
|  |  | 
|  | if (sk->sk_rcvbuf < rmem2 && | 
|  | !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && | 
|  | !tcp_under_memory_pressure(sk) && | 
|  | sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { | 
|  | WRITE_ONCE(sk->sk_rcvbuf, | 
|  | min(atomic_read(&sk->sk_rmem_alloc), rmem2)); | 
|  | } | 
|  | if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) | 
|  | tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); | 
|  | } | 
|  |  | 
|  | /* Initialize RCV_MSS value. | 
|  | * RCV_MSS is an our guess about MSS used by the peer. | 
|  | * We haven't any direct information about the MSS. | 
|  | * It's better to underestimate the RCV_MSS rather than overestimate. | 
|  | * Overestimations make us ACKing less frequently than needed. | 
|  | * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). | 
|  | */ | 
|  | void tcp_initialize_rcv_mss(struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); | 
|  |  | 
|  | hint = min(hint, tp->rcv_wnd / 2); | 
|  | hint = min(hint, TCP_MSS_DEFAULT); | 
|  | hint = max(hint, TCP_MIN_MSS); | 
|  |  | 
|  | inet_csk(sk)->icsk_ack.rcv_mss = hint; | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_initialize_rcv_mss); | 
|  |  | 
|  | /* Receiver "autotuning" code. | 
|  | * | 
|  | * The algorithm for RTT estimation w/o timestamps is based on | 
|  | * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. | 
|  | * <https://public.lanl.gov/radiant/pubs.html#DRS> | 
|  | * | 
|  | * More detail on this code can be found at | 
|  | * <http://staff.psc.edu/jheffner/>, | 
|  | * though this reference is out of date.  A new paper | 
|  | * is pending. | 
|  | */ | 
|  | static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) | 
|  | { | 
|  | u32 new_sample = tp->rcv_rtt_est.rtt_us; | 
|  | long m = sample; | 
|  |  | 
|  | if (new_sample != 0) { | 
|  | /* If we sample in larger samples in the non-timestamp | 
|  | * case, we could grossly overestimate the RTT especially | 
|  | * with chatty applications or bulk transfer apps which | 
|  | * are stalled on filesystem I/O. | 
|  | * | 
|  | * Also, since we are only going for a minimum in the | 
|  | * non-timestamp case, we do not smooth things out | 
|  | * else with timestamps disabled convergence takes too | 
|  | * long. | 
|  | */ | 
|  | if (!win_dep) { | 
|  | m -= (new_sample >> 3); | 
|  | new_sample += m; | 
|  | } else { | 
|  | m <<= 3; | 
|  | if (m < new_sample) | 
|  | new_sample = m; | 
|  | } | 
|  | } else { | 
|  | /* No previous measure. */ | 
|  | new_sample = m << 3; | 
|  | } | 
|  |  | 
|  | tp->rcv_rtt_est.rtt_us = new_sample; | 
|  | } | 
|  |  | 
|  | static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) | 
|  | { | 
|  | u32 delta_us; | 
|  |  | 
|  | if (tp->rcv_rtt_est.time == 0) | 
|  | goto new_measure; | 
|  | if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) | 
|  | return; | 
|  | delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); | 
|  | if (!delta_us) | 
|  | delta_us = 1; | 
|  | tcp_rcv_rtt_update(tp, delta_us, 1); | 
|  |  | 
|  | new_measure: | 
|  | tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; | 
|  | tp->rcv_rtt_est.time = tp->tcp_mstamp; | 
|  | } | 
|  |  | 
|  | static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) | 
|  | { | 
|  | u32 delta, delta_us; | 
|  |  | 
|  | delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; | 
|  | if (tp->tcp_usec_ts) | 
|  | return delta; | 
|  |  | 
|  | if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { | 
|  | if (!delta) | 
|  | delta = 1; | 
|  | delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); | 
|  | return delta_us; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) | 
|  | return; | 
|  | tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->end_seq - | 
|  | TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { | 
|  | s32 delta = tcp_rtt_tsopt_us(tp); | 
|  |  | 
|  | if (delta >= 0) | 
|  | tcp_rcv_rtt_update(tp, delta, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function should be called every time data is copied to user space. | 
|  | * It calculates the appropriate TCP receive buffer space. | 
|  | */ | 
|  | void tcp_rcv_space_adjust(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 copied; | 
|  | int time; | 
|  |  | 
|  | trace_tcp_rcv_space_adjust(sk); | 
|  |  | 
|  | tcp_mstamp_refresh(tp); | 
|  | time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); | 
|  | if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) | 
|  | return; | 
|  |  | 
|  | /* Number of bytes copied to user in last RTT */ | 
|  | copied = tp->copied_seq - tp->rcvq_space.seq; | 
|  | if (copied <= tp->rcvq_space.space) | 
|  | goto new_measure; | 
|  |  | 
|  | /* A bit of theory : | 
|  | * copied = bytes received in previous RTT, our base window | 
|  | * To cope with packet losses, we need a 2x factor | 
|  | * To cope with slow start, and sender growing its cwin by 100 % | 
|  | * every RTT, we need a 4x factor, because the ACK we are sending | 
|  | * now is for the next RTT, not the current one : | 
|  | * <prev RTT . ><current RTT .. ><next RTT .... > | 
|  | */ | 
|  |  | 
|  | if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && | 
|  | !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { | 
|  | u64 rcvwin, grow; | 
|  | int rcvbuf; | 
|  |  | 
|  | /* minimal window to cope with packet losses, assuming | 
|  | * steady state. Add some cushion because of small variations. | 
|  | */ | 
|  | rcvwin = ((u64)copied << 1) + 16 * tp->advmss; | 
|  |  | 
|  | /* Accommodate for sender rate increase (eg. slow start) */ | 
|  | grow = rcvwin * (copied - tp->rcvq_space.space); | 
|  | do_div(grow, tp->rcvq_space.space); | 
|  | rcvwin += (grow << 1); | 
|  |  | 
|  | rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), | 
|  | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); | 
|  | if (rcvbuf > sk->sk_rcvbuf) { | 
|  | WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); | 
|  |  | 
|  | /* Make the window clamp follow along.  */ | 
|  | tp->window_clamp = tcp_win_from_space(sk, rcvbuf); | 
|  | } | 
|  | } | 
|  | tp->rcvq_space.space = copied; | 
|  |  | 
|  | new_measure: | 
|  | tp->rcvq_space.seq = tp->copied_seq; | 
|  | tp->rcvq_space.time = tp->tcp_mstamp; | 
|  | } | 
|  |  | 
|  | static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | if (skb->protocol == htons(ETH_P_IPV6)) | 
|  | icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* There is something which you must keep in mind when you analyze the | 
|  | * behavior of the tp->ato delayed ack timeout interval.  When a | 
|  | * connection starts up, we want to ack as quickly as possible.  The | 
|  | * problem is that "good" TCP's do slow start at the beginning of data | 
|  | * transmission.  The means that until we send the first few ACK's the | 
|  | * sender will sit on his end and only queue most of his data, because | 
|  | * he can only send snd_cwnd unacked packets at any given time.  For | 
|  | * each ACK we send, he increments snd_cwnd and transmits more of his | 
|  | * queue.  -DaveM | 
|  | */ | 
|  | static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | u32 now; | 
|  |  | 
|  | inet_csk_schedule_ack(sk); | 
|  |  | 
|  | tcp_measure_rcv_mss(sk, skb); | 
|  |  | 
|  | tcp_rcv_rtt_measure(tp); | 
|  |  | 
|  | now = tcp_jiffies32; | 
|  |  | 
|  | if (!icsk->icsk_ack.ato) { | 
|  | /* The _first_ data packet received, initialize | 
|  | * delayed ACK engine. | 
|  | */ | 
|  | tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); | 
|  | icsk->icsk_ack.ato = TCP_ATO_MIN; | 
|  | } else { | 
|  | int m = now - icsk->icsk_ack.lrcvtime; | 
|  |  | 
|  | if (m <= TCP_ATO_MIN / 2) { | 
|  | /* The fastest case is the first. */ | 
|  | icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; | 
|  | } else if (m < icsk->icsk_ack.ato) { | 
|  | icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; | 
|  | if (icsk->icsk_ack.ato > icsk->icsk_rto) | 
|  | icsk->icsk_ack.ato = icsk->icsk_rto; | 
|  | } else if (m > icsk->icsk_rto) { | 
|  | /* Too long gap. Apparently sender failed to | 
|  | * restart window, so that we send ACKs quickly. | 
|  | */ | 
|  | tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); | 
|  | } | 
|  | } | 
|  | icsk->icsk_ack.lrcvtime = now; | 
|  | tcp_save_lrcv_flowlabel(sk, skb); | 
|  |  | 
|  | tcp_ecn_check_ce(sk, skb); | 
|  |  | 
|  | if (skb->len >= 128) | 
|  | tcp_grow_window(sk, skb, true); | 
|  | } | 
|  |  | 
|  | /* Called to compute a smoothed rtt estimate. The data fed to this | 
|  | * routine either comes from timestamps, or from segments that were | 
|  | * known _not_ to have been retransmitted [see Karn/Partridge | 
|  | * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 | 
|  | * piece by Van Jacobson. | 
|  | * NOTE: the next three routines used to be one big routine. | 
|  | * To save cycles in the RFC 1323 implementation it was better to break | 
|  | * it up into three procedures. -- erics | 
|  | */ | 
|  | static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | long m = mrtt_us; /* RTT */ | 
|  | u32 srtt = tp->srtt_us; | 
|  |  | 
|  | /*	The following amusing code comes from Jacobson's | 
|  | *	article in SIGCOMM '88.  Note that rtt and mdev | 
|  | *	are scaled versions of rtt and mean deviation. | 
|  | *	This is designed to be as fast as possible | 
|  | *	m stands for "measurement". | 
|  | * | 
|  | *	On a 1990 paper the rto value is changed to: | 
|  | *	RTO = rtt + 4 * mdev | 
|  | * | 
|  | * Funny. This algorithm seems to be very broken. | 
|  | * These formulae increase RTO, when it should be decreased, increase | 
|  | * too slowly, when it should be increased quickly, decrease too quickly | 
|  | * etc. I guess in BSD RTO takes ONE value, so that it is absolutely | 
|  | * does not matter how to _calculate_ it. Seems, it was trap | 
|  | * that VJ failed to avoid. 8) | 
|  | */ | 
|  | if (srtt != 0) { | 
|  | m -= (srtt >> 3);	/* m is now error in rtt est */ | 
|  | srtt += m;		/* rtt = 7/8 rtt + 1/8 new */ | 
|  | if (m < 0) { | 
|  | m = -m;		/* m is now abs(error) */ | 
|  | m -= (tp->mdev_us >> 2);   /* similar update on mdev */ | 
|  | /* This is similar to one of Eifel findings. | 
|  | * Eifel blocks mdev updates when rtt decreases. | 
|  | * This solution is a bit different: we use finer gain | 
|  | * for mdev in this case (alpha*beta). | 
|  | * Like Eifel it also prevents growth of rto, | 
|  | * but also it limits too fast rto decreases, | 
|  | * happening in pure Eifel. | 
|  | */ | 
|  | if (m > 0) | 
|  | m >>= 3; | 
|  | } else { | 
|  | m -= (tp->mdev_us >> 2);   /* similar update on mdev */ | 
|  | } | 
|  | tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */ | 
|  | if (tp->mdev_us > tp->mdev_max_us) { | 
|  | tp->mdev_max_us = tp->mdev_us; | 
|  | if (tp->mdev_max_us > tp->rttvar_us) | 
|  | tp->rttvar_us = tp->mdev_max_us; | 
|  | } | 
|  | if (after(tp->snd_una, tp->rtt_seq)) { | 
|  | if (tp->mdev_max_us < tp->rttvar_us) | 
|  | tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; | 
|  | tp->rtt_seq = tp->snd_nxt; | 
|  | tp->mdev_max_us = tcp_rto_min_us(sk); | 
|  |  | 
|  | tcp_bpf_rtt(sk); | 
|  | } | 
|  | } else { | 
|  | /* no previous measure. */ | 
|  | srtt = m << 3;		/* take the measured time to be rtt */ | 
|  | tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */ | 
|  | tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); | 
|  | tp->mdev_max_us = tp->rttvar_us; | 
|  | tp->rtt_seq = tp->snd_nxt; | 
|  |  | 
|  | tcp_bpf_rtt(sk); | 
|  | } | 
|  | tp->srtt_us = max(1U, srtt); | 
|  | } | 
|  |  | 
|  | static void tcp_update_pacing_rate(struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | u64 rate; | 
|  |  | 
|  | /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ | 
|  | rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); | 
|  |  | 
|  | /* current rate is (cwnd * mss) / srtt | 
|  | * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. | 
|  | * In Congestion Avoidance phase, set it to 120 % the current rate. | 
|  | * | 
|  | * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) | 
|  | *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching | 
|  | *	 end of slow start and should slow down. | 
|  | */ | 
|  | if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) | 
|  | rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); | 
|  | else | 
|  | rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); | 
|  |  | 
|  | rate *= max(tcp_snd_cwnd(tp), tp->packets_out); | 
|  |  | 
|  | if (likely(tp->srtt_us)) | 
|  | do_div(rate, tp->srtt_us); | 
|  |  | 
|  | /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate | 
|  | * without any lock. We want to make sure compiler wont store | 
|  | * intermediate values in this location. | 
|  | */ | 
|  | WRITE_ONCE(sk->sk_pacing_rate, | 
|  | min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); | 
|  | } | 
|  |  | 
|  | /* Calculate rto without backoff.  This is the second half of Van Jacobson's | 
|  | * routine referred to above. | 
|  | */ | 
|  | static void tcp_set_rto(struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | /* Old crap is replaced with new one. 8) | 
|  | * | 
|  | * More seriously: | 
|  | * 1. If rtt variance happened to be less 50msec, it is hallucination. | 
|  | *    It cannot be less due to utterly erratic ACK generation made | 
|  | *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_ | 
|  | *    to do with delayed acks, because at cwnd>2 true delack timeout | 
|  | *    is invisible. Actually, Linux-2.4 also generates erratic | 
|  | *    ACKs in some circumstances. | 
|  | */ | 
|  | inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); | 
|  |  | 
|  | /* 2. Fixups made earlier cannot be right. | 
|  | *    If we do not estimate RTO correctly without them, | 
|  | *    all the algo is pure shit and should be replaced | 
|  | *    with correct one. It is exactly, which we pretend to do. | 
|  | */ | 
|  |  | 
|  | /* NOTE: clamping at TCP_RTO_MIN is not required, current algo | 
|  | * guarantees that rto is higher. | 
|  | */ | 
|  | tcp_bound_rto(sk); | 
|  | } | 
|  |  | 
|  | __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) | 
|  | { | 
|  | __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); | 
|  |  | 
|  | if (!cwnd) | 
|  | cwnd = TCP_INIT_CWND; | 
|  | return min_t(__u32, cwnd, tp->snd_cwnd_clamp); | 
|  | } | 
|  |  | 
|  | struct tcp_sacktag_state { | 
|  | /* Timestamps for earliest and latest never-retransmitted segment | 
|  | * that was SACKed. RTO needs the earliest RTT to stay conservative, | 
|  | * but congestion control should still get an accurate delay signal. | 
|  | */ | 
|  | u64	first_sackt; | 
|  | u64	last_sackt; | 
|  | u32	reord; | 
|  | u32	sack_delivered; | 
|  | int	flag; | 
|  | unsigned int mss_now; | 
|  | struct rate_sample *rate; | 
|  | }; | 
|  |  | 
|  | /* Take a notice that peer is sending D-SACKs. Skip update of data delivery | 
|  | * and spurious retransmission information if this DSACK is unlikely caused by | 
|  | * sender's action: | 
|  | * - DSACKed sequence range is larger than maximum receiver's window. | 
|  | * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. | 
|  | */ | 
|  | static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, | 
|  | u32 end_seq, struct tcp_sacktag_state *state) | 
|  | { | 
|  | u32 seq_len, dup_segs = 1; | 
|  |  | 
|  | if (!before(start_seq, end_seq)) | 
|  | return 0; | 
|  |  | 
|  | seq_len = end_seq - start_seq; | 
|  | /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ | 
|  | if (seq_len > tp->max_window) | 
|  | return 0; | 
|  | if (seq_len > tp->mss_cache) | 
|  | dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); | 
|  | else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) | 
|  | state->flag |= FLAG_DSACK_TLP; | 
|  |  | 
|  | tp->dsack_dups += dup_segs; | 
|  | /* Skip the DSACK if dup segs weren't retransmitted by sender */ | 
|  | if (tp->dsack_dups > tp->total_retrans) | 
|  | return 0; | 
|  |  | 
|  | tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; | 
|  | /* We increase the RACK ordering window in rounds where we receive | 
|  | * DSACKs that may have been due to reordering causing RACK to trigger | 
|  | * a spurious fast recovery. Thus RACK ignores DSACKs that happen | 
|  | * without having seen reordering, or that match TLP probes (TLP | 
|  | * is timer-driven, not triggered by RACK). | 
|  | */ | 
|  | if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) | 
|  | tp->rack.dsack_seen = 1; | 
|  |  | 
|  | state->flag |= FLAG_DSACKING_ACK; | 
|  | /* A spurious retransmission is delivered */ | 
|  | state->sack_delivered += dup_segs; | 
|  |  | 
|  | return dup_segs; | 
|  | } | 
|  |  | 
|  | /* It's reordering when higher sequence was delivered (i.e. sacked) before | 
|  | * some lower never-retransmitted sequence ("low_seq"). The maximum reordering | 
|  | * distance is approximated in full-mss packet distance ("reordering"). | 
|  | */ | 
|  | static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, | 
|  | const int ts) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | const u32 mss = tp->mss_cache; | 
|  | u32 fack, metric; | 
|  |  | 
|  | fack = tcp_highest_sack_seq(tp); | 
|  | if (!before(low_seq, fack)) | 
|  | return; | 
|  |  | 
|  | metric = fack - low_seq; | 
|  | if ((metric > tp->reordering * mss) && mss) { | 
|  | #if FASTRETRANS_DEBUG > 1 | 
|  | pr_debug("Disorder%d %d %u f%u s%u rr%d\n", | 
|  | tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, | 
|  | tp->reordering, | 
|  | 0, | 
|  | tp->sacked_out, | 
|  | tp->undo_marker ? tp->undo_retrans : 0); | 
|  | #endif | 
|  | tp->reordering = min_t(u32, (metric + mss - 1) / mss, | 
|  | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); | 
|  | } | 
|  |  | 
|  | /* This exciting event is worth to be remembered. 8) */ | 
|  | tp->reord_seen++; | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); | 
|  | } | 
|  |  | 
|  | /* This must be called before lost_out or retrans_out are updated | 
|  | * on a new loss, because we want to know if all skbs previously | 
|  | * known to be lost have already been retransmitted, indicating | 
|  | * that this newly lost skb is our next skb to retransmit. | 
|  | */ | 
|  | static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) | 
|  | { | 
|  | if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || | 
|  | (tp->retransmit_skb_hint && | 
|  | before(TCP_SKB_CB(skb)->seq, | 
|  | TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) | 
|  | tp->retransmit_skb_hint = skb; | 
|  | } | 
|  |  | 
|  | /* Sum the number of packets on the wire we have marked as lost, and | 
|  | * notify the congestion control module that the given skb was marked lost. | 
|  | */ | 
|  | static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) | 
|  | { | 
|  | tp->lost += tcp_skb_pcount(skb); | 
|  | } | 
|  |  | 
|  | void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | __u8 sacked = TCP_SKB_CB(skb)->sacked; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (sacked & TCPCB_SACKED_ACKED) | 
|  | return; | 
|  |  | 
|  | tcp_verify_retransmit_hint(tp, skb); | 
|  | if (sacked & TCPCB_LOST) { | 
|  | if (sacked & TCPCB_SACKED_RETRANS) { | 
|  | /* Account for retransmits that are lost again */ | 
|  | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | 
|  | tp->retrans_out -= tcp_skb_pcount(skb); | 
|  | NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, | 
|  | tcp_skb_pcount(skb)); | 
|  | tcp_notify_skb_loss_event(tp, skb); | 
|  | } | 
|  | } else { | 
|  | tp->lost_out += tcp_skb_pcount(skb); | 
|  | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | 
|  | tcp_notify_skb_loss_event(tp, skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Updates the delivered and delivered_ce counts */ | 
|  | static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, | 
|  | bool ece_ack) | 
|  | { | 
|  | tp->delivered += delivered; | 
|  | if (ece_ack) | 
|  | tp->delivered_ce += delivered; | 
|  | } | 
|  |  | 
|  | /* This procedure tags the retransmission queue when SACKs arrive. | 
|  | * | 
|  | * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). | 
|  | * Packets in queue with these bits set are counted in variables | 
|  | * sacked_out, retrans_out and lost_out, correspondingly. | 
|  | * | 
|  | * Valid combinations are: | 
|  | * Tag  InFlight	Description | 
|  | * 0	1		- orig segment is in flight. | 
|  | * S	0		- nothing flies, orig reached receiver. | 
|  | * L	0		- nothing flies, orig lost by net. | 
|  | * R	2		- both orig and retransmit are in flight. | 
|  | * L|R	1		- orig is lost, retransmit is in flight. | 
|  | * S|R  1		- orig reached receiver, retrans is still in flight. | 
|  | * (L|S|R is logically valid, it could occur when L|R is sacked, | 
|  | *  but it is equivalent to plain S and code short-curcuits it to S. | 
|  | *  L|S is logically invalid, it would mean -1 packet in flight 8)) | 
|  | * | 
|  | * These 6 states form finite state machine, controlled by the following events: | 
|  | * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) | 
|  | * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) | 
|  | * 3. Loss detection event of two flavors: | 
|  | *	A. Scoreboard estimator decided the packet is lost. | 
|  | *	   A'. Reno "three dupacks" marks head of queue lost. | 
|  | *	B. SACK arrives sacking SND.NXT at the moment, when the | 
|  | *	   segment was retransmitted. | 
|  | * 4. D-SACK added new rule: D-SACK changes any tag to S. | 
|  | * | 
|  | * It is pleasant to note, that state diagram turns out to be commutative, | 
|  | * so that we are allowed not to be bothered by order of our actions, | 
|  | * when multiple events arrive simultaneously. (see the function below). | 
|  | * | 
|  | * Reordering detection. | 
|  | * -------------------- | 
|  | * Reordering metric is maximal distance, which a packet can be displaced | 
|  | * in packet stream. With SACKs we can estimate it: | 
|  | * | 
|  | * 1. SACK fills old hole and the corresponding segment was not | 
|  | *    ever retransmitted -> reordering. Alas, we cannot use it | 
|  | *    when segment was retransmitted. | 
|  | * 2. The last flaw is solved with D-SACK. D-SACK arrives | 
|  | *    for retransmitted and already SACKed segment -> reordering.. | 
|  | * Both of these heuristics are not used in Loss state, when we cannot | 
|  | * account for retransmits accurately. | 
|  | * | 
|  | * SACK block validation. | 
|  | * ---------------------- | 
|  | * | 
|  | * SACK block range validation checks that the received SACK block fits to | 
|  | * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. | 
|  | * Note that SND.UNA is not included to the range though being valid because | 
|  | * it means that the receiver is rather inconsistent with itself reporting | 
|  | * SACK reneging when it should advance SND.UNA. Such SACK block this is | 
|  | * perfectly valid, however, in light of RFC2018 which explicitly states | 
|  | * that "SACK block MUST reflect the newest segment.  Even if the newest | 
|  | * segment is going to be discarded ...", not that it looks very clever | 
|  | * in case of head skb. Due to potentional receiver driven attacks, we | 
|  | * choose to avoid immediate execution of a walk in write queue due to | 
|  | * reneging and defer head skb's loss recovery to standard loss recovery | 
|  | * procedure that will eventually trigger (nothing forbids us doing this). | 
|  | * | 
|  | * Implements also blockage to start_seq wrap-around. Problem lies in the | 
|  | * fact that though start_seq (s) is before end_seq (i.e., not reversed), | 
|  | * there's no guarantee that it will be before snd_nxt (n). The problem | 
|  | * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt | 
|  | * wrap (s_w): | 
|  | * | 
|  | *         <- outs wnd ->                          <- wrapzone -> | 
|  | *         u     e      n                         u_w   e_w  s n_w | 
|  | *         |     |      |                          |     |   |  | | 
|  | * |<------------+------+----- TCP seqno space --------------+---------->| | 
|  | * ...-- <2^31 ->|                                           |<--------... | 
|  | * ...---- >2^31 ------>|                                    |<--------... | 
|  | * | 
|  | * Current code wouldn't be vulnerable but it's better still to discard such | 
|  | * crazy SACK blocks. Doing this check for start_seq alone closes somewhat | 
|  | * similar case (end_seq after snd_nxt wrap) as earlier reversed check in | 
|  | * snd_nxt wrap -> snd_una region will then become "well defined", i.e., | 
|  | * equal to the ideal case (infinite seqno space without wrap caused issues). | 
|  | * | 
|  | * With D-SACK the lower bound is extended to cover sequence space below | 
|  | * SND.UNA down to undo_marker, which is the last point of interest. Yet | 
|  | * again, D-SACK block must not to go across snd_una (for the same reason as | 
|  | * for the normal SACK blocks, explained above). But there all simplicity | 
|  | * ends, TCP might receive valid D-SACKs below that. As long as they reside | 
|  | * fully below undo_marker they do not affect behavior in anyway and can | 
|  | * therefore be safely ignored. In rare cases (which are more or less | 
|  | * theoretical ones), the D-SACK will nicely cross that boundary due to skb | 
|  | * fragmentation and packet reordering past skb's retransmission. To consider | 
|  | * them correctly, the acceptable range must be extended even more though | 
|  | * the exact amount is rather hard to quantify. However, tp->max_window can | 
|  | * be used as an exaggerated estimate. | 
|  | */ | 
|  | static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, | 
|  | u32 start_seq, u32 end_seq) | 
|  | { | 
|  | /* Too far in future, or reversed (interpretation is ambiguous) */ | 
|  | if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) | 
|  | return false; | 
|  |  | 
|  | /* Nasty start_seq wrap-around check (see comments above) */ | 
|  | if (!before(start_seq, tp->snd_nxt)) | 
|  | return false; | 
|  |  | 
|  | /* In outstanding window? ...This is valid exit for D-SACKs too. | 
|  | * start_seq == snd_una is non-sensical (see comments above) | 
|  | */ | 
|  | if (after(start_seq, tp->snd_una)) | 
|  | return true; | 
|  |  | 
|  | if (!is_dsack || !tp->undo_marker) | 
|  | return false; | 
|  |  | 
|  | /* ...Then it's D-SACK, and must reside below snd_una completely */ | 
|  | if (after(end_seq, tp->snd_una)) | 
|  | return false; | 
|  |  | 
|  | if (!before(start_seq, tp->undo_marker)) | 
|  | return true; | 
|  |  | 
|  | /* Too old */ | 
|  | if (!after(end_seq, tp->undo_marker)) | 
|  | return false; | 
|  |  | 
|  | /* Undo_marker boundary crossing (overestimates a lot). Known already: | 
|  | *   start_seq < undo_marker and end_seq >= undo_marker. | 
|  | */ | 
|  | return !before(start_seq, end_seq - tp->max_window); | 
|  | } | 
|  |  | 
|  | static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, | 
|  | struct tcp_sack_block_wire *sp, int num_sacks, | 
|  | u32 prior_snd_una, struct tcp_sacktag_state *state) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); | 
|  | u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); | 
|  | u32 dup_segs; | 
|  |  | 
|  | if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); | 
|  | } else if (num_sacks > 1) { | 
|  | u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); | 
|  | u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); | 
|  |  | 
|  | if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) | 
|  | return false; | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); | 
|  | if (!dup_segs) {	/* Skip dubious DSACK */ | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); | 
|  |  | 
|  | /* D-SACK for already forgotten data... Do dumb counting. */ | 
|  | if (tp->undo_marker && tp->undo_retrans > 0 && | 
|  | !after(end_seq_0, prior_snd_una) && | 
|  | after(end_seq_0, tp->undo_marker)) | 
|  | tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Check if skb is fully within the SACK block. In presence of GSO skbs, | 
|  | * the incoming SACK may not exactly match but we can find smaller MSS | 
|  | * aligned portion of it that matches. Therefore we might need to fragment | 
|  | * which may fail and creates some hassle (caller must handle error case | 
|  | * returns). | 
|  | * | 
|  | * FIXME: this could be merged to shift decision code | 
|  | */ | 
|  | static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, | 
|  | u32 start_seq, u32 end_seq) | 
|  | { | 
|  | int err; | 
|  | bool in_sack; | 
|  | unsigned int pkt_len; | 
|  | unsigned int mss; | 
|  |  | 
|  | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && | 
|  | !before(end_seq, TCP_SKB_CB(skb)->end_seq); | 
|  |  | 
|  | if (tcp_skb_pcount(skb) > 1 && !in_sack && | 
|  | after(TCP_SKB_CB(skb)->end_seq, start_seq)) { | 
|  | mss = tcp_skb_mss(skb); | 
|  | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); | 
|  |  | 
|  | if (!in_sack) { | 
|  | pkt_len = start_seq - TCP_SKB_CB(skb)->seq; | 
|  | if (pkt_len < mss) | 
|  | pkt_len = mss; | 
|  | } else { | 
|  | pkt_len = end_seq - TCP_SKB_CB(skb)->seq; | 
|  | if (pkt_len < mss) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Round if necessary so that SACKs cover only full MSSes | 
|  | * and/or the remaining small portion (if present) | 
|  | */ | 
|  | if (pkt_len > mss) { | 
|  | unsigned int new_len = (pkt_len / mss) * mss; | 
|  | if (!in_sack && new_len < pkt_len) | 
|  | new_len += mss; | 
|  | pkt_len = new_len; | 
|  | } | 
|  |  | 
|  | if (pkt_len >= skb->len && !in_sack) | 
|  | return 0; | 
|  |  | 
|  | err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, | 
|  | pkt_len, mss, GFP_ATOMIC); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return in_sack; | 
|  | } | 
|  |  | 
|  | /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ | 
|  | static u8 tcp_sacktag_one(struct sock *sk, | 
|  | struct tcp_sacktag_state *state, u8 sacked, | 
|  | u32 start_seq, u32 end_seq, | 
|  | int dup_sack, int pcount, | 
|  | u64 xmit_time) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* Account D-SACK for retransmitted packet. */ | 
|  | if (dup_sack && (sacked & TCPCB_RETRANS)) { | 
|  | if (tp->undo_marker && tp->undo_retrans > 0 && | 
|  | after(end_seq, tp->undo_marker)) | 
|  | tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); | 
|  | if ((sacked & TCPCB_SACKED_ACKED) && | 
|  | before(start_seq, state->reord)) | 
|  | state->reord = start_seq; | 
|  | } | 
|  |  | 
|  | /* Nothing to do; acked frame is about to be dropped (was ACKed). */ | 
|  | if (!after(end_seq, tp->snd_una)) | 
|  | return sacked; | 
|  |  | 
|  | if (!(sacked & TCPCB_SACKED_ACKED)) { | 
|  | tcp_rack_advance(tp, sacked, end_seq, xmit_time); | 
|  |  | 
|  | if (sacked & TCPCB_SACKED_RETRANS) { | 
|  | /* If the segment is not tagged as lost, | 
|  | * we do not clear RETRANS, believing | 
|  | * that retransmission is still in flight. | 
|  | */ | 
|  | if (sacked & TCPCB_LOST) { | 
|  | sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); | 
|  | tp->lost_out -= pcount; | 
|  | tp->retrans_out -= pcount; | 
|  | } | 
|  | } else { | 
|  | if (!(sacked & TCPCB_RETRANS)) { | 
|  | /* New sack for not retransmitted frame, | 
|  | * which was in hole. It is reordering. | 
|  | */ | 
|  | if (before(start_seq, | 
|  | tcp_highest_sack_seq(tp)) && | 
|  | before(start_seq, state->reord)) | 
|  | state->reord = start_seq; | 
|  |  | 
|  | if (!after(end_seq, tp->high_seq)) | 
|  | state->flag |= FLAG_ORIG_SACK_ACKED; | 
|  | if (state->first_sackt == 0) | 
|  | state->first_sackt = xmit_time; | 
|  | state->last_sackt = xmit_time; | 
|  | } | 
|  |  | 
|  | if (sacked & TCPCB_LOST) { | 
|  | sacked &= ~TCPCB_LOST; | 
|  | tp->lost_out -= pcount; | 
|  | } | 
|  | } | 
|  |  | 
|  | sacked |= TCPCB_SACKED_ACKED; | 
|  | state->flag |= FLAG_DATA_SACKED; | 
|  | tp->sacked_out += pcount; | 
|  | /* Out-of-order packets delivered */ | 
|  | state->sack_delivered += pcount; | 
|  |  | 
|  | /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ | 
|  | if (tp->lost_skb_hint && | 
|  | before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) | 
|  | tp->lost_cnt_hint += pcount; | 
|  | } | 
|  |  | 
|  | /* D-SACK. We can detect redundant retransmission in S|R and plain R | 
|  | * frames and clear it. undo_retrans is decreased above, L|R frames | 
|  | * are accounted above as well. | 
|  | */ | 
|  | if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { | 
|  | sacked &= ~TCPCB_SACKED_RETRANS; | 
|  | tp->retrans_out -= pcount; | 
|  | } | 
|  |  | 
|  | return sacked; | 
|  | } | 
|  |  | 
|  | /* Shift newly-SACKed bytes from this skb to the immediately previous | 
|  | * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. | 
|  | */ | 
|  | static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, | 
|  | struct sk_buff *skb, | 
|  | struct tcp_sacktag_state *state, | 
|  | unsigned int pcount, int shifted, int mss, | 
|  | bool dup_sack) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */ | 
|  | u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */ | 
|  |  | 
|  | BUG_ON(!pcount); | 
|  |  | 
|  | /* Adjust counters and hints for the newly sacked sequence | 
|  | * range but discard the return value since prev is already | 
|  | * marked. We must tag the range first because the seq | 
|  | * advancement below implicitly advances | 
|  | * tcp_highest_sack_seq() when skb is highest_sack. | 
|  | */ | 
|  | tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, | 
|  | start_seq, end_seq, dup_sack, pcount, | 
|  | tcp_skb_timestamp_us(skb)); | 
|  | tcp_rate_skb_delivered(sk, skb, state->rate); | 
|  |  | 
|  | if (skb == tp->lost_skb_hint) | 
|  | tp->lost_cnt_hint += pcount; | 
|  |  | 
|  | TCP_SKB_CB(prev)->end_seq += shifted; | 
|  | TCP_SKB_CB(skb)->seq += shifted; | 
|  |  | 
|  | tcp_skb_pcount_add(prev, pcount); | 
|  | WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); | 
|  | tcp_skb_pcount_add(skb, -pcount); | 
|  |  | 
|  | /* When we're adding to gso_segs == 1, gso_size will be zero, | 
|  | * in theory this shouldn't be necessary but as long as DSACK | 
|  | * code can come after this skb later on it's better to keep | 
|  | * setting gso_size to something. | 
|  | */ | 
|  | if (!TCP_SKB_CB(prev)->tcp_gso_size) | 
|  | TCP_SKB_CB(prev)->tcp_gso_size = mss; | 
|  |  | 
|  | /* CHECKME: To clear or not to clear? Mimics normal skb currently */ | 
|  | if (tcp_skb_pcount(skb) <= 1) | 
|  | TCP_SKB_CB(skb)->tcp_gso_size = 0; | 
|  |  | 
|  | /* Difference in this won't matter, both ACKed by the same cumul. ACK */ | 
|  | TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); | 
|  |  | 
|  | if (skb->len > 0) { | 
|  | BUG_ON(!tcp_skb_pcount(skb)); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Whole SKB was eaten :-) */ | 
|  |  | 
|  | if (skb == tp->retransmit_skb_hint) | 
|  | tp->retransmit_skb_hint = prev; | 
|  | if (skb == tp->lost_skb_hint) { | 
|  | tp->lost_skb_hint = prev; | 
|  | tp->lost_cnt_hint -= tcp_skb_pcount(prev); | 
|  | } | 
|  |  | 
|  | TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; | 
|  | TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; | 
|  | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) | 
|  | TCP_SKB_CB(prev)->end_seq++; | 
|  |  | 
|  | if (skb == tcp_highest_sack(sk)) | 
|  | tcp_advance_highest_sack(sk, skb); | 
|  |  | 
|  | tcp_skb_collapse_tstamp(prev, skb); | 
|  | if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) | 
|  | TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; | 
|  |  | 
|  | tcp_rtx_queue_unlink_and_free(skb, sk); | 
|  |  | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* I wish gso_size would have a bit more sane initialization than | 
|  | * something-or-zero which complicates things | 
|  | */ | 
|  | static int tcp_skb_seglen(const struct sk_buff *skb) | 
|  | { | 
|  | return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); | 
|  | } | 
|  |  | 
|  | /* Shifting pages past head area doesn't work */ | 
|  | static int skb_can_shift(const struct sk_buff *skb) | 
|  | { | 
|  | return !skb_headlen(skb) && skb_is_nonlinear(skb); | 
|  | } | 
|  |  | 
|  | int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, | 
|  | int pcount, int shiftlen) | 
|  | { | 
|  | /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) | 
|  | * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need | 
|  | * to make sure not storing more than 65535 * 8 bytes per skb, | 
|  | * even if current MSS is bigger. | 
|  | */ | 
|  | if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) | 
|  | return 0; | 
|  | if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) | 
|  | return 0; | 
|  | return skb_shift(to, from, shiftlen); | 
|  | } | 
|  |  | 
|  | /* Try collapsing SACK blocks spanning across multiple skbs to a single | 
|  | * skb. | 
|  | */ | 
|  | static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, | 
|  | struct tcp_sacktag_state *state, | 
|  | u32 start_seq, u32 end_seq, | 
|  | bool dup_sack) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *prev; | 
|  | int mss; | 
|  | int pcount = 0; | 
|  | int len; | 
|  | int in_sack; | 
|  |  | 
|  | /* Normally R but no L won't result in plain S */ | 
|  | if (!dup_sack && | 
|  | (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) | 
|  | goto fallback; | 
|  | if (!skb_can_shift(skb)) | 
|  | goto fallback; | 
|  | /* This frame is about to be dropped (was ACKed). */ | 
|  | if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | 
|  | goto fallback; | 
|  |  | 
|  | /* Can only happen with delayed DSACK + discard craziness */ | 
|  | prev = skb_rb_prev(skb); | 
|  | if (!prev) | 
|  | goto fallback; | 
|  |  | 
|  | if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) | 
|  | goto fallback; | 
|  |  | 
|  | if (!tcp_skb_can_collapse(prev, skb)) | 
|  | goto fallback; | 
|  |  | 
|  | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && | 
|  | !before(end_seq, TCP_SKB_CB(skb)->end_seq); | 
|  |  | 
|  | if (in_sack) { | 
|  | len = skb->len; | 
|  | pcount = tcp_skb_pcount(skb); | 
|  | mss = tcp_skb_seglen(skb); | 
|  |  | 
|  | /* TODO: Fix DSACKs to not fragment already SACKed and we can | 
|  | * drop this restriction as unnecessary | 
|  | */ | 
|  | if (mss != tcp_skb_seglen(prev)) | 
|  | goto fallback; | 
|  | } else { | 
|  | if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) | 
|  | goto noop; | 
|  | /* CHECKME: This is non-MSS split case only?, this will | 
|  | * cause skipped skbs due to advancing loop btw, original | 
|  | * has that feature too | 
|  | */ | 
|  | if (tcp_skb_pcount(skb) <= 1) | 
|  | goto noop; | 
|  |  | 
|  | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); | 
|  | if (!in_sack) { | 
|  | /* TODO: head merge to next could be attempted here | 
|  | * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), | 
|  | * though it might not be worth of the additional hassle | 
|  | * | 
|  | * ...we can probably just fallback to what was done | 
|  | * previously. We could try merging non-SACKed ones | 
|  | * as well but it probably isn't going to buy off | 
|  | * because later SACKs might again split them, and | 
|  | * it would make skb timestamp tracking considerably | 
|  | * harder problem. | 
|  | */ | 
|  | goto fallback; | 
|  | } | 
|  |  | 
|  | len = end_seq - TCP_SKB_CB(skb)->seq; | 
|  | BUG_ON(len < 0); | 
|  | BUG_ON(len > skb->len); | 
|  |  | 
|  | /* MSS boundaries should be honoured or else pcount will | 
|  | * severely break even though it makes things bit trickier. | 
|  | * Optimize common case to avoid most of the divides | 
|  | */ | 
|  | mss = tcp_skb_mss(skb); | 
|  |  | 
|  | /* TODO: Fix DSACKs to not fragment already SACKed and we can | 
|  | * drop this restriction as unnecessary | 
|  | */ | 
|  | if (mss != tcp_skb_seglen(prev)) | 
|  | goto fallback; | 
|  |  | 
|  | if (len == mss) { | 
|  | pcount = 1; | 
|  | } else if (len < mss) { | 
|  | goto noop; | 
|  | } else { | 
|  | pcount = len / mss; | 
|  | len = pcount * mss; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ | 
|  | if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) | 
|  | goto fallback; | 
|  |  | 
|  | if (!tcp_skb_shift(prev, skb, pcount, len)) | 
|  | goto fallback; | 
|  | if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) | 
|  | goto out; | 
|  |  | 
|  | /* Hole filled allows collapsing with the next as well, this is very | 
|  | * useful when hole on every nth skb pattern happens | 
|  | */ | 
|  | skb = skb_rb_next(prev); | 
|  | if (!skb) | 
|  | goto out; | 
|  |  | 
|  | if (!skb_can_shift(skb) || | 
|  | ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || | 
|  | (mss != tcp_skb_seglen(skb))) | 
|  | goto out; | 
|  |  | 
|  | if (!tcp_skb_can_collapse(prev, skb)) | 
|  | goto out; | 
|  | len = skb->len; | 
|  | pcount = tcp_skb_pcount(skb); | 
|  | if (tcp_skb_shift(prev, skb, pcount, len)) | 
|  | tcp_shifted_skb(sk, prev, skb, state, pcount, | 
|  | len, mss, 0); | 
|  |  | 
|  | out: | 
|  | return prev; | 
|  |  | 
|  | noop: | 
|  | return skb; | 
|  |  | 
|  | fallback: | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, | 
|  | struct tcp_sack_block *next_dup, | 
|  | struct tcp_sacktag_state *state, | 
|  | u32 start_seq, u32 end_seq, | 
|  | bool dup_sack_in) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *tmp; | 
|  |  | 
|  | skb_rbtree_walk_from(skb) { | 
|  | int in_sack = 0; | 
|  | bool dup_sack = dup_sack_in; | 
|  |  | 
|  | /* queue is in-order => we can short-circuit the walk early */ | 
|  | if (!before(TCP_SKB_CB(skb)->seq, end_seq)) | 
|  | break; | 
|  |  | 
|  | if (next_dup  && | 
|  | before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { | 
|  | in_sack = tcp_match_skb_to_sack(sk, skb, | 
|  | next_dup->start_seq, | 
|  | next_dup->end_seq); | 
|  | if (in_sack > 0) | 
|  | dup_sack = true; | 
|  | } | 
|  |  | 
|  | /* skb reference here is a bit tricky to get right, since | 
|  | * shifting can eat and free both this skb and the next, | 
|  | * so not even _safe variant of the loop is enough. | 
|  | */ | 
|  | if (in_sack <= 0) { | 
|  | tmp = tcp_shift_skb_data(sk, skb, state, | 
|  | start_seq, end_seq, dup_sack); | 
|  | if (tmp) { | 
|  | if (tmp != skb) { | 
|  | skb = tmp; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | in_sack = 0; | 
|  | } else { | 
|  | in_sack = tcp_match_skb_to_sack(sk, skb, | 
|  | start_seq, | 
|  | end_seq); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(in_sack < 0)) | 
|  | break; | 
|  |  | 
|  | if (in_sack) { | 
|  | TCP_SKB_CB(skb)->sacked = | 
|  | tcp_sacktag_one(sk, | 
|  | state, | 
|  | TCP_SKB_CB(skb)->sacked, | 
|  | TCP_SKB_CB(skb)->seq, | 
|  | TCP_SKB_CB(skb)->end_seq, | 
|  | dup_sack, | 
|  | tcp_skb_pcount(skb), | 
|  | tcp_skb_timestamp_us(skb)); | 
|  | tcp_rate_skb_delivered(sk, skb, state->rate); | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) | 
|  | list_del_init(&skb->tcp_tsorted_anchor); | 
|  |  | 
|  | if (!before(TCP_SKB_CB(skb)->seq, | 
|  | tcp_highest_sack_seq(tp))) | 
|  | tcp_advance_highest_sack(sk, skb); | 
|  | } | 
|  | } | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) | 
|  | { | 
|  | struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | skb = rb_to_skb(parent); | 
|  | if (before(seq, TCP_SKB_CB(skb)->seq)) { | 
|  | p = &parent->rb_left; | 
|  | continue; | 
|  | } | 
|  | if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { | 
|  | p = &parent->rb_right; | 
|  | continue; | 
|  | } | 
|  | return skb; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, | 
|  | u32 skip_to_seq) | 
|  | { | 
|  | if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) | 
|  | return skb; | 
|  |  | 
|  | return tcp_sacktag_bsearch(sk, skip_to_seq); | 
|  | } | 
|  |  | 
|  | static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, | 
|  | struct sock *sk, | 
|  | struct tcp_sack_block *next_dup, | 
|  | struct tcp_sacktag_state *state, | 
|  | u32 skip_to_seq) | 
|  | { | 
|  | if (!next_dup) | 
|  | return skb; | 
|  |  | 
|  | if (before(next_dup->start_seq, skip_to_seq)) { | 
|  | skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); | 
|  | skb = tcp_sacktag_walk(skb, sk, NULL, state, | 
|  | next_dup->start_seq, next_dup->end_seq, | 
|  | 1); | 
|  | } | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) | 
|  | { | 
|  | return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); | 
|  | } | 
|  |  | 
|  | static int | 
|  | tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, | 
|  | u32 prior_snd_una, struct tcp_sacktag_state *state) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | const unsigned char *ptr = (skb_transport_header(ack_skb) + | 
|  | TCP_SKB_CB(ack_skb)->sacked); | 
|  | struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); | 
|  | struct tcp_sack_block sp[TCP_NUM_SACKS]; | 
|  | struct tcp_sack_block *cache; | 
|  | struct sk_buff *skb; | 
|  | int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); | 
|  | int used_sacks; | 
|  | bool found_dup_sack = false; | 
|  | int i, j; | 
|  | int first_sack_index; | 
|  |  | 
|  | state->flag = 0; | 
|  | state->reord = tp->snd_nxt; | 
|  |  | 
|  | if (!tp->sacked_out) | 
|  | tcp_highest_sack_reset(sk); | 
|  |  | 
|  | found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, | 
|  | num_sacks, prior_snd_una, state); | 
|  |  | 
|  | /* Eliminate too old ACKs, but take into | 
|  | * account more or less fresh ones, they can | 
|  | * contain valid SACK info. | 
|  | */ | 
|  | if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) | 
|  | return 0; | 
|  |  | 
|  | if (!tp->packets_out) | 
|  | goto out; | 
|  |  | 
|  | used_sacks = 0; | 
|  | first_sack_index = 0; | 
|  | for (i = 0; i < num_sacks; i++) { | 
|  | bool dup_sack = !i && found_dup_sack; | 
|  |  | 
|  | sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); | 
|  | sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); | 
|  |  | 
|  | if (!tcp_is_sackblock_valid(tp, dup_sack, | 
|  | sp[used_sacks].start_seq, | 
|  | sp[used_sacks].end_seq)) { | 
|  | int mib_idx; | 
|  |  | 
|  | if (dup_sack) { | 
|  | if (!tp->undo_marker) | 
|  | mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; | 
|  | else | 
|  | mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; | 
|  | } else { | 
|  | /* Don't count olds caused by ACK reordering */ | 
|  | if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && | 
|  | !after(sp[used_sacks].end_seq, tp->snd_una)) | 
|  | continue; | 
|  | mib_idx = LINUX_MIB_TCPSACKDISCARD; | 
|  | } | 
|  |  | 
|  | NET_INC_STATS(sock_net(sk), mib_idx); | 
|  | if (i == 0) | 
|  | first_sack_index = -1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Ignore very old stuff early */ | 
|  | if (!after(sp[used_sacks].end_seq, prior_snd_una)) { | 
|  | if (i == 0) | 
|  | first_sack_index = -1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | used_sacks++; | 
|  | } | 
|  |  | 
|  | /* order SACK blocks to allow in order walk of the retrans queue */ | 
|  | for (i = used_sacks - 1; i > 0; i--) { | 
|  | for (j = 0; j < i; j++) { | 
|  | if (after(sp[j].start_seq, sp[j + 1].start_seq)) { | 
|  | swap(sp[j], sp[j + 1]); | 
|  |  | 
|  | /* Track where the first SACK block goes to */ | 
|  | if (j == first_sack_index) | 
|  | first_sack_index = j + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | state->mss_now = tcp_current_mss(sk); | 
|  | skb = NULL; | 
|  | i = 0; | 
|  |  | 
|  | if (!tp->sacked_out) { | 
|  | /* It's already past, so skip checking against it */ | 
|  | cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); | 
|  | } else { | 
|  | cache = tp->recv_sack_cache; | 
|  | /* Skip empty blocks in at head of the cache */ | 
|  | while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && | 
|  | !cache->end_seq) | 
|  | cache++; | 
|  | } | 
|  |  | 
|  | while (i < used_sacks) { | 
|  | u32 start_seq = sp[i].start_seq; | 
|  | u32 end_seq = sp[i].end_seq; | 
|  | bool dup_sack = (found_dup_sack && (i == first_sack_index)); | 
|  | struct tcp_sack_block *next_dup = NULL; | 
|  |  | 
|  | if (found_dup_sack && ((i + 1) == first_sack_index)) | 
|  | next_dup = &sp[i + 1]; | 
|  |  | 
|  | /* Skip too early cached blocks */ | 
|  | while (tcp_sack_cache_ok(tp, cache) && | 
|  | !before(start_seq, cache->end_seq)) | 
|  | cache++; | 
|  |  | 
|  | /* Can skip some work by looking recv_sack_cache? */ | 
|  | if (tcp_sack_cache_ok(tp, cache) && !dup_sack && | 
|  | after(end_seq, cache->start_seq)) { | 
|  |  | 
|  | /* Head todo? */ | 
|  | if (before(start_seq, cache->start_seq)) { | 
|  | skb = tcp_sacktag_skip(skb, sk, start_seq); | 
|  | skb = tcp_sacktag_walk(skb, sk, next_dup, | 
|  | state, | 
|  | start_seq, | 
|  | cache->start_seq, | 
|  | dup_sack); | 
|  | } | 
|  |  | 
|  | /* Rest of the block already fully processed? */ | 
|  | if (!after(end_seq, cache->end_seq)) | 
|  | goto advance_sp; | 
|  |  | 
|  | skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, | 
|  | state, | 
|  | cache->end_seq); | 
|  |  | 
|  | /* ...tail remains todo... */ | 
|  | if (tcp_highest_sack_seq(tp) == cache->end_seq) { | 
|  | /* ...but better entrypoint exists! */ | 
|  | skb = tcp_highest_sack(sk); | 
|  | if (!skb) | 
|  | break; | 
|  | cache++; | 
|  | goto walk; | 
|  | } | 
|  |  | 
|  | skb = tcp_sacktag_skip(skb, sk, cache->end_seq); | 
|  | /* Check overlap against next cached too (past this one already) */ | 
|  | cache++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!before(start_seq, tcp_highest_sack_seq(tp))) { | 
|  | skb = tcp_highest_sack(sk); | 
|  | if (!skb) | 
|  | break; | 
|  | } | 
|  | skb = tcp_sacktag_skip(skb, sk, start_seq); | 
|  |  | 
|  | walk: | 
|  | skb = tcp_sacktag_walk(skb, sk, next_dup, state, | 
|  | start_seq, end_seq, dup_sack); | 
|  |  | 
|  | advance_sp: | 
|  | i++; | 
|  | } | 
|  |  | 
|  | /* Clear the head of the cache sack blocks so we can skip it next time */ | 
|  | for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { | 
|  | tp->recv_sack_cache[i].start_seq = 0; | 
|  | tp->recv_sack_cache[i].end_seq = 0; | 
|  | } | 
|  | for (j = 0; j < used_sacks; j++) | 
|  | tp->recv_sack_cache[i++] = sp[j]; | 
|  |  | 
|  | if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) | 
|  | tcp_check_sack_reordering(sk, state->reord, 0); | 
|  |  | 
|  | tcp_verify_left_out(tp); | 
|  | out: | 
|  |  | 
|  | #if FASTRETRANS_DEBUG > 0 | 
|  | WARN_ON((int)tp->sacked_out < 0); | 
|  | WARN_ON((int)tp->lost_out < 0); | 
|  | WARN_ON((int)tp->retrans_out < 0); | 
|  | WARN_ON((int)tcp_packets_in_flight(tp) < 0); | 
|  | #endif | 
|  | return state->flag; | 
|  | } | 
|  |  | 
|  | /* Limits sacked_out so that sum with lost_out isn't ever larger than | 
|  | * packets_out. Returns false if sacked_out adjustement wasn't necessary. | 
|  | */ | 
|  | static bool tcp_limit_reno_sacked(struct tcp_sock *tp) | 
|  | { | 
|  | u32 holes; | 
|  |  | 
|  | holes = max(tp->lost_out, 1U); | 
|  | holes = min(holes, tp->packets_out); | 
|  |  | 
|  | if ((tp->sacked_out + holes) > tp->packets_out) { | 
|  | tp->sacked_out = tp->packets_out - holes; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* If we receive more dupacks than we expected counting segments | 
|  | * in assumption of absent reordering, interpret this as reordering. | 
|  | * The only another reason could be bug in receiver TCP. | 
|  | */ | 
|  | static void tcp_check_reno_reordering(struct sock *sk, const int addend) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (!tcp_limit_reno_sacked(tp)) | 
|  | return; | 
|  |  | 
|  | tp->reordering = min_t(u32, tp->packets_out + addend, | 
|  | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); | 
|  | tp->reord_seen++; | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); | 
|  | } | 
|  |  | 
|  | /* Emulate SACKs for SACKless connection: account for a new dupack. */ | 
|  |  | 
|  | static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) | 
|  | { | 
|  | if (num_dupack) { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 prior_sacked = tp->sacked_out; | 
|  | s32 delivered; | 
|  |  | 
|  | tp->sacked_out += num_dupack; | 
|  | tcp_check_reno_reordering(sk, 0); | 
|  | delivered = tp->sacked_out - prior_sacked; | 
|  | if (delivered > 0) | 
|  | tcp_count_delivered(tp, delivered, ece_ack); | 
|  | tcp_verify_left_out(tp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Account for ACK, ACKing some data in Reno Recovery phase. */ | 
|  |  | 
|  | static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (acked > 0) { | 
|  | /* One ACK acked hole. The rest eat duplicate ACKs. */ | 
|  | tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), | 
|  | ece_ack); | 
|  | if (acked - 1 >= tp->sacked_out) | 
|  | tp->sacked_out = 0; | 
|  | else | 
|  | tp->sacked_out -= acked - 1; | 
|  | } | 
|  | tcp_check_reno_reordering(sk, acked); | 
|  | tcp_verify_left_out(tp); | 
|  | } | 
|  |  | 
|  | static inline void tcp_reset_reno_sack(struct tcp_sock *tp) | 
|  | { | 
|  | tp->sacked_out = 0; | 
|  | } | 
|  |  | 
|  | void tcp_clear_retrans(struct tcp_sock *tp) | 
|  | { | 
|  | tp->retrans_out = 0; | 
|  | tp->lost_out = 0; | 
|  | tp->undo_marker = 0; | 
|  | tp->undo_retrans = -1; | 
|  | tp->sacked_out = 0; | 
|  | tp->rto_stamp = 0; | 
|  | tp->total_rto = 0; | 
|  | tp->total_rto_recoveries = 0; | 
|  | tp->total_rto_time = 0; | 
|  | } | 
|  |  | 
|  | static inline void tcp_init_undo(struct tcp_sock *tp) | 
|  | { | 
|  | tp->undo_marker = tp->snd_una; | 
|  | /* Retransmission still in flight may cause DSACKs later. */ | 
|  | tp->undo_retrans = tp->retrans_out ? : -1; | 
|  | } | 
|  |  | 
|  | static bool tcp_is_rack(const struct sock *sk) | 
|  | { | 
|  | return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & | 
|  | TCP_RACK_LOSS_DETECTION; | 
|  | } | 
|  |  | 
|  | /* If we detect SACK reneging, forget all SACK information | 
|  | * and reset tags completely, otherwise preserve SACKs. If receiver | 
|  | * dropped its ofo queue, we will know this due to reneging detection. | 
|  | */ | 
|  | static void tcp_timeout_mark_lost(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb, *head; | 
|  | bool is_reneg;			/* is receiver reneging on SACKs? */ | 
|  |  | 
|  | head = tcp_rtx_queue_head(sk); | 
|  | is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); | 
|  | if (is_reneg) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); | 
|  | tp->sacked_out = 0; | 
|  | /* Mark SACK reneging until we recover from this loss event. */ | 
|  | tp->is_sack_reneg = 1; | 
|  | } else if (tcp_is_reno(tp)) { | 
|  | tcp_reset_reno_sack(tp); | 
|  | } | 
|  |  | 
|  | skb = head; | 
|  | skb_rbtree_walk_from(skb) { | 
|  | if (is_reneg) | 
|  | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; | 
|  | else if (tcp_is_rack(sk) && skb != head && | 
|  | tcp_rack_skb_timeout(tp, skb, 0) > 0) | 
|  | continue; /* Don't mark recently sent ones lost yet */ | 
|  | tcp_mark_skb_lost(sk, skb); | 
|  | } | 
|  | tcp_verify_left_out(tp); | 
|  | tcp_clear_all_retrans_hints(tp); | 
|  | } | 
|  |  | 
|  | /* Enter Loss state. */ | 
|  | void tcp_enter_loss(struct sock *sk) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct net *net = sock_net(sk); | 
|  | bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; | 
|  | u8 reordering; | 
|  |  | 
|  | tcp_timeout_mark_lost(sk); | 
|  |  | 
|  | /* Reduce ssthresh if it has not yet been made inside this window. */ | 
|  | if (icsk->icsk_ca_state <= TCP_CA_Disorder || | 
|  | !after(tp->high_seq, tp->snd_una) || | 
|  | (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { | 
|  | tp->prior_ssthresh = tcp_current_ssthresh(sk); | 
|  | tp->prior_cwnd = tcp_snd_cwnd(tp); | 
|  | tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); | 
|  | tcp_ca_event(sk, CA_EVENT_LOSS); | 
|  | tcp_init_undo(tp); | 
|  | } | 
|  | tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); | 
|  | tp->snd_cwnd_cnt   = 0; | 
|  | tp->snd_cwnd_stamp = tcp_jiffies32; | 
|  |  | 
|  | /* Timeout in disordered state after receiving substantial DUPACKs | 
|  | * suggests that the degree of reordering is over-estimated. | 
|  | */ | 
|  | reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); | 
|  | if (icsk->icsk_ca_state <= TCP_CA_Disorder && | 
|  | tp->sacked_out >= reordering) | 
|  | tp->reordering = min_t(unsigned int, tp->reordering, | 
|  | reordering); | 
|  |  | 
|  | tcp_set_ca_state(sk, TCP_CA_Loss); | 
|  | tp->high_seq = tp->snd_nxt; | 
|  | tcp_ecn_queue_cwr(tp); | 
|  |  | 
|  | /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous | 
|  | * loss recovery is underway except recurring timeout(s) on | 
|  | * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing | 
|  | */ | 
|  | tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && | 
|  | (new_recovery || icsk->icsk_retransmits) && | 
|  | !inet_csk(sk)->icsk_mtup.probe_size; | 
|  | } | 
|  |  | 
|  | /* If ACK arrived pointing to a remembered SACK, it means that our | 
|  | * remembered SACKs do not reflect real state of receiver i.e. | 
|  | * receiver _host_ is heavily congested (or buggy). | 
|  | * | 
|  | * To avoid big spurious retransmission bursts due to transient SACK | 
|  | * scoreboard oddities that look like reneging, we give the receiver a | 
|  | * little time (max(RTT/2, 10ms)) to send us some more ACKs that will | 
|  | * restore sanity to the SACK scoreboard. If the apparent reneging | 
|  | * persists until this RTO then we'll clear the SACK scoreboard. | 
|  | */ | 
|  | static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) | 
|  | { | 
|  | if (*ack_flag & FLAG_SACK_RENEGING && | 
|  | *ack_flag & FLAG_SND_UNA_ADVANCED) { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), | 
|  | msecs_to_jiffies(10)); | 
|  |  | 
|  | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | 
|  | delay, TCP_RTO_MAX); | 
|  | *ack_flag &= ~FLAG_SET_XMIT_TIMER; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs | 
|  | * counter when SACK is enabled (without SACK, sacked_out is used for | 
|  | * that purpose). | 
|  | * | 
|  | * With reordering, holes may still be in flight, so RFC3517 recovery | 
|  | * uses pure sacked_out (total number of SACKed segments) even though | 
|  | * it violates the RFC that uses duplicate ACKs, often these are equal | 
|  | * but when e.g. out-of-window ACKs or packet duplication occurs, | 
|  | * they differ. Since neither occurs due to loss, TCP should really | 
|  | * ignore them. | 
|  | */ | 
|  | static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) | 
|  | { | 
|  | return tp->sacked_out + 1; | 
|  | } | 
|  |  | 
|  | /* Linux NewReno/SACK/ECN state machine. | 
|  | * -------------------------------------- | 
|  | * | 
|  | * "Open"	Normal state, no dubious events, fast path. | 
|  | * "Disorder"   In all the respects it is "Open", | 
|  | *		but requires a bit more attention. It is entered when | 
|  | *		we see some SACKs or dupacks. It is split of "Open" | 
|  | *		mainly to move some processing from fast path to slow one. | 
|  | * "CWR"	CWND was reduced due to some Congestion Notification event. | 
|  | *		It can be ECN, ICMP source quench, local device congestion. | 
|  | * "Recovery"	CWND was reduced, we are fast-retransmitting. | 
|  | * "Loss"	CWND was reduced due to RTO timeout or SACK reneging. | 
|  | * | 
|  | * tcp_fastretrans_alert() is entered: | 
|  | * - each incoming ACK, if state is not "Open" | 
|  | * - when arrived ACK is unusual, namely: | 
|  | *	* SACK | 
|  | *	* Duplicate ACK. | 
|  | *	* ECN ECE. | 
|  | * | 
|  | * Counting packets in flight is pretty simple. | 
|  | * | 
|  | *	in_flight = packets_out - left_out + retrans_out | 
|  | * | 
|  | *	packets_out is SND.NXT-SND.UNA counted in packets. | 
|  | * | 
|  | *	retrans_out is number of retransmitted segments. | 
|  | * | 
|  | *	left_out is number of segments left network, but not ACKed yet. | 
|  | * | 
|  | *		left_out = sacked_out + lost_out | 
|  | * | 
|  | *     sacked_out: Packets, which arrived to receiver out of order | 
|  | *		   and hence not ACKed. With SACKs this number is simply | 
|  | *		   amount of SACKed data. Even without SACKs | 
|  | *		   it is easy to give pretty reliable estimate of this number, | 
|  | *		   counting duplicate ACKs. | 
|  | * | 
|  | *       lost_out: Packets lost by network. TCP has no explicit | 
|  | *		   "loss notification" feedback from network (for now). | 
|  | *		   It means that this number can be only _guessed_. | 
|  | *		   Actually, it is the heuristics to predict lossage that | 
|  | *		   distinguishes different algorithms. | 
|  | * | 
|  | *	F.e. after RTO, when all the queue is considered as lost, | 
|  | *	lost_out = packets_out and in_flight = retrans_out. | 
|  | * | 
|  | *		Essentially, we have now a few algorithms detecting | 
|  | *		lost packets. | 
|  | * | 
|  | *		If the receiver supports SACK: | 
|  | * | 
|  | *		RFC6675/3517: It is the conventional algorithm. A packet is | 
|  | *		considered lost if the number of higher sequence packets | 
|  | *		SACKed is greater than or equal the DUPACK thoreshold | 
|  | *		(reordering). This is implemented in tcp_mark_head_lost and | 
|  | *		tcp_update_scoreboard. | 
|  | * | 
|  | *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm | 
|  | *		(2017-) that checks timing instead of counting DUPACKs. | 
|  | *		Essentially a packet is considered lost if it's not S/ACKed | 
|  | *		after RTT + reordering_window, where both metrics are | 
|  | *		dynamically measured and adjusted. This is implemented in | 
|  | *		tcp_rack_mark_lost. | 
|  | * | 
|  | *		If the receiver does not support SACK: | 
|  | * | 
|  | *		NewReno (RFC6582): in Recovery we assume that one segment | 
|  | *		is lost (classic Reno). While we are in Recovery and | 
|  | *		a partial ACK arrives, we assume that one more packet | 
|  | *		is lost (NewReno). This heuristics are the same in NewReno | 
|  | *		and SACK. | 
|  | * | 
|  | * Really tricky (and requiring careful tuning) part of algorithm | 
|  | * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). | 
|  | * The first determines the moment _when_ we should reduce CWND and, | 
|  | * hence, slow down forward transmission. In fact, it determines the moment | 
|  | * when we decide that hole is caused by loss, rather than by a reorder. | 
|  | * | 
|  | * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill | 
|  | * holes, caused by lost packets. | 
|  | * | 
|  | * And the most logically complicated part of algorithm is undo | 
|  | * heuristics. We detect false retransmits due to both too early | 
|  | * fast retransmit (reordering) and underestimated RTO, analyzing | 
|  | * timestamps and D-SACKs. When we detect that some segments were | 
|  | * retransmitted by mistake and CWND reduction was wrong, we undo | 
|  | * window reduction and abort recovery phase. This logic is hidden | 
|  | * inside several functions named tcp_try_undo_<something>. | 
|  | */ | 
|  |  | 
|  | /* This function decides, when we should leave Disordered state | 
|  | * and enter Recovery phase, reducing congestion window. | 
|  | * | 
|  | * Main question: may we further continue forward transmission | 
|  | * with the same cwnd? | 
|  | */ | 
|  | static bool tcp_time_to_recover(struct sock *sk, int flag) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* Trick#1: The loss is proven. */ | 
|  | if (tp->lost_out) | 
|  | return true; | 
|  |  | 
|  | /* Not-A-Trick#2 : Classic rule... */ | 
|  | if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Detect loss in event "A" above by marking head of queue up as lost. | 
|  | * For RFC3517 SACK, a segment is considered lost if it | 
|  | * has at least tp->reordering SACKed seqments above it; "packets" refers to | 
|  | * the maximum SACKed segments to pass before reaching this limit. | 
|  | */ | 
|  | static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  | int cnt; | 
|  | /* Use SACK to deduce losses of new sequences sent during recovery */ | 
|  | const u32 loss_high = tp->snd_nxt; | 
|  |  | 
|  | WARN_ON(packets > tp->packets_out); | 
|  | skb = tp->lost_skb_hint; | 
|  | if (skb) { | 
|  | /* Head already handled? */ | 
|  | if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) | 
|  | return; | 
|  | cnt = tp->lost_cnt_hint; | 
|  | } else { | 
|  | skb = tcp_rtx_queue_head(sk); | 
|  | cnt = 0; | 
|  | } | 
|  |  | 
|  | skb_rbtree_walk_from(skb) { | 
|  | /* TODO: do this better */ | 
|  | /* this is not the most efficient way to do this... */ | 
|  | tp->lost_skb_hint = skb; | 
|  | tp->lost_cnt_hint = cnt; | 
|  |  | 
|  | if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) | 
|  | break; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) | 
|  | cnt += tcp_skb_pcount(skb); | 
|  |  | 
|  | if (cnt > packets) | 
|  | break; | 
|  |  | 
|  | if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) | 
|  | tcp_mark_skb_lost(sk, skb); | 
|  |  | 
|  | if (mark_head) | 
|  | break; | 
|  | } | 
|  | tcp_verify_left_out(tp); | 
|  | } | 
|  |  | 
|  | /* Account newly detected lost packet(s) */ | 
|  |  | 
|  | static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tcp_is_sack(tp)) { | 
|  | int sacked_upto = tp->sacked_out - tp->reordering; | 
|  | if (sacked_upto >= 0) | 
|  | tcp_mark_head_lost(sk, sacked_upto, 0); | 
|  | else if (fast_rexmit) | 
|  | tcp_mark_head_lost(sk, 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) | 
|  | { | 
|  | return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && | 
|  | before(tp->rx_opt.rcv_tsecr, when); | 
|  | } | 
|  |  | 
|  | /* skb is spurious retransmitted if the returned timestamp echo | 
|  | * reply is prior to the skb transmission time | 
|  | */ | 
|  | static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && | 
|  | tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); | 
|  | } | 
|  |  | 
|  | /* Nothing was retransmitted or returned timestamp is less | 
|  | * than timestamp of the first retransmission. | 
|  | */ | 
|  | static inline bool tcp_packet_delayed(const struct tcp_sock *tp) | 
|  | { | 
|  | return tp->retrans_stamp && | 
|  | tcp_tsopt_ecr_before(tp, tp->retrans_stamp); | 
|  | } | 
|  |  | 
|  | /* Undo procedures. */ | 
|  |  | 
|  | /* We can clear retrans_stamp when there are no retransmissions in the | 
|  | * window. It would seem that it is trivially available for us in | 
|  | * tp->retrans_out, however, that kind of assumptions doesn't consider | 
|  | * what will happen if errors occur when sending retransmission for the | 
|  | * second time. ...It could the that such segment has only | 
|  | * TCPCB_EVER_RETRANS set at the present time. It seems that checking | 
|  | * the head skb is enough except for some reneging corner cases that | 
|  | * are not worth the effort. | 
|  | * | 
|  | * Main reason for all this complexity is the fact that connection dying | 
|  | * time now depends on the validity of the retrans_stamp, in particular, | 
|  | * that successive retransmissions of a segment must not advance | 
|  | * retrans_stamp under any conditions. | 
|  | */ | 
|  | static bool tcp_any_retrans_done(const struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (tp->retrans_out) | 
|  | return true; | 
|  |  | 
|  | skb = tcp_rtx_queue_head(sk); | 
|  | if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void DBGUNDO(struct sock *sk, const char *msg) | 
|  | { | 
|  | #if FASTRETRANS_DEBUG > 1 | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  |  | 
|  | if (sk->sk_family == AF_INET) { | 
|  | pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", | 
|  | msg, | 
|  | &inet->inet_daddr, ntohs(inet->inet_dport), | 
|  | tcp_snd_cwnd(tp), tcp_left_out(tp), | 
|  | tp->snd_ssthresh, tp->prior_ssthresh, | 
|  | tp->packets_out); | 
|  | } | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | else if (sk->sk_family == AF_INET6) { | 
|  | pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", | 
|  | msg, | 
|  | &sk->sk_v6_daddr, ntohs(inet->inet_dport), | 
|  | tcp_snd_cwnd(tp), tcp_left_out(tp), | 
|  | tp->snd_ssthresh, tp->prior_ssthresh, | 
|  | tp->packets_out); | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (unmark_loss) { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { | 
|  | TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; | 
|  | } | 
|  | tp->lost_out = 0; | 
|  | tcp_clear_all_retrans_hints(tp); | 
|  | } | 
|  |  | 
|  | if (tp->prior_ssthresh) { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); | 
|  |  | 
|  | if (tp->prior_ssthresh > tp->snd_ssthresh) { | 
|  | tp->snd_ssthresh = tp->prior_ssthresh; | 
|  | tcp_ecn_withdraw_cwr(tp); | 
|  | } | 
|  | } | 
|  | tp->snd_cwnd_stamp = tcp_jiffies32; | 
|  | tp->undo_marker = 0; | 
|  | tp->rack.advanced = 1; /* Force RACK to re-exam losses */ | 
|  | } | 
|  |  | 
|  | static inline bool tcp_may_undo(const struct tcp_sock *tp) | 
|  | { | 
|  | return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); | 
|  | } | 
|  |  | 
|  | static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { | 
|  | /* Hold old state until something *above* high_seq | 
|  | * is ACKed. For Reno it is MUST to prevent false | 
|  | * fast retransmits (RFC2582). SACK TCP is safe. */ | 
|  | if (!tcp_any_retrans_done(sk)) | 
|  | tp->retrans_stamp = 0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* People celebrate: "We love our President!" */ | 
|  | static bool tcp_try_undo_recovery(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tcp_may_undo(tp)) { | 
|  | int mib_idx; | 
|  |  | 
|  | /* Happy end! We did not retransmit anything | 
|  | * or our original transmission succeeded. | 
|  | */ | 
|  | DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); | 
|  | tcp_undo_cwnd_reduction(sk, false); | 
|  | if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) | 
|  | mib_idx = LINUX_MIB_TCPLOSSUNDO; | 
|  | else | 
|  | mib_idx = LINUX_MIB_TCPFULLUNDO; | 
|  |  | 
|  | NET_INC_STATS(sock_net(sk), mib_idx); | 
|  | } else if (tp->rack.reo_wnd_persist) { | 
|  | tp->rack.reo_wnd_persist--; | 
|  | } | 
|  | if (tcp_is_non_sack_preventing_reopen(sk)) | 
|  | return true; | 
|  | tcp_set_ca_state(sk, TCP_CA_Open); | 
|  | tp->is_sack_reneg = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ | 
|  | static bool tcp_try_undo_dsack(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tp->undo_marker && !tp->undo_retrans) { | 
|  | tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, | 
|  | tp->rack.reo_wnd_persist + 1); | 
|  | DBGUNDO(sk, "D-SACK"); | 
|  | tcp_undo_cwnd_reduction(sk, false); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Undo during loss recovery after partial ACK or using F-RTO. */ | 
|  | static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (frto_undo || tcp_may_undo(tp)) { | 
|  | tcp_undo_cwnd_reduction(sk, true); | 
|  |  | 
|  | DBGUNDO(sk, "partial loss"); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); | 
|  | if (frto_undo) | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPSPURIOUSRTOS); | 
|  | inet_csk(sk)->icsk_retransmits = 0; | 
|  | if (tcp_is_non_sack_preventing_reopen(sk)) | 
|  | return true; | 
|  | if (frto_undo || tcp_is_sack(tp)) { | 
|  | tcp_set_ca_state(sk, TCP_CA_Open); | 
|  | tp->is_sack_reneg = 0; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. | 
|  | * It computes the number of packets to send (sndcnt) based on packets newly | 
|  | * delivered: | 
|  | *   1) If the packets in flight is larger than ssthresh, PRR spreads the | 
|  | *	cwnd reductions across a full RTT. | 
|  | *   2) Otherwise PRR uses packet conservation to send as much as delivered. | 
|  | *      But when SND_UNA is acked without further losses, | 
|  | *      slow starts cwnd up to ssthresh to speed up the recovery. | 
|  | */ | 
|  | static void tcp_init_cwnd_reduction(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | tp->high_seq = tp->snd_nxt; | 
|  | tp->tlp_high_seq = 0; | 
|  | tp->snd_cwnd_cnt = 0; | 
|  | tp->prior_cwnd = tcp_snd_cwnd(tp); | 
|  | tp->prr_delivered = 0; | 
|  | tp->prr_out = 0; | 
|  | tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); | 
|  | tcp_ecn_queue_cwr(tp); | 
|  | } | 
|  |  | 
|  | void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int sndcnt = 0; | 
|  | int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); | 
|  |  | 
|  | if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) | 
|  | return; | 
|  |  | 
|  | tp->prr_delivered += newly_acked_sacked; | 
|  | if (delta < 0) { | 
|  | u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + | 
|  | tp->prior_cwnd - 1; | 
|  | sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; | 
|  | } else { | 
|  | sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, | 
|  | newly_acked_sacked); | 
|  | if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) | 
|  | sndcnt++; | 
|  | sndcnt = min(delta, sndcnt); | 
|  | } | 
|  | /* Force a fast retransmit upon entering fast recovery */ | 
|  | sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); | 
|  | tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); | 
|  | } | 
|  |  | 
|  | static inline void tcp_end_cwnd_reduction(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (inet_csk(sk)->icsk_ca_ops->cong_control) | 
|  | return; | 
|  |  | 
|  | /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ | 
|  | if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && | 
|  | (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { | 
|  | tcp_snd_cwnd_set(tp, tp->snd_ssthresh); | 
|  | tp->snd_cwnd_stamp = tcp_jiffies32; | 
|  | } | 
|  | tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); | 
|  | } | 
|  |  | 
|  | /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ | 
|  | void tcp_enter_cwr(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | tp->prior_ssthresh = 0; | 
|  | if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { | 
|  | tp->undo_marker = 0; | 
|  | tcp_init_cwnd_reduction(sk); | 
|  | tcp_set_ca_state(sk, TCP_CA_CWR); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_enter_cwr); | 
|  |  | 
|  | static void tcp_try_keep_open(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int state = TCP_CA_Open; | 
|  |  | 
|  | if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) | 
|  | state = TCP_CA_Disorder; | 
|  |  | 
|  | if (inet_csk(sk)->icsk_ca_state != state) { | 
|  | tcp_set_ca_state(sk, state); | 
|  | tp->high_seq = tp->snd_nxt; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tcp_try_to_open(struct sock *sk, int flag) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | tcp_verify_left_out(tp); | 
|  |  | 
|  | if (!tcp_any_retrans_done(sk)) | 
|  | tp->retrans_stamp = 0; | 
|  |  | 
|  | if (flag & FLAG_ECE) | 
|  | tcp_enter_cwr(sk); | 
|  |  | 
|  | if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { | 
|  | tcp_try_keep_open(sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tcp_mtup_probe_failed(struct sock *sk) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; | 
|  | icsk->icsk_mtup.probe_size = 0; | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); | 
|  | } | 
|  |  | 
|  | static void tcp_mtup_probe_success(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | u64 val; | 
|  |  | 
|  | tp->prior_ssthresh = tcp_current_ssthresh(sk); | 
|  |  | 
|  | val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); | 
|  | do_div(val, icsk->icsk_mtup.probe_size); | 
|  | DEBUG_NET_WARN_ON_ONCE((u32)val != val); | 
|  | tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); | 
|  |  | 
|  | tp->snd_cwnd_cnt = 0; | 
|  | tp->snd_cwnd_stamp = tcp_jiffies32; | 
|  | tp->snd_ssthresh = tcp_current_ssthresh(sk); | 
|  |  | 
|  | icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; | 
|  | icsk->icsk_mtup.probe_size = 0; | 
|  | tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); | 
|  | } | 
|  |  | 
|  | /* Do a simple retransmit without using the backoff mechanisms in | 
|  | * tcp_timer. This is used for path mtu discovery. | 
|  | * The socket is already locked here. | 
|  | */ | 
|  | void tcp_simple_retransmit(struct sock *sk) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  | int mss; | 
|  |  | 
|  | /* A fastopen SYN request is stored as two separate packets within | 
|  | * the retransmit queue, this is done by tcp_send_syn_data(). | 
|  | * As a result simply checking the MSS of the frames in the queue | 
|  | * will not work for the SYN packet. | 
|  | * | 
|  | * Us being here is an indication of a path MTU issue so we can | 
|  | * assume that the fastopen SYN was lost and just mark all the | 
|  | * frames in the retransmit queue as lost. We will use an MSS of | 
|  | * -1 to mark all frames as lost, otherwise compute the current MSS. | 
|  | */ | 
|  | if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) | 
|  | mss = -1; | 
|  | else | 
|  | mss = tcp_current_mss(sk); | 
|  |  | 
|  | skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { | 
|  | if (tcp_skb_seglen(skb) > mss) | 
|  | tcp_mark_skb_lost(sk, skb); | 
|  | } | 
|  |  | 
|  | tcp_clear_retrans_hints_partial(tp); | 
|  |  | 
|  | if (!tp->lost_out) | 
|  | return; | 
|  |  | 
|  | if (tcp_is_reno(tp)) | 
|  | tcp_limit_reno_sacked(tp); | 
|  |  | 
|  | tcp_verify_left_out(tp); | 
|  |  | 
|  | /* Don't muck with the congestion window here. | 
|  | * Reason is that we do not increase amount of _data_ | 
|  | * in network, but units changed and effective | 
|  | * cwnd/ssthresh really reduced now. | 
|  | */ | 
|  | if (icsk->icsk_ca_state != TCP_CA_Loss) { | 
|  | tp->high_seq = tp->snd_nxt; | 
|  | tp->snd_ssthresh = tcp_current_ssthresh(sk); | 
|  | tp->prior_ssthresh = 0; | 
|  | tp->undo_marker = 0; | 
|  | tcp_set_ca_state(sk, TCP_CA_Loss); | 
|  | } | 
|  | tcp_xmit_retransmit_queue(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_simple_retransmit); | 
|  |  | 
|  | void tcp_enter_recovery(struct sock *sk, bool ece_ack) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int mib_idx; | 
|  |  | 
|  | if (tcp_is_reno(tp)) | 
|  | mib_idx = LINUX_MIB_TCPRENORECOVERY; | 
|  | else | 
|  | mib_idx = LINUX_MIB_TCPSACKRECOVERY; | 
|  |  | 
|  | NET_INC_STATS(sock_net(sk), mib_idx); | 
|  |  | 
|  | tp->prior_ssthresh = 0; | 
|  | tcp_init_undo(tp); | 
|  |  | 
|  | if (!tcp_in_cwnd_reduction(sk)) { | 
|  | if (!ece_ack) | 
|  | tp->prior_ssthresh = tcp_current_ssthresh(sk); | 
|  | tcp_init_cwnd_reduction(sk); | 
|  | } | 
|  | tcp_set_ca_state(sk, TCP_CA_Recovery); | 
|  | } | 
|  |  | 
|  | static void tcp_update_rto_time(struct tcp_sock *tp) | 
|  | { | 
|  | if (tp->rto_stamp) { | 
|  | tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; | 
|  | tp->rto_stamp = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are | 
|  | * recovered or spurious. Otherwise retransmits more on partial ACKs. | 
|  | */ | 
|  | static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, | 
|  | int *rexmit) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | bool recovered = !before(tp->snd_una, tp->high_seq); | 
|  |  | 
|  | if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && | 
|  | tcp_try_undo_loss(sk, false)) | 
|  | return; | 
|  |  | 
|  | if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ | 
|  | /* Step 3.b. A timeout is spurious if not all data are | 
|  | * lost, i.e., never-retransmitted data are (s)acked. | 
|  | */ | 
|  | if ((flag & FLAG_ORIG_SACK_ACKED) && | 
|  | tcp_try_undo_loss(sk, true)) | 
|  | return; | 
|  |  | 
|  | if (after(tp->snd_nxt, tp->high_seq)) { | 
|  | if (flag & FLAG_DATA_SACKED || num_dupack) | 
|  | tp->frto = 0; /* Step 3.a. loss was real */ | 
|  | } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { | 
|  | tp->high_seq = tp->snd_nxt; | 
|  | /* Step 2.b. Try send new data (but deferred until cwnd | 
|  | * is updated in tcp_ack()). Otherwise fall back to | 
|  | * the conventional recovery. | 
|  | */ | 
|  | if (!tcp_write_queue_empty(sk) && | 
|  | after(tcp_wnd_end(tp), tp->snd_nxt)) { | 
|  | *rexmit = REXMIT_NEW; | 
|  | return; | 
|  | } | 
|  | tp->frto = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (recovered) { | 
|  | /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ | 
|  | tcp_try_undo_recovery(sk); | 
|  | return; | 
|  | } | 
|  | if (tcp_is_reno(tp)) { | 
|  | /* A Reno DUPACK means new data in F-RTO step 2.b above are | 
|  | * delivered. Lower inflight to clock out (re)transmissions. | 
|  | */ | 
|  | if (after(tp->snd_nxt, tp->high_seq) && num_dupack) | 
|  | tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); | 
|  | else if (flag & FLAG_SND_UNA_ADVANCED) | 
|  | tcp_reset_reno_sack(tp); | 
|  | } | 
|  | *rexmit = REXMIT_LOST; | 
|  | } | 
|  |  | 
|  | static bool tcp_force_fast_retransmit(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | return after(tcp_highest_sack_seq(tp), | 
|  | tp->snd_una + tp->reordering * tp->mss_cache); | 
|  | } | 
|  |  | 
|  | /* Undo during fast recovery after partial ACK. */ | 
|  | static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, | 
|  | bool *do_lost) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tp->undo_marker && tcp_packet_delayed(tp)) { | 
|  | /* Plain luck! Hole if filled with delayed | 
|  | * packet, rather than with a retransmit. Check reordering. | 
|  | */ | 
|  | tcp_check_sack_reordering(sk, prior_snd_una, 1); | 
|  |  | 
|  | /* We are getting evidence that the reordering degree is higher | 
|  | * than we realized. If there are no retransmits out then we | 
|  | * can undo. Otherwise we clock out new packets but do not | 
|  | * mark more packets lost or retransmit more. | 
|  | */ | 
|  | if (tp->retrans_out) | 
|  | return true; | 
|  |  | 
|  | if (!tcp_any_retrans_done(sk)) | 
|  | tp->retrans_stamp = 0; | 
|  |  | 
|  | DBGUNDO(sk, "partial recovery"); | 
|  | tcp_undo_cwnd_reduction(sk, true); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); | 
|  | tcp_try_keep_open(sk); | 
|  | } else { | 
|  | /* Partial ACK arrived. Force fast retransmit. */ | 
|  | *do_lost = tcp_force_fast_retransmit(sk); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tcp_rtx_queue_empty(sk)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(tcp_is_reno(tp))) { | 
|  | tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); | 
|  | } else if (tcp_is_rack(sk)) { | 
|  | u32 prior_retrans = tp->retrans_out; | 
|  |  | 
|  | if (tcp_rack_mark_lost(sk)) | 
|  | *ack_flag &= ~FLAG_SET_XMIT_TIMER; | 
|  | if (prior_retrans > tp->retrans_out) | 
|  | *ack_flag |= FLAG_LOST_RETRANS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Process an event, which can update packets-in-flight not trivially. | 
|  | * Main goal of this function is to calculate new estimate for left_out, | 
|  | * taking into account both packets sitting in receiver's buffer and | 
|  | * packets lost by network. | 
|  | * | 
|  | * Besides that it updates the congestion state when packet loss or ECN | 
|  | * is detected. But it does not reduce the cwnd, it is done by the | 
|  | * congestion control later. | 
|  | * | 
|  | * It does _not_ decide what to send, it is made in function | 
|  | * tcp_xmit_retransmit_queue(). | 
|  | */ | 
|  | static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, | 
|  | int num_dupack, int *ack_flag, int *rexmit) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int fast_rexmit = 0, flag = *ack_flag; | 
|  | bool ece_ack = flag & FLAG_ECE; | 
|  | bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && | 
|  | tcp_force_fast_retransmit(sk)); | 
|  |  | 
|  | if (!tp->packets_out && tp->sacked_out) | 
|  | tp->sacked_out = 0; | 
|  |  | 
|  | /* Now state machine starts. | 
|  | * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ | 
|  | if (ece_ack) | 
|  | tp->prior_ssthresh = 0; | 
|  |  | 
|  | /* B. In all the states check for reneging SACKs. */ | 
|  | if (tcp_check_sack_reneging(sk, ack_flag)) | 
|  | return; | 
|  |  | 
|  | /* C. Check consistency of the current state. */ | 
|  | tcp_verify_left_out(tp); | 
|  |  | 
|  | /* D. Check state exit conditions. State can be terminated | 
|  | *    when high_seq is ACKed. */ | 
|  | if (icsk->icsk_ca_state == TCP_CA_Open) { | 
|  | WARN_ON(tp->retrans_out != 0 && !tp->syn_data); | 
|  | tp->retrans_stamp = 0; | 
|  | } else if (!before(tp->snd_una, tp->high_seq)) { | 
|  | switch (icsk->icsk_ca_state) { | 
|  | case TCP_CA_CWR: | 
|  | /* CWR is to be held something *above* high_seq | 
|  | * is ACKed for CWR bit to reach receiver. */ | 
|  | if (tp->snd_una != tp->high_seq) { | 
|  | tcp_end_cwnd_reduction(sk); | 
|  | tcp_set_ca_state(sk, TCP_CA_Open); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TCP_CA_Recovery: | 
|  | if (tcp_is_reno(tp)) | 
|  | tcp_reset_reno_sack(tp); | 
|  | if (tcp_try_undo_recovery(sk)) | 
|  | return; | 
|  | tcp_end_cwnd_reduction(sk); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* E. Process state. */ | 
|  | switch (icsk->icsk_ca_state) { | 
|  | case TCP_CA_Recovery: | 
|  | if (!(flag & FLAG_SND_UNA_ADVANCED)) { | 
|  | if (tcp_is_reno(tp)) | 
|  | tcp_add_reno_sack(sk, num_dupack, ece_ack); | 
|  | } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) | 
|  | return; | 
|  |  | 
|  | if (tcp_try_undo_dsack(sk)) | 
|  | tcp_try_keep_open(sk); | 
|  |  | 
|  | tcp_identify_packet_loss(sk, ack_flag); | 
|  | if (icsk->icsk_ca_state != TCP_CA_Recovery) { | 
|  | if (!tcp_time_to_recover(sk, flag)) | 
|  | return; | 
|  | /* Undo reverts the recovery state. If loss is evident, | 
|  | * starts a new recovery (e.g. reordering then loss); | 
|  | */ | 
|  | tcp_enter_recovery(sk, ece_ack); | 
|  | } | 
|  | break; | 
|  | case TCP_CA_Loss: | 
|  | tcp_process_loss(sk, flag, num_dupack, rexmit); | 
|  | if (icsk->icsk_ca_state != TCP_CA_Loss) | 
|  | tcp_update_rto_time(tp); | 
|  | tcp_identify_packet_loss(sk, ack_flag); | 
|  | if (!(icsk->icsk_ca_state == TCP_CA_Open || | 
|  | (*ack_flag & FLAG_LOST_RETRANS))) | 
|  | return; | 
|  | /* Change state if cwnd is undone or retransmits are lost */ | 
|  | fallthrough; | 
|  | default: | 
|  | if (tcp_is_reno(tp)) { | 
|  | if (flag & FLAG_SND_UNA_ADVANCED) | 
|  | tcp_reset_reno_sack(tp); | 
|  | tcp_add_reno_sack(sk, num_dupack, ece_ack); | 
|  | } | 
|  |  | 
|  | if (icsk->icsk_ca_state <= TCP_CA_Disorder) | 
|  | tcp_try_undo_dsack(sk); | 
|  |  | 
|  | tcp_identify_packet_loss(sk, ack_flag); | 
|  | if (!tcp_time_to_recover(sk, flag)) { | 
|  | tcp_try_to_open(sk, flag); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* MTU probe failure: don't reduce cwnd */ | 
|  | if (icsk->icsk_ca_state < TCP_CA_CWR && | 
|  | icsk->icsk_mtup.probe_size && | 
|  | tp->snd_una == tp->mtu_probe.probe_seq_start) { | 
|  | tcp_mtup_probe_failed(sk); | 
|  | /* Restores the reduction we did in tcp_mtup_probe() */ | 
|  | tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); | 
|  | tcp_simple_retransmit(sk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Otherwise enter Recovery state */ | 
|  | tcp_enter_recovery(sk, ece_ack); | 
|  | fast_rexmit = 1; | 
|  | } | 
|  |  | 
|  | if (!tcp_is_rack(sk) && do_lost) | 
|  | tcp_update_scoreboard(sk, fast_rexmit); | 
|  | *rexmit = REXMIT_LOST; | 
|  | } | 
|  |  | 
|  | static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) | 
|  | { | 
|  | u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { | 
|  | /* If the remote keeps returning delayed ACKs, eventually | 
|  | * the min filter would pick it up and overestimate the | 
|  | * prop. delay when it expires. Skip suspected delayed ACKs. | 
|  | */ | 
|  | return; | 
|  | } | 
|  | minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, | 
|  | rtt_us ? : jiffies_to_usecs(1)); | 
|  | } | 
|  |  | 
|  | static bool tcp_ack_update_rtt(struct sock *sk, const int flag, | 
|  | long seq_rtt_us, long sack_rtt_us, | 
|  | long ca_rtt_us, struct rate_sample *rs) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* Prefer RTT measured from ACK's timing to TS-ECR. This is because | 
|  | * broken middle-boxes or peers may corrupt TS-ECR fields. But | 
|  | * Karn's algorithm forbids taking RTT if some retransmitted data | 
|  | * is acked (RFC6298). | 
|  | */ | 
|  | if (seq_rtt_us < 0) | 
|  | seq_rtt_us = sack_rtt_us; | 
|  |  | 
|  | /* RTTM Rule: A TSecr value received in a segment is used to | 
|  | * update the averaged RTT measurement only if the segment | 
|  | * acknowledges some new data, i.e., only if it advances the | 
|  | * left edge of the send window. | 
|  | * See draft-ietf-tcplw-high-performance-00, section 3.3. | 
|  | */ | 
|  | if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && | 
|  | tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) | 
|  | seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); | 
|  |  | 
|  | rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ | 
|  | if (seq_rtt_us < 0) | 
|  | return false; | 
|  |  | 
|  | /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is | 
|  | * always taken together with ACK, SACK, or TS-opts. Any negative | 
|  | * values will be skipped with the seq_rtt_us < 0 check above. | 
|  | */ | 
|  | tcp_update_rtt_min(sk, ca_rtt_us, flag); | 
|  | tcp_rtt_estimator(sk, seq_rtt_us); | 
|  | tcp_set_rto(sk); | 
|  |  | 
|  | /* RFC6298: only reset backoff on valid RTT measurement. */ | 
|  | inet_csk(sk)->icsk_backoff = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ | 
|  | void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) | 
|  | { | 
|  | struct rate_sample rs; | 
|  | long rtt_us = -1L; | 
|  |  | 
|  | if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) | 
|  | rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); | 
|  |  | 
|  | tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); | 
|  | tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; | 
|  | } | 
|  |  | 
|  | /* Restart timer after forward progress on connection. | 
|  | * RFC2988 recommends to restart timer to now+rto. | 
|  | */ | 
|  | void tcp_rearm_rto(struct sock *sk) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* If the retrans timer is currently being used by Fast Open | 
|  | * for SYN-ACK retrans purpose, stay put. | 
|  | */ | 
|  | if (rcu_access_pointer(tp->fastopen_rsk)) | 
|  | return; | 
|  |  | 
|  | if (!tp->packets_out) { | 
|  | inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); | 
|  | } else { | 
|  | u32 rto = inet_csk(sk)->icsk_rto; | 
|  | /* Offset the time elapsed after installing regular RTO */ | 
|  | if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || | 
|  | icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { | 
|  | s64 delta_us = tcp_rto_delta_us(sk); | 
|  | /* delta_us may not be positive if the socket is locked | 
|  | * when the retrans timer fires and is rescheduled. | 
|  | */ | 
|  | rto = usecs_to_jiffies(max_t(int, delta_us, 1)); | 
|  | } | 
|  | tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, | 
|  | TCP_RTO_MAX); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ | 
|  | static void tcp_set_xmit_timer(struct sock *sk) | 
|  | { | 
|  | if (!tcp_schedule_loss_probe(sk, true)) | 
|  | tcp_rearm_rto(sk); | 
|  | } | 
|  |  | 
|  | /* If we get here, the whole TSO packet has not been acked. */ | 
|  | static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 packets_acked; | 
|  |  | 
|  | BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); | 
|  |  | 
|  | packets_acked = tcp_skb_pcount(skb); | 
|  | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | 
|  | return 0; | 
|  | packets_acked -= tcp_skb_pcount(skb); | 
|  |  | 
|  | if (packets_acked) { | 
|  | BUG_ON(tcp_skb_pcount(skb) == 0); | 
|  | BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); | 
|  | } | 
|  |  | 
|  | return packets_acked; | 
|  | } | 
|  |  | 
|  | static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, | 
|  | const struct sk_buff *ack_skb, u32 prior_snd_una) | 
|  | { | 
|  | const struct skb_shared_info *shinfo; | 
|  |  | 
|  | /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ | 
|  | if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) | 
|  | return; | 
|  |  | 
|  | shinfo = skb_shinfo(skb); | 
|  | if (!before(shinfo->tskey, prior_snd_una) && | 
|  | before(shinfo->tskey, tcp_sk(sk)->snd_una)) { | 
|  | tcp_skb_tsorted_save(skb) { | 
|  | __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); | 
|  | } tcp_skb_tsorted_restore(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remove acknowledged frames from the retransmission queue. If our packet | 
|  | * is before the ack sequence we can discard it as it's confirmed to have | 
|  | * arrived at the other end. | 
|  | */ | 
|  | static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, | 
|  | u32 prior_fack, u32 prior_snd_una, | 
|  | struct tcp_sacktag_state *sack, bool ece_ack) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | u64 first_ackt, last_ackt; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 prior_sacked = tp->sacked_out; | 
|  | u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ | 
|  | struct sk_buff *skb, *next; | 
|  | bool fully_acked = true; | 
|  | long sack_rtt_us = -1L; | 
|  | long seq_rtt_us = -1L; | 
|  | long ca_rtt_us = -1L; | 
|  | u32 pkts_acked = 0; | 
|  | bool rtt_update; | 
|  | int flag = 0; | 
|  |  | 
|  | first_ackt = 0; | 
|  |  | 
|  | for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { | 
|  | struct tcp_skb_cb *scb = TCP_SKB_CB(skb); | 
|  | const u32 start_seq = scb->seq; | 
|  | u8 sacked = scb->sacked; | 
|  | u32 acked_pcount; | 
|  |  | 
|  | /* Determine how many packets and what bytes were acked, tso and else */ | 
|  | if (after(scb->end_seq, tp->snd_una)) { | 
|  | if (tcp_skb_pcount(skb) == 1 || | 
|  | !after(tp->snd_una, scb->seq)) | 
|  | break; | 
|  |  | 
|  | acked_pcount = tcp_tso_acked(sk, skb); | 
|  | if (!acked_pcount) | 
|  | break; | 
|  | fully_acked = false; | 
|  | } else { | 
|  | acked_pcount = tcp_skb_pcount(skb); | 
|  | } | 
|  |  | 
|  | if (unlikely(sacked & TCPCB_RETRANS)) { | 
|  | if (sacked & TCPCB_SACKED_RETRANS) | 
|  | tp->retrans_out -= acked_pcount; | 
|  | flag |= FLAG_RETRANS_DATA_ACKED; | 
|  | } else if (!(sacked & TCPCB_SACKED_ACKED)) { | 
|  | last_ackt = tcp_skb_timestamp_us(skb); | 
|  | WARN_ON_ONCE(last_ackt == 0); | 
|  | if (!first_ackt) | 
|  | first_ackt = last_ackt; | 
|  |  | 
|  | if (before(start_seq, reord)) | 
|  | reord = start_seq; | 
|  | if (!after(scb->end_seq, tp->high_seq)) | 
|  | flag |= FLAG_ORIG_SACK_ACKED; | 
|  | } | 
|  |  | 
|  | if (sacked & TCPCB_SACKED_ACKED) { | 
|  | tp->sacked_out -= acked_pcount; | 
|  | } else if (tcp_is_sack(tp)) { | 
|  | tcp_count_delivered(tp, acked_pcount, ece_ack); | 
|  | if (!tcp_skb_spurious_retrans(tp, skb)) | 
|  | tcp_rack_advance(tp, sacked, scb->end_seq, | 
|  | tcp_skb_timestamp_us(skb)); | 
|  | } | 
|  | if (sacked & TCPCB_LOST) | 
|  | tp->lost_out -= acked_pcount; | 
|  |  | 
|  | tp->packets_out -= acked_pcount; | 
|  | pkts_acked += acked_pcount; | 
|  | tcp_rate_skb_delivered(sk, skb, sack->rate); | 
|  |  | 
|  | /* Initial outgoing SYN's get put onto the write_queue | 
|  | * just like anything else we transmit.  It is not | 
|  | * true data, and if we misinform our callers that | 
|  | * this ACK acks real data, we will erroneously exit | 
|  | * connection startup slow start one packet too | 
|  | * quickly.  This is severely frowned upon behavior. | 
|  | */ | 
|  | if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { | 
|  | flag |= FLAG_DATA_ACKED; | 
|  | } else { | 
|  | flag |= FLAG_SYN_ACKED; | 
|  | tp->retrans_stamp = 0; | 
|  | } | 
|  |  | 
|  | if (!fully_acked) | 
|  | break; | 
|  |  | 
|  | tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); | 
|  |  | 
|  | next = skb_rb_next(skb); | 
|  | if (unlikely(skb == tp->retransmit_skb_hint)) | 
|  | tp->retransmit_skb_hint = NULL; | 
|  | if (unlikely(skb == tp->lost_skb_hint)) | 
|  | tp->lost_skb_hint = NULL; | 
|  | tcp_highest_sack_replace(sk, skb, next); | 
|  | tcp_rtx_queue_unlink_and_free(skb, sk); | 
|  | } | 
|  |  | 
|  | if (!skb) | 
|  | tcp_chrono_stop(sk, TCP_CHRONO_BUSY); | 
|  |  | 
|  | if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) | 
|  | tp->snd_up = tp->snd_una; | 
|  |  | 
|  | if (skb) { | 
|  | tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) | 
|  | flag |= FLAG_SACK_RENEGING; | 
|  | } | 
|  |  | 
|  | if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { | 
|  | seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); | 
|  | ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); | 
|  |  | 
|  | if (pkts_acked == 1 && fully_acked && !prior_sacked && | 
|  | (tp->snd_una - prior_snd_una) < tp->mss_cache && | 
|  | sack->rate->prior_delivered + 1 == tp->delivered && | 
|  | !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { | 
|  | /* Conservatively mark a delayed ACK. It's typically | 
|  | * from a lone runt packet over the round trip to | 
|  | * a receiver w/o out-of-order or CE events. | 
|  | */ | 
|  | flag |= FLAG_ACK_MAYBE_DELAYED; | 
|  | } | 
|  | } | 
|  | if (sack->first_sackt) { | 
|  | sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); | 
|  | ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); | 
|  | } | 
|  | rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, | 
|  | ca_rtt_us, sack->rate); | 
|  |  | 
|  | if (flag & FLAG_ACKED) { | 
|  | flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */ | 
|  | if (unlikely(icsk->icsk_mtup.probe_size && | 
|  | !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { | 
|  | tcp_mtup_probe_success(sk); | 
|  | } | 
|  |  | 
|  | if (tcp_is_reno(tp)) { | 
|  | tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); | 
|  |  | 
|  | /* If any of the cumulatively ACKed segments was | 
|  | * retransmitted, non-SACK case cannot confirm that | 
|  | * progress was due to original transmission due to | 
|  | * lack of TCPCB_SACKED_ACKED bits even if some of | 
|  | * the packets may have been never retransmitted. | 
|  | */ | 
|  | if (flag & FLAG_RETRANS_DATA_ACKED) | 
|  | flag &= ~FLAG_ORIG_SACK_ACKED; | 
|  | } else { | 
|  | int delta; | 
|  |  | 
|  | /* Non-retransmitted hole got filled? That's reordering */ | 
|  | if (before(reord, prior_fack)) | 
|  | tcp_check_sack_reordering(sk, reord, 0); | 
|  |  | 
|  | delta = prior_sacked - tp->sacked_out; | 
|  | tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); | 
|  | } | 
|  | } else if (skb && rtt_update && sack_rtt_us >= 0 && | 
|  | sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, | 
|  | tcp_skb_timestamp_us(skb))) { | 
|  | /* Do not re-arm RTO if the sack RTT is measured from data sent | 
|  | * after when the head was last (re)transmitted. Otherwise the | 
|  | * timeout may continue to extend in loss recovery. | 
|  | */ | 
|  | flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */ | 
|  | } | 
|  |  | 
|  | if (icsk->icsk_ca_ops->pkts_acked) { | 
|  | struct ack_sample sample = { .pkts_acked = pkts_acked, | 
|  | .rtt_us = sack->rate->rtt_us }; | 
|  |  | 
|  | sample.in_flight = tp->mss_cache * | 
|  | (tp->delivered - sack->rate->prior_delivered); | 
|  | icsk->icsk_ca_ops->pkts_acked(sk, &sample); | 
|  | } | 
|  |  | 
|  | #if FASTRETRANS_DEBUG > 0 | 
|  | WARN_ON((int)tp->sacked_out < 0); | 
|  | WARN_ON((int)tp->lost_out < 0); | 
|  | WARN_ON((int)tp->retrans_out < 0); | 
|  | if (!tp->packets_out && tcp_is_sack(tp)) { | 
|  | icsk = inet_csk(sk); | 
|  | if (tp->lost_out) { | 
|  | pr_debug("Leak l=%u %d\n", | 
|  | tp->lost_out, icsk->icsk_ca_state); | 
|  | tp->lost_out = 0; | 
|  | } | 
|  | if (tp->sacked_out) { | 
|  | pr_debug("Leak s=%u %d\n", | 
|  | tp->sacked_out, icsk->icsk_ca_state); | 
|  | tp->sacked_out = 0; | 
|  | } | 
|  | if (tp->retrans_out) { | 
|  | pr_debug("Leak r=%u %d\n", | 
|  | tp->retrans_out, icsk->icsk_ca_state); | 
|  | tp->retrans_out = 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return flag; | 
|  | } | 
|  |  | 
|  | static void tcp_ack_probe(struct sock *sk) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct sk_buff *head = tcp_send_head(sk); | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* Was it a usable window open? */ | 
|  | if (!head) | 
|  | return; | 
|  | if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { | 
|  | icsk->icsk_backoff = 0; | 
|  | icsk->icsk_probes_tstamp = 0; | 
|  | inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); | 
|  | /* Socket must be waked up by subsequent tcp_data_snd_check(). | 
|  | * This function is not for random using! | 
|  | */ | 
|  | } else { | 
|  | unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); | 
|  |  | 
|  | when = tcp_clamp_probe0_to_user_timeout(sk, when); | 
|  | tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) | 
|  | { | 
|  | return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || | 
|  | inet_csk(sk)->icsk_ca_state != TCP_CA_Open; | 
|  | } | 
|  |  | 
|  | /* Decide wheather to run the increase function of congestion control. */ | 
|  | static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) | 
|  | { | 
|  | /* If reordering is high then always grow cwnd whenever data is | 
|  | * delivered regardless of its ordering. Otherwise stay conservative | 
|  | * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ | 
|  | * new SACK or ECE mark may first advance cwnd here and later reduce | 
|  | * cwnd in tcp_fastretrans_alert() based on more states. | 
|  | */ | 
|  | if (tcp_sk(sk)->reordering > | 
|  | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) | 
|  | return flag & FLAG_FORWARD_PROGRESS; | 
|  |  | 
|  | return flag & FLAG_DATA_ACKED; | 
|  | } | 
|  |  | 
|  | /* The "ultimate" congestion control function that aims to replace the rigid | 
|  | * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). | 
|  | * It's called toward the end of processing an ACK with precise rate | 
|  | * information. All transmission or retransmission are delayed afterwards. | 
|  | */ | 
|  | static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, | 
|  | int flag, const struct rate_sample *rs) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | if (icsk->icsk_ca_ops->cong_control) { | 
|  | icsk->icsk_ca_ops->cong_control(sk, rs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (tcp_in_cwnd_reduction(sk)) { | 
|  | /* Reduce cwnd if state mandates */ | 
|  | tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); | 
|  | } else if (tcp_may_raise_cwnd(sk, flag)) { | 
|  | /* Advance cwnd if state allows */ | 
|  | tcp_cong_avoid(sk, ack, acked_sacked); | 
|  | } | 
|  | tcp_update_pacing_rate(sk); | 
|  | } | 
|  |  | 
|  | /* Check that window update is acceptable. | 
|  | * The function assumes that snd_una<=ack<=snd_next. | 
|  | */ | 
|  | static inline bool tcp_may_update_window(const struct tcp_sock *tp, | 
|  | const u32 ack, const u32 ack_seq, | 
|  | const u32 nwin) | 
|  | { | 
|  | return	after(ack, tp->snd_una) || | 
|  | after(ack_seq, tp->snd_wl1) || | 
|  | (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); | 
|  | } | 
|  |  | 
|  | static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) | 
|  | { | 
|  | #ifdef CONFIG_TCP_AO | 
|  | struct tcp_ao_info *ao; | 
|  |  | 
|  | if (!static_branch_unlikely(&tcp_ao_needed.key)) | 
|  | return; | 
|  |  | 
|  | ao = rcu_dereference_protected(tp->ao_info, | 
|  | lockdep_sock_is_held((struct sock *)tp)); | 
|  | if (ao && ack < tp->snd_una) | 
|  | ao->snd_sne++; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* If we update tp->snd_una, also update tp->bytes_acked */ | 
|  | static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) | 
|  | { | 
|  | u32 delta = ack - tp->snd_una; | 
|  |  | 
|  | sock_owned_by_me((struct sock *)tp); | 
|  | tp->bytes_acked += delta; | 
|  | tcp_snd_sne_update(tp, ack); | 
|  | tp->snd_una = ack; | 
|  | } | 
|  |  | 
|  | static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) | 
|  | { | 
|  | #ifdef CONFIG_TCP_AO | 
|  | struct tcp_ao_info *ao; | 
|  |  | 
|  | if (!static_branch_unlikely(&tcp_ao_needed.key)) | 
|  | return; | 
|  |  | 
|  | ao = rcu_dereference_protected(tp->ao_info, | 
|  | lockdep_sock_is_held((struct sock *)tp)); | 
|  | if (ao && seq < tp->rcv_nxt) | 
|  | ao->rcv_sne++; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* If we update tp->rcv_nxt, also update tp->bytes_received */ | 
|  | static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) | 
|  | { | 
|  | u32 delta = seq - tp->rcv_nxt; | 
|  |  | 
|  | sock_owned_by_me((struct sock *)tp); | 
|  | tp->bytes_received += delta; | 
|  | tcp_rcv_sne_update(tp, seq); | 
|  | WRITE_ONCE(tp->rcv_nxt, seq); | 
|  | } | 
|  |  | 
|  | /* Update our send window. | 
|  | * | 
|  | * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 | 
|  | * and in FreeBSD. NetBSD's one is even worse.) is wrong. | 
|  | */ | 
|  | static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, | 
|  | u32 ack_seq) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int flag = 0; | 
|  | u32 nwin = ntohs(tcp_hdr(skb)->window); | 
|  |  | 
|  | if (likely(!tcp_hdr(skb)->syn)) | 
|  | nwin <<= tp->rx_opt.snd_wscale; | 
|  |  | 
|  | if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { | 
|  | flag |= FLAG_WIN_UPDATE; | 
|  | tcp_update_wl(tp, ack_seq); | 
|  |  | 
|  | if (tp->snd_wnd != nwin) { | 
|  | tp->snd_wnd = nwin; | 
|  |  | 
|  | /* Note, it is the only place, where | 
|  | * fast path is recovered for sending TCP. | 
|  | */ | 
|  | tp->pred_flags = 0; | 
|  | tcp_fast_path_check(sk); | 
|  |  | 
|  | if (!tcp_write_queue_empty(sk)) | 
|  | tcp_slow_start_after_idle_check(sk); | 
|  |  | 
|  | if (nwin > tp->max_window) { | 
|  | tp->max_window = nwin; | 
|  | tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | tcp_snd_una_update(tp, ack); | 
|  |  | 
|  | return flag; | 
|  | } | 
|  |  | 
|  | static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, | 
|  | u32 *last_oow_ack_time) | 
|  | { | 
|  | /* Paired with the WRITE_ONCE() in this function. */ | 
|  | u32 val = READ_ONCE(*last_oow_ack_time); | 
|  |  | 
|  | if (val) { | 
|  | s32 elapsed = (s32)(tcp_jiffies32 - val); | 
|  |  | 
|  | if (0 <= elapsed && | 
|  | elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { | 
|  | NET_INC_STATS(net, mib_idx); | 
|  | return true;	/* rate-limited: don't send yet! */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Paired with the prior READ_ONCE() and with itself, | 
|  | * as we might be lockless. | 
|  | */ | 
|  | WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); | 
|  |  | 
|  | return false;	/* not rate-limited: go ahead, send dupack now! */ | 
|  | } | 
|  |  | 
|  | /* Return true if we're currently rate-limiting out-of-window ACKs and | 
|  | * thus shouldn't send a dupack right now. We rate-limit dupacks in | 
|  | * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS | 
|  | * attacks that send repeated SYNs or ACKs for the same connection. To | 
|  | * do this, we do not send a duplicate SYNACK or ACK if the remote | 
|  | * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. | 
|  | */ | 
|  | bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, | 
|  | int mib_idx, u32 *last_oow_ack_time) | 
|  | { | 
|  | /* Data packets without SYNs are not likely part of an ACK loop. */ | 
|  | if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && | 
|  | !tcp_hdr(skb)->syn) | 
|  | return false; | 
|  |  | 
|  | return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); | 
|  | } | 
|  |  | 
|  | /* RFC 5961 7 [ACK Throttling] */ | 
|  | static void tcp_send_challenge_ack(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct net *net = sock_net(sk); | 
|  | u32 count, now, ack_limit; | 
|  |  | 
|  | /* First check our per-socket dupack rate limit. */ | 
|  | if (__tcp_oow_rate_limited(net, | 
|  | LINUX_MIB_TCPACKSKIPPEDCHALLENGE, | 
|  | &tp->last_oow_ack_time)) | 
|  | return; | 
|  |  | 
|  | ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); | 
|  | if (ack_limit == INT_MAX) | 
|  | goto send_ack; | 
|  |  | 
|  | /* Then check host-wide RFC 5961 rate limit. */ | 
|  | now = jiffies / HZ; | 
|  | if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { | 
|  | u32 half = (ack_limit + 1) >> 1; | 
|  |  | 
|  | WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); | 
|  | WRITE_ONCE(net->ipv4.tcp_challenge_count, | 
|  | get_random_u32_inclusive(half, ack_limit + half - 1)); | 
|  | } | 
|  | count = READ_ONCE(net->ipv4.tcp_challenge_count); | 
|  | if (count > 0) { | 
|  | WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); | 
|  | send_ack: | 
|  | NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); | 
|  | tcp_send_ack(sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tcp_store_ts_recent(struct tcp_sock *tp) | 
|  | { | 
|  | tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; | 
|  | tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); | 
|  | } | 
|  |  | 
|  | static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) | 
|  | { | 
|  | if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { | 
|  | /* PAWS bug workaround wrt. ACK frames, the PAWS discard | 
|  | * extra check below makes sure this can only happen | 
|  | * for pure ACK frames.  -DaveM | 
|  | * | 
|  | * Not only, also it occurs for expired timestamps. | 
|  | */ | 
|  |  | 
|  | if (tcp_paws_check(&tp->rx_opt, 0)) | 
|  | tcp_store_ts_recent(tp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This routine deals with acks during a TLP episode and ends an episode by | 
|  | * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack | 
|  | */ | 
|  | static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (before(ack, tp->tlp_high_seq)) | 
|  | return; | 
|  |  | 
|  | if (!tp->tlp_retrans) { | 
|  | /* TLP of new data has been acknowledged */ | 
|  | tp->tlp_high_seq = 0; | 
|  | } else if (flag & FLAG_DSACK_TLP) { | 
|  | /* This DSACK means original and TLP probe arrived; no loss */ | 
|  | tp->tlp_high_seq = 0; | 
|  | } else if (after(ack, tp->tlp_high_seq)) { | 
|  | /* ACK advances: there was a loss, so reduce cwnd. Reset | 
|  | * tlp_high_seq in tcp_init_cwnd_reduction() | 
|  | */ | 
|  | tcp_init_cwnd_reduction(sk); | 
|  | tcp_set_ca_state(sk, TCP_CA_CWR); | 
|  | tcp_end_cwnd_reduction(sk); | 
|  | tcp_try_keep_open(sk); | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPLOSSPROBERECOVERY); | 
|  | } else if (!(flag & (FLAG_SND_UNA_ADVANCED | | 
|  | FLAG_NOT_DUP | FLAG_DATA_SACKED))) { | 
|  | /* Pure dupack: original and TLP probe arrived; no loss */ | 
|  | tp->tlp_high_seq = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tcp_in_ack_event(struct sock *sk, u32 flags) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | if (icsk->icsk_ca_ops->in_ack_event) | 
|  | icsk->icsk_ca_ops->in_ack_event(sk, flags); | 
|  | } | 
|  |  | 
|  | /* Congestion control has updated the cwnd already. So if we're in | 
|  | * loss recovery then now we do any new sends (for FRTO) or | 
|  | * retransmits (for CA_Loss or CA_recovery) that make sense. | 
|  | */ | 
|  | static void tcp_xmit_recovery(struct sock *sk, int rexmit) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) | 
|  | return; | 
|  |  | 
|  | if (unlikely(rexmit == REXMIT_NEW)) { | 
|  | __tcp_push_pending_frames(sk, tcp_current_mss(sk), | 
|  | TCP_NAGLE_OFF); | 
|  | if (after(tp->snd_nxt, tp->high_seq)) | 
|  | return; | 
|  | tp->frto = 0; | 
|  | } | 
|  | tcp_xmit_retransmit_queue(sk); | 
|  | } | 
|  |  | 
|  | /* Returns the number of packets newly acked or sacked by the current ACK */ | 
|  | static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) | 
|  | { | 
|  | const struct net *net = sock_net(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 delivered; | 
|  |  | 
|  | delivered = tp->delivered - prior_delivered; | 
|  | NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); | 
|  | if (flag & FLAG_ECE) | 
|  | NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); | 
|  |  | 
|  | return delivered; | 
|  | } | 
|  |  | 
|  | /* This routine deals with incoming acks, but not outgoing ones. */ | 
|  | static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct tcp_sacktag_state sack_state; | 
|  | struct rate_sample rs = { .prior_delivered = 0 }; | 
|  | u32 prior_snd_una = tp->snd_una; | 
|  | bool is_sack_reneg = tp->is_sack_reneg; | 
|  | u32 ack_seq = TCP_SKB_CB(skb)->seq; | 
|  | u32 ack = TCP_SKB_CB(skb)->ack_seq; | 
|  | int num_dupack = 0; | 
|  | int prior_packets = tp->packets_out; | 
|  | u32 delivered = tp->delivered; | 
|  | u32 lost = tp->lost; | 
|  | int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ | 
|  | u32 prior_fack; | 
|  |  | 
|  | sack_state.first_sackt = 0; | 
|  | sack_state.rate = &rs; | 
|  | sack_state.sack_delivered = 0; | 
|  |  | 
|  | /* We very likely will need to access rtx queue. */ | 
|  | prefetch(sk->tcp_rtx_queue.rb_node); | 
|  |  | 
|  | /* If the ack is older than previous acks | 
|  | * then we can probably ignore it. | 
|  | */ | 
|  | if (before(ack, prior_snd_una)) { | 
|  | u32 max_window; | 
|  |  | 
|  | /* do not accept ACK for bytes we never sent. */ | 
|  | max_window = min_t(u64, tp->max_window, tp->bytes_acked); | 
|  | /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ | 
|  | if (before(ack, prior_snd_una - max_window)) { | 
|  | if (!(flag & FLAG_NO_CHALLENGE_ACK)) | 
|  | tcp_send_challenge_ack(sk); | 
|  | return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; | 
|  | } | 
|  | goto old_ack; | 
|  | } | 
|  |  | 
|  | /* If the ack includes data we haven't sent yet, discard | 
|  | * this segment (RFC793 Section 3.9). | 
|  | */ | 
|  | if (after(ack, tp->snd_nxt)) | 
|  | return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; | 
|  |  | 
|  | if (after(ack, prior_snd_una)) { | 
|  | flag |= FLAG_SND_UNA_ADVANCED; | 
|  | icsk->icsk_retransmits = 0; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_TLS_DEVICE) | 
|  | if (static_branch_unlikely(&clean_acked_data_enabled.key)) | 
|  | if (icsk->icsk_clean_acked) | 
|  | icsk->icsk_clean_acked(sk, ack); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; | 
|  | rs.prior_in_flight = tcp_packets_in_flight(tp); | 
|  |  | 
|  | /* ts_recent update must be made after we are sure that the packet | 
|  | * is in window. | 
|  | */ | 
|  | if (flag & FLAG_UPDATE_TS_RECENT) | 
|  | tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); | 
|  |  | 
|  | if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == | 
|  | FLAG_SND_UNA_ADVANCED) { | 
|  | /* Window is constant, pure forward advance. | 
|  | * No more checks are required. | 
|  | * Note, we use the fact that SND.UNA>=SND.WL2. | 
|  | */ | 
|  | tcp_update_wl(tp, ack_seq); | 
|  | tcp_snd_una_update(tp, ack); | 
|  | flag |= FLAG_WIN_UPDATE; | 
|  |  | 
|  | tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); | 
|  |  | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); | 
|  | } else { | 
|  | u32 ack_ev_flags = CA_ACK_SLOWPATH; | 
|  |  | 
|  | if (ack_seq != TCP_SKB_CB(skb)->end_seq) | 
|  | flag |= FLAG_DATA; | 
|  | else | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); | 
|  |  | 
|  | flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->sacked) | 
|  | flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, | 
|  | &sack_state); | 
|  |  | 
|  | if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { | 
|  | flag |= FLAG_ECE; | 
|  | ack_ev_flags |= CA_ACK_ECE; | 
|  | } | 
|  |  | 
|  | if (sack_state.sack_delivered) | 
|  | tcp_count_delivered(tp, sack_state.sack_delivered, | 
|  | flag & FLAG_ECE); | 
|  |  | 
|  | if (flag & FLAG_WIN_UPDATE) | 
|  | ack_ev_flags |= CA_ACK_WIN_UPDATE; | 
|  |  | 
|  | tcp_in_ack_event(sk, ack_ev_flags); | 
|  | } | 
|  |  | 
|  | /* This is a deviation from RFC3168 since it states that: | 
|  | * "When the TCP data sender is ready to set the CWR bit after reducing | 
|  | * the congestion window, it SHOULD set the CWR bit only on the first | 
|  | * new data packet that it transmits." | 
|  | * We accept CWR on pure ACKs to be more robust | 
|  | * with widely-deployed TCP implementations that do this. | 
|  | */ | 
|  | tcp_ecn_accept_cwr(sk, skb); | 
|  |  | 
|  | /* We passed data and got it acked, remove any soft error | 
|  | * log. Something worked... | 
|  | */ | 
|  | WRITE_ONCE(sk->sk_err_soft, 0); | 
|  | icsk->icsk_probes_out = 0; | 
|  | tp->rcv_tstamp = tcp_jiffies32; | 
|  | if (!prior_packets) | 
|  | goto no_queue; | 
|  |  | 
|  | /* See if we can take anything off of the retransmit queue. */ | 
|  | flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, | 
|  | &sack_state, flag & FLAG_ECE); | 
|  |  | 
|  | tcp_rack_update_reo_wnd(sk, &rs); | 
|  |  | 
|  | if (tp->tlp_high_seq) | 
|  | tcp_process_tlp_ack(sk, ack, flag); | 
|  |  | 
|  | if (tcp_ack_is_dubious(sk, flag)) { | 
|  | if (!(flag & (FLAG_SND_UNA_ADVANCED | | 
|  | FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { | 
|  | num_dupack = 1; | 
|  | /* Consider if pure acks were aggregated in tcp_add_backlog() */ | 
|  | if (!(flag & FLAG_DATA)) | 
|  | num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); | 
|  | } | 
|  | tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, | 
|  | &rexmit); | 
|  | } | 
|  |  | 
|  | /* If needed, reset TLP/RTO timer when RACK doesn't set. */ | 
|  | if (flag & FLAG_SET_XMIT_TIMER) | 
|  | tcp_set_xmit_timer(sk); | 
|  |  | 
|  | if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) | 
|  | sk_dst_confirm(sk); | 
|  |  | 
|  | delivered = tcp_newly_delivered(sk, delivered, flag); | 
|  | lost = tp->lost - lost;			/* freshly marked lost */ | 
|  | rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); | 
|  | tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); | 
|  | tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); | 
|  | tcp_xmit_recovery(sk, rexmit); | 
|  | return 1; | 
|  |  | 
|  | no_queue: | 
|  | /* If data was DSACKed, see if we can undo a cwnd reduction. */ | 
|  | if (flag & FLAG_DSACKING_ACK) { | 
|  | tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, | 
|  | &rexmit); | 
|  | tcp_newly_delivered(sk, delivered, flag); | 
|  | } | 
|  | /* If this ack opens up a zero window, clear backoff.  It was | 
|  | * being used to time the probes, and is probably far higher than | 
|  | * it needs to be for normal retransmission. | 
|  | */ | 
|  | tcp_ack_probe(sk); | 
|  |  | 
|  | if (tp->tlp_high_seq) | 
|  | tcp_process_tlp_ack(sk, ack, flag); | 
|  | return 1; | 
|  |  | 
|  | old_ack: | 
|  | /* If data was SACKed, tag it and see if we should send more data. | 
|  | * If data was DSACKed, see if we can undo a cwnd reduction. | 
|  | */ | 
|  | if (TCP_SKB_CB(skb)->sacked) { | 
|  | flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, | 
|  | &sack_state); | 
|  | tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, | 
|  | &rexmit); | 
|  | tcp_newly_delivered(sk, delivered, flag); | 
|  | tcp_xmit_recovery(sk, rexmit); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, | 
|  | bool syn, struct tcp_fastopen_cookie *foc, | 
|  | bool exp_opt) | 
|  | { | 
|  | /* Valid only in SYN or SYN-ACK with an even length.  */ | 
|  | if (!foc || !syn || len < 0 || (len & 1)) | 
|  | return; | 
|  |  | 
|  | if (len >= TCP_FASTOPEN_COOKIE_MIN && | 
|  | len <= TCP_FASTOPEN_COOKIE_MAX) | 
|  | memcpy(foc->val, cookie, len); | 
|  | else if (len != 0) | 
|  | len = -1; | 
|  | foc->len = len; | 
|  | foc->exp = exp_opt; | 
|  | } | 
|  |  | 
|  | static bool smc_parse_options(const struct tcphdr *th, | 
|  | struct tcp_options_received *opt_rx, | 
|  | const unsigned char *ptr, | 
|  | int opsize) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_SMC) | 
|  | if (static_branch_unlikely(&tcp_have_smc)) { | 
|  | if (th->syn && !(opsize & 1) && | 
|  | opsize >= TCPOLEN_EXP_SMC_BASE && | 
|  | get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { | 
|  | opt_rx->smc_ok = 1; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped | 
|  | * value on success. | 
|  | */ | 
|  | u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) | 
|  | { | 
|  | const unsigned char *ptr = (const unsigned char *)(th + 1); | 
|  | int length = (th->doff * 4) - sizeof(struct tcphdr); | 
|  | u16 mss = 0; | 
|  |  | 
|  | while (length > 0) { | 
|  | int opcode = *ptr++; | 
|  | int opsize; | 
|  |  | 
|  | switch (opcode) { | 
|  | case TCPOPT_EOL: | 
|  | return mss; | 
|  | case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */ | 
|  | length--; | 
|  | continue; | 
|  | default: | 
|  | if (length < 2) | 
|  | return mss; | 
|  | opsize = *ptr++; | 
|  | if (opsize < 2) /* "silly options" */ | 
|  | return mss; | 
|  | if (opsize > length) | 
|  | return mss;	/* fail on partial options */ | 
|  | if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { | 
|  | u16 in_mss = get_unaligned_be16(ptr); | 
|  |  | 
|  | if (in_mss) { | 
|  | if (user_mss && user_mss < in_mss) | 
|  | in_mss = user_mss; | 
|  | mss = in_mss; | 
|  | } | 
|  | } | 
|  | ptr += opsize - 2; | 
|  | length -= opsize; | 
|  | } | 
|  | } | 
|  | return mss; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(tcp_parse_mss_option); | 
|  |  | 
|  | /* Look for tcp options. Normally only called on SYN and SYNACK packets. | 
|  | * But, this can also be called on packets in the established flow when | 
|  | * the fast version below fails. | 
|  | */ | 
|  | void tcp_parse_options(const struct net *net, | 
|  | const struct sk_buff *skb, | 
|  | struct tcp_options_received *opt_rx, int estab, | 
|  | struct tcp_fastopen_cookie *foc) | 
|  | { | 
|  | const unsigned char *ptr; | 
|  | const struct tcphdr *th = tcp_hdr(skb); | 
|  | int length = (th->doff * 4) - sizeof(struct tcphdr); | 
|  |  | 
|  | ptr = (const unsigned char *)(th + 1); | 
|  | opt_rx->saw_tstamp = 0; | 
|  | opt_rx->saw_unknown = 0; | 
|  |  | 
|  | while (length > 0) { | 
|  | int opcode = *ptr++; | 
|  | int opsize; | 
|  |  | 
|  | switch (opcode) { | 
|  | case TCPOPT_EOL: | 
|  | return; | 
|  | case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */ | 
|  | length--; | 
|  | continue; | 
|  | default: | 
|  | if (length < 2) | 
|  | return; | 
|  | opsize = *ptr++; | 
|  | if (opsize < 2) /* "silly options" */ | 
|  | return; | 
|  | if (opsize > length) | 
|  | return;	/* don't parse partial options */ | 
|  | switch (opcode) { | 
|  | case TCPOPT_MSS: | 
|  | if (opsize == TCPOLEN_MSS && th->syn && !estab) { | 
|  | u16 in_mss = get_unaligned_be16(ptr); | 
|  | if (in_mss) { | 
|  | if (opt_rx->user_mss && | 
|  | opt_rx->user_mss < in_mss) | 
|  | in_mss = opt_rx->user_mss; | 
|  | opt_rx->mss_clamp = in_mss; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case TCPOPT_WINDOW: | 
|  | if (opsize == TCPOLEN_WINDOW && th->syn && | 
|  | !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { | 
|  | __u8 snd_wscale = *(__u8 *)ptr; | 
|  | opt_rx->wscale_ok = 1; | 
|  | if (snd_wscale > TCP_MAX_WSCALE) { | 
|  | net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", | 
|  | __func__, | 
|  | snd_wscale, | 
|  | TCP_MAX_WSCALE); | 
|  | snd_wscale = TCP_MAX_WSCALE; | 
|  | } | 
|  | opt_rx->snd_wscale = snd_wscale; | 
|  | } | 
|  | break; | 
|  | case TCPOPT_TIMESTAMP: | 
|  | if ((opsize == TCPOLEN_TIMESTAMP) && | 
|  | ((estab && opt_rx->tstamp_ok) || | 
|  | (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { | 
|  | opt_rx->saw_tstamp = 1; | 
|  | opt_rx->rcv_tsval = get_unaligned_be32(ptr); | 
|  | opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); | 
|  | } | 
|  | break; | 
|  | case TCPOPT_SACK_PERM: | 
|  | if (opsize == TCPOLEN_SACK_PERM && th->syn && | 
|  | !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { | 
|  | opt_rx->sack_ok = TCP_SACK_SEEN; | 
|  | tcp_sack_reset(opt_rx); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TCPOPT_SACK: | 
|  | if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && | 
|  | !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && | 
|  | opt_rx->sack_ok) { | 
|  | TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; | 
|  | } | 
|  | break; | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | case TCPOPT_MD5SIG: | 
|  | /* The MD5 Hash has already been | 
|  | * checked (see tcp_v{4,6}_rcv()). | 
|  | */ | 
|  | break; | 
|  | #endif | 
|  | case TCPOPT_FASTOPEN: | 
|  | tcp_parse_fastopen_option( | 
|  | opsize - TCPOLEN_FASTOPEN_BASE, | 
|  | ptr, th->syn, foc, false); | 
|  | break; | 
|  |  | 
|  | case TCPOPT_EXP: | 
|  | /* Fast Open option shares code 254 using a | 
|  | * 16 bits magic number. | 
|  | */ | 
|  | if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && | 
|  | get_unaligned_be16(ptr) == | 
|  | TCPOPT_FASTOPEN_MAGIC) { | 
|  | tcp_parse_fastopen_option(opsize - | 
|  | TCPOLEN_EXP_FASTOPEN_BASE, | 
|  | ptr + 2, th->syn, foc, true); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (smc_parse_options(th, opt_rx, ptr, opsize)) | 
|  | break; | 
|  |  | 
|  | opt_rx->saw_unknown = 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | opt_rx->saw_unknown = 1; | 
|  | } | 
|  | ptr += opsize-2; | 
|  | length -= opsize; | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_parse_options); | 
|  |  | 
|  | static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) | 
|  | { | 
|  | const __be32 *ptr = (const __be32 *)(th + 1); | 
|  |  | 
|  | if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 
|  | | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { | 
|  | tp->rx_opt.saw_tstamp = 1; | 
|  | ++ptr; | 
|  | tp->rx_opt.rcv_tsval = ntohl(*ptr); | 
|  | ++ptr; | 
|  | if (*ptr) | 
|  | tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; | 
|  | else | 
|  | tp->rx_opt.rcv_tsecr = 0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Fast parse options. This hopes to only see timestamps. | 
|  | * If it is wrong it falls back on tcp_parse_options(). | 
|  | */ | 
|  | static bool tcp_fast_parse_options(const struct net *net, | 
|  | const struct sk_buff *skb, | 
|  | const struct tcphdr *th, struct tcp_sock *tp) | 
|  | { | 
|  | /* In the spirit of fast parsing, compare doff directly to constant | 
|  | * values.  Because equality is used, short doff can be ignored here. | 
|  | */ | 
|  | if (th->doff == (sizeof(*th) / 4)) { | 
|  | tp->rx_opt.saw_tstamp = 0; | 
|  | return false; | 
|  | } else if (tp->rx_opt.tstamp_ok && | 
|  | th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { | 
|  | if (tcp_parse_aligned_timestamp(tp, th)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); | 
|  | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) | 
|  | tp->rx_opt.rcv_tsecr -= tp->tsoffset; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) | 
|  | /* | 
|  | * Parse Signature options | 
|  | */ | 
|  | int tcp_do_parse_auth_options(const struct tcphdr *th, | 
|  | const u8 **md5_hash, const u8 **ao_hash) | 
|  | { | 
|  | int length = (th->doff << 2) - sizeof(*th); | 
|  | const u8 *ptr = (const u8 *)(th + 1); | 
|  | unsigned int minlen = TCPOLEN_MD5SIG; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_TCP_AO)) | 
|  | minlen = sizeof(struct tcp_ao_hdr) + 1; | 
|  |  | 
|  | *md5_hash = NULL; | 
|  | *ao_hash = NULL; | 
|  |  | 
|  | /* If not enough data remaining, we can short cut */ | 
|  | while (length >= minlen) { | 
|  | int opcode = *ptr++; | 
|  | int opsize; | 
|  |  | 
|  | switch (opcode) { | 
|  | case TCPOPT_EOL: | 
|  | return 0; | 
|  | case TCPOPT_NOP: | 
|  | length--; | 
|  | continue; | 
|  | default: | 
|  | opsize = *ptr++; | 
|  | if (opsize < 2 || opsize > length) | 
|  | return -EINVAL; | 
|  | if (opcode == TCPOPT_MD5SIG) { | 
|  | if (opsize != TCPOLEN_MD5SIG) | 
|  | return -EINVAL; | 
|  | if (unlikely(*md5_hash || *ao_hash)) | 
|  | return -EEXIST; | 
|  | *md5_hash = ptr; | 
|  | } else if (opcode == TCPOPT_AO) { | 
|  | if (opsize <= sizeof(struct tcp_ao_hdr)) | 
|  | return -EINVAL; | 
|  | if (unlikely(*md5_hash || *ao_hash)) | 
|  | return -EEXIST; | 
|  | *ao_hash = ptr; | 
|  | } | 
|  | } | 
|  | ptr += opsize - 2; | 
|  | length -= opsize; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_do_parse_auth_options); | 
|  | #endif | 
|  |  | 
|  | /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM | 
|  | * | 
|  | * It is not fatal. If this ACK does _not_ change critical state (seqs, window) | 
|  | * it can pass through stack. So, the following predicate verifies that | 
|  | * this segment is not used for anything but congestion avoidance or | 
|  | * fast retransmit. Moreover, we even are able to eliminate most of such | 
|  | * second order effects, if we apply some small "replay" window (~RTO) | 
|  | * to timestamp space. | 
|  | * | 
|  | * All these measures still do not guarantee that we reject wrapped ACKs | 
|  | * on networks with high bandwidth, when sequence space is recycled fastly, | 
|  | * but it guarantees that such events will be very rare and do not affect | 
|  | * connection seriously. This doesn't look nice, but alas, PAWS is really | 
|  | * buggy extension. | 
|  | * | 
|  | * [ Later note. Even worse! It is buggy for segments _with_ data. RFC | 
|  | * states that events when retransmit arrives after original data are rare. | 
|  | * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is | 
|  | * the biggest problem on large power networks even with minor reordering. | 
|  | * OK, let's give it small replay window. If peer clock is even 1hz, it is safe | 
|  | * up to bandwidth of 18Gigabit/sec. 8) ] | 
|  | */ | 
|  |  | 
|  | /* Estimates max number of increments of remote peer TSval in | 
|  | * a replay window (based on our current RTO estimation). | 
|  | */ | 
|  | static u32 tcp_tsval_replay(const struct sock *sk) | 
|  | { | 
|  | /* If we use usec TS resolution, | 
|  | * then expect the remote peer to use the same resolution. | 
|  | */ | 
|  | if (tcp_sk(sk)->tcp_usec_ts) | 
|  | return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); | 
|  |  | 
|  | /* RFC 7323 recommends a TSval clock between 1ms and 1sec. | 
|  | * We know that some OS (including old linux) can use 1200 Hz. | 
|  | */ | 
|  | return inet_csk(sk)->icsk_rto * 1200 / HZ; | 
|  | } | 
|  |  | 
|  | static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | const struct tcphdr *th = tcp_hdr(skb); | 
|  | u32 seq = TCP_SKB_CB(skb)->seq; | 
|  | u32 ack = TCP_SKB_CB(skb)->ack_seq; | 
|  |  | 
|  | return	/* 1. Pure ACK with correct sequence number. */ | 
|  | (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && | 
|  |  | 
|  | /* 2. ... and duplicate ACK. */ | 
|  | ack == tp->snd_una && | 
|  |  | 
|  | /* 3. ... and does not update window. */ | 
|  | !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && | 
|  |  | 
|  | /* 4. ... and sits in replay window. */ | 
|  | (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= | 
|  | tcp_tsval_replay(sk); | 
|  | } | 
|  |  | 
|  | static inline bool tcp_paws_discard(const struct sock *sk, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && | 
|  | !tcp_disordered_ack(sk, skb); | 
|  | } | 
|  |  | 
|  | /* Check segment sequence number for validity. | 
|  | * | 
|  | * Segment controls are considered valid, if the segment | 
|  | * fits to the window after truncation to the window. Acceptability | 
|  | * of data (and SYN, FIN, of course) is checked separately. | 
|  | * See tcp_data_queue(), for example. | 
|  | * | 
|  | * Also, controls (RST is main one) are accepted using RCV.WUP instead | 
|  | * of RCV.NXT. Peer still did not advance his SND.UNA when we | 
|  | * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. | 
|  | * (borrowed from freebsd) | 
|  | */ | 
|  |  | 
|  | static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, | 
|  | u32 seq, u32 end_seq) | 
|  | { | 
|  | if (before(end_seq, tp->rcv_wup)) | 
|  | return SKB_DROP_REASON_TCP_OLD_SEQUENCE; | 
|  |  | 
|  | if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) | 
|  | return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; | 
|  |  | 
|  | return SKB_NOT_DROPPED_YET; | 
|  | } | 
|  |  | 
|  | /* When we get a reset we do this. */ | 
|  | void tcp_reset(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | trace_tcp_receive_reset(sk); | 
|  |  | 
|  | /* mptcp can't tell us to ignore reset pkts, | 
|  | * so just ignore the return value of mptcp_incoming_options(). | 
|  | */ | 
|  | if (sk_is_mptcp(sk)) | 
|  | mptcp_incoming_options(sk, skb); | 
|  |  | 
|  | /* We want the right error as BSD sees it (and indeed as we do). */ | 
|  | switch (sk->sk_state) { | 
|  | case TCP_SYN_SENT: | 
|  | WRITE_ONCE(sk->sk_err, ECONNREFUSED); | 
|  | break; | 
|  | case TCP_CLOSE_WAIT: | 
|  | WRITE_ONCE(sk->sk_err, EPIPE); | 
|  | break; | 
|  | case TCP_CLOSE: | 
|  | return; | 
|  | default: | 
|  | WRITE_ONCE(sk->sk_err, ECONNRESET); | 
|  | } | 
|  | /* This barrier is coupled with smp_rmb() in tcp_poll() */ | 
|  | smp_wmb(); | 
|  |  | 
|  | tcp_write_queue_purge(sk); | 
|  | tcp_done(sk); | 
|  |  | 
|  | if (!sock_flag(sk, SOCK_DEAD)) | 
|  | sk_error_report(sk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 	Process the FIN bit. This now behaves as it is supposed to work | 
|  | *	and the FIN takes effect when it is validly part of sequence | 
|  | *	space. Not before when we get holes. | 
|  | * | 
|  | *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT | 
|  | *	(and thence onto LAST-ACK and finally, CLOSE, we never enter | 
|  | *	TIME-WAIT) | 
|  | * | 
|  | *	If we are in FINWAIT-1, a received FIN indicates simultaneous | 
|  | *	close and we go into CLOSING (and later onto TIME-WAIT) | 
|  | * | 
|  | *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. | 
|  | */ | 
|  | void tcp_fin(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | inet_csk_schedule_ack(sk); | 
|  |  | 
|  | WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); | 
|  | sock_set_flag(sk, SOCK_DONE); | 
|  |  | 
|  | switch (sk->sk_state) { | 
|  | case TCP_SYN_RECV: | 
|  | case TCP_ESTABLISHED: | 
|  | /* Move to CLOSE_WAIT */ | 
|  | tcp_set_state(sk, TCP_CLOSE_WAIT); | 
|  | inet_csk_enter_pingpong_mode(sk); | 
|  | break; | 
|  |  | 
|  | case TCP_CLOSE_WAIT: | 
|  | case TCP_CLOSING: | 
|  | /* Received a retransmission of the FIN, do | 
|  | * nothing. | 
|  | */ | 
|  | break; | 
|  | case TCP_LAST_ACK: | 
|  | /* RFC793: Remain in the LAST-ACK state. */ | 
|  | break; | 
|  |  | 
|  | case TCP_FIN_WAIT1: | 
|  | /* This case occurs when a simultaneous close | 
|  | * happens, we must ack the received FIN and | 
|  | * enter the CLOSING state. | 
|  | */ | 
|  | tcp_send_ack(sk); | 
|  | tcp_set_state(sk, TCP_CLOSING); | 
|  | break; | 
|  | case TCP_FIN_WAIT2: | 
|  | /* Received a FIN -- send ACK and enter TIME_WAIT. */ | 
|  | tcp_send_ack(sk); | 
|  | tcp_time_wait(sk, TCP_TIME_WAIT, 0); | 
|  | break; | 
|  | default: | 
|  | /* Only TCP_LISTEN and TCP_CLOSE are left, in these | 
|  | * cases we should never reach this piece of code. | 
|  | */ | 
|  | pr_err("%s: Impossible, sk->sk_state=%d\n", | 
|  | __func__, sk->sk_state); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* It _is_ possible, that we have something out-of-order _after_ FIN. | 
|  | * Probably, we should reset in this case. For now drop them. | 
|  | */ | 
|  | skb_rbtree_purge(&tp->out_of_order_queue); | 
|  | if (tcp_is_sack(tp)) | 
|  | tcp_sack_reset(&tp->rx_opt); | 
|  |  | 
|  | if (!sock_flag(sk, SOCK_DEAD)) { | 
|  | sk->sk_state_change(sk); | 
|  |  | 
|  | /* Do not send POLL_HUP for half duplex close. */ | 
|  | if (sk->sk_shutdown == SHUTDOWN_MASK || | 
|  | sk->sk_state == TCP_CLOSE) | 
|  | sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); | 
|  | else | 
|  | sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, | 
|  | u32 end_seq) | 
|  | { | 
|  | if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { | 
|  | if (before(seq, sp->start_seq)) | 
|  | sp->start_seq = seq; | 
|  | if (after(end_seq, sp->end_seq)) | 
|  | sp->end_seq = end_seq; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { | 
|  | int mib_idx; | 
|  |  | 
|  | if (before(seq, tp->rcv_nxt)) | 
|  | mib_idx = LINUX_MIB_TCPDSACKOLDSENT; | 
|  | else | 
|  | mib_idx = LINUX_MIB_TCPDSACKOFOSENT; | 
|  |  | 
|  | NET_INC_STATS(sock_net(sk), mib_idx); | 
|  |  | 
|  | tp->rx_opt.dsack = 1; | 
|  | tp->duplicate_sack[0].start_seq = seq; | 
|  | tp->duplicate_sack[0].end_seq = end_seq; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (!tp->rx_opt.dsack) | 
|  | tcp_dsack_set(sk, seq, end_seq); | 
|  | else | 
|  | tcp_sack_extend(tp->duplicate_sack, seq, end_seq); | 
|  | } | 
|  |  | 
|  | static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | /* When the ACK path fails or drops most ACKs, the sender would | 
|  | * timeout and spuriously retransmit the same segment repeatedly. | 
|  | * If it seems our ACKs are not reaching the other side, | 
|  | * based on receiving a duplicate data segment with new flowlabel | 
|  | * (suggesting the sender suffered an RTO), and we are not already | 
|  | * repathing due to our own RTO, then rehash the socket to repath our | 
|  | * packets. | 
|  | */ | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && | 
|  | skb->protocol == htons(ETH_P_IPV6) && | 
|  | (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != | 
|  | ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && | 
|  | sk_rethink_txhash(sk)) | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); | 
|  |  | 
|  | /* Save last flowlabel after a spurious retrans. */ | 
|  | tcp_save_lrcv_flowlabel(sk, skb); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | 
|  | before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); | 
|  | tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); | 
|  |  | 
|  | if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { | 
|  | u32 end_seq = TCP_SKB_CB(skb)->end_seq; | 
|  |  | 
|  | tcp_rcv_spurious_retrans(sk, skb); | 
|  | if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) | 
|  | end_seq = tp->rcv_nxt; | 
|  | tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); | 
|  | } | 
|  | } | 
|  |  | 
|  | tcp_send_ack(sk); | 
|  | } | 
|  |  | 
|  | /* These routines update the SACK block as out-of-order packets arrive or | 
|  | * in-order packets close up the sequence space. | 
|  | */ | 
|  | static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) | 
|  | { | 
|  | int this_sack; | 
|  | struct tcp_sack_block *sp = &tp->selective_acks[0]; | 
|  | struct tcp_sack_block *swalk = sp + 1; | 
|  |  | 
|  | /* See if the recent change to the first SACK eats into | 
|  | * or hits the sequence space of other SACK blocks, if so coalesce. | 
|  | */ | 
|  | for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { | 
|  | if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { | 
|  | int i; | 
|  |  | 
|  | /* Zap SWALK, by moving every further SACK up by one slot. | 
|  | * Decrease num_sacks. | 
|  | */ | 
|  | tp->rx_opt.num_sacks--; | 
|  | for (i = this_sack; i < tp->rx_opt.num_sacks; i++) | 
|  | sp[i] = sp[i + 1]; | 
|  | continue; | 
|  | } | 
|  | this_sack++; | 
|  | swalk++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void tcp_sack_compress_send_ack(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (!tp->compressed_ack) | 
|  | return; | 
|  |  | 
|  | if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) | 
|  | __sock_put(sk); | 
|  |  | 
|  | /* Since we have to send one ack finally, | 
|  | * substract one from tp->compressed_ack to keep | 
|  | * LINUX_MIB_TCPACKCOMPRESSED accurate. | 
|  | */ | 
|  | NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, | 
|  | tp->compressed_ack - 1); | 
|  |  | 
|  | tp->compressed_ack = 0; | 
|  | tcp_send_ack(sk); | 
|  | } | 
|  |  | 
|  | /* Reasonable amount of sack blocks included in TCP SACK option | 
|  | * The max is 4, but this becomes 3 if TCP timestamps are there. | 
|  | * Given that SACK packets might be lost, be conservative and use 2. | 
|  | */ | 
|  | #define TCP_SACK_BLOCKS_EXPECTED 2 | 
|  |  | 
|  | static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct tcp_sack_block *sp = &tp->selective_acks[0]; | 
|  | int cur_sacks = tp->rx_opt.num_sacks; | 
|  | int this_sack; | 
|  |  | 
|  | if (!cur_sacks) | 
|  | goto new_sack; | 
|  |  | 
|  | for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { | 
|  | if (tcp_sack_extend(sp, seq, end_seq)) { | 
|  | if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) | 
|  | tcp_sack_compress_send_ack(sk); | 
|  | /* Rotate this_sack to the first one. */ | 
|  | for (; this_sack > 0; this_sack--, sp--) | 
|  | swap(*sp, *(sp - 1)); | 
|  | if (cur_sacks > 1) | 
|  | tcp_sack_maybe_coalesce(tp); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) | 
|  | tcp_sack_compress_send_ack(sk); | 
|  |  | 
|  | /* Could not find an adjacent existing SACK, build a new one, | 
|  | * put it at the front, and shift everyone else down.  We | 
|  | * always know there is at least one SACK present already here. | 
|  | * | 
|  | * If the sack array is full, forget about the last one. | 
|  | */ | 
|  | if (this_sack >= TCP_NUM_SACKS) { | 
|  | this_sack--; | 
|  | tp->rx_opt.num_sacks--; | 
|  | sp--; | 
|  | } | 
|  | for (; this_sack > 0; this_sack--, sp--) | 
|  | *sp = *(sp - 1); | 
|  |  | 
|  | new_sack: | 
|  | /* Build the new head SACK, and we're done. */ | 
|  | sp->start_seq = seq; | 
|  | sp->end_seq = end_seq; | 
|  | tp->rx_opt.num_sacks++; | 
|  | } | 
|  |  | 
|  | /* RCV.NXT advances, some SACKs should be eaten. */ | 
|  |  | 
|  | static void tcp_sack_remove(struct tcp_sock *tp) | 
|  | { | 
|  | struct tcp_sack_block *sp = &tp->selective_acks[0]; | 
|  | int num_sacks = tp->rx_opt.num_sacks; | 
|  | int this_sack; | 
|  |  | 
|  | /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ | 
|  | if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { | 
|  | tp->rx_opt.num_sacks = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (this_sack = 0; this_sack < num_sacks;) { | 
|  | /* Check if the start of the sack is covered by RCV.NXT. */ | 
|  | if (!before(tp->rcv_nxt, sp->start_seq)) { | 
|  | int i; | 
|  |  | 
|  | /* RCV.NXT must cover all the block! */ | 
|  | WARN_ON(before(tp->rcv_nxt, sp->end_seq)); | 
|  |  | 
|  | /* Zap this SACK, by moving forward any other SACKS. */ | 
|  | for (i = this_sack+1; i < num_sacks; i++) | 
|  | tp->selective_acks[i-1] = tp->selective_acks[i]; | 
|  | num_sacks--; | 
|  | continue; | 
|  | } | 
|  | this_sack++; | 
|  | sp++; | 
|  | } | 
|  | tp->rx_opt.num_sacks = num_sacks; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tcp_try_coalesce - try to merge skb to prior one | 
|  | * @sk: socket | 
|  | * @to: prior buffer | 
|  | * @from: buffer to add in queue | 
|  | * @fragstolen: pointer to boolean | 
|  | * | 
|  | * Before queueing skb @from after @to, try to merge them | 
|  | * to reduce overall memory use and queue lengths, if cost is small. | 
|  | * Packets in ofo or receive queues can stay a long time. | 
|  | * Better try to coalesce them right now to avoid future collapses. | 
|  | * Returns true if caller should free @from instead of queueing it | 
|  | */ | 
|  | static bool tcp_try_coalesce(struct sock *sk, | 
|  | struct sk_buff *to, | 
|  | struct sk_buff *from, | 
|  | bool *fragstolen) | 
|  | { | 
|  | int delta; | 
|  |  | 
|  | *fragstolen = false; | 
|  |  | 
|  | /* Its possible this segment overlaps with prior segment in queue */ | 
|  | if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) | 
|  | return false; | 
|  |  | 
|  | if (!mptcp_skb_can_collapse(to, from)) | 
|  | return false; | 
|  |  | 
|  | #ifdef CONFIG_TLS_DEVICE | 
|  | if (from->decrypted != to->decrypted) | 
|  | return false; | 
|  | #endif | 
|  |  | 
|  | if (!skb_try_coalesce(to, from, fragstolen, &delta)) | 
|  | return false; | 
|  |  | 
|  | atomic_add(delta, &sk->sk_rmem_alloc); | 
|  | sk_mem_charge(sk, delta); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); | 
|  | TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; | 
|  | TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; | 
|  | TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; | 
|  |  | 
|  | if (TCP_SKB_CB(from)->has_rxtstamp) { | 
|  | TCP_SKB_CB(to)->has_rxtstamp = true; | 
|  | to->tstamp = from->tstamp; | 
|  | skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool tcp_ooo_try_coalesce(struct sock *sk, | 
|  | struct sk_buff *to, | 
|  | struct sk_buff *from, | 
|  | bool *fragstolen) | 
|  | { | 
|  | bool res = tcp_try_coalesce(sk, to, from, fragstolen); | 
|  |  | 
|  | /* In case tcp_drop_reason() is called later, update to->gso_segs */ | 
|  | if (res) { | 
|  | u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + | 
|  | max_t(u16, 1, skb_shinfo(from)->gso_segs); | 
|  |  | 
|  | skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, | 
|  | enum skb_drop_reason reason) | 
|  | { | 
|  | sk_drops_add(sk, skb); | 
|  | kfree_skb_reason(skb, reason); | 
|  | } | 
|  |  | 
|  | /* This one checks to see if we can put data from the | 
|  | * out_of_order queue into the receive_queue. | 
|  | */ | 
|  | static void tcp_ofo_queue(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | __u32 dsack_high = tp->rcv_nxt; | 
|  | bool fin, fragstolen, eaten; | 
|  | struct sk_buff *skb, *tail; | 
|  | struct rb_node *p; | 
|  |  | 
|  | p = rb_first(&tp->out_of_order_queue); | 
|  | while (p) { | 
|  | skb = rb_to_skb(p); | 
|  | if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) | 
|  | break; | 
|  |  | 
|  | if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { | 
|  | __u32 dsack = dsack_high; | 
|  | if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) | 
|  | dsack_high = TCP_SKB_CB(skb)->end_seq; | 
|  | tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); | 
|  | } | 
|  | p = rb_next(p); | 
|  | rb_erase(&skb->rbnode, &tp->out_of_order_queue); | 
|  |  | 
|  | if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { | 
|  | tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | tail = skb_peek_tail(&sk->sk_receive_queue); | 
|  | eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); | 
|  | tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); | 
|  | fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; | 
|  | if (!eaten) | 
|  | __skb_queue_tail(&sk->sk_receive_queue, skb); | 
|  | else | 
|  | kfree_skb_partial(skb, fragstolen); | 
|  |  | 
|  | if (unlikely(fin)) { | 
|  | tcp_fin(sk); | 
|  | /* tcp_fin() purges tp->out_of_order_queue, | 
|  | * so we must end this loop right now. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); | 
|  | static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); | 
|  |  | 
|  | static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, | 
|  | unsigned int size) | 
|  | { | 
|  | if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || | 
|  | !sk_rmem_schedule(sk, skb, size)) { | 
|  |  | 
|  | if (tcp_prune_queue(sk, skb) < 0) | 
|  | return -1; | 
|  |  | 
|  | while (!sk_rmem_schedule(sk, skb, size)) { | 
|  | if (!tcp_prune_ofo_queue(sk, skb)) | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct rb_node **p, *parent; | 
|  | struct sk_buff *skb1; | 
|  | u32 seq, end_seq; | 
|  | bool fragstolen; | 
|  |  | 
|  | tcp_save_lrcv_flowlabel(sk, skb); | 
|  | tcp_ecn_check_ce(sk, skb); | 
|  |  | 
|  | if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); | 
|  | sk->sk_data_ready(sk); | 
|  | tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Disable header prediction. */ | 
|  | tp->pred_flags = 0; | 
|  | inet_csk_schedule_ack(sk); | 
|  |  | 
|  | tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); | 
|  | seq = TCP_SKB_CB(skb)->seq; | 
|  | end_seq = TCP_SKB_CB(skb)->end_seq; | 
|  |  | 
|  | p = &tp->out_of_order_queue.rb_node; | 
|  | if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { | 
|  | /* Initial out of order segment, build 1 SACK. */ | 
|  | if (tcp_is_sack(tp)) { | 
|  | tp->rx_opt.num_sacks = 1; | 
|  | tp->selective_acks[0].start_seq = seq; | 
|  | tp->selective_acks[0].end_seq = end_seq; | 
|  | } | 
|  | rb_link_node(&skb->rbnode, NULL, p); | 
|  | rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); | 
|  | tp->ooo_last_skb = skb; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* In the typical case, we are adding an skb to the end of the list. | 
|  | * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. | 
|  | */ | 
|  | if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, | 
|  | skb, &fragstolen)) { | 
|  | coalesce_done: | 
|  | /* For non sack flows, do not grow window to force DUPACK | 
|  | * and trigger fast retransmit. | 
|  | */ | 
|  | if (tcp_is_sack(tp)) | 
|  | tcp_grow_window(sk, skb, true); | 
|  | kfree_skb_partial(skb, fragstolen); | 
|  | skb = NULL; | 
|  | goto add_sack; | 
|  | } | 
|  | /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ | 
|  | if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { | 
|  | parent = &tp->ooo_last_skb->rbnode; | 
|  | p = &parent->rb_right; | 
|  | goto insert; | 
|  | } | 
|  |  | 
|  | /* Find place to insert this segment. Handle overlaps on the way. */ | 
|  | parent = NULL; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | skb1 = rb_to_skb(parent); | 
|  | if (before(seq, TCP_SKB_CB(skb1)->seq)) { | 
|  | p = &parent->rb_left; | 
|  | continue; | 
|  | } | 
|  | if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { | 
|  | if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { | 
|  | /* All the bits are present. Drop. */ | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPOFOMERGE); | 
|  | tcp_drop_reason(sk, skb, | 
|  | SKB_DROP_REASON_TCP_OFOMERGE); | 
|  | skb = NULL; | 
|  | tcp_dsack_set(sk, seq, end_seq); | 
|  | goto add_sack; | 
|  | } | 
|  | if (after(seq, TCP_SKB_CB(skb1)->seq)) { | 
|  | /* Partial overlap. */ | 
|  | tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); | 
|  | } else { | 
|  | /* skb's seq == skb1's seq and skb covers skb1. | 
|  | * Replace skb1 with skb. | 
|  | */ | 
|  | rb_replace_node(&skb1->rbnode, &skb->rbnode, | 
|  | &tp->out_of_order_queue); | 
|  | tcp_dsack_extend(sk, | 
|  | TCP_SKB_CB(skb1)->seq, | 
|  | TCP_SKB_CB(skb1)->end_seq); | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPOFOMERGE); | 
|  | tcp_drop_reason(sk, skb1, | 
|  | SKB_DROP_REASON_TCP_OFOMERGE); | 
|  | goto merge_right; | 
|  | } | 
|  | } else if (tcp_ooo_try_coalesce(sk, skb1, | 
|  | skb, &fragstolen)) { | 
|  | goto coalesce_done; | 
|  | } | 
|  | p = &parent->rb_right; | 
|  | } | 
|  | insert: | 
|  | /* Insert segment into RB tree. */ | 
|  | rb_link_node(&skb->rbnode, parent, p); | 
|  | rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); | 
|  |  | 
|  | merge_right: | 
|  | /* Remove other segments covered by skb. */ | 
|  | while ((skb1 = skb_rb_next(skb)) != NULL) { | 
|  | if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) | 
|  | break; | 
|  | if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { | 
|  | tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, | 
|  | end_seq); | 
|  | break; | 
|  | } | 
|  | rb_erase(&skb1->rbnode, &tp->out_of_order_queue); | 
|  | tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, | 
|  | TCP_SKB_CB(skb1)->end_seq); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); | 
|  | tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); | 
|  | } | 
|  | /* If there is no skb after us, we are the last_skb ! */ | 
|  | if (!skb1) | 
|  | tp->ooo_last_skb = skb; | 
|  |  | 
|  | add_sack: | 
|  | if (tcp_is_sack(tp)) | 
|  | tcp_sack_new_ofo_skb(sk, seq, end_seq); | 
|  | end: | 
|  | if (skb) { | 
|  | /* For non sack flows, do not grow window to force DUPACK | 
|  | * and trigger fast retransmit. | 
|  | */ | 
|  | if (tcp_is_sack(tp)) | 
|  | tcp_grow_window(sk, skb, false); | 
|  | skb_condense(skb); | 
|  | skb_set_owner_r(skb, sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, | 
|  | bool *fragstolen) | 
|  | { | 
|  | int eaten; | 
|  | struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); | 
|  |  | 
|  | eaten = (tail && | 
|  | tcp_try_coalesce(sk, tail, | 
|  | skb, fragstolen)) ? 1 : 0; | 
|  | tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); | 
|  | if (!eaten) { | 
|  | __skb_queue_tail(&sk->sk_receive_queue, skb); | 
|  | skb_set_owner_r(skb, sk); | 
|  | } | 
|  | return eaten; | 
|  | } | 
|  |  | 
|  | int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | int err = -ENOMEM; | 
|  | int data_len = 0; | 
|  | bool fragstolen; | 
|  |  | 
|  | if (size == 0) | 
|  | return 0; | 
|  |  | 
|  | if (size > PAGE_SIZE) { | 
|  | int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); | 
|  |  | 
|  | data_len = npages << PAGE_SHIFT; | 
|  | size = data_len + (size & ~PAGE_MASK); | 
|  | } | 
|  | skb = alloc_skb_with_frags(size - data_len, data_len, | 
|  | PAGE_ALLOC_COSTLY_ORDER, | 
|  | &err, sk->sk_allocation); | 
|  | if (!skb) | 
|  | goto err; | 
|  |  | 
|  | skb_put(skb, size - data_len); | 
|  | skb->data_len = data_len; | 
|  | skb->len = size; | 
|  |  | 
|  | if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); | 
|  | if (err) | 
|  | goto err_free; | 
|  |  | 
|  | TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; | 
|  | TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; | 
|  |  | 
|  | if (tcp_queue_rcv(sk, skb, &fragstolen)) { | 
|  | WARN_ON_ONCE(fragstolen); /* should not happen */ | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | return size; | 
|  |  | 
|  | err_free: | 
|  | kfree_skb(skb); | 
|  | err: | 
|  | return err; | 
|  |  | 
|  | } | 
|  |  | 
|  | void tcp_data_ready(struct sock *sk) | 
|  | { | 
|  | if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) | 
|  | sk->sk_data_ready(sk); | 
|  | } | 
|  |  | 
|  | static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | enum skb_drop_reason reason; | 
|  | bool fragstolen; | 
|  | int eaten; | 
|  |  | 
|  | /* If a subflow has been reset, the packet should not continue | 
|  | * to be processed, drop the packet. | 
|  | */ | 
|  | if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { | 
|  | __kfree_skb(skb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { | 
|  | __kfree_skb(skb); | 
|  | return; | 
|  | } | 
|  | skb_dst_drop(skb); | 
|  | __skb_pull(skb, tcp_hdr(skb)->doff * 4); | 
|  |  | 
|  | reason = SKB_DROP_REASON_NOT_SPECIFIED; | 
|  | tp->rx_opt.dsack = 0; | 
|  |  | 
|  | /*  Queue data for delivery to the user. | 
|  | *  Packets in sequence go to the receive queue. | 
|  | *  Out of sequence packets to the out_of_order_queue. | 
|  | */ | 
|  | if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { | 
|  | if (tcp_receive_window(tp) == 0) { | 
|  | reason = SKB_DROP_REASON_TCP_ZEROWINDOW; | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); | 
|  | goto out_of_window; | 
|  | } | 
|  |  | 
|  | /* Ok. In sequence. In window. */ | 
|  | queue_and_out: | 
|  | if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { | 
|  | /* TODO: maybe ratelimit these WIN 0 ACK ? */ | 
|  | inet_csk(sk)->icsk_ack.pending |= | 
|  | (ICSK_ACK_NOMEM | ICSK_ACK_NOW); | 
|  | inet_csk_schedule_ack(sk); | 
|  | sk->sk_data_ready(sk); | 
|  |  | 
|  | if (skb_queue_len(&sk->sk_receive_queue)) { | 
|  | reason = SKB_DROP_REASON_PROTO_MEM; | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); | 
|  | goto drop; | 
|  | } | 
|  | sk_forced_mem_schedule(sk, skb->truesize); | 
|  | } | 
|  |  | 
|  | eaten = tcp_queue_rcv(sk, skb, &fragstolen); | 
|  | if (skb->len) | 
|  | tcp_event_data_recv(sk, skb); | 
|  | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) | 
|  | tcp_fin(sk); | 
|  |  | 
|  | if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { | 
|  | tcp_ofo_queue(sk); | 
|  |  | 
|  | /* RFC5681. 4.2. SHOULD send immediate ACK, when | 
|  | * gap in queue is filled. | 
|  | */ | 
|  | if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) | 
|  | inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; | 
|  | } | 
|  |  | 
|  | if (tp->rx_opt.num_sacks) | 
|  | tcp_sack_remove(tp); | 
|  |  | 
|  | tcp_fast_path_check(sk); | 
|  |  | 
|  | if (eaten > 0) | 
|  | kfree_skb_partial(skb, fragstolen); | 
|  | if (!sock_flag(sk, SOCK_DEAD)) | 
|  | tcp_data_ready(sk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { | 
|  | tcp_rcv_spurious_retrans(sk, skb); | 
|  | /* A retransmit, 2nd most common case.  Force an immediate ack. */ | 
|  | reason = SKB_DROP_REASON_TCP_OLD_DATA; | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); | 
|  | tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); | 
|  |  | 
|  | out_of_window: | 
|  | tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); | 
|  | inet_csk_schedule_ack(sk); | 
|  | drop: | 
|  | tcp_drop_reason(sk, skb, reason); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Out of window. F.e. zero window probe. */ | 
|  | if (!before(TCP_SKB_CB(skb)->seq, | 
|  | tp->rcv_nxt + tcp_receive_window(tp))) { | 
|  | reason = SKB_DROP_REASON_TCP_OVERWINDOW; | 
|  | goto out_of_window; | 
|  | } | 
|  |  | 
|  | if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | 
|  | /* Partial packet, seq < rcv_next < end_seq */ | 
|  | tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); | 
|  |  | 
|  | /* If window is closed, drop tail of packet. But after | 
|  | * remembering D-SACK for its head made in previous line. | 
|  | */ | 
|  | if (!tcp_receive_window(tp)) { | 
|  | reason = SKB_DROP_REASON_TCP_ZEROWINDOW; | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); | 
|  | goto out_of_window; | 
|  | } | 
|  | goto queue_and_out; | 
|  | } | 
|  |  | 
|  | tcp_data_queue_ofo(sk, skb); | 
|  | } | 
|  |  | 
|  | static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) | 
|  | { | 
|  | if (list) | 
|  | return !skb_queue_is_last(list, skb) ? skb->next : NULL; | 
|  |  | 
|  | return skb_rb_next(skb); | 
|  | } | 
|  |  | 
|  | static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, | 
|  | struct sk_buff_head *list, | 
|  | struct rb_root *root) | 
|  | { | 
|  | struct sk_buff *next = tcp_skb_next(skb, list); | 
|  |  | 
|  | if (list) | 
|  | __skb_unlink(skb, list); | 
|  | else | 
|  | rb_erase(&skb->rbnode, root); | 
|  |  | 
|  | __kfree_skb(skb); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ | 
|  | void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct sk_buff *skb1; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | skb1 = rb_to_skb(parent); | 
|  | if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) | 
|  | p = &parent->rb_left; | 
|  | else | 
|  | p = &parent->rb_right; | 
|  | } | 
|  | rb_link_node(&skb->rbnode, parent, p); | 
|  | rb_insert_color(&skb->rbnode, root); | 
|  | } | 
|  |  | 
|  | /* Collapse contiguous sequence of skbs head..tail with | 
|  | * sequence numbers start..end. | 
|  | * | 
|  | * If tail is NULL, this means until the end of the queue. | 
|  | * | 
|  | * Segments with FIN/SYN are not collapsed (only because this | 
|  | * simplifies code) | 
|  | */ | 
|  | static void | 
|  | tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, | 
|  | struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) | 
|  | { | 
|  | struct sk_buff *skb = head, *n; | 
|  | struct sk_buff_head tmp; | 
|  | bool end_of_skbs; | 
|  |  | 
|  | /* First, check that queue is collapsible and find | 
|  | * the point where collapsing can be useful. | 
|  | */ | 
|  | restart: | 
|  | for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { | 
|  | n = tcp_skb_next(skb, list); | 
|  |  | 
|  | /* No new bits? It is possible on ofo queue. */ | 
|  | if (!before(start, TCP_SKB_CB(skb)->end_seq)) { | 
|  | skb = tcp_collapse_one(sk, skb, list, root); | 
|  | if (!skb) | 
|  | break; | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | /* The first skb to collapse is: | 
|  | * - not SYN/FIN and | 
|  | * - bloated or contains data before "start" or | 
|  | *   overlaps to the next one and mptcp allow collapsing. | 
|  | */ | 
|  | if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && | 
|  | (tcp_win_from_space(sk, skb->truesize) > skb->len || | 
|  | before(TCP_SKB_CB(skb)->seq, start))) { | 
|  | end_of_skbs = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (n && n != tail && mptcp_skb_can_collapse(skb, n) && | 
|  | TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { | 
|  | end_of_skbs = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Decided to skip this, advance start seq. */ | 
|  | start = TCP_SKB_CB(skb)->end_seq; | 
|  | } | 
|  | if (end_of_skbs || | 
|  | (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) | 
|  | return; | 
|  |  | 
|  | __skb_queue_head_init(&tmp); | 
|  |  | 
|  | while (before(start, end)) { | 
|  | int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); | 
|  | struct sk_buff *nskb; | 
|  |  | 
|  | nskb = alloc_skb(copy, GFP_ATOMIC); | 
|  | if (!nskb) | 
|  | break; | 
|  |  | 
|  | memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); | 
|  | #ifdef CONFIG_TLS_DEVICE | 
|  | nskb->decrypted = skb->decrypted; | 
|  | #endif | 
|  | TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; | 
|  | if (list) | 
|  | __skb_queue_before(list, skb, nskb); | 
|  | else | 
|  | __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ | 
|  | skb_set_owner_r(nskb, sk); | 
|  | mptcp_skb_ext_move(nskb, skb); | 
|  |  | 
|  | /* Copy data, releasing collapsed skbs. */ | 
|  | while (copy > 0) { | 
|  | int offset = start - TCP_SKB_CB(skb)->seq; | 
|  | int size = TCP_SKB_CB(skb)->end_seq - start; | 
|  |  | 
|  | BUG_ON(offset < 0); | 
|  | if (size > 0) { | 
|  | size = min(copy, size); | 
|  | if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) | 
|  | BUG(); | 
|  | TCP_SKB_CB(nskb)->end_seq += size; | 
|  | copy -= size; | 
|  | start += size; | 
|  | } | 
|  | if (!before(start, TCP_SKB_CB(skb)->end_seq)) { | 
|  | skb = tcp_collapse_one(sk, skb, list, root); | 
|  | if (!skb || | 
|  | skb == tail || | 
|  | !mptcp_skb_can_collapse(nskb, skb) || | 
|  | (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) | 
|  | goto end; | 
|  | #ifdef CONFIG_TLS_DEVICE | 
|  | if (skb->decrypted != nskb->decrypted) | 
|  | goto end; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | end: | 
|  | skb_queue_walk_safe(&tmp, skb, n) | 
|  | tcp_rbtree_insert(root, skb); | 
|  | } | 
|  |  | 
|  | /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs | 
|  | * and tcp_collapse() them until all the queue is collapsed. | 
|  | */ | 
|  | static void tcp_collapse_ofo_queue(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 range_truesize, sum_tiny = 0; | 
|  | struct sk_buff *skb, *head; | 
|  | u32 start, end; | 
|  |  | 
|  | skb = skb_rb_first(&tp->out_of_order_queue); | 
|  | new_range: | 
|  | if (!skb) { | 
|  | tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); | 
|  | return; | 
|  | } | 
|  | start = TCP_SKB_CB(skb)->seq; | 
|  | end = TCP_SKB_CB(skb)->end_seq; | 
|  | range_truesize = skb->truesize; | 
|  |  | 
|  | for (head = skb;;) { | 
|  | skb = skb_rb_next(skb); | 
|  |  | 
|  | /* Range is terminated when we see a gap or when | 
|  | * we are at the queue end. | 
|  | */ | 
|  | if (!skb || | 
|  | after(TCP_SKB_CB(skb)->seq, end) || | 
|  | before(TCP_SKB_CB(skb)->end_seq, start)) { | 
|  | /* Do not attempt collapsing tiny skbs */ | 
|  | if (range_truesize != head->truesize || | 
|  | end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { | 
|  | tcp_collapse(sk, NULL, &tp->out_of_order_queue, | 
|  | head, skb, start, end); | 
|  | } else { | 
|  | sum_tiny += range_truesize; | 
|  | if (sum_tiny > sk->sk_rcvbuf >> 3) | 
|  | return; | 
|  | } | 
|  | goto new_range; | 
|  | } | 
|  |  | 
|  | range_truesize += skb->truesize; | 
|  | if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) | 
|  | start = TCP_SKB_CB(skb)->seq; | 
|  | if (after(TCP_SKB_CB(skb)->end_seq, end)) | 
|  | end = TCP_SKB_CB(skb)->end_seq; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean the out-of-order queue to make room. | 
|  | * We drop high sequences packets to : | 
|  | * 1) Let a chance for holes to be filled. | 
|  | *    This means we do not drop packets from ooo queue if their sequence | 
|  | *    is before incoming packet sequence. | 
|  | * 2) not add too big latencies if thousands of packets sit there. | 
|  | *    (But if application shrinks SO_RCVBUF, we could still end up | 
|  | *     freeing whole queue here) | 
|  | * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. | 
|  | * | 
|  | * Return true if queue has shrunk. | 
|  | */ | 
|  | static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct rb_node *node, *prev; | 
|  | bool pruned = false; | 
|  | int goal; | 
|  |  | 
|  | if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) | 
|  | return false; | 
|  |  | 
|  | goal = sk->sk_rcvbuf >> 3; | 
|  | node = &tp->ooo_last_skb->rbnode; | 
|  |  | 
|  | do { | 
|  | struct sk_buff *skb = rb_to_skb(node); | 
|  |  | 
|  | /* If incoming skb would land last in ofo queue, stop pruning. */ | 
|  | if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) | 
|  | break; | 
|  | pruned = true; | 
|  | prev = rb_prev(node); | 
|  | rb_erase(node, &tp->out_of_order_queue); | 
|  | goal -= skb->truesize; | 
|  | tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); | 
|  | tp->ooo_last_skb = rb_to_skb(prev); | 
|  | if (!prev || goal <= 0) { | 
|  | if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && | 
|  | !tcp_under_memory_pressure(sk)) | 
|  | break; | 
|  | goal = sk->sk_rcvbuf >> 3; | 
|  | } | 
|  | node = prev; | 
|  | } while (node); | 
|  |  | 
|  | if (pruned) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); | 
|  | /* Reset SACK state.  A conforming SACK implementation will | 
|  | * do the same at a timeout based retransmit.  When a connection | 
|  | * is in a sad state like this, we care only about integrity | 
|  | * of the connection not performance. | 
|  | */ | 
|  | if (tp->rx_opt.sack_ok) | 
|  | tcp_sack_reset(&tp->rx_opt); | 
|  | } | 
|  | return pruned; | 
|  | } | 
|  |  | 
|  | /* Reduce allocated memory if we can, trying to get | 
|  | * the socket within its memory limits again. | 
|  | * | 
|  | * Return less than zero if we should start dropping frames | 
|  | * until the socket owning process reads some of the data | 
|  | * to stabilize the situation. | 
|  | */ | 
|  | static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); | 
|  |  | 
|  | if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) | 
|  | tcp_clamp_window(sk); | 
|  | else if (tcp_under_memory_pressure(sk)) | 
|  | tcp_adjust_rcv_ssthresh(sk); | 
|  |  | 
|  | if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) | 
|  | return 0; | 
|  |  | 
|  | tcp_collapse_ofo_queue(sk); | 
|  | if (!skb_queue_empty(&sk->sk_receive_queue)) | 
|  | tcp_collapse(sk, &sk->sk_receive_queue, NULL, | 
|  | skb_peek(&sk->sk_receive_queue), | 
|  | NULL, | 
|  | tp->copied_seq, tp->rcv_nxt); | 
|  |  | 
|  | if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) | 
|  | return 0; | 
|  |  | 
|  | /* Collapsing did not help, destructive actions follow. | 
|  | * This must not ever occur. */ | 
|  |  | 
|  | tcp_prune_ofo_queue(sk, in_skb); | 
|  |  | 
|  | if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) | 
|  | return 0; | 
|  |  | 
|  | /* If we are really being abused, tell the caller to silently | 
|  | * drop receive data on the floor.  It will get retransmitted | 
|  | * and hopefully then we'll have sufficient space. | 
|  | */ | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); | 
|  |  | 
|  | /* Massive buffer overcommit. */ | 
|  | tp->pred_flags = 0; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static bool tcp_should_expand_sndbuf(struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* If the user specified a specific send buffer setting, do | 
|  | * not modify it. | 
|  | */ | 
|  | if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) | 
|  | return false; | 
|  |  | 
|  | /* If we are under global TCP memory pressure, do not expand.  */ | 
|  | if (tcp_under_memory_pressure(sk)) { | 
|  | int unused_mem = sk_unused_reserved_mem(sk); | 
|  |  | 
|  | /* Adjust sndbuf according to reserved mem. But make sure | 
|  | * it never goes below SOCK_MIN_SNDBUF. | 
|  | * See sk_stream_moderate_sndbuf() for more details. | 
|  | */ | 
|  | if (unused_mem > SOCK_MIN_SNDBUF) | 
|  | WRITE_ONCE(sk->sk_sndbuf, unused_mem); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* If we are under soft global TCP memory pressure, do not expand.  */ | 
|  | if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) | 
|  | return false; | 
|  |  | 
|  | /* If we filled the congestion window, do not expand.  */ | 
|  | if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void tcp_new_space(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (tcp_should_expand_sndbuf(sk)) { | 
|  | tcp_sndbuf_expand(sk); | 
|  | tp->snd_cwnd_stamp = tcp_jiffies32; | 
|  | } | 
|  |  | 
|  | INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); | 
|  | } | 
|  |  | 
|  | /* Caller made space either from: | 
|  | * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) | 
|  | * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) | 
|  | * | 
|  | * We might be able to generate EPOLLOUT to the application if: | 
|  | * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 | 
|  | * 2) notsent amount (tp->write_seq - tp->snd_nxt) became | 
|  | *    small enough that tcp_stream_memory_free() decides it | 
|  | *    is time to generate EPOLLOUT. | 
|  | */ | 
|  | void tcp_check_space(struct sock *sk) | 
|  | { | 
|  | /* pairs with tcp_poll() */ | 
|  | smp_mb(); | 
|  | if (sk->sk_socket && | 
|  | test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { | 
|  | tcp_new_space(sk); | 
|  | if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) | 
|  | tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tcp_data_snd_check(struct sock *sk) | 
|  | { | 
|  | tcp_push_pending_frames(sk); | 
|  | tcp_check_space(sk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if sending an ack is needed. | 
|  | */ | 
|  | static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | unsigned long rtt, delay; | 
|  |  | 
|  | /* More than one full frame received... */ | 
|  | if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && | 
|  | /* ... and right edge of window advances far enough. | 
|  | * (tcp_recvmsg() will send ACK otherwise). | 
|  | * If application uses SO_RCVLOWAT, we want send ack now if | 
|  | * we have not received enough bytes to satisfy the condition. | 
|  | */ | 
|  | (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || | 
|  | __tcp_select_window(sk) >= tp->rcv_wnd)) || | 
|  | /* We ACK each frame or... */ | 
|  | tcp_in_quickack_mode(sk) || | 
|  | /* Protocol state mandates a one-time immediate ACK */ | 
|  | inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { | 
|  | /* If we are running from __release_sock() in user context, | 
|  | * Defer the ack until tcp_release_cb(). | 
|  | */ | 
|  | if (sock_owned_by_user_nocheck(sk) && | 
|  | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { | 
|  | set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); | 
|  | return; | 
|  | } | 
|  | send_now: | 
|  | tcp_send_ack(sk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { | 
|  | tcp_send_delayed_ack(sk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!tcp_is_sack(tp) || | 
|  | tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) | 
|  | goto send_now; | 
|  |  | 
|  | if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { | 
|  | tp->compressed_ack_rcv_nxt = tp->rcv_nxt; | 
|  | tp->dup_ack_counter = 0; | 
|  | } | 
|  | if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { | 
|  | tp->dup_ack_counter++; | 
|  | goto send_now; | 
|  | } | 
|  | tp->compressed_ack++; | 
|  | if (hrtimer_is_queued(&tp->compressed_ack_timer)) | 
|  | return; | 
|  |  | 
|  | /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ | 
|  |  | 
|  | rtt = tp->rcv_rtt_est.rtt_us; | 
|  | if (tp->srtt_us && tp->srtt_us < rtt) | 
|  | rtt = tp->srtt_us; | 
|  |  | 
|  | delay = min_t(unsigned long, | 
|  | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), | 
|  | rtt * (NSEC_PER_USEC >> 3)/20); | 
|  | sock_hold(sk); | 
|  | hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), | 
|  | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), | 
|  | HRTIMER_MODE_REL_PINNED_SOFT); | 
|  | } | 
|  |  | 
|  | static inline void tcp_ack_snd_check(struct sock *sk) | 
|  | { | 
|  | if (!inet_csk_ack_scheduled(sk)) { | 
|  | /* We sent a data segment already. */ | 
|  | return; | 
|  | } | 
|  | __tcp_ack_snd_check(sk, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	This routine is only called when we have urgent data | 
|  | *	signaled. Its the 'slow' part of tcp_urg. It could be | 
|  | *	moved inline now as tcp_urg is only called from one | 
|  | *	place. We handle URGent data wrong. We have to - as | 
|  | *	BSD still doesn't use the correction from RFC961. | 
|  | *	For 1003.1g we should support a new option TCP_STDURG to permit | 
|  | *	either form (or just set the sysctl tcp_stdurg). | 
|  | */ | 
|  |  | 
|  | static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 ptr = ntohs(th->urg_ptr); | 
|  |  | 
|  | if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) | 
|  | ptr--; | 
|  | ptr += ntohl(th->seq); | 
|  |  | 
|  | /* Ignore urgent data that we've already seen and read. */ | 
|  | if (after(tp->copied_seq, ptr)) | 
|  | return; | 
|  |  | 
|  | /* Do not replay urg ptr. | 
|  | * | 
|  | * NOTE: interesting situation not covered by specs. | 
|  | * Misbehaving sender may send urg ptr, pointing to segment, | 
|  | * which we already have in ofo queue. We are not able to fetch | 
|  | * such data and will stay in TCP_URG_NOTYET until will be eaten | 
|  | * by recvmsg(). Seems, we are not obliged to handle such wicked | 
|  | * situations. But it is worth to think about possibility of some | 
|  | * DoSes using some hypothetical application level deadlock. | 
|  | */ | 
|  | if (before(ptr, tp->rcv_nxt)) | 
|  | return; | 
|  |  | 
|  | /* Do we already have a newer (or duplicate) urgent pointer? */ | 
|  | if (tp->urg_data && !after(ptr, tp->urg_seq)) | 
|  | return; | 
|  |  | 
|  | /* Tell the world about our new urgent pointer. */ | 
|  | sk_send_sigurg(sk); | 
|  |  | 
|  | /* We may be adding urgent data when the last byte read was | 
|  | * urgent. To do this requires some care. We cannot just ignore | 
|  | * tp->copied_seq since we would read the last urgent byte again | 
|  | * as data, nor can we alter copied_seq until this data arrives | 
|  | * or we break the semantics of SIOCATMARK (and thus sockatmark()) | 
|  | * | 
|  | * NOTE. Double Dutch. Rendering to plain English: author of comment | 
|  | * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB); | 
|  | * and expect that both A and B disappear from stream. This is _wrong_. | 
|  | * Though this happens in BSD with high probability, this is occasional. | 
|  | * Any application relying on this is buggy. Note also, that fix "works" | 
|  | * only in this artificial test. Insert some normal data between A and B and we will | 
|  | * decline of BSD again. Verdict: it is better to remove to trap | 
|  | * buggy users. | 
|  | */ | 
|  | if (tp->urg_seq == tp->copied_seq && tp->urg_data && | 
|  | !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { | 
|  | struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); | 
|  | tp->copied_seq++; | 
|  | if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { | 
|  | __skb_unlink(skb, &sk->sk_receive_queue); | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); | 
|  | WRITE_ONCE(tp->urg_seq, ptr); | 
|  |  | 
|  | /* Disable header prediction. */ | 
|  | tp->pred_flags = 0; | 
|  | } | 
|  |  | 
|  | /* This is the 'fast' part of urgent handling. */ | 
|  | static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* Check if we get a new urgent pointer - normally not. */ | 
|  | if (unlikely(th->urg)) | 
|  | tcp_check_urg(sk, th); | 
|  |  | 
|  | /* Do we wait for any urgent data? - normally not... */ | 
|  | if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { | 
|  | u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - | 
|  | th->syn; | 
|  |  | 
|  | /* Is the urgent pointer pointing into this packet? */ | 
|  | if (ptr < skb->len) { | 
|  | u8 tmp; | 
|  | if (skb_copy_bits(skb, ptr, &tmp, 1)) | 
|  | BUG(); | 
|  | WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); | 
|  | if (!sock_flag(sk, SOCK_DEAD)) | 
|  | sk->sk_data_ready(sk); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Accept RST for rcv_nxt - 1 after a FIN. | 
|  | * When tcp connections are abruptly terminated from Mac OSX (via ^C), a | 
|  | * FIN is sent followed by a RST packet. The RST is sent with the same | 
|  | * sequence number as the FIN, and thus according to RFC 5961 a challenge | 
|  | * ACK should be sent. However, Mac OSX rate limits replies to challenge | 
|  | * ACKs on the closed socket. In addition middleboxes can drop either the | 
|  | * challenge ACK or a subsequent RST. | 
|  | */ | 
|  | static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && | 
|  | (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | | 
|  | TCPF_CLOSING)); | 
|  | } | 
|  |  | 
|  | /* Does PAWS and seqno based validation of an incoming segment, flags will | 
|  | * play significant role here. | 
|  | */ | 
|  | static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, | 
|  | const struct tcphdr *th, int syn_inerr) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | SKB_DR(reason); | 
|  |  | 
|  | /* RFC1323: H1. Apply PAWS check first. */ | 
|  | if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && | 
|  | tp->rx_opt.saw_tstamp && | 
|  | tcp_paws_discard(sk, skb)) { | 
|  | if (!th->rst) { | 
|  | if (unlikely(th->syn)) | 
|  | goto syn_challenge; | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); | 
|  | if (!tcp_oow_rate_limited(sock_net(sk), skb, | 
|  | LINUX_MIB_TCPACKSKIPPEDPAWS, | 
|  | &tp->last_oow_ack_time)) | 
|  | tcp_send_dupack(sk, skb); | 
|  | SKB_DR_SET(reason, TCP_RFC7323_PAWS); | 
|  | goto discard; | 
|  | } | 
|  | /* Reset is accepted even if it did not pass PAWS. */ | 
|  | } | 
|  |  | 
|  | /* Step 1: check sequence number */ | 
|  | reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); | 
|  | if (reason) { | 
|  | /* RFC793, page 37: "In all states except SYN-SENT, all reset | 
|  | * (RST) segments are validated by checking their SEQ-fields." | 
|  | * And page 69: "If an incoming segment is not acceptable, | 
|  | * an acknowledgment should be sent in reply (unless the RST | 
|  | * bit is set, if so drop the segment and return)". | 
|  | */ | 
|  | if (!th->rst) { | 
|  | if (th->syn) | 
|  | goto syn_challenge; | 
|  | if (!tcp_oow_rate_limited(sock_net(sk), skb, | 
|  | LINUX_MIB_TCPACKSKIPPEDSEQ, | 
|  | &tp->last_oow_ack_time)) | 
|  | tcp_send_dupack(sk, skb); | 
|  | } else if (tcp_reset_check(sk, skb)) { | 
|  | goto reset; | 
|  | } | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | /* Step 2: check RST bit */ | 
|  | if (th->rst) { | 
|  | /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a | 
|  | * FIN and SACK too if available): | 
|  | * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or | 
|  | * the right-most SACK block, | 
|  | * then | 
|  | *     RESET the connection | 
|  | * else | 
|  | *     Send a challenge ACK | 
|  | */ | 
|  | if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || | 
|  | tcp_reset_check(sk, skb)) | 
|  | goto reset; | 
|  |  | 
|  | if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { | 
|  | struct tcp_sack_block *sp = &tp->selective_acks[0]; | 
|  | int max_sack = sp[0].end_seq; | 
|  | int this_sack; | 
|  |  | 
|  | for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; | 
|  | ++this_sack) { | 
|  | max_sack = after(sp[this_sack].end_seq, | 
|  | max_sack) ? | 
|  | sp[this_sack].end_seq : max_sack; | 
|  | } | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->seq == max_sack) | 
|  | goto reset; | 
|  | } | 
|  |  | 
|  | /* Disable TFO if RST is out-of-order | 
|  | * and no data has been received | 
|  | * for current active TFO socket | 
|  | */ | 
|  | if (tp->syn_fastopen && !tp->data_segs_in && | 
|  | sk->sk_state == TCP_ESTABLISHED) | 
|  | tcp_fastopen_active_disable(sk); | 
|  | tcp_send_challenge_ack(sk); | 
|  | SKB_DR_SET(reason, TCP_RESET); | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | /* step 3: check security and precedence [ignored] */ | 
|  |  | 
|  | /* step 4: Check for a SYN | 
|  | * RFC 5961 4.2 : Send a challenge ack | 
|  | */ | 
|  | if (th->syn) { | 
|  | syn_challenge: | 
|  | if (syn_inerr) | 
|  | TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); | 
|  | tcp_send_challenge_ack(sk); | 
|  | SKB_DR_SET(reason, TCP_INVALID_SYN); | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | bpf_skops_parse_hdr(sk, skb); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | discard: | 
|  | tcp_drop_reason(sk, skb, reason); | 
|  | return false; | 
|  |  | 
|  | reset: | 
|  | tcp_reset(sk, skb); | 
|  | __kfree_skb(skb); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	TCP receive function for the ESTABLISHED state. | 
|  | * | 
|  | *	It is split into a fast path and a slow path. The fast path is | 
|  | * 	disabled when: | 
|  | *	- A zero window was announced from us - zero window probing | 
|  | *        is only handled properly in the slow path. | 
|  | *	- Out of order segments arrived. | 
|  | *	- Urgent data is expected. | 
|  | *	- There is no buffer space left | 
|  | *	- Unexpected TCP flags/window values/header lengths are received | 
|  | *	  (detected by checking the TCP header against pred_flags) | 
|  | *	- Data is sent in both directions. Fast path only supports pure senders | 
|  | *	  or pure receivers (this means either the sequence number or the ack | 
|  | *	  value must stay constant) | 
|  | *	- Unexpected TCP option. | 
|  | * | 
|  | *	When these conditions are not satisfied it drops into a standard | 
|  | *	receive procedure patterned after RFC793 to handle all cases. | 
|  | *	The first three cases are guaranteed by proper pred_flags setting, | 
|  | *	the rest is checked inline. Fast processing is turned on in | 
|  | *	tcp_data_queue when everything is OK. | 
|  | */ | 
|  | void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; | 
|  | const struct tcphdr *th = (const struct tcphdr *)skb->data; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | unsigned int len = skb->len; | 
|  |  | 
|  | /* TCP congestion window tracking */ | 
|  | trace_tcp_probe(sk, skb); | 
|  |  | 
|  | tcp_mstamp_refresh(tp); | 
|  | if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) | 
|  | inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); | 
|  | /* | 
|  | *	Header prediction. | 
|  | *	The code loosely follows the one in the famous | 
|  | *	"30 instruction TCP receive" Van Jacobson mail. | 
|  | * | 
|  | *	Van's trick is to deposit buffers into socket queue | 
|  | *	on a device interrupt, to call tcp_recv function | 
|  | *	on the receive process context and checksum and copy | 
|  | *	the buffer to user space. smart... | 
|  | * | 
|  | *	Our current scheme is not silly either but we take the | 
|  | *	extra cost of the net_bh soft interrupt processing... | 
|  | *	We do checksum and copy also but from device to kernel. | 
|  | */ | 
|  |  | 
|  | tp->rx_opt.saw_tstamp = 0; | 
|  |  | 
|  | /*	pred_flags is 0xS?10 << 16 + snd_wnd | 
|  | *	if header_prediction is to be made | 
|  | *	'S' will always be tp->tcp_header_len >> 2 | 
|  | *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to | 
|  | *  turn it off	(when there are holes in the receive | 
|  | *	 space for instance) | 
|  | *	PSH flag is ignored. | 
|  | */ | 
|  |  | 
|  | if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && | 
|  | TCP_SKB_CB(skb)->seq == tp->rcv_nxt && | 
|  | !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { | 
|  | int tcp_header_len = tp->tcp_header_len; | 
|  |  | 
|  | /* Timestamp header prediction: tcp_header_len | 
|  | * is automatically equal to th->doff*4 due to pred_flags | 
|  | * match. | 
|  | */ | 
|  |  | 
|  | /* Check timestamp */ | 
|  | if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { | 
|  | /* No? Slow path! */ | 
|  | if (!tcp_parse_aligned_timestamp(tp, th)) | 
|  | goto slow_path; | 
|  |  | 
|  | /* If PAWS failed, check it more carefully in slow path */ | 
|  | if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) | 
|  | goto slow_path; | 
|  |  | 
|  | /* DO NOT update ts_recent here, if checksum fails | 
|  | * and timestamp was corrupted part, it will result | 
|  | * in a hung connection since we will drop all | 
|  | * future packets due to the PAWS test. | 
|  | */ | 
|  | } | 
|  |  | 
|  | if (len <= tcp_header_len) { | 
|  | /* Bulk data transfer: sender */ | 
|  | if (len == tcp_header_len) { | 
|  | /* Predicted packet is in window by definition. | 
|  | * seq == rcv_nxt and rcv_wup <= rcv_nxt. | 
|  | * Hence, check seq<=rcv_wup reduces to: | 
|  | */ | 
|  | if (tcp_header_len == | 
|  | (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && | 
|  | tp->rcv_nxt == tp->rcv_wup) | 
|  | tcp_store_ts_recent(tp); | 
|  |  | 
|  | /* We know that such packets are checksummed | 
|  | * on entry. | 
|  | */ | 
|  | tcp_ack(sk, skb, 0); | 
|  | __kfree_skb(skb); | 
|  | tcp_data_snd_check(sk); | 
|  | /* When receiving pure ack in fast path, update | 
|  | * last ts ecr directly instead of calling | 
|  | * tcp_rcv_rtt_measure_ts() | 
|  | */ | 
|  | tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; | 
|  | return; | 
|  | } else { /* Header too small */ | 
|  | reason = SKB_DROP_REASON_PKT_TOO_SMALL; | 
|  | TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); | 
|  | goto discard; | 
|  | } | 
|  | } else { | 
|  | int eaten = 0; | 
|  | bool fragstolen = false; | 
|  |  | 
|  | if (tcp_checksum_complete(skb)) | 
|  | goto csum_error; | 
|  |  | 
|  | if ((int)skb->truesize > sk->sk_forward_alloc) | 
|  | goto step5; | 
|  |  | 
|  | /* Predicted packet is in window by definition. | 
|  | * seq == rcv_nxt and rcv_wup <= rcv_nxt. | 
|  | * Hence, check seq<=rcv_wup reduces to: | 
|  | */ | 
|  | if (tcp_header_len == | 
|  | (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && | 
|  | tp->rcv_nxt == tp->rcv_wup) | 
|  | tcp_store_ts_recent(tp); | 
|  |  | 
|  | tcp_rcv_rtt_measure_ts(sk, skb); | 
|  |  | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); | 
|  |  | 
|  | /* Bulk data transfer: receiver */ | 
|  | skb_dst_drop(skb); | 
|  | __skb_pull(skb, tcp_header_len); | 
|  | eaten = tcp_queue_rcv(sk, skb, &fragstolen); | 
|  |  | 
|  | tcp_event_data_recv(sk, skb); | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { | 
|  | /* Well, only one small jumplet in fast path... */ | 
|  | tcp_ack(sk, skb, FLAG_DATA); | 
|  | tcp_data_snd_check(sk); | 
|  | if (!inet_csk_ack_scheduled(sk)) | 
|  | goto no_ack; | 
|  | } else { | 
|  | tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); | 
|  | } | 
|  |  | 
|  | __tcp_ack_snd_check(sk, 0); | 
|  | no_ack: | 
|  | if (eaten) | 
|  | kfree_skb_partial(skb, fragstolen); | 
|  | tcp_data_ready(sk); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | slow_path: | 
|  | if (len < (th->doff << 2) || tcp_checksum_complete(skb)) | 
|  | goto csum_error; | 
|  |  | 
|  | if (!th->ack && !th->rst && !th->syn) { | 
|  | reason = SKB_DROP_REASON_TCP_FLAGS; | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Standard slow path. | 
|  | */ | 
|  |  | 
|  | if (!tcp_validate_incoming(sk, skb, th, 1)) | 
|  | return; | 
|  |  | 
|  | step5: | 
|  | reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); | 
|  | if ((int)reason < 0) { | 
|  | reason = -reason; | 
|  | goto discard; | 
|  | } | 
|  | tcp_rcv_rtt_measure_ts(sk, skb); | 
|  |  | 
|  | /* Process urgent data. */ | 
|  | tcp_urg(sk, skb, th); | 
|  |  | 
|  | /* step 7: process the segment text */ | 
|  | tcp_data_queue(sk, skb); | 
|  |  | 
|  | tcp_data_snd_check(sk); | 
|  | tcp_ack_snd_check(sk); | 
|  | return; | 
|  |  | 
|  | csum_error: | 
|  | reason = SKB_DROP_REASON_TCP_CSUM; | 
|  | trace_tcp_bad_csum(skb); | 
|  | TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); | 
|  | TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); | 
|  |  | 
|  | discard: | 
|  | tcp_drop_reason(sk, skb, reason); | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_rcv_established); | 
|  |  | 
|  | void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | tcp_mtup_init(sk); | 
|  | icsk->icsk_af_ops->rebuild_header(sk); | 
|  | tcp_init_metrics(sk); | 
|  |  | 
|  | /* Initialize the congestion window to start the transfer. | 
|  | * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been | 
|  | * retransmitted. In light of RFC6298 more aggressive 1sec | 
|  | * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK | 
|  | * retransmission has occurred. | 
|  | */ | 
|  | if (tp->total_retrans > 1 && tp->undo_marker) | 
|  | tcp_snd_cwnd_set(tp, 1); | 
|  | else | 
|  | tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); | 
|  | tp->snd_cwnd_stamp = tcp_jiffies32; | 
|  |  | 
|  | bpf_skops_established(sk, bpf_op, skb); | 
|  | /* Initialize congestion control unless BPF initialized it already: */ | 
|  | if (!icsk->icsk_ca_initialized) | 
|  | tcp_init_congestion_control(sk); | 
|  | tcp_init_buffer_space(sk); | 
|  | } | 
|  |  | 
|  | void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | tcp_ao_finish_connect(sk, skb); | 
|  | tcp_set_state(sk, TCP_ESTABLISHED); | 
|  | icsk->icsk_ack.lrcvtime = tcp_jiffies32; | 
|  |  | 
|  | if (skb) { | 
|  | icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); | 
|  | security_inet_conn_established(sk, skb); | 
|  | sk_mark_napi_id(sk, skb); | 
|  | } | 
|  |  | 
|  | tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); | 
|  |  | 
|  | /* Prevent spurious tcp_cwnd_restart() on first data | 
|  | * packet. | 
|  | */ | 
|  | tp->lsndtime = tcp_jiffies32; | 
|  |  | 
|  | if (sock_flag(sk, SOCK_KEEPOPEN)) | 
|  | inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); | 
|  |  | 
|  | if (!tp->rx_opt.snd_wscale) | 
|  | __tcp_fast_path_on(tp, tp->snd_wnd); | 
|  | else | 
|  | tp->pred_flags = 0; | 
|  | } | 
|  |  | 
|  | static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, | 
|  | struct tcp_fastopen_cookie *cookie) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; | 
|  | u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; | 
|  | bool syn_drop = false; | 
|  |  | 
|  | if (mss == tp->rx_opt.user_mss) { | 
|  | struct tcp_options_received opt; | 
|  |  | 
|  | /* Get original SYNACK MSS value if user MSS sets mss_clamp */ | 
|  | tcp_clear_options(&opt); | 
|  | opt.user_mss = opt.mss_clamp = 0; | 
|  | tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); | 
|  | mss = opt.mss_clamp; | 
|  | } | 
|  |  | 
|  | if (!tp->syn_fastopen) { | 
|  | /* Ignore an unsolicited cookie */ | 
|  | cookie->len = -1; | 
|  | } else if (tp->total_retrans) { | 
|  | /* SYN timed out and the SYN-ACK neither has a cookie nor | 
|  | * acknowledges data. Presumably the remote received only | 
|  | * the retransmitted (regular) SYNs: either the original | 
|  | * SYN-data or the corresponding SYN-ACK was dropped. | 
|  | */ | 
|  | syn_drop = (cookie->len < 0 && data); | 
|  | } else if (cookie->len < 0 && !tp->syn_data) { | 
|  | /* We requested a cookie but didn't get it. If we did not use | 
|  | * the (old) exp opt format then try so next time (try_exp=1). | 
|  | * Otherwise we go back to use the RFC7413 opt (try_exp=2). | 
|  | */ | 
|  | try_exp = tp->syn_fastopen_exp ? 2 : 1; | 
|  | } | 
|  |  | 
|  | tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); | 
|  |  | 
|  | if (data) { /* Retransmit unacked data in SYN */ | 
|  | if (tp->total_retrans) | 
|  | tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; | 
|  | else | 
|  | tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; | 
|  | skb_rbtree_walk_from(data) | 
|  | tcp_mark_skb_lost(sk, data); | 
|  | tcp_xmit_retransmit_queue(sk); | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPFASTOPENACTIVEFAIL); | 
|  | return true; | 
|  | } | 
|  | tp->syn_data_acked = tp->syn_data; | 
|  | if (tp->syn_data_acked) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); | 
|  | /* SYN-data is counted as two separate packets in tcp_ack() */ | 
|  | if (tp->delivered > 1) | 
|  | --tp->delivered; | 
|  | } | 
|  |  | 
|  | tcp_fastopen_add_skb(sk, synack); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void smc_check_reset_syn(struct tcp_sock *tp) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_SMC) | 
|  | if (static_branch_unlikely(&tcp_have_smc)) { | 
|  | if (tp->syn_smc && !tp->rx_opt.smc_ok) | 
|  | tp->syn_smc = 0; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void tcp_try_undo_spurious_syn(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 syn_stamp; | 
|  |  | 
|  | /* undo_marker is set when SYN or SYNACK times out. The timeout is | 
|  | * spurious if the ACK's timestamp option echo value matches the | 
|  | * original SYN timestamp. | 
|  | */ | 
|  | syn_stamp = tp->retrans_stamp; | 
|  | if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && | 
|  | syn_stamp == tp->rx_opt.rcv_tsecr) | 
|  | tp->undo_marker = 0; | 
|  | } | 
|  |  | 
|  | static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, | 
|  | const struct tcphdr *th) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct tcp_fastopen_cookie foc = { .len = -1 }; | 
|  | int saved_clamp = tp->rx_opt.mss_clamp; | 
|  | bool fastopen_fail; | 
|  | SKB_DR(reason); | 
|  |  | 
|  | tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); | 
|  | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) | 
|  | tp->rx_opt.rcv_tsecr -= tp->tsoffset; | 
|  |  | 
|  | if (th->ack) { | 
|  | /* rfc793: | 
|  | * "If the state is SYN-SENT then | 
|  | *    first check the ACK bit | 
|  | *      If the ACK bit is set | 
|  | *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send | 
|  | *        a reset (unless the RST bit is set, if so drop | 
|  | *        the segment and return)" | 
|  | */ | 
|  | if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || | 
|  | after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { | 
|  | /* Previous FIN/ACK or RST/ACK might be ignored. */ | 
|  | if (icsk->icsk_retransmits == 0) | 
|  | inet_csk_reset_xmit_timer(sk, | 
|  | ICSK_TIME_RETRANS, | 
|  | TCP_TIMEOUT_MIN, TCP_RTO_MAX); | 
|  | goto reset_and_undo; | 
|  | } | 
|  |  | 
|  | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && | 
|  | !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, | 
|  | tcp_time_stamp_ts(tp))) { | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_PAWSACTIVEREJECTED); | 
|  | goto reset_and_undo; | 
|  | } | 
|  |  | 
|  | /* Now ACK is acceptable. | 
|  | * | 
|  | * "If the RST bit is set | 
|  | *    If the ACK was acceptable then signal the user "error: | 
|  | *    connection reset", drop the segment, enter CLOSED state, | 
|  | *    delete TCB, and return." | 
|  | */ | 
|  |  | 
|  | if (th->rst) { | 
|  | tcp_reset(sk, skb); | 
|  | consume: | 
|  | __kfree_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* rfc793: | 
|  | *   "fifth, if neither of the SYN or RST bits is set then | 
|  | *    drop the segment and return." | 
|  | * | 
|  | *    See note below! | 
|  | *                                        --ANK(990513) | 
|  | */ | 
|  | if (!th->syn) { | 
|  | SKB_DR_SET(reason, TCP_FLAGS); | 
|  | goto discard_and_undo; | 
|  | } | 
|  | /* rfc793: | 
|  | *   "If the SYN bit is on ... | 
|  | *    are acceptable then ... | 
|  | *    (our SYN has been ACKed), change the connection | 
|  | *    state to ESTABLISHED..." | 
|  | */ | 
|  |  | 
|  | tcp_ecn_rcv_synack(tp, th); | 
|  |  | 
|  | tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); | 
|  | tcp_try_undo_spurious_syn(sk); | 
|  | tcp_ack(sk, skb, FLAG_SLOWPATH); | 
|  |  | 
|  | /* Ok.. it's good. Set up sequence numbers and | 
|  | * move to established. | 
|  | */ | 
|  | WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); | 
|  | tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; | 
|  |  | 
|  | /* RFC1323: The window in SYN & SYN/ACK segments is | 
|  | * never scaled. | 
|  | */ | 
|  | tp->snd_wnd = ntohs(th->window); | 
|  |  | 
|  | if (!tp->rx_opt.wscale_ok) { | 
|  | tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; | 
|  | tp->window_clamp = min(tp->window_clamp, 65535U); | 
|  | } | 
|  |  | 
|  | if (tp->rx_opt.saw_tstamp) { | 
|  | tp->rx_opt.tstamp_ok	   = 1; | 
|  | tp->tcp_header_len = | 
|  | sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 
|  | tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED; | 
|  | tcp_store_ts_recent(tp); | 
|  | } else { | 
|  | tp->tcp_header_len = sizeof(struct tcphdr); | 
|  | } | 
|  |  | 
|  | tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); | 
|  | tcp_initialize_rcv_mss(sk); | 
|  |  | 
|  | /* Remember, tcp_poll() does not lock socket! | 
|  | * Change state from SYN-SENT only after copied_seq | 
|  | * is initialized. */ | 
|  | WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); | 
|  |  | 
|  | smc_check_reset_syn(tp); | 
|  |  | 
|  | smp_mb(); | 
|  |  | 
|  | tcp_finish_connect(sk, skb); | 
|  |  | 
|  | fastopen_fail = (tp->syn_fastopen || tp->syn_data) && | 
|  | tcp_rcv_fastopen_synack(sk, skb, &foc); | 
|  |  | 
|  | if (!sock_flag(sk, SOCK_DEAD)) { | 
|  | sk->sk_state_change(sk); | 
|  | sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); | 
|  | } | 
|  | if (fastopen_fail) | 
|  | return -1; | 
|  | if (sk->sk_write_pending || | 
|  | READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || | 
|  | inet_csk_in_pingpong_mode(sk)) { | 
|  | /* Save one ACK. Data will be ready after | 
|  | * several ticks, if write_pending is set. | 
|  | * | 
|  | * It may be deleted, but with this feature tcpdumps | 
|  | * look so _wonderfully_ clever, that I was not able | 
|  | * to stand against the temptation 8)     --ANK | 
|  | */ | 
|  | inet_csk_schedule_ack(sk); | 
|  | tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); | 
|  | inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, | 
|  | TCP_DELACK_MAX, TCP_RTO_MAX); | 
|  | goto consume; | 
|  | } | 
|  | tcp_send_ack(sk); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* No ACK in the segment */ | 
|  |  | 
|  | if (th->rst) { | 
|  | /* rfc793: | 
|  | * "If the RST bit is set | 
|  | * | 
|  | *      Otherwise (no ACK) drop the segment and return." | 
|  | */ | 
|  | SKB_DR_SET(reason, TCP_RESET); | 
|  | goto discard_and_undo; | 
|  | } | 
|  |  | 
|  | /* PAWS check. */ | 
|  | if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && | 
|  | tcp_paws_reject(&tp->rx_opt, 0)) { | 
|  | SKB_DR_SET(reason, TCP_RFC7323_PAWS); | 
|  | goto discard_and_undo; | 
|  | } | 
|  | if (th->syn) { | 
|  | /* We see SYN without ACK. It is attempt of | 
|  | * simultaneous connect with crossed SYNs. | 
|  | * Particularly, it can be connect to self. | 
|  | */ | 
|  | #ifdef CONFIG_TCP_AO | 
|  | struct tcp_ao_info *ao; | 
|  |  | 
|  | ao = rcu_dereference_protected(tp->ao_info, | 
|  | lockdep_sock_is_held(sk)); | 
|  | if (ao) { | 
|  | WRITE_ONCE(ao->risn, th->seq); | 
|  | ao->rcv_sne = 0; | 
|  | } | 
|  | #endif | 
|  | tcp_set_state(sk, TCP_SYN_RECV); | 
|  |  | 
|  | if (tp->rx_opt.saw_tstamp) { | 
|  | tp->rx_opt.tstamp_ok = 1; | 
|  | tcp_store_ts_recent(tp); | 
|  | tp->tcp_header_len = | 
|  | sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 
|  | } else { | 
|  | tp->tcp_header_len = sizeof(struct tcphdr); | 
|  | } | 
|  |  | 
|  | WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); | 
|  | WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); | 
|  | tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; | 
|  |  | 
|  | /* RFC1323: The window in SYN & SYN/ACK segments is | 
|  | * never scaled. | 
|  | */ | 
|  | tp->snd_wnd    = ntohs(th->window); | 
|  | tp->snd_wl1    = TCP_SKB_CB(skb)->seq; | 
|  | tp->max_window = tp->snd_wnd; | 
|  |  | 
|  | tcp_ecn_rcv_syn(tp, th); | 
|  |  | 
|  | tcp_mtup_init(sk); | 
|  | tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); | 
|  | tcp_initialize_rcv_mss(sk); | 
|  |  | 
|  | tcp_send_synack(sk); | 
|  | #if 0 | 
|  | /* Note, we could accept data and URG from this segment. | 
|  | * There are no obstacles to make this (except that we must | 
|  | * either change tcp_recvmsg() to prevent it from returning data | 
|  | * before 3WHS completes per RFC793, or employ TCP Fast Open). | 
|  | * | 
|  | * However, if we ignore data in ACKless segments sometimes, | 
|  | * we have no reasons to accept it sometimes. | 
|  | * Also, seems the code doing it in step6 of tcp_rcv_state_process | 
|  | * is not flawless. So, discard packet for sanity. | 
|  | * Uncomment this return to process the data. | 
|  | */ | 
|  | return -1; | 
|  | #else | 
|  | goto consume; | 
|  | #endif | 
|  | } | 
|  | /* "fifth, if neither of the SYN or RST bits is set then | 
|  | * drop the segment and return." | 
|  | */ | 
|  |  | 
|  | discard_and_undo: | 
|  | tcp_clear_options(&tp->rx_opt); | 
|  | tp->rx_opt.mss_clamp = saved_clamp; | 
|  | tcp_drop_reason(sk, skb, reason); | 
|  | return 0; | 
|  |  | 
|  | reset_and_undo: | 
|  | tcp_clear_options(&tp->rx_opt); | 
|  | tp->rx_opt.mss_clamp = saved_clamp; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct request_sock *req; | 
|  |  | 
|  | /* If we are still handling the SYNACK RTO, see if timestamp ECR allows | 
|  | * undo. If peer SACKs triggered fast recovery, we can't undo here. | 
|  | */ | 
|  | if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) | 
|  | tcp_try_undo_recovery(sk); | 
|  |  | 
|  | /* Reset rtx states to prevent spurious retransmits_timed_out() */ | 
|  | tcp_update_rto_time(tp); | 
|  | tp->retrans_stamp = 0; | 
|  | inet_csk(sk)->icsk_retransmits = 0; | 
|  |  | 
|  | /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, | 
|  | * we no longer need req so release it. | 
|  | */ | 
|  | req = rcu_dereference_protected(tp->fastopen_rsk, | 
|  | lockdep_sock_is_held(sk)); | 
|  | reqsk_fastopen_remove(sk, req, false); | 
|  |  | 
|  | /* Re-arm the timer because data may have been sent out. | 
|  | * This is similar to the regular data transmission case | 
|  | * when new data has just been ack'ed. | 
|  | * | 
|  | * (TFO) - we could try to be more aggressive and | 
|  | * retransmitting any data sooner based on when they | 
|  | * are sent out. | 
|  | */ | 
|  | tcp_rearm_rto(sk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	This function implements the receiving procedure of RFC 793 for | 
|  | *	all states except ESTABLISHED and TIME_WAIT. | 
|  | *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be | 
|  | *	address independent. | 
|  | */ | 
|  |  | 
|  | int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | const struct tcphdr *th = tcp_hdr(skb); | 
|  | struct request_sock *req; | 
|  | int queued = 0; | 
|  | bool acceptable; | 
|  | SKB_DR(reason); | 
|  |  | 
|  | switch (sk->sk_state) { | 
|  | case TCP_CLOSE: | 
|  | SKB_DR_SET(reason, TCP_CLOSE); | 
|  | goto discard; | 
|  |  | 
|  | case TCP_LISTEN: | 
|  | if (th->ack) | 
|  | return 1; | 
|  |  | 
|  | if (th->rst) { | 
|  | SKB_DR_SET(reason, TCP_RESET); | 
|  | goto discard; | 
|  | } | 
|  | if (th->syn) { | 
|  | if (th->fin) { | 
|  | SKB_DR_SET(reason, TCP_FLAGS); | 
|  | goto discard; | 
|  | } | 
|  | /* It is possible that we process SYN packets from backlog, | 
|  | * so we need to make sure to disable BH and RCU right there. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | local_bh_disable(); | 
|  | acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; | 
|  | local_bh_enable(); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!acceptable) | 
|  | return 1; | 
|  | consume_skb(skb); | 
|  | return 0; | 
|  | } | 
|  | SKB_DR_SET(reason, TCP_FLAGS); | 
|  | goto discard; | 
|  |  | 
|  | case TCP_SYN_SENT: | 
|  | tp->rx_opt.saw_tstamp = 0; | 
|  | tcp_mstamp_refresh(tp); | 
|  | queued = tcp_rcv_synsent_state_process(sk, skb, th); | 
|  | if (queued >= 0) | 
|  | return queued; | 
|  |  | 
|  | /* Do step6 onward by hand. */ | 
|  | tcp_urg(sk, skb, th); | 
|  | __kfree_skb(skb); | 
|  | tcp_data_snd_check(sk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | tcp_mstamp_refresh(tp); | 
|  | tp->rx_opt.saw_tstamp = 0; | 
|  | req = rcu_dereference_protected(tp->fastopen_rsk, | 
|  | lockdep_sock_is_held(sk)); | 
|  | if (req) { | 
|  | bool req_stolen; | 
|  |  | 
|  | WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && | 
|  | sk->sk_state != TCP_FIN_WAIT1); | 
|  |  | 
|  | if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { | 
|  | SKB_DR_SET(reason, TCP_FASTOPEN); | 
|  | goto discard; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!th->ack && !th->rst && !th->syn) { | 
|  | SKB_DR_SET(reason, TCP_FLAGS); | 
|  | goto discard; | 
|  | } | 
|  | if (!tcp_validate_incoming(sk, skb, th, 0)) | 
|  | return 0; | 
|  |  | 
|  | /* step 5: check the ACK field */ | 
|  | acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | | 
|  | FLAG_UPDATE_TS_RECENT | | 
|  | FLAG_NO_CHALLENGE_ACK) > 0; | 
|  |  | 
|  | if (!acceptable) { | 
|  | if (sk->sk_state == TCP_SYN_RECV) | 
|  | return 1;	/* send one RST */ | 
|  | tcp_send_challenge_ack(sk); | 
|  | SKB_DR_SET(reason, TCP_OLD_ACK); | 
|  | goto discard; | 
|  | } | 
|  | switch (sk->sk_state) { | 
|  | case TCP_SYN_RECV: | 
|  | tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ | 
|  | if (!tp->srtt_us) | 
|  | tcp_synack_rtt_meas(sk, req); | 
|  |  | 
|  | if (req) { | 
|  | tcp_rcv_synrecv_state_fastopen(sk); | 
|  | } else { | 
|  | tcp_try_undo_spurious_syn(sk); | 
|  | tp->retrans_stamp = 0; | 
|  | tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, | 
|  | skb); | 
|  | WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); | 
|  | } | 
|  | tcp_ao_established(sk); | 
|  | smp_mb(); | 
|  | tcp_set_state(sk, TCP_ESTABLISHED); | 
|  | sk->sk_state_change(sk); | 
|  |  | 
|  | /* Note, that this wakeup is only for marginal crossed SYN case. | 
|  | * Passively open sockets are not waked up, because | 
|  | * sk->sk_sleep == NULL and sk->sk_socket == NULL. | 
|  | */ | 
|  | if (sk->sk_socket) | 
|  | sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); | 
|  |  | 
|  | tp->snd_una = TCP_SKB_CB(skb)->ack_seq; | 
|  | tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; | 
|  | tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); | 
|  |  | 
|  | if (tp->rx_opt.tstamp_ok) | 
|  | tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; | 
|  |  | 
|  | if (!inet_csk(sk)->icsk_ca_ops->cong_control) | 
|  | tcp_update_pacing_rate(sk); | 
|  |  | 
|  | /* Prevent spurious tcp_cwnd_restart() on first data packet */ | 
|  | tp->lsndtime = tcp_jiffies32; | 
|  |  | 
|  | tcp_initialize_rcv_mss(sk); | 
|  | tcp_fast_path_on(tp); | 
|  | break; | 
|  |  | 
|  | case TCP_FIN_WAIT1: { | 
|  | int tmo; | 
|  |  | 
|  | if (req) | 
|  | tcp_rcv_synrecv_state_fastopen(sk); | 
|  |  | 
|  | if (tp->snd_una != tp->write_seq) | 
|  | break; | 
|  |  | 
|  | tcp_set_state(sk, TCP_FIN_WAIT2); | 
|  | WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); | 
|  |  | 
|  | sk_dst_confirm(sk); | 
|  |  | 
|  | if (!sock_flag(sk, SOCK_DEAD)) { | 
|  | /* Wake up lingering close() */ | 
|  | sk->sk_state_change(sk); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (READ_ONCE(tp->linger2) < 0) { | 
|  | tcp_done(sk); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); | 
|  | return 1; | 
|  | } | 
|  | if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | 
|  | after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { | 
|  | /* Receive out of order FIN after close() */ | 
|  | if (tp->syn_fastopen && th->fin) | 
|  | tcp_fastopen_active_disable(sk); | 
|  | tcp_done(sk); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | tmo = tcp_fin_time(sk); | 
|  | if (tmo > TCP_TIMEWAIT_LEN) { | 
|  | inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); | 
|  | } else if (th->fin || sock_owned_by_user(sk)) { | 
|  | /* Bad case. We could lose such FIN otherwise. | 
|  | * It is not a big problem, but it looks confusing | 
|  | * and not so rare event. We still can lose it now, | 
|  | * if it spins in bh_lock_sock(), but it is really | 
|  | * marginal case. | 
|  | */ | 
|  | inet_csk_reset_keepalive_timer(sk, tmo); | 
|  | } else { | 
|  | tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); | 
|  | goto consume; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TCP_CLOSING: | 
|  | if (tp->snd_una == tp->write_seq) { | 
|  | tcp_time_wait(sk, TCP_TIME_WAIT, 0); | 
|  | goto consume; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TCP_LAST_ACK: | 
|  | if (tp->snd_una == tp->write_seq) { | 
|  | tcp_update_metrics(sk); | 
|  | tcp_done(sk); | 
|  | goto consume; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* step 6: check the URG bit */ | 
|  | tcp_urg(sk, skb, th); | 
|  |  | 
|  | /* step 7: process the segment text */ | 
|  | switch (sk->sk_state) { | 
|  | case TCP_CLOSE_WAIT: | 
|  | case TCP_CLOSING: | 
|  | case TCP_LAST_ACK: | 
|  | if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | 
|  | /* If a subflow has been reset, the packet should not | 
|  | * continue to be processed, drop the packet. | 
|  | */ | 
|  | if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) | 
|  | goto discard; | 
|  | break; | 
|  | } | 
|  | fallthrough; | 
|  | case TCP_FIN_WAIT1: | 
|  | case TCP_FIN_WAIT2: | 
|  | /* RFC 793 says to queue data in these states, | 
|  | * RFC 1122 says we MUST send a reset. | 
|  | * BSD 4.4 also does reset. | 
|  | */ | 
|  | if (sk->sk_shutdown & RCV_SHUTDOWN) { | 
|  | if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | 
|  | after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); | 
|  | tcp_reset(sk, skb); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | fallthrough; | 
|  | case TCP_ESTABLISHED: | 
|  | tcp_data_queue(sk, skb); | 
|  | queued = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* tcp_data could move socket to TIME-WAIT */ | 
|  | if (sk->sk_state != TCP_CLOSE) { | 
|  | tcp_data_snd_check(sk); | 
|  | tcp_ack_snd_check(sk); | 
|  | } | 
|  |  | 
|  | if (!queued) { | 
|  | discard: | 
|  | tcp_drop_reason(sk, skb, reason); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | consume: | 
|  | __kfree_skb(skb); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_rcv_state_process); | 
|  |  | 
|  | static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) | 
|  | { | 
|  | struct inet_request_sock *ireq = inet_rsk(req); | 
|  |  | 
|  | if (family == AF_INET) | 
|  | net_dbg_ratelimited("drop open request from %pI4/%u\n", | 
|  | &ireq->ir_rmt_addr, port); | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | else if (family == AF_INET6) | 
|  | net_dbg_ratelimited("drop open request from %pI6/%u\n", | 
|  | &ireq->ir_v6_rmt_addr, port); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set | 
|  | * | 
|  | * If we receive a SYN packet with these bits set, it means a | 
|  | * network is playing bad games with TOS bits. In order to | 
|  | * avoid possible false congestion notifications, we disable | 
|  | * TCP ECN negotiation. | 
|  | * | 
|  | * Exception: tcp_ca wants ECN. This is required for DCTCP | 
|  | * congestion control: Linux DCTCP asserts ECT on all packets, | 
|  | * including SYN, which is most optimal solution; however, | 
|  | * others, such as FreeBSD do not. | 
|  | * | 
|  | * Exception: At least one of the reserved bits of the TCP header (th->res1) is | 
|  | * set, indicating the use of a future TCP extension (such as AccECN). See | 
|  | * RFC8311 §4.3 which updates RFC3168 to allow the development of such | 
|  | * extensions. | 
|  | */ | 
|  | static void tcp_ecn_create_request(struct request_sock *req, | 
|  | const struct sk_buff *skb, | 
|  | const struct sock *listen_sk, | 
|  | const struct dst_entry *dst) | 
|  | { | 
|  | const struct tcphdr *th = tcp_hdr(skb); | 
|  | const struct net *net = sock_net(listen_sk); | 
|  | bool th_ecn = th->ece && th->cwr; | 
|  | bool ect, ecn_ok; | 
|  | u32 ecn_ok_dst; | 
|  |  | 
|  | if (!th_ecn) | 
|  | return; | 
|  |  | 
|  | ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); | 
|  | ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); | 
|  | ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; | 
|  |  | 
|  | if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || | 
|  | (ecn_ok_dst & DST_FEATURE_ECN_CA) || | 
|  | tcp_bpf_ca_needs_ecn((struct sock *)req)) | 
|  | inet_rsk(req)->ecn_ok = 1; | 
|  | } | 
|  |  | 
|  | static void tcp_openreq_init(struct request_sock *req, | 
|  | const struct tcp_options_received *rx_opt, | 
|  | struct sk_buff *skb, const struct sock *sk) | 
|  | { | 
|  | struct inet_request_sock *ireq = inet_rsk(req); | 
|  |  | 
|  | req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */ | 
|  | tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; | 
|  | tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; | 
|  | tcp_rsk(req)->snt_synack = 0; | 
|  | tcp_rsk(req)->last_oow_ack_time = 0; | 
|  | req->mss = rx_opt->mss_clamp; | 
|  | req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; | 
|  | ireq->tstamp_ok = rx_opt->tstamp_ok; | 
|  | ireq->sack_ok = rx_opt->sack_ok; | 
|  | ireq->snd_wscale = rx_opt->snd_wscale; | 
|  | ireq->wscale_ok = rx_opt->wscale_ok; | 
|  | ireq->acked = 0; | 
|  | ireq->ecn_ok = 0; | 
|  | ireq->ir_rmt_port = tcp_hdr(skb)->source; | 
|  | ireq->ir_num = ntohs(tcp_hdr(skb)->dest); | 
|  | ireq->ir_mark = inet_request_mark(sk, skb); | 
|  | #if IS_ENABLED(CONFIG_SMC) | 
|  | ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && | 
|  | tcp_sk(sk)->smc_hs_congested(sk)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, | 
|  | struct sock *sk_listener, | 
|  | bool attach_listener) | 
|  | { | 
|  | struct request_sock *req = reqsk_alloc(ops, sk_listener, | 
|  | attach_listener); | 
|  |  | 
|  | if (req) { | 
|  | struct inet_request_sock *ireq = inet_rsk(req); | 
|  |  | 
|  | ireq->ireq_opt = NULL; | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | ireq->pktopts = NULL; | 
|  | #endif | 
|  | atomic64_set(&ireq->ir_cookie, 0); | 
|  | ireq->ireq_state = TCP_NEW_SYN_RECV; | 
|  | write_pnet(&ireq->ireq_net, sock_net(sk_listener)); | 
|  | ireq->ireq_family = sk_listener->sk_family; | 
|  | req->timeout = TCP_TIMEOUT_INIT; | 
|  | } | 
|  |  | 
|  | return req; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_reqsk_alloc); | 
|  |  | 
|  | /* | 
|  | * Return true if a syncookie should be sent | 
|  | */ | 
|  | static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) | 
|  | { | 
|  | struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; | 
|  | const char *msg = "Dropping request"; | 
|  | struct net *net = sock_net(sk); | 
|  | bool want_cookie = false; | 
|  | u8 syncookies; | 
|  |  | 
|  | syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); | 
|  |  | 
|  | #ifdef CONFIG_SYN_COOKIES | 
|  | if (syncookies) { | 
|  | msg = "Sending cookies"; | 
|  | want_cookie = true; | 
|  | __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); | 
|  | } else | 
|  | #endif | 
|  | __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); | 
|  |  | 
|  | if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && | 
|  | xchg(&queue->synflood_warned, 1) == 0) { | 
|  | if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { | 
|  | net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", | 
|  | proto, inet6_rcv_saddr(sk), | 
|  | sk->sk_num, msg); | 
|  | } else { | 
|  | net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", | 
|  | proto, &sk->sk_rcv_saddr, | 
|  | sk->sk_num, msg); | 
|  | } | 
|  | } | 
|  |  | 
|  | return want_cookie; | 
|  | } | 
|  |  | 
|  | static void tcp_reqsk_record_syn(const struct sock *sk, | 
|  | struct request_sock *req, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | if (tcp_sk(sk)->save_syn) { | 
|  | u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); | 
|  | struct saved_syn *saved_syn; | 
|  | u32 mac_hdrlen; | 
|  | void *base; | 
|  |  | 
|  | if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */ | 
|  | base = skb_mac_header(skb); | 
|  | mac_hdrlen = skb_mac_header_len(skb); | 
|  | len += mac_hdrlen; | 
|  | } else { | 
|  | base = skb_network_header(skb); | 
|  | mac_hdrlen = 0; | 
|  | } | 
|  |  | 
|  | saved_syn = kmalloc(struct_size(saved_syn, data, len), | 
|  | GFP_ATOMIC); | 
|  | if (saved_syn) { | 
|  | saved_syn->mac_hdrlen = mac_hdrlen; | 
|  | saved_syn->network_hdrlen = skb_network_header_len(skb); | 
|  | saved_syn->tcp_hdrlen = tcp_hdrlen(skb); | 
|  | memcpy(saved_syn->data, base, len); | 
|  | req->saved_syn = saved_syn; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If a SYN cookie is required and supported, returns a clamped MSS value to be | 
|  | * used for SYN cookie generation. | 
|  | */ | 
|  | u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, | 
|  | const struct tcp_request_sock_ops *af_ops, | 
|  | struct sock *sk, struct tcphdr *th) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u16 mss; | 
|  |  | 
|  | if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && | 
|  | !inet_csk_reqsk_queue_is_full(sk)) | 
|  | return 0; | 
|  |  | 
|  | if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) | 
|  | return 0; | 
|  |  | 
|  | if (sk_acceptq_is_full(sk)) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); | 
|  | if (!mss) | 
|  | mss = af_ops->mss_clamp; | 
|  |  | 
|  | return mss; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); | 
|  |  | 
|  | int tcp_conn_request(struct request_sock_ops *rsk_ops, | 
|  | const struct tcp_request_sock_ops *af_ops, | 
|  | struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_fastopen_cookie foc = { .len = -1 }; | 
|  | __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; | 
|  | struct tcp_options_received tmp_opt; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct net *net = sock_net(sk); | 
|  | struct sock *fastopen_sk = NULL; | 
|  | struct request_sock *req; | 
|  | bool want_cookie = false; | 
|  | struct dst_entry *dst; | 
|  | struct flowi fl; | 
|  | u8 syncookies; | 
|  |  | 
|  | #ifdef CONFIG_TCP_AO | 
|  | const struct tcp_ao_hdr *aoh; | 
|  | #endif | 
|  |  | 
|  | syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); | 
|  |  | 
|  | /* TW buckets are converted to open requests without | 
|  | * limitations, they conserve resources and peer is | 
|  | * evidently real one. | 
|  | */ | 
|  | if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { | 
|  | want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); | 
|  | if (!want_cookie) | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  | if (sk_acceptq_is_full(sk)) { | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  | req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); | 
|  | if (!req) | 
|  | goto drop; | 
|  |  | 
|  | req->syncookie = want_cookie; | 
|  | tcp_rsk(req)->af_specific = af_ops; | 
|  | tcp_rsk(req)->ts_off = 0; | 
|  | tcp_rsk(req)->req_usec_ts = false; | 
|  | #if IS_ENABLED(CONFIG_MPTCP) | 
|  | tcp_rsk(req)->is_mptcp = 0; | 
|  | #endif | 
|  |  | 
|  | tcp_clear_options(&tmp_opt); | 
|  | tmp_opt.mss_clamp = af_ops->mss_clamp; | 
|  | tmp_opt.user_mss  = tp->rx_opt.user_mss; | 
|  | tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, | 
|  | want_cookie ? NULL : &foc); | 
|  |  | 
|  | if (want_cookie && !tmp_opt.saw_tstamp) | 
|  | tcp_clear_options(&tmp_opt); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_SMC) && want_cookie) | 
|  | tmp_opt.smc_ok = 0; | 
|  |  | 
|  | tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; | 
|  | tcp_openreq_init(req, &tmp_opt, skb, sk); | 
|  | inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); | 
|  |  | 
|  | /* Note: tcp_v6_init_req() might override ir_iif for link locals */ | 
|  | inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); | 
|  |  | 
|  | dst = af_ops->route_req(sk, skb, &fl, req); | 
|  | if (!dst) | 
|  | goto drop_and_free; | 
|  |  | 
|  | if (tmp_opt.tstamp_ok) { | 
|  | tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); | 
|  | tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); | 
|  | } | 
|  | if (!want_cookie && !isn) { | 
|  | int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); | 
|  |  | 
|  | /* Kill the following clause, if you dislike this way. */ | 
|  | if (!syncookies && | 
|  | (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < | 
|  | (max_syn_backlog >> 2)) && | 
|  | !tcp_peer_is_proven(req, dst)) { | 
|  | /* Without syncookies last quarter of | 
|  | * backlog is filled with destinations, | 
|  | * proven to be alive. | 
|  | * It means that we continue to communicate | 
|  | * to destinations, already remembered | 
|  | * to the moment of synflood. | 
|  | */ | 
|  | pr_drop_req(req, ntohs(tcp_hdr(skb)->source), | 
|  | rsk_ops->family); | 
|  | goto drop_and_release; | 
|  | } | 
|  |  | 
|  | isn = af_ops->init_seq(skb); | 
|  | } | 
|  |  | 
|  | tcp_ecn_create_request(req, skb, sk, dst); | 
|  |  | 
|  | if (want_cookie) { | 
|  | isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); | 
|  | if (!tmp_opt.tstamp_ok) | 
|  | inet_rsk(req)->ecn_ok = 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TCP_AO | 
|  | if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) | 
|  | goto drop_and_release; /* Invalid TCP options */ | 
|  | if (aoh) { | 
|  | tcp_rsk(req)->used_tcp_ao = true; | 
|  | tcp_rsk(req)->ao_rcv_next = aoh->keyid; | 
|  | tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; | 
|  |  | 
|  | } else { | 
|  | tcp_rsk(req)->used_tcp_ao = false; | 
|  | } | 
|  | #endif | 
|  | tcp_rsk(req)->snt_isn = isn; | 
|  | tcp_rsk(req)->txhash = net_tx_rndhash(); | 
|  | tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; | 
|  | tcp_openreq_init_rwin(req, sk, dst); | 
|  | sk_rx_queue_set(req_to_sk(req), skb); | 
|  | if (!want_cookie) { | 
|  | tcp_reqsk_record_syn(sk, req, skb); | 
|  | fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); | 
|  | } | 
|  | if (fastopen_sk) { | 
|  | af_ops->send_synack(fastopen_sk, dst, &fl, req, | 
|  | &foc, TCP_SYNACK_FASTOPEN, skb); | 
|  | /* Add the child socket directly into the accept queue */ | 
|  | if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { | 
|  | reqsk_fastopen_remove(fastopen_sk, req, false); | 
|  | bh_unlock_sock(fastopen_sk); | 
|  | sock_put(fastopen_sk); | 
|  | goto drop_and_free; | 
|  | } | 
|  | sk->sk_data_ready(sk); | 
|  | bh_unlock_sock(fastopen_sk); | 
|  | sock_put(fastopen_sk); | 
|  | } else { | 
|  | tcp_rsk(req)->tfo_listener = false; | 
|  | if (!want_cookie) { | 
|  | req->timeout = tcp_timeout_init((struct sock *)req); | 
|  | inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); | 
|  | } | 
|  | af_ops->send_synack(sk, dst, &fl, req, &foc, | 
|  | !want_cookie ? TCP_SYNACK_NORMAL : | 
|  | TCP_SYNACK_COOKIE, | 
|  | skb); | 
|  | if (want_cookie) { | 
|  | reqsk_free(req); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | reqsk_put(req); | 
|  | return 0; | 
|  |  | 
|  | drop_and_release: | 
|  | dst_release(dst); | 
|  | drop_and_free: | 
|  | __reqsk_free(req); | 
|  | drop: | 
|  | tcp_listendrop(sk); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_conn_request); |