| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_HELPER_MACROS_H_ |
| #define _LINUX_HELPER_MACROS_H_ |
| |
| #include <linux/compiler_attributes.h> |
| #include <linux/math.h> |
| #include <linux/typecheck.h> |
| #include <linux/stddef.h> |
| |
| /** |
| * for_each_if - helper for handling conditionals in various for_each macros |
| * @condition: The condition to check |
| * |
| * Typical use:: |
| * |
| * #define for_each_foo_bar(x, y) \' |
| * list_for_each_entry(x, y->list, head) \' |
| * for_each_if(x->something == SOMETHING) |
| * |
| * The for_each_if() macro makes the use of for_each_foo_bar() less error |
| * prone. |
| */ |
| #define for_each_if(condition) if (!(condition)) {} else |
| |
| /** |
| * find_closest - locate the closest element in a sorted array |
| * @x: The reference value. |
| * @a: The array in which to look for the closest element. Must be sorted |
| * in ascending order. |
| * @as: Size of 'a'. |
| * |
| * Returns the index of the element closest to 'x'. |
| * Note: If using an array of negative numbers (or mixed positive numbers), |
| * then be sure that 'x' is of a signed-type to get good results. |
| */ |
| #define find_closest(x, a, as) \ |
| ({ \ |
| typeof(as) __fc_i, __fc_as = (as) - 1; \ |
| long __fc_mid_x, __fc_x = (x); \ |
| long __fc_left, __fc_right; \ |
| typeof(*a) const *__fc_a = (a); \ |
| for (__fc_i = 0; __fc_i < __fc_as; __fc_i++) { \ |
| __fc_mid_x = (__fc_a[__fc_i] + __fc_a[__fc_i + 1]) / 2; \ |
| if (__fc_x <= __fc_mid_x) { \ |
| __fc_left = __fc_x - __fc_a[__fc_i]; \ |
| __fc_right = __fc_a[__fc_i + 1] - __fc_x; \ |
| if (__fc_right < __fc_left) \ |
| __fc_i++; \ |
| break; \ |
| } \ |
| } \ |
| (__fc_i); \ |
| }) |
| |
| /** |
| * find_closest_descending - locate the closest element in a sorted array |
| * @x: The reference value. |
| * @a: The array in which to look for the closest element. Must be sorted |
| * in descending order. |
| * @as: Size of 'a'. |
| * |
| * Similar to find_closest() but 'a' is expected to be sorted in descending |
| * order. The iteration is done in reverse order, so that the comparison |
| * of '__fc_right' & '__fc_left' also works for unsigned numbers. |
| */ |
| #define find_closest_descending(x, a, as) \ |
| ({ \ |
| typeof(as) __fc_i, __fc_as = (as) - 1; \ |
| long __fc_mid_x, __fc_x = (x); \ |
| long __fc_left, __fc_right; \ |
| typeof(*a) const *__fc_a = (a); \ |
| for (__fc_i = __fc_as; __fc_i >= 1; __fc_i--) { \ |
| __fc_mid_x = (__fc_a[__fc_i] + __fc_a[__fc_i - 1]) / 2; \ |
| if (__fc_x <= __fc_mid_x) { \ |
| __fc_left = __fc_x - __fc_a[__fc_i]; \ |
| __fc_right = __fc_a[__fc_i - 1] - __fc_x; \ |
| if (__fc_right < __fc_left) \ |
| __fc_i--; \ |
| break; \ |
| } \ |
| } \ |
| (__fc_i); \ |
| }) |
| |
| /** |
| * PTR_IF - evaluate to @ptr if @cond is true, or to NULL otherwise. |
| * @cond: A conditional, usually in a form of IS_ENABLED(CONFIG_FOO) |
| * @ptr: A pointer to assign if @cond is true. |
| * |
| * PTR_IF(IS_ENABLED(CONFIG_FOO), ptr) evaluates to @ptr if CONFIG_FOO is set |
| * to 'y' or 'm', or to NULL otherwise. The @ptr argument must be a pointer. |
| * |
| * The macro can be very useful to help compiler dropping dead code. |
| * |
| * For instance, consider the following:: |
| * |
| * #ifdef CONFIG_FOO_SUSPEND |
| * static int foo_suspend(struct device *dev) |
| * { |
| * ... |
| * } |
| * #endif |
| * |
| * static struct pm_ops foo_ops = { |
| * #ifdef CONFIG_FOO_SUSPEND |
| * .suspend = foo_suspend, |
| * #endif |
| * }; |
| * |
| * While this works, the foo_suspend() macro is compiled conditionally, |
| * only when CONFIG_FOO_SUSPEND is set. This is problematic, as there could |
| * be a build bug in this function, we wouldn't have a way to know unless |
| * the configuration option is set. |
| * |
| * An alternative is to declare foo_suspend() always, but mark it |
| * as __maybe_unused. This works, but the __maybe_unused attribute |
| * is required to instruct the compiler that the function may not |
| * be referenced anywhere, and is safe to remove without making |
| * a fuss about it. This makes the programmer responsible for tagging |
| * the functions that can be garbage-collected. |
| * |
| * With the macro it is possible to write the following: |
| * |
| * static int foo_suspend(struct device *dev) |
| * { |
| * ... |
| * } |
| * |
| * static struct pm_ops foo_ops = { |
| * .suspend = PTR_IF(IS_ENABLED(CONFIG_FOO_SUSPEND), foo_suspend), |
| * }; |
| * |
| * The foo_suspend() function will now be automatically dropped by the |
| * compiler, and it does not require any specific attribute. |
| */ |
| #define PTR_IF(cond, ptr) ((cond) ? (ptr) : NULL) |
| |
| /** |
| * to_user_ptr - cast a pointer passed as u64 from user space to void __user * |
| * @x: The u64 value from user space, usually via IOCTL |
| * |
| * to_user_ptr() simply casts a pointer passed as u64 from user space to void |
| * __user * correctly. Using this lets us get rid of all the tiresome casts. |
| */ |
| #define u64_to_user_ptr(x) \ |
| ({ \ |
| typecheck(u64, (x)); \ |
| (void __user *)(uintptr_t)(x); \ |
| }) |
| |
| /** |
| * is_insidevar - check if the @ptr points inside the @var memory range. |
| * @ptr: the pointer to a memory address. |
| * @var: the variable which address and size identify the memory range. |
| * |
| * Evaluates to true if the address in @ptr lies within the memory |
| * range allocated to @var. |
| */ |
| #define is_insidevar(ptr, var) \ |
| ((uintptr_t)(ptr) >= (uintptr_t)(var) && \ |
| (uintptr_t)(ptr) < (uintptr_t)(var) + sizeof(var)) |
| |
| #endif |