| // SPDX-License-Identifier: GPL-2.0-or-later |
| |
| #define _GNU_SOURCE |
| #include "../kselftest_harness.h" |
| #include <asm-generic/mman.h> /* Force the import of the tools version. */ |
| #include <assert.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <linux/limits.h> |
| #include <linux/userfaultfd.h> |
| #include <linux/fs.h> |
| #include <setjmp.h> |
| #include <signal.h> |
| #include <stdbool.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| #include <sys/syscall.h> |
| #include <sys/uio.h> |
| #include <unistd.h> |
| #include "vm_util.h" |
| |
| #include "../pidfd/pidfd.h" |
| |
| /* |
| * Ignore the checkpatch warning, as per the C99 standard, section 7.14.1.1: |
| * |
| * "If the signal occurs other than as the result of calling the abort or raise |
| * function, the behavior is undefined if the signal handler refers to any |
| * object with static storage duration other than by assigning a value to an |
| * object declared as volatile sig_atomic_t" |
| */ |
| static volatile sig_atomic_t signal_jump_set; |
| static sigjmp_buf signal_jmp_buf; |
| |
| /* |
| * How is the test backing the mapping being tested? |
| */ |
| enum backing_type { |
| ANON_BACKED, |
| SHMEM_BACKED, |
| LOCAL_FILE_BACKED, |
| }; |
| |
| FIXTURE(guard_regions) |
| { |
| unsigned long page_size; |
| char path[PATH_MAX]; |
| int fd; |
| }; |
| |
| FIXTURE_VARIANT(guard_regions) |
| { |
| enum backing_type backing; |
| }; |
| |
| FIXTURE_VARIANT_ADD(guard_regions, anon) |
| { |
| .backing = ANON_BACKED, |
| }; |
| |
| FIXTURE_VARIANT_ADD(guard_regions, shmem) |
| { |
| .backing = SHMEM_BACKED, |
| }; |
| |
| FIXTURE_VARIANT_ADD(guard_regions, file) |
| { |
| .backing = LOCAL_FILE_BACKED, |
| }; |
| |
| static bool is_anon_backed(const FIXTURE_VARIANT(guard_regions) * variant) |
| { |
| switch (variant->backing) { |
| case ANON_BACKED: |
| case SHMEM_BACKED: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void *mmap_(FIXTURE_DATA(guard_regions) * self, |
| const FIXTURE_VARIANT(guard_regions) * variant, |
| void *addr, size_t length, int prot, int extra_flags, |
| off_t offset) |
| { |
| int fd; |
| int flags = extra_flags; |
| |
| switch (variant->backing) { |
| case ANON_BACKED: |
| flags |= MAP_PRIVATE | MAP_ANON; |
| fd = -1; |
| break; |
| case SHMEM_BACKED: |
| case LOCAL_FILE_BACKED: |
| flags |= MAP_SHARED; |
| fd = self->fd; |
| break; |
| default: |
| ksft_exit_fail(); |
| break; |
| } |
| |
| return mmap(addr, length, prot, flags, fd, offset); |
| } |
| |
| static int userfaultfd(int flags) |
| { |
| return syscall(SYS_userfaultfd, flags); |
| } |
| |
| static void handle_fatal(int c) |
| { |
| if (!signal_jump_set) |
| return; |
| |
| siglongjmp(signal_jmp_buf, c); |
| } |
| |
| static ssize_t sys_process_madvise(int pidfd, const struct iovec *iovec, |
| size_t n, int advice, unsigned int flags) |
| { |
| return syscall(__NR_process_madvise, pidfd, iovec, n, advice, flags); |
| } |
| |
| /* |
| * Enable our signal catcher and try to read/write the specified buffer. The |
| * return value indicates whether the read/write succeeds without a fatal |
| * signal. |
| */ |
| static bool try_access_buf(char *ptr, bool write) |
| { |
| bool failed; |
| |
| /* Tell signal handler to jump back here on fatal signal. */ |
| signal_jump_set = true; |
| /* If a fatal signal arose, we will jump back here and failed is set. */ |
| failed = sigsetjmp(signal_jmp_buf, 0) != 0; |
| |
| if (!failed) { |
| if (write) |
| *ptr = 'x'; |
| else |
| FORCE_READ(ptr); |
| } |
| |
| signal_jump_set = false; |
| return !failed; |
| } |
| |
| /* Try and read from a buffer, return true if no fatal signal. */ |
| static bool try_read_buf(char *ptr) |
| { |
| return try_access_buf(ptr, false); |
| } |
| |
| /* Try and write to a buffer, return true if no fatal signal. */ |
| static bool try_write_buf(char *ptr) |
| { |
| return try_access_buf(ptr, true); |
| } |
| |
| /* |
| * Try and BOTH read from AND write to a buffer, return true if BOTH operations |
| * succeed. |
| */ |
| static bool try_read_write_buf(char *ptr) |
| { |
| return try_read_buf(ptr) && try_write_buf(ptr); |
| } |
| |
| static void setup_sighandler(void) |
| { |
| struct sigaction act = { |
| .sa_handler = &handle_fatal, |
| .sa_flags = SA_NODEFER, |
| }; |
| |
| sigemptyset(&act.sa_mask); |
| if (sigaction(SIGSEGV, &act, NULL)) |
| ksft_exit_fail_perror("sigaction"); |
| } |
| |
| static void teardown_sighandler(void) |
| { |
| struct sigaction act = { |
| .sa_handler = SIG_DFL, |
| .sa_flags = SA_NODEFER, |
| }; |
| |
| sigemptyset(&act.sa_mask); |
| sigaction(SIGSEGV, &act, NULL); |
| } |
| |
| static int open_file(const char *prefix, char *path) |
| { |
| int fd; |
| |
| snprintf(path, PATH_MAX, "%sguard_regions_test_file_XXXXXX", prefix); |
| fd = mkstemp(path); |
| if (fd < 0) |
| ksft_exit_fail_perror("mkstemp"); |
| |
| return fd; |
| } |
| |
| /* Establish a varying pattern in a buffer. */ |
| static void set_pattern(char *ptr, size_t num_pages, size_t page_size) |
| { |
| size_t i; |
| |
| for (i = 0; i < num_pages; i++) { |
| char *ptr2 = &ptr[i * page_size]; |
| |
| memset(ptr2, 'a' + (i % 26), page_size); |
| } |
| } |
| |
| /* |
| * Check that a buffer contains the pattern set by set_pattern(), starting at a |
| * page offset of pgoff within the buffer. |
| */ |
| static bool check_pattern_offset(char *ptr, size_t num_pages, size_t page_size, |
| size_t pgoff) |
| { |
| size_t i; |
| |
| for (i = 0; i < num_pages * page_size; i++) { |
| size_t offset = pgoff * page_size + i; |
| char actual = ptr[offset]; |
| char expected = 'a' + ((offset / page_size) % 26); |
| |
| if (actual != expected) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Check that a buffer contains the pattern set by set_pattern(). */ |
| static bool check_pattern(char *ptr, size_t num_pages, size_t page_size) |
| { |
| return check_pattern_offset(ptr, num_pages, page_size, 0); |
| } |
| |
| /* Determine if a buffer contains only repetitions of a specified char. */ |
| static bool is_buf_eq(char *buf, size_t size, char chr) |
| { |
| size_t i; |
| |
| for (i = 0; i < size; i++) { |
| if (buf[i] != chr) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| FIXTURE_SETUP(guard_regions) |
| { |
| self->page_size = (unsigned long)sysconf(_SC_PAGESIZE); |
| setup_sighandler(); |
| |
| switch (variant->backing) { |
| case ANON_BACKED: |
| return; |
| case LOCAL_FILE_BACKED: |
| self->fd = open_file("", self->path); |
| break; |
| case SHMEM_BACKED: |
| self->fd = memfd_create(self->path, 0); |
| break; |
| } |
| |
| /* We truncate file to at least 100 pages, tests can modify as needed. */ |
| ASSERT_EQ(ftruncate(self->fd, 100 * self->page_size), 0); |
| }; |
| |
| FIXTURE_TEARDOWN_PARENT(guard_regions) |
| { |
| teardown_sighandler(); |
| |
| if (variant->backing == ANON_BACKED) |
| return; |
| |
| if (self->fd >= 0) |
| close(self->fd); |
| |
| if (self->path[0] != '\0') |
| unlink(self->path); |
| } |
| |
| TEST_F(guard_regions, basic) |
| { |
| const unsigned long NUM_PAGES = 10; |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| ptr = mmap_(self, variant, NULL, NUM_PAGES * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Trivially assert we can touch the first page. */ |
| ASSERT_TRUE(try_read_write_buf(ptr)); |
| |
| ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Establish that 1st page SIGSEGV's. */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| |
| /* Ensure we can touch everything else.*/ |
| for (i = 1; i < NUM_PAGES; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* Establish a guard page at the end of the mapping. */ |
| ASSERT_EQ(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size, |
| MADV_GUARD_INSTALL), 0); |
| |
| /* Check that both guard pages result in SIGSEGV. */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| ASSERT_FALSE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size])); |
| |
| /* Remove the first guard page. */ |
| ASSERT_FALSE(madvise(ptr, page_size, MADV_GUARD_REMOVE)); |
| |
| /* Make sure we can touch it. */ |
| ASSERT_TRUE(try_read_write_buf(ptr)); |
| |
| /* Remove the last guard page. */ |
| ASSERT_FALSE(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size, |
| MADV_GUARD_REMOVE)); |
| |
| /* Make sure we can touch it. */ |
| ASSERT_TRUE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size])); |
| |
| /* |
| * Test setting a _range_ of pages, namely the first 3. The first of |
| * these be faulted in, so this also tests that we can install guard |
| * pages over backed pages. |
| */ |
| ASSERT_EQ(madvise(ptr, 3 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Make sure they are all guard pages. */ |
| for (i = 0; i < 3; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Make sure the rest are not. */ |
| for (i = 3; i < NUM_PAGES; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* Remove guard pages. */ |
| ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Now make sure we can touch everything. */ |
| for (i = 0; i < NUM_PAGES; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* |
| * Now remove all guard pages, make sure we don't remove existing |
| * entries. |
| */ |
| ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0); |
| |
| for (i = 0; i < NUM_PAGES * page_size; i += page_size) { |
| char chr = ptr[i]; |
| |
| ASSERT_EQ(chr, 'x'); |
| } |
| |
| ASSERT_EQ(munmap(ptr, NUM_PAGES * page_size), 0); |
| } |
| |
| /* Assert that operations applied across multiple VMAs work as expected. */ |
| TEST_F(guard_regions, multi_vma) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr_region, *ptr, *ptr1, *ptr2, *ptr3; |
| int i; |
| |
| /* Reserve a 100 page region over which we can install VMAs. */ |
| ptr_region = mmap_(self, variant, NULL, 100 * page_size, |
| PROT_NONE, 0, 0); |
| ASSERT_NE(ptr_region, MAP_FAILED); |
| |
| /* Place a VMA of 10 pages size at the start of the region. */ |
| ptr1 = mmap_(self, variant, ptr_region, 10 * page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr1, MAP_FAILED); |
| |
| /* Place a VMA of 5 pages size 50 pages into the region. */ |
| ptr2 = mmap_(self, variant, &ptr_region[50 * page_size], 5 * page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr2, MAP_FAILED); |
| |
| /* Place a VMA of 20 pages size at the end of the region. */ |
| ptr3 = mmap_(self, variant, &ptr_region[80 * page_size], 20 * page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr3, MAP_FAILED); |
| |
| /* Unmap gaps. */ |
| ASSERT_EQ(munmap(&ptr_region[10 * page_size], 40 * page_size), 0); |
| ASSERT_EQ(munmap(&ptr_region[55 * page_size], 25 * page_size), 0); |
| |
| /* |
| * We end up with VMAs like this: |
| * |
| * 0 10 .. 50 55 .. 80 100 |
| * [---] [---] [---] |
| */ |
| |
| /* |
| * Now mark the whole range as guard pages and make sure all VMAs are as |
| * such. |
| */ |
| |
| /* |
| * madvise() is certifiable and lets you perform operations over gaps, |
| * everything works, but it indicates an error and errno is set to |
| * -ENOMEM. Also if anything runs out of memory it is set to |
| * -ENOMEM. You are meant to guess which is which. |
| */ |
| ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), -1); |
| ASSERT_EQ(errno, ENOMEM); |
| |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr1[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| for (i = 0; i < 5; i++) { |
| char *curr = &ptr2[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| for (i = 0; i < 20; i++) { |
| char *curr = &ptr3[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Now remove guar pages over range and assert the opposite. */ |
| |
| ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), -1); |
| ASSERT_EQ(errno, ENOMEM); |
| |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr1[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| for (i = 0; i < 5; i++) { |
| char *curr = &ptr2[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| for (i = 0; i < 20; i++) { |
| char *curr = &ptr3[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* Now map incompatible VMAs in the gaps. */ |
| ptr = mmap_(self, variant, &ptr_region[10 * page_size], 40 * page_size, |
| PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| ptr = mmap_(self, variant, &ptr_region[55 * page_size], 25 * page_size, |
| PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* |
| * We end up with VMAs like this: |
| * |
| * 0 10 .. 50 55 .. 80 100 |
| * [---][xxxx][---][xxxx][---] |
| * |
| * Where 'x' signifies VMAs that cannot be merged with those adjacent to |
| * them. |
| */ |
| |
| /* Multiple VMAs adjacent to one another should result in no error. */ |
| ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), 0); |
| for (i = 0; i < 100; i++) { |
| char *curr = &ptr_region[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), 0); |
| for (i = 0; i < 100; i++) { |
| char *curr = &ptr_region[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr_region, 100 * page_size), 0); |
| } |
| |
| /* |
| * Assert that batched operations performed using process_madvise() work as |
| * expected. |
| */ |
| TEST_F(guard_regions, process_madvise) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr_region, *ptr1, *ptr2, *ptr3; |
| ssize_t count; |
| struct iovec vec[6]; |
| |
| /* Reserve region to map over. */ |
| ptr_region = mmap_(self, variant, NULL, 100 * page_size, |
| PROT_NONE, 0, 0); |
| ASSERT_NE(ptr_region, MAP_FAILED); |
| |
| /* |
| * 10 pages offset 1 page into reserve region. We MAP_POPULATE so we |
| * overwrite existing entries and test this code path against |
| * overwriting existing entries. |
| */ |
| ptr1 = mmap_(self, variant, &ptr_region[page_size], 10 * page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED | MAP_POPULATE, 0); |
| ASSERT_NE(ptr1, MAP_FAILED); |
| /* We want guard markers at start/end of each VMA. */ |
| vec[0].iov_base = ptr1; |
| vec[0].iov_len = page_size; |
| vec[1].iov_base = &ptr1[9 * page_size]; |
| vec[1].iov_len = page_size; |
| |
| /* 5 pages offset 50 pages into reserve region. */ |
| ptr2 = mmap_(self, variant, &ptr_region[50 * page_size], 5 * page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr2, MAP_FAILED); |
| vec[2].iov_base = ptr2; |
| vec[2].iov_len = page_size; |
| vec[3].iov_base = &ptr2[4 * page_size]; |
| vec[3].iov_len = page_size; |
| |
| /* 20 pages offset 79 pages into reserve region. */ |
| ptr3 = mmap_(self, variant, &ptr_region[79 * page_size], 20 * page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr3, MAP_FAILED); |
| vec[4].iov_base = ptr3; |
| vec[4].iov_len = page_size; |
| vec[5].iov_base = &ptr3[19 * page_size]; |
| vec[5].iov_len = page_size; |
| |
| /* Free surrounding VMAs. */ |
| ASSERT_EQ(munmap(ptr_region, page_size), 0); |
| ASSERT_EQ(munmap(&ptr_region[11 * page_size], 39 * page_size), 0); |
| ASSERT_EQ(munmap(&ptr_region[55 * page_size], 24 * page_size), 0); |
| ASSERT_EQ(munmap(&ptr_region[99 * page_size], page_size), 0); |
| |
| /* Now guard in one step. */ |
| count = sys_process_madvise(PIDFD_SELF, vec, 6, MADV_GUARD_INSTALL, 0); |
| |
| /* OK we don't have permission to do this, skip. */ |
| if (count == -1 && errno == EPERM) |
| SKIP(return, "No process_madvise() permissions, try running as root.\n"); |
| |
| /* Returns the number of bytes advised. */ |
| ASSERT_EQ(count, 6 * page_size); |
| |
| /* Now make sure the guarding was applied. */ |
| |
| ASSERT_FALSE(try_read_write_buf(ptr1)); |
| ASSERT_FALSE(try_read_write_buf(&ptr1[9 * page_size])); |
| |
| ASSERT_FALSE(try_read_write_buf(ptr2)); |
| ASSERT_FALSE(try_read_write_buf(&ptr2[4 * page_size])); |
| |
| ASSERT_FALSE(try_read_write_buf(ptr3)); |
| ASSERT_FALSE(try_read_write_buf(&ptr3[19 * page_size])); |
| |
| /* Now do the same with unguard... */ |
| count = sys_process_madvise(PIDFD_SELF, vec, 6, MADV_GUARD_REMOVE, 0); |
| |
| /* ...and everything should now succeed. */ |
| |
| ASSERT_TRUE(try_read_write_buf(ptr1)); |
| ASSERT_TRUE(try_read_write_buf(&ptr1[9 * page_size])); |
| |
| ASSERT_TRUE(try_read_write_buf(ptr2)); |
| ASSERT_TRUE(try_read_write_buf(&ptr2[4 * page_size])); |
| |
| ASSERT_TRUE(try_read_write_buf(ptr3)); |
| ASSERT_TRUE(try_read_write_buf(&ptr3[19 * page_size])); |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr1, 10 * page_size), 0); |
| ASSERT_EQ(munmap(ptr2, 5 * page_size), 0); |
| ASSERT_EQ(munmap(ptr3, 20 * page_size), 0); |
| } |
| |
| /* Assert that unmapping ranges does not leave guard markers behind. */ |
| TEST_F(guard_regions, munmap) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr, *ptr_new1, *ptr_new2; |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Guard first and last pages. */ |
| ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); |
| ASSERT_EQ(madvise(&ptr[9 * page_size], page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Assert that they are guarded. */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| ASSERT_FALSE(try_read_write_buf(&ptr[9 * page_size])); |
| |
| /* Unmap them. */ |
| ASSERT_EQ(munmap(ptr, page_size), 0); |
| ASSERT_EQ(munmap(&ptr[9 * page_size], page_size), 0); |
| |
| /* Map over them.*/ |
| ptr_new1 = mmap_(self, variant, ptr, page_size, PROT_READ | PROT_WRITE, |
| MAP_FIXED, 0); |
| ASSERT_NE(ptr_new1, MAP_FAILED); |
| ptr_new2 = mmap_(self, variant, &ptr[9 * page_size], page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr_new2, MAP_FAILED); |
| |
| /* Assert that they are now not guarded. */ |
| ASSERT_TRUE(try_read_write_buf(ptr_new1)); |
| ASSERT_TRUE(try_read_write_buf(ptr_new2)); |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* Assert that mprotect() operations have no bearing on guard markers. */ |
| TEST_F(guard_regions, mprotect) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Guard the middle of the range. */ |
| ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size, |
| MADV_GUARD_INSTALL), 0); |
| |
| /* Assert that it is indeed guarded. */ |
| ASSERT_FALSE(try_read_write_buf(&ptr[5 * page_size])); |
| ASSERT_FALSE(try_read_write_buf(&ptr[6 * page_size])); |
| |
| /* Now make these pages read-only. */ |
| ASSERT_EQ(mprotect(&ptr[5 * page_size], 2 * page_size, PROT_READ), 0); |
| |
| /* Make sure the range is still guarded. */ |
| ASSERT_FALSE(try_read_buf(&ptr[5 * page_size])); |
| ASSERT_FALSE(try_read_buf(&ptr[6 * page_size])); |
| |
| /* Make sure we can guard again without issue.*/ |
| ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size, |
| MADV_GUARD_INSTALL), 0); |
| |
| /* Make sure the range is, yet again, still guarded. */ |
| ASSERT_FALSE(try_read_buf(&ptr[5 * page_size])); |
| ASSERT_FALSE(try_read_buf(&ptr[6 * page_size])); |
| |
| /* Now unguard the whole range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Make sure the whole range is readable. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_buf(curr)); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* Split and merge VMAs and make sure guard pages still behave. */ |
| TEST_F(guard_regions, split_merge) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr, *ptr_new; |
| int i; |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Guard the whole range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Make sure the whole range is guarded. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Now unmap some pages in the range so we split. */ |
| ASSERT_EQ(munmap(&ptr[2 * page_size], page_size), 0); |
| ASSERT_EQ(munmap(&ptr[5 * page_size], page_size), 0); |
| ASSERT_EQ(munmap(&ptr[8 * page_size], page_size), 0); |
| |
| /* Make sure the remaining ranges are guarded post-split. */ |
| for (i = 0; i < 2; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| for (i = 2; i < 5; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| for (i = 6; i < 8; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| for (i = 9; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Now map them again - the unmap will have cleared the guards. */ |
| ptr_new = mmap_(self, variant, &ptr[2 * page_size], page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr_new, MAP_FAILED); |
| ptr_new = mmap_(self, variant, &ptr[5 * page_size], page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr_new, MAP_FAILED); |
| ptr_new = mmap_(self, variant, &ptr[8 * page_size], page_size, |
| PROT_READ | PROT_WRITE, MAP_FIXED, 0); |
| ASSERT_NE(ptr_new, MAP_FAILED); |
| |
| /* Now make sure guard pages are established. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| bool result = try_read_write_buf(curr); |
| bool expect_true = i == 2 || i == 5 || i == 8; |
| |
| ASSERT_TRUE(expect_true ? result : !result); |
| } |
| |
| /* Now guard everything again. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Make sure the whole range is guarded. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Now split the range into three. */ |
| ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0); |
| ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0); |
| |
| /* Make sure the whole range is guarded for read. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_buf(curr)); |
| } |
| |
| /* Now reset protection bits so we merge the whole thing. */ |
| ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0); |
| ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, |
| PROT_READ | PROT_WRITE), 0); |
| |
| /* Make sure the whole range is still guarded. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Split range into 3 again... */ |
| ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0); |
| ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0); |
| |
| /* ...and unguard the whole range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Make sure the whole range is remedied for read. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_buf(curr)); |
| } |
| |
| /* Merge them again. */ |
| ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0); |
| ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, |
| PROT_READ | PROT_WRITE), 0); |
| |
| /* Now ensure the merged range is remedied for read/write. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* Assert that MADV_DONTNEED does not remove guard markers. */ |
| TEST_F(guard_regions, dontneed) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Back the whole range. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| *curr = 'y'; |
| } |
| |
| /* Guard every other page. */ |
| for (i = 0; i < 10; i += 2) { |
| char *curr = &ptr[i * page_size]; |
| int res = madvise(curr, page_size, MADV_GUARD_INSTALL); |
| |
| ASSERT_EQ(res, 0); |
| } |
| |
| /* Indicate that we don't need any of the range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_DONTNEED), 0); |
| |
| /* Check to ensure guard markers are still in place. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| bool result = try_read_buf(curr); |
| |
| if (i % 2 == 0) { |
| ASSERT_FALSE(result); |
| } else { |
| ASSERT_TRUE(result); |
| switch (variant->backing) { |
| case ANON_BACKED: |
| /* If anon, then we get a zero page. */ |
| ASSERT_EQ(*curr, '\0'); |
| break; |
| default: |
| /* Otherwise, we get the file data. */ |
| ASSERT_EQ(*curr, 'y'); |
| break; |
| } |
| } |
| |
| /* Now write... */ |
| result = try_write_buf(&ptr[i * page_size]); |
| |
| /* ...and make sure same result. */ |
| ASSERT_TRUE(i % 2 != 0 ? result : !result); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* Assert that mlock()'ed pages work correctly with guard markers. */ |
| TEST_F(guard_regions, mlock) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Populate. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| *curr = 'y'; |
| } |
| |
| /* Lock. */ |
| ASSERT_EQ(mlock(ptr, 10 * page_size), 0); |
| |
| /* Now try to guard, should fail with EINVAL. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), -1); |
| ASSERT_EQ(errno, EINVAL); |
| |
| /* OK unlock. */ |
| ASSERT_EQ(munlock(ptr, 10 * page_size), 0); |
| |
| /* Guard first half of range, should now succeed. */ |
| ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Make sure guard works. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| bool result = try_read_write_buf(curr); |
| |
| if (i < 5) { |
| ASSERT_FALSE(result); |
| } else { |
| ASSERT_TRUE(result); |
| ASSERT_EQ(*curr, 'x'); |
| } |
| } |
| |
| /* |
| * Now lock the latter part of the range. We can't lock the guard pages, |
| * as this would result in the pages being populated and the guarding |
| * would cause this to error out. |
| */ |
| ASSERT_EQ(mlock(&ptr[5 * page_size], 5 * page_size), 0); |
| |
| /* |
| * Now remove guard pages, we permit mlock()'d ranges to have guard |
| * pages removed as it is a non-destructive operation. |
| */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Now check that no guard pages remain. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* |
| * Assert that moving, extending and shrinking memory via mremap() retains |
| * guard markers where possible. |
| * |
| * - Moving a mapping alone should retain markers as they are. |
| */ |
| TEST_F(guard_regions, mremap_move) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr, *ptr_new; |
| |
| /* Map 5 pages. */ |
| ptr = mmap_(self, variant, NULL, 5 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Place guard markers at both ends of the 5 page span. */ |
| ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); |
| ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Make sure the guard pages are in effect. */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); |
| |
| /* Map a new region we will move this range into. Doing this ensures |
| * that we have reserved a range to map into. |
| */ |
| ptr_new = mmap_(self, variant, NULL, 5 * page_size, PROT_NONE, 0, 0); |
| ASSERT_NE(ptr_new, MAP_FAILED); |
| |
| ASSERT_EQ(mremap(ptr, 5 * page_size, 5 * page_size, |
| MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new), ptr_new); |
| |
| /* Make sure the guard markers are retained. */ |
| ASSERT_FALSE(try_read_write_buf(ptr_new)); |
| ASSERT_FALSE(try_read_write_buf(&ptr_new[4 * page_size])); |
| |
| /* |
| * Clean up - we only need reference the new pointer as we overwrote the |
| * PROT_NONE range and moved the existing one. |
| */ |
| munmap(ptr_new, 5 * page_size); |
| } |
| |
| /* |
| * Assert that moving, extending and shrinking memory via mremap() retains |
| * guard markers where possible. |
| * |
| * Expanding should retain guard pages, only now in different position. The user |
| * will have to remove guard pages manually to fix up (they'd have to do the |
| * same if it were a PROT_NONE mapping). |
| */ |
| TEST_F(guard_regions, mremap_expand) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr, *ptr_new; |
| |
| /* Map 10 pages... */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| /* ...But unmap the last 5 so we can ensure we can expand into them. */ |
| ASSERT_EQ(munmap(&ptr[5 * page_size], 5 * page_size), 0); |
| |
| /* Place guard markers at both ends of the 5 page span. */ |
| ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); |
| ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Make sure the guarding is in effect. */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); |
| |
| /* Now expand to 10 pages. */ |
| ptr = mremap(ptr, 5 * page_size, 10 * page_size, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* |
| * Make sure the guard markers are retained in their original positions. |
| */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); |
| |
| /* Reserve a region which we can move to and expand into. */ |
| ptr_new = mmap_(self, variant, NULL, 20 * page_size, PROT_NONE, 0, 0); |
| ASSERT_NE(ptr_new, MAP_FAILED); |
| |
| /* Now move and expand into it. */ |
| ptr = mremap(ptr, 10 * page_size, 20 * page_size, |
| MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new); |
| ASSERT_EQ(ptr, ptr_new); |
| |
| /* |
| * Again, make sure the guard markers are retained in their original positions. |
| */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); |
| |
| /* |
| * A real user would have to remove guard markers, but would reasonably |
| * expect all characteristics of the mapping to be retained, including |
| * guard markers. |
| */ |
| |
| /* Cleanup. */ |
| munmap(ptr, 20 * page_size); |
| } |
| /* |
| * Assert that moving, extending and shrinking memory via mremap() retains |
| * guard markers where possible. |
| * |
| * Shrinking will result in markers that are shrunk over being removed. Again, |
| * if the user were using a PROT_NONE mapping they'd have to manually fix this |
| * up also so this is OK. |
| */ |
| TEST_F(guard_regions, mremap_shrink) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| /* Map 5 pages. */ |
| ptr = mmap_(self, variant, NULL, 5 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Place guard markers at both ends of the 5 page span. */ |
| ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); |
| ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Make sure the guarding is in effect. */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); |
| |
| /* Now shrink to 3 pages. */ |
| ptr = mremap(ptr, 5 * page_size, 3 * page_size, MREMAP_MAYMOVE); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* We expect the guard marker at the start to be retained... */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| |
| /* ...But remaining pages will not have guard markers. */ |
| for (i = 1; i < 3; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* |
| * As with expansion, a real user would have to remove guard pages and |
| * fixup. But you'd have to do similar manual things with PROT_NONE |
| * mappings too. |
| */ |
| |
| /* |
| * If we expand back to the original size, the end marker will, of |
| * course, no longer be present. |
| */ |
| ptr = mremap(ptr, 3 * page_size, 5 * page_size, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Again, we expect the guard marker at the start to be retained... */ |
| ASSERT_FALSE(try_read_write_buf(ptr)); |
| |
| /* ...But remaining pages will not have guard markers. */ |
| for (i = 1; i < 5; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| /* Cleanup. */ |
| munmap(ptr, 5 * page_size); |
| } |
| |
| /* |
| * Assert that forking a process with VMAs that do not have VM_WIPEONFORK set |
| * retain guard pages. |
| */ |
| TEST_F(guard_regions, fork) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| pid_t pid; |
| int i; |
| |
| /* Map 10 pages. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Establish guard pages in the first 5 pages. */ |
| ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| pid = fork(); |
| ASSERT_NE(pid, -1); |
| if (!pid) { |
| /* This is the child process now. */ |
| |
| /* Assert that the guarding is in effect. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| bool result = try_read_write_buf(curr); |
| |
| ASSERT_TRUE(i >= 5 ? result : !result); |
| } |
| |
| /* Now unguard the range.*/ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| exit(0); |
| } |
| |
| /* Parent process. */ |
| |
| /* Parent simply waits on child. */ |
| waitpid(pid, NULL, 0); |
| |
| /* Child unguard does not impact parent page table state. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| bool result = try_read_write_buf(curr); |
| |
| ASSERT_TRUE(i >= 5 ? result : !result); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* |
| * Assert expected behaviour after we fork populated ranges of anonymous memory |
| * and then guard and unguard the range. |
| */ |
| TEST_F(guard_regions, fork_cow) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| pid_t pid; |
| int i; |
| |
| if (variant->backing != ANON_BACKED) |
| SKIP(return, "CoW only supported on anon mappings"); |
| |
| /* Map 10 pages. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Populate range. */ |
| for (i = 0; i < 10 * page_size; i++) { |
| char chr = 'a' + (i % 26); |
| |
| ptr[i] = chr; |
| } |
| |
| pid = fork(); |
| ASSERT_NE(pid, -1); |
| if (!pid) { |
| /* This is the child process now. */ |
| |
| /* Ensure the range is as expected. */ |
| for (i = 0; i < 10 * page_size; i++) { |
| char expected = 'a' + (i % 26); |
| char actual = ptr[i]; |
| |
| ASSERT_EQ(actual, expected); |
| } |
| |
| /* Establish guard pages across the whole range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); |
| /* Remove it. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* |
| * By removing the guard pages, the page tables will be |
| * cleared. Assert that we are looking at the zero page now. |
| */ |
| for (i = 0; i < 10 * page_size; i++) { |
| char actual = ptr[i]; |
| |
| ASSERT_EQ(actual, '\0'); |
| } |
| |
| exit(0); |
| } |
| |
| /* Parent process. */ |
| |
| /* Parent simply waits on child. */ |
| waitpid(pid, NULL, 0); |
| |
| /* Ensure the range is unchanged in parent anon range. */ |
| for (i = 0; i < 10 * page_size; i++) { |
| char expected = 'a' + (i % 26); |
| char actual = ptr[i]; |
| |
| ASSERT_EQ(actual, expected); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* |
| * Assert that forking a process with VMAs that do have VM_WIPEONFORK set |
| * behave as expected. |
| */ |
| TEST_F(guard_regions, fork_wipeonfork) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| pid_t pid; |
| int i; |
| |
| if (variant->backing != ANON_BACKED) |
| SKIP(return, "Wipe on fork only supported on anon mappings"); |
| |
| /* Map 10 pages. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Mark wipe on fork. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_WIPEONFORK), 0); |
| |
| /* Guard the first 5 pages. */ |
| ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| pid = fork(); |
| ASSERT_NE(pid, -1); |
| if (!pid) { |
| /* This is the child process now. */ |
| |
| /* Guard will have been wiped. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_write_buf(curr)); |
| } |
| |
| exit(0); |
| } |
| |
| /* Parent process. */ |
| |
| waitpid(pid, NULL, 0); |
| |
| /* Guard markers should be in effect.*/ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| bool result = try_read_write_buf(curr); |
| |
| ASSERT_TRUE(i >= 5 ? result : !result); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* Ensure that MADV_FREE retains guard entries as expected. */ |
| TEST_F(guard_regions, lazyfree) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| if (variant->backing != ANON_BACKED) |
| SKIP(return, "MADV_FREE only supported on anon mappings"); |
| |
| /* Map 10 pages. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Guard range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Ensure guarded. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Lazyfree range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_FREE), 0); |
| |
| /* This should leave the guard markers in place. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* Ensure that MADV_POPULATE_READ, MADV_POPULATE_WRITE behave as expected. */ |
| TEST_F(guard_regions, populate) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| |
| /* Map 10 pages. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Guard range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Populate read should error out... */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_READ), -1); |
| ASSERT_EQ(errno, EFAULT); |
| |
| /* ...as should populate write. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_WRITE), -1); |
| ASSERT_EQ(errno, EFAULT); |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* Ensure that MADV_COLD, MADV_PAGEOUT do not remove guard markers. */ |
| TEST_F(guard_regions, cold_pageout) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| /* Map 10 pages. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Guard range. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* Ensured guarded. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Now mark cold. This should have no impact on guard markers. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_COLD), 0); |
| |
| /* Should remain guarded. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* OK, now page out. This should equally, have no effect on markers. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0); |
| |
| /* Should remain guarded. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* Ensure that guard pages do not break userfaultd. */ |
| TEST_F(guard_regions, uffd) |
| { |
| const unsigned long page_size = self->page_size; |
| int uffd; |
| char *ptr; |
| int i; |
| struct uffdio_api api = { |
| .api = UFFD_API, |
| .features = 0, |
| }; |
| struct uffdio_register reg; |
| struct uffdio_range range; |
| |
| if (!is_anon_backed(variant)) |
| SKIP(return, "uffd only works on anon backing"); |
| |
| /* Set up uffd. */ |
| uffd = userfaultfd(0); |
| if (uffd == -1) { |
| switch (errno) { |
| case EPERM: |
| SKIP(return, "No userfaultfd permissions, try running as root."); |
| break; |
| case ENOSYS: |
| SKIP(return, "userfaultfd is not supported/not enabled."); |
| break; |
| default: |
| ksft_exit_fail_msg("userfaultfd failed with %s\n", |
| strerror(errno)); |
| break; |
| } |
| } |
| |
| ASSERT_NE(uffd, -1); |
| |
| ASSERT_EQ(ioctl(uffd, UFFDIO_API, &api), 0); |
| |
| /* Map 10 pages. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Register the range with uffd. */ |
| range.start = (unsigned long)ptr; |
| range.len = 10 * page_size; |
| reg.range = range; |
| reg.mode = UFFDIO_REGISTER_MODE_MISSING; |
| ASSERT_EQ(ioctl(uffd, UFFDIO_REGISTER, ®), 0); |
| |
| /* Guard the range. This should not trigger the uffd. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* The guarding should behave as usual with no uffd intervention. */ |
| for (i = 0; i < 10; i++) { |
| char *curr = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_read_write_buf(curr)); |
| } |
| |
| /* Cleanup. */ |
| ASSERT_EQ(ioctl(uffd, UFFDIO_UNREGISTER, &range), 0); |
| close(uffd); |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* |
| * Mark a region within a file-backed mapping using MADV_SEQUENTIAL so we |
| * aggressively read-ahead, then install guard regions and assert that it |
| * behaves correctly. |
| * |
| * We page out using MADV_PAGEOUT before checking guard regions so we drop page |
| * cache folios, meaning we maximise the possibility of some broken readahead. |
| */ |
| TEST_F(guard_regions, madvise_sequential) |
| { |
| char *ptr; |
| int i; |
| const unsigned long page_size = self->page_size; |
| |
| if (variant->backing == ANON_BACKED) |
| SKIP(return, "MADV_SEQUENTIAL meaningful only for file-backed"); |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Establish a pattern of data in the file. */ |
| set_pattern(ptr, 10, page_size); |
| ASSERT_TRUE(check_pattern(ptr, 10, page_size)); |
| |
| /* Mark it as being accessed sequentially. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_SEQUENTIAL), 0); |
| |
| /* Mark every other page a guard page. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr2 = &ptr[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr2, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| /* Now page it out. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0); |
| |
| /* Now make sure pages are as expected. */ |
| for (i = 0; i < 10; i++) { |
| char *chrp = &ptr[i * page_size]; |
| |
| if (i % 2 == 0) { |
| bool result = try_read_write_buf(chrp); |
| |
| ASSERT_FALSE(result); |
| } else { |
| ASSERT_EQ(*chrp, 'a' + i); |
| } |
| } |
| |
| /* Now remove guard pages. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Now make sure all data is as expected. */ |
| if (!check_pattern(ptr, 10, page_size)) |
| ASSERT_TRUE(false); |
| |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* |
| * Check that file-backed mappings implement guard regions with MAP_PRIVATE |
| * correctly. |
| */ |
| TEST_F(guard_regions, map_private) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr_shared, *ptr_private; |
| int i; |
| |
| if (variant->backing == ANON_BACKED) |
| SKIP(return, "MAP_PRIVATE test specific to file-backed"); |
| |
| ptr_shared = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr_shared, MAP_FAILED); |
| |
| /* Manually mmap(), do not use mmap_() wrapper so we can force MAP_PRIVATE. */ |
| ptr_private = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_PRIVATE, self->fd, 0); |
| ASSERT_NE(ptr_private, MAP_FAILED); |
| |
| /* Set pattern in shared mapping. */ |
| set_pattern(ptr_shared, 10, page_size); |
| |
| /* Install guard regions in every other page in the shared mapping. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr = &ptr_shared[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| for (i = 0; i < 10; i++) { |
| /* Every even shared page should be guarded. */ |
| ASSERT_EQ(try_read_buf(&ptr_shared[i * page_size]), i % 2 != 0); |
| /* Private mappings should always be readable. */ |
| ASSERT_TRUE(try_read_buf(&ptr_private[i * page_size])); |
| } |
| |
| /* Install guard regions in every other page in the private mapping. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr = &ptr_private[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| for (i = 0; i < 10; i++) { |
| /* Every even shared page should be guarded. */ |
| ASSERT_EQ(try_read_buf(&ptr_shared[i * page_size]), i % 2 != 0); |
| /* Every odd private page should be guarded. */ |
| ASSERT_EQ(try_read_buf(&ptr_private[i * page_size]), i % 2 != 0); |
| } |
| |
| /* Remove guard regions from shared mapping. */ |
| ASSERT_EQ(madvise(ptr_shared, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| for (i = 0; i < 10; i++) { |
| /* Shared mappings should always be readable. */ |
| ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size])); |
| /* Every even private page should be guarded. */ |
| ASSERT_EQ(try_read_buf(&ptr_private[i * page_size]), i % 2 != 0); |
| } |
| |
| /* Remove guard regions from private mapping. */ |
| ASSERT_EQ(madvise(ptr_private, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| for (i = 0; i < 10; i++) { |
| /* Shared mappings should always be readable. */ |
| ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size])); |
| /* Private mappings should always be readable. */ |
| ASSERT_TRUE(try_read_buf(&ptr_private[i * page_size])); |
| } |
| |
| /* Ensure patterns are intact. */ |
| ASSERT_TRUE(check_pattern(ptr_shared, 10, page_size)); |
| ASSERT_TRUE(check_pattern(ptr_private, 10, page_size)); |
| |
| /* Now write out every other page to MAP_PRIVATE. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr = &ptr_private[i * page_size]; |
| |
| memset(ptr, 'a' + i, page_size); |
| } |
| |
| /* |
| * At this point the mapping is: |
| * |
| * 0123456789 |
| * SPSPSPSPSP |
| * |
| * Where S = shared, P = private mappings. |
| */ |
| |
| /* Now mark the beginning of the mapping guarded. */ |
| ASSERT_EQ(madvise(ptr_private, 5 * page_size, MADV_GUARD_INSTALL), 0); |
| |
| /* |
| * This renders the mapping: |
| * |
| * 0123456789 |
| * xxxxxPSPSP |
| */ |
| |
| for (i = 0; i < 10; i++) { |
| char *ptr = &ptr_private[i * page_size]; |
| |
| /* Ensure guard regions as expected. */ |
| ASSERT_EQ(try_read_buf(ptr), i >= 5); |
| /* The shared mapping should always succeed. */ |
| ASSERT_TRUE(try_read_buf(&ptr_shared[i * page_size])); |
| } |
| |
| /* Remove the guard regions altogether. */ |
| ASSERT_EQ(madvise(ptr_private, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* |
| * |
| * We now expect the mapping to be: |
| * |
| * 0123456789 |
| * SSSSSPSPSP |
| * |
| * As we removed guard regions, the private pages from the first 5 will |
| * have been zapped, so on fault will reestablish the shared mapping. |
| */ |
| |
| for (i = 0; i < 10; i++) { |
| char *ptr = &ptr_private[i * page_size]; |
| |
| /* |
| * Assert that shared mappings in the MAP_PRIVATE mapping match |
| * the shared mapping. |
| */ |
| if (i < 5 || i % 2 == 0) { |
| char *ptr_s = &ptr_shared[i * page_size]; |
| |
| ASSERT_EQ(memcmp(ptr, ptr_s, page_size), 0); |
| continue; |
| } |
| |
| /* Everything else is a private mapping. */ |
| ASSERT_TRUE(is_buf_eq(ptr, page_size, 'a' + i)); |
| } |
| |
| ASSERT_EQ(munmap(ptr_shared, 10 * page_size), 0); |
| ASSERT_EQ(munmap(ptr_private, 10 * page_size), 0); |
| } |
| |
| /* Test that guard regions established over a read-only mapping function correctly. */ |
| TEST_F(guard_regions, readonly_file) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| if (variant->backing != LOCAL_FILE_BACKED) |
| SKIP(return, "Read-only test specific to file-backed"); |
| |
| /* Map shared so we can populate with pattern, populate it, unmap. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| set_pattern(ptr, 10, page_size); |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| /* Close the fd so we can re-open read-only. */ |
| ASSERT_EQ(close(self->fd), 0); |
| |
| /* Re-open read-only. */ |
| self->fd = open(self->path, O_RDONLY); |
| ASSERT_NE(self->fd, -1); |
| /* Re-map read-only. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Mark every other page guarded. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr_pg = &ptr[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr_pg, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| /* Assert that the guard regions are in place.*/ |
| for (i = 0; i < 10; i++) { |
| char *ptr_pg = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_buf(ptr_pg), i % 2 != 0); |
| } |
| |
| /* Remove guard regions. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Ensure the data is as expected. */ |
| ASSERT_TRUE(check_pattern(ptr, 10, page_size)); |
| |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| TEST_F(guard_regions, fault_around) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| if (variant->backing == ANON_BACKED) |
| SKIP(return, "Fault-around test specific to file-backed"); |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Establish a pattern in the backing file. */ |
| set_pattern(ptr, 10, page_size); |
| |
| /* |
| * Now drop it from the page cache so we get major faults when next we |
| * map it. |
| */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0); |
| |
| /* Unmap and remap 'to be sure'. */ |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Now make every even page guarded. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| /* Now fault in every odd page. This should trigger fault-around. */ |
| for (i = 1; i < 10; i += 2) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_buf(ptr_p)); |
| } |
| |
| /* Finally, ensure that guard regions are intact as expected. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0); |
| } |
| |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| TEST_F(guard_regions, truncation) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| if (variant->backing == ANON_BACKED) |
| SKIP(return, "Truncation test specific to file-backed"); |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* |
| * Establish a pattern in the backing file, just so there is data |
| * there. |
| */ |
| set_pattern(ptr, 10, page_size); |
| |
| /* Now make every even page guarded. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| /* Now assert things are as expected. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0); |
| } |
| |
| /* Now truncate to actually used size (initialised to 100). */ |
| ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0); |
| |
| /* Here the guard regions will remain intact. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0); |
| } |
| |
| /* Now truncate to half the size, then truncate again to the full size. */ |
| ASSERT_EQ(ftruncate(self->fd, 5 * page_size), 0); |
| ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0); |
| |
| /* Again, guard pages will remain intact. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_write_buf(ptr_p), i % 2 != 0); |
| } |
| |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| TEST_F(guard_regions, hole_punch) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| if (variant->backing == ANON_BACKED) |
| SKIP(return, "Truncation test specific to file-backed"); |
| |
| /* Establish pattern in mapping. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| set_pattern(ptr, 10, page_size); |
| |
| /* Install a guard region in the middle of the mapping. */ |
| ASSERT_EQ(madvise(&ptr[3 * page_size], 4 * page_size, |
| MADV_GUARD_INSTALL), 0); |
| |
| /* |
| * The buffer will now be: |
| * |
| * 0123456789 |
| * ***xxxx*** |
| * |
| * Where * is data and x is the guard region. |
| */ |
| |
| /* Ensure established. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_buf(ptr_p), i < 3 || i >= 7); |
| } |
| |
| /* Now hole punch the guarded region. */ |
| ASSERT_EQ(madvise(&ptr[3 * page_size], 4 * page_size, |
| MADV_REMOVE), 0); |
| |
| /* Ensure guard regions remain. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_buf(ptr_p), i < 3 || i >= 7); |
| } |
| |
| /* Now remove guard region throughout. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Check that the pattern exists in non-hole punched region. */ |
| ASSERT_TRUE(check_pattern(ptr, 3, page_size)); |
| /* Check that hole punched region is zeroed. */ |
| ASSERT_TRUE(is_buf_eq(&ptr[3 * page_size], 4 * page_size, '\0')); |
| /* Check that the pattern exists in the remainder of the file. */ |
| ASSERT_TRUE(check_pattern_offset(ptr, 3, page_size, 7)); |
| |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* |
| * Ensure that a memfd works correctly with guard regions, that we can write |
| * seal it then open the mapping read-only and still establish guard regions |
| * within, remove those guard regions and have everything work correctly. |
| */ |
| TEST_F(guard_regions, memfd_write_seal) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| if (variant->backing != SHMEM_BACKED) |
| SKIP(return, "memfd write seal test specific to shmem"); |
| |
| /* OK, we need a memfd, so close existing one. */ |
| ASSERT_EQ(close(self->fd), 0); |
| |
| /* Create and truncate memfd. */ |
| self->fd = memfd_create("guard_regions_memfd_seals_test", |
| MFD_ALLOW_SEALING); |
| ASSERT_NE(self->fd, -1); |
| ASSERT_EQ(ftruncate(self->fd, 10 * page_size), 0); |
| |
| /* Map, set pattern, unmap. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| set_pattern(ptr, 10, page_size); |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| |
| /* Write-seal the memfd. */ |
| ASSERT_EQ(fcntl(self->fd, F_ADD_SEALS, F_SEAL_WRITE), 0); |
| |
| /* Now map the memfd readonly. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Ensure pattern is as expected. */ |
| ASSERT_TRUE(check_pattern(ptr, 10, page_size)); |
| |
| /* Now make every even page guarded. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| /* Now assert things are as expected. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0); |
| } |
| |
| /* Now remove guard regions. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Ensure pattern is as expected. */ |
| ASSERT_TRUE(check_pattern(ptr, 10, page_size)); |
| |
| /* Ensure write seal intact. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_FALSE(try_write_buf(ptr_p)); |
| } |
| |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| |
| /* |
| * Since we are now permitted to establish guard regions in read-only anonymous |
| * mappings, for the sake of thoroughness, though it probably has no practical |
| * use, test that guard regions function with a mapping to the anonymous zero |
| * page. |
| */ |
| TEST_F(guard_regions, anon_zeropage) |
| { |
| const unsigned long page_size = self->page_size; |
| char *ptr; |
| int i; |
| |
| if (!is_anon_backed(variant)) |
| SKIP(return, "anon zero page test specific to anon/shmem"); |
| |
| /* Obtain a read-only i.e. anon zero page mapping. */ |
| ptr = mmap_(self, variant, NULL, 10 * page_size, PROT_READ, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Now make every even page guarded. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| /* Now assert things are as expected. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(try_read_buf(ptr_p), i % 2 != 0); |
| } |
| |
| /* Now remove all guard regions. */ |
| ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); |
| |
| /* Now assert things are as expected. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_TRUE(try_read_buf(ptr_p)); |
| } |
| |
| /* Ensure zero page...*/ |
| ASSERT_TRUE(is_buf_eq(ptr, 10 * page_size, '\0')); |
| |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* |
| * Assert that /proc/$pid/pagemap correctly identifies guard region ranges. |
| */ |
| TEST_F(guard_regions, pagemap) |
| { |
| const unsigned long page_size = self->page_size; |
| int proc_fd; |
| char *ptr; |
| int i; |
| |
| proc_fd = open("/proc/self/pagemap", O_RDONLY); |
| ASSERT_NE(proc_fd, -1); |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| /* Read from pagemap, and assert no guard regions are detected. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| unsigned long entry = pagemap_get_entry(proc_fd, ptr_p); |
| unsigned long masked = entry & PM_GUARD_REGION; |
| |
| ASSERT_EQ(masked, 0); |
| } |
| |
| /* Install a guard region in every other page. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(madvise(ptr_p, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| /* Re-read from pagemap, and assert guard regions are detected. */ |
| for (i = 0; i < 10; i++) { |
| char *ptr_p = &ptr[i * page_size]; |
| unsigned long entry = pagemap_get_entry(proc_fd, ptr_p); |
| unsigned long masked = entry & PM_GUARD_REGION; |
| |
| ASSERT_EQ(masked, i % 2 == 0 ? PM_GUARD_REGION : 0); |
| } |
| |
| ASSERT_EQ(close(proc_fd), 0); |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| /* |
| * Assert that PAGEMAP_SCAN correctly reports guard region ranges. |
| */ |
| TEST_F(guard_regions, pagemap_scan) |
| { |
| const unsigned long page_size = self->page_size; |
| struct page_region pm_regs[10]; |
| struct pm_scan_arg pm_scan_args = { |
| .size = sizeof(struct pm_scan_arg), |
| .category_anyof_mask = PAGE_IS_GUARD, |
| .return_mask = PAGE_IS_GUARD, |
| .vec = (long)&pm_regs, |
| .vec_len = ARRAY_SIZE(pm_regs), |
| }; |
| int proc_fd, i; |
| char *ptr; |
| |
| proc_fd = open("/proc/self/pagemap", O_RDONLY); |
| ASSERT_NE(proc_fd, -1); |
| |
| ptr = mmap_(self, variant, NULL, 10 * page_size, |
| PROT_READ | PROT_WRITE, 0, 0); |
| ASSERT_NE(ptr, MAP_FAILED); |
| |
| pm_scan_args.start = (long)ptr; |
| pm_scan_args.end = (long)ptr + 10 * page_size; |
| ASSERT_EQ(ioctl(proc_fd, PAGEMAP_SCAN, &pm_scan_args), 0); |
| ASSERT_EQ(pm_scan_args.walk_end, (long)ptr + 10 * page_size); |
| |
| /* Install a guard region in every other page. */ |
| for (i = 0; i < 10; i += 2) { |
| char *ptr_p = &ptr[i * page_size]; |
| |
| ASSERT_EQ(syscall(__NR_madvise, ptr_p, page_size, MADV_GUARD_INSTALL), 0); |
| } |
| |
| /* |
| * Assert ioctl() returns the count of located regions, where each |
| * region spans every other page within the range of 10 pages. |
| */ |
| ASSERT_EQ(ioctl(proc_fd, PAGEMAP_SCAN, &pm_scan_args), 5); |
| ASSERT_EQ(pm_scan_args.walk_end, (long)ptr + 10 * page_size); |
| |
| /* Re-read from pagemap, and assert guard regions are detected. */ |
| for (i = 0; i < 5; i++) { |
| long ptr_p = (long)&ptr[2 * i * page_size]; |
| |
| ASSERT_EQ(pm_regs[i].start, ptr_p); |
| ASSERT_EQ(pm_regs[i].end, ptr_p + page_size); |
| ASSERT_EQ(pm_regs[i].categories, PAGE_IS_GUARD); |
| } |
| |
| ASSERT_EQ(close(proc_fd), 0); |
| ASSERT_EQ(munmap(ptr, 10 * page_size), 0); |
| } |
| |
| TEST_HARNESS_MAIN |