|  | /* | 
|  | * Copyright (c) Yann Collet, Facebook, Inc. | 
|  | * All rights reserved. | 
|  | * | 
|  | * This source code is licensed under both the BSD-style license (found in the | 
|  | * LICENSE file in the root directory of this source tree) and the GPLv2 (found | 
|  | * in the COPYING file in the root directory of this source tree). | 
|  | * You may select, at your option, one of the above-listed licenses. | 
|  | */ | 
|  |  | 
|  | #include "zstd_ldm.h" | 
|  |  | 
|  | #include "../common/debug.h" | 
|  | #include <linux/xxhash.h> | 
|  | #include "zstd_fast.h"          /* ZSTD_fillHashTable() */ | 
|  | #include "zstd_double_fast.h"   /* ZSTD_fillDoubleHashTable() */ | 
|  | #include "zstd_ldm_geartab.h" | 
|  |  | 
|  | #define LDM_BUCKET_SIZE_LOG 3 | 
|  | #define LDM_MIN_MATCH_LENGTH 64 | 
|  | #define LDM_HASH_RLOG 7 | 
|  |  | 
|  | typedef struct { | 
|  | U64 rolling; | 
|  | U64 stopMask; | 
|  | } ldmRollingHashState_t; | 
|  |  | 
|  | /* ZSTD_ldm_gear_init(): | 
|  | * | 
|  | * Initializes the rolling hash state such that it will honor the | 
|  | * settings in params. */ | 
|  | static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params) | 
|  | { | 
|  | unsigned maxBitsInMask = MIN(params->minMatchLength, 64); | 
|  | unsigned hashRateLog = params->hashRateLog; | 
|  |  | 
|  | state->rolling = ~(U32)0; | 
|  |  | 
|  | /* The choice of the splitting criterion is subject to two conditions: | 
|  | *   1. it has to trigger on average every 2^(hashRateLog) bytes; | 
|  | *   2. ideally, it has to depend on a window of minMatchLength bytes. | 
|  | * | 
|  | * In the gear hash algorithm, bit n depends on the last n bytes; | 
|  | * so in order to obtain a good quality splitting criterion it is | 
|  | * preferable to use bits with high weight. | 
|  | * | 
|  | * To match condition 1 we use a mask with hashRateLog bits set | 
|  | * and, because of the previous remark, we make sure these bits | 
|  | * have the highest possible weight while still respecting | 
|  | * condition 2. | 
|  | */ | 
|  | if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) { | 
|  | state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog); | 
|  | } else { | 
|  | /* In this degenerate case we simply honor the hash rate. */ | 
|  | state->stopMask = ((U64)1 << hashRateLog) - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ZSTD_ldm_gear_reset() | 
|  | * Feeds [data, data + minMatchLength) into the hash without registering any | 
|  | * splits. This effectively resets the hash state. This is used when skipping | 
|  | * over data, either at the beginning of a block, or skipping sections. | 
|  | */ | 
|  | static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state, | 
|  | BYTE const* data, size_t minMatchLength) | 
|  | { | 
|  | U64 hash = state->rolling; | 
|  | size_t n = 0; | 
|  |  | 
|  | #define GEAR_ITER_ONCE() do {                                  \ | 
|  | hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \ | 
|  | n += 1;                                                \ | 
|  | } while (0) | 
|  | while (n + 3 < minMatchLength) { | 
|  | GEAR_ITER_ONCE(); | 
|  | GEAR_ITER_ONCE(); | 
|  | GEAR_ITER_ONCE(); | 
|  | GEAR_ITER_ONCE(); | 
|  | } | 
|  | while (n < minMatchLength) { | 
|  | GEAR_ITER_ONCE(); | 
|  | } | 
|  | #undef GEAR_ITER_ONCE | 
|  | } | 
|  |  | 
|  | /* ZSTD_ldm_gear_feed(): | 
|  | * | 
|  | * Registers in the splits array all the split points found in the first | 
|  | * size bytes following the data pointer. This function terminates when | 
|  | * either all the data has been processed or LDM_BATCH_SIZE splits are | 
|  | * present in the splits array. | 
|  | * | 
|  | * Precondition: The splits array must not be full. | 
|  | * Returns: The number of bytes processed. */ | 
|  | static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state, | 
|  | BYTE const* data, size_t size, | 
|  | size_t* splits, unsigned* numSplits) | 
|  | { | 
|  | size_t n; | 
|  | U64 hash, mask; | 
|  |  | 
|  | hash = state->rolling; | 
|  | mask = state->stopMask; | 
|  | n = 0; | 
|  |  | 
|  | #define GEAR_ITER_ONCE() do { \ | 
|  | hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \ | 
|  | n += 1; \ | 
|  | if (UNLIKELY((hash & mask) == 0)) { \ | 
|  | splits[*numSplits] = n; \ | 
|  | *numSplits += 1; \ | 
|  | if (*numSplits == LDM_BATCH_SIZE) \ | 
|  | goto done; \ | 
|  | } \ | 
|  | } while (0) | 
|  |  | 
|  | while (n + 3 < size) { | 
|  | GEAR_ITER_ONCE(); | 
|  | GEAR_ITER_ONCE(); | 
|  | GEAR_ITER_ONCE(); | 
|  | GEAR_ITER_ONCE(); | 
|  | } | 
|  | while (n < size) { | 
|  | GEAR_ITER_ONCE(); | 
|  | } | 
|  |  | 
|  | #undef GEAR_ITER_ONCE | 
|  |  | 
|  | done: | 
|  | state->rolling = hash; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | void ZSTD_ldm_adjustParameters(ldmParams_t* params, | 
|  | ZSTD_compressionParameters const* cParams) | 
|  | { | 
|  | params->windowLog = cParams->windowLog; | 
|  | ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX); | 
|  | DEBUGLOG(4, "ZSTD_ldm_adjustParameters"); | 
|  | if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG; | 
|  | if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH; | 
|  | if (params->hashLog == 0) { | 
|  | params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG); | 
|  | assert(params->hashLog <= ZSTD_HASHLOG_MAX); | 
|  | } | 
|  | if (params->hashRateLog == 0) { | 
|  | params->hashRateLog = params->windowLog < params->hashLog | 
|  | ? 0 | 
|  | : params->windowLog - params->hashLog; | 
|  | } | 
|  | params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog); | 
|  | } | 
|  |  | 
|  | size_t ZSTD_ldm_getTableSize(ldmParams_t params) | 
|  | { | 
|  | size_t const ldmHSize = ((size_t)1) << params.hashLog; | 
|  | size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog); | 
|  | size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog); | 
|  | size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize) | 
|  | + ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t)); | 
|  | return params.enableLdm == ZSTD_ps_enable ? totalSize : 0; | 
|  | } | 
|  |  | 
|  | size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize) | 
|  | { | 
|  | return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0; | 
|  | } | 
|  |  | 
|  | /* ZSTD_ldm_getBucket() : | 
|  | *  Returns a pointer to the start of the bucket associated with hash. */ | 
|  | static ldmEntry_t* ZSTD_ldm_getBucket( | 
|  | ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams) | 
|  | { | 
|  | return ldmState->hashTable + (hash << ldmParams.bucketSizeLog); | 
|  | } | 
|  |  | 
|  | /* ZSTD_ldm_insertEntry() : | 
|  | *  Insert the entry with corresponding hash into the hash table */ | 
|  | static void ZSTD_ldm_insertEntry(ldmState_t* ldmState, | 
|  | size_t const hash, const ldmEntry_t entry, | 
|  | ldmParams_t const ldmParams) | 
|  | { | 
|  | BYTE* const pOffset = ldmState->bucketOffsets + hash; | 
|  | unsigned const offset = *pOffset; | 
|  |  | 
|  | *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry; | 
|  | *pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1)); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* ZSTD_ldm_countBackwardsMatch() : | 
|  | *  Returns the number of bytes that match backwards before pIn and pMatch. | 
|  | * | 
|  | *  We count only bytes where pMatch >= pBase and pIn >= pAnchor. */ | 
|  | static size_t ZSTD_ldm_countBackwardsMatch( | 
|  | const BYTE* pIn, const BYTE* pAnchor, | 
|  | const BYTE* pMatch, const BYTE* pMatchBase) | 
|  | { | 
|  | size_t matchLength = 0; | 
|  | while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) { | 
|  | pIn--; | 
|  | pMatch--; | 
|  | matchLength++; | 
|  | } | 
|  | return matchLength; | 
|  | } | 
|  |  | 
|  | /* ZSTD_ldm_countBackwardsMatch_2segments() : | 
|  | *  Returns the number of bytes that match backwards from pMatch, | 
|  | *  even with the backwards match spanning 2 different segments. | 
|  | * | 
|  | *  On reaching `pMatchBase`, start counting from mEnd */ | 
|  | static size_t ZSTD_ldm_countBackwardsMatch_2segments( | 
|  | const BYTE* pIn, const BYTE* pAnchor, | 
|  | const BYTE* pMatch, const BYTE* pMatchBase, | 
|  | const BYTE* pExtDictStart, const BYTE* pExtDictEnd) | 
|  | { | 
|  | size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase); | 
|  | if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) { | 
|  | /* If backwards match is entirely in the extDict or prefix, immediately return */ | 
|  | return matchLength; | 
|  | } | 
|  | DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength); | 
|  | matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart); | 
|  | DEBUGLOG(7, "final backwards match length = %zu", matchLength); | 
|  | return matchLength; | 
|  | } | 
|  |  | 
|  | /* ZSTD_ldm_fillFastTables() : | 
|  | * | 
|  | *  Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies. | 
|  | *  This is similar to ZSTD_loadDictionaryContent. | 
|  | * | 
|  | *  The tables for the other strategies are filled within their | 
|  | *  block compressors. */ | 
|  | static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms, | 
|  | void const* end) | 
|  | { | 
|  | const BYTE* const iend = (const BYTE*)end; | 
|  |  | 
|  | switch(ms->cParams.strategy) | 
|  | { | 
|  | case ZSTD_fast: | 
|  | ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast); | 
|  | break; | 
|  |  | 
|  | case ZSTD_dfast: | 
|  | ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast); | 
|  | break; | 
|  |  | 
|  | case ZSTD_greedy: | 
|  | case ZSTD_lazy: | 
|  | case ZSTD_lazy2: | 
|  | case ZSTD_btlazy2: | 
|  | case ZSTD_btopt: | 
|  | case ZSTD_btultra: | 
|  | case ZSTD_btultra2: | 
|  | break; | 
|  | default: | 
|  | assert(0);  /* not possible : not a valid strategy id */ | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ZSTD_ldm_fillHashTable( | 
|  | ldmState_t* ldmState, const BYTE* ip, | 
|  | const BYTE* iend, ldmParams_t const* params) | 
|  | { | 
|  | U32 const minMatchLength = params->minMatchLength; | 
|  | U32 const hBits = params->hashLog - params->bucketSizeLog; | 
|  | BYTE const* const base = ldmState->window.base; | 
|  | BYTE const* const istart = ip; | 
|  | ldmRollingHashState_t hashState; | 
|  | size_t* const splits = ldmState->splitIndices; | 
|  | unsigned numSplits; | 
|  |  | 
|  | DEBUGLOG(5, "ZSTD_ldm_fillHashTable"); | 
|  |  | 
|  | ZSTD_ldm_gear_init(&hashState, params); | 
|  | while (ip < iend) { | 
|  | size_t hashed; | 
|  | unsigned n; | 
|  |  | 
|  | numSplits = 0; | 
|  | hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits); | 
|  |  | 
|  | for (n = 0; n < numSplits; n++) { | 
|  | if (ip + splits[n] >= istart + minMatchLength) { | 
|  | BYTE const* const split = ip + splits[n] - minMatchLength; | 
|  | U64 const xxhash = xxh64(split, minMatchLength, 0); | 
|  | U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1)); | 
|  | ldmEntry_t entry; | 
|  |  | 
|  | entry.offset = (U32)(split - base); | 
|  | entry.checksum = (U32)(xxhash >> 32); | 
|  | ZSTD_ldm_insertEntry(ldmState, hash, entry, *params); | 
|  | } | 
|  | } | 
|  |  | 
|  | ip += hashed; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ZSTD_ldm_limitTableUpdate() : | 
|  | * | 
|  | *  Sets cctx->nextToUpdate to a position corresponding closer to anchor | 
|  | *  if it is far way | 
|  | *  (after a long match, only update tables a limited amount). */ | 
|  | static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor) | 
|  | { | 
|  | U32 const curr = (U32)(anchor - ms->window.base); | 
|  | if (curr > ms->nextToUpdate + 1024) { | 
|  | ms->nextToUpdate = | 
|  | curr - MIN(512, curr - ms->nextToUpdate - 1024); | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t ZSTD_ldm_generateSequences_internal( | 
|  | ldmState_t* ldmState, rawSeqStore_t* rawSeqStore, | 
|  | ldmParams_t const* params, void const* src, size_t srcSize) | 
|  | { | 
|  | /* LDM parameters */ | 
|  | int const extDict = ZSTD_window_hasExtDict(ldmState->window); | 
|  | U32 const minMatchLength = params->minMatchLength; | 
|  | U32 const entsPerBucket = 1U << params->bucketSizeLog; | 
|  | U32 const hBits = params->hashLog - params->bucketSizeLog; | 
|  | /* Prefix and extDict parameters */ | 
|  | U32 const dictLimit = ldmState->window.dictLimit; | 
|  | U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit; | 
|  | BYTE const* const base = ldmState->window.base; | 
|  | BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL; | 
|  | BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL; | 
|  | BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL; | 
|  | BYTE const* const lowPrefixPtr = base + dictLimit; | 
|  | /* Input bounds */ | 
|  | BYTE const* const istart = (BYTE const*)src; | 
|  | BYTE const* const iend = istart + srcSize; | 
|  | BYTE const* const ilimit = iend - HASH_READ_SIZE; | 
|  | /* Input positions */ | 
|  | BYTE const* anchor = istart; | 
|  | BYTE const* ip = istart; | 
|  | /* Rolling hash state */ | 
|  | ldmRollingHashState_t hashState; | 
|  | /* Arrays for staged-processing */ | 
|  | size_t* const splits = ldmState->splitIndices; | 
|  | ldmMatchCandidate_t* const candidates = ldmState->matchCandidates; | 
|  | unsigned numSplits; | 
|  |  | 
|  | if (srcSize < minMatchLength) | 
|  | return iend - anchor; | 
|  |  | 
|  | /* Initialize the rolling hash state with the first minMatchLength bytes */ | 
|  | ZSTD_ldm_gear_init(&hashState, params); | 
|  | ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength); | 
|  | ip += minMatchLength; | 
|  |  | 
|  | while (ip < ilimit) { | 
|  | size_t hashed; | 
|  | unsigned n; | 
|  |  | 
|  | numSplits = 0; | 
|  | hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip, | 
|  | splits, &numSplits); | 
|  |  | 
|  | for (n = 0; n < numSplits; n++) { | 
|  | BYTE const* const split = ip + splits[n] - minMatchLength; | 
|  | U64 const xxhash = xxh64(split, minMatchLength, 0); | 
|  | U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1)); | 
|  |  | 
|  | candidates[n].split = split; | 
|  | candidates[n].hash = hash; | 
|  | candidates[n].checksum = (U32)(xxhash >> 32); | 
|  | candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params); | 
|  | PREFETCH_L1(candidates[n].bucket); | 
|  | } | 
|  |  | 
|  | for (n = 0; n < numSplits; n++) { | 
|  | size_t forwardMatchLength = 0, backwardMatchLength = 0, | 
|  | bestMatchLength = 0, mLength; | 
|  | U32 offset; | 
|  | BYTE const* const split = candidates[n].split; | 
|  | U32 const checksum = candidates[n].checksum; | 
|  | U32 const hash = candidates[n].hash; | 
|  | ldmEntry_t* const bucket = candidates[n].bucket; | 
|  | ldmEntry_t const* cur; | 
|  | ldmEntry_t const* bestEntry = NULL; | 
|  | ldmEntry_t newEntry; | 
|  |  | 
|  | newEntry.offset = (U32)(split - base); | 
|  | newEntry.checksum = checksum; | 
|  |  | 
|  | /* If a split point would generate a sequence overlapping with | 
|  | * the previous one, we merely register it in the hash table and | 
|  | * move on */ | 
|  | if (split < anchor) { | 
|  | ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (cur = bucket; cur < bucket + entsPerBucket; cur++) { | 
|  | size_t curForwardMatchLength, curBackwardMatchLength, | 
|  | curTotalMatchLength; | 
|  | if (cur->checksum != checksum || cur->offset <= lowestIndex) { | 
|  | continue; | 
|  | } | 
|  | if (extDict) { | 
|  | BYTE const* const curMatchBase = | 
|  | cur->offset < dictLimit ? dictBase : base; | 
|  | BYTE const* const pMatch = curMatchBase + cur->offset; | 
|  | BYTE const* const matchEnd = | 
|  | cur->offset < dictLimit ? dictEnd : iend; | 
|  | BYTE const* const lowMatchPtr = | 
|  | cur->offset < dictLimit ? dictStart : lowPrefixPtr; | 
|  | curForwardMatchLength = | 
|  | ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr); | 
|  | if (curForwardMatchLength < minMatchLength) { | 
|  | continue; | 
|  | } | 
|  | curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments( | 
|  | split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd); | 
|  | } else { /* !extDict */ | 
|  | BYTE const* const pMatch = base + cur->offset; | 
|  | curForwardMatchLength = ZSTD_count(split, pMatch, iend); | 
|  | if (curForwardMatchLength < minMatchLength) { | 
|  | continue; | 
|  | } | 
|  | curBackwardMatchLength = | 
|  | ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr); | 
|  | } | 
|  | curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength; | 
|  |  | 
|  | if (curTotalMatchLength > bestMatchLength) { | 
|  | bestMatchLength = curTotalMatchLength; | 
|  | forwardMatchLength = curForwardMatchLength; | 
|  | backwardMatchLength = curBackwardMatchLength; | 
|  | bestEntry = cur; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No match found -- insert an entry into the hash table | 
|  | * and process the next candidate match */ | 
|  | if (bestEntry == NULL) { | 
|  | ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Match found */ | 
|  | offset = (U32)(split - base) - bestEntry->offset; | 
|  | mLength = forwardMatchLength + backwardMatchLength; | 
|  | { | 
|  | rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size; | 
|  |  | 
|  | /* Out of sequence storage */ | 
|  | if (rawSeqStore->size == rawSeqStore->capacity) | 
|  | return ERROR(dstSize_tooSmall); | 
|  | seq->litLength = (U32)(split - backwardMatchLength - anchor); | 
|  | seq->matchLength = (U32)mLength; | 
|  | seq->offset = offset; | 
|  | rawSeqStore->size++; | 
|  | } | 
|  |  | 
|  | /* Insert the current entry into the hash table --- it must be | 
|  | * done after the previous block to avoid clobbering bestEntry */ | 
|  | ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params); | 
|  |  | 
|  | anchor = split + forwardMatchLength; | 
|  |  | 
|  | /* If we find a match that ends after the data that we've hashed | 
|  | * then we have a repeating, overlapping, pattern. E.g. all zeros. | 
|  | * If one repetition of the pattern matches our `stopMask` then all | 
|  | * repetitions will. We don't need to insert them all into out table, | 
|  | * only the first one. So skip over overlapping matches. | 
|  | * This is a major speed boost (20x) for compressing a single byte | 
|  | * repeated, when that byte ends up in the table. | 
|  | */ | 
|  | if (anchor > ip + hashed) { | 
|  | ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength); | 
|  | /* Continue the outer loop at anchor (ip + hashed == anchor). */ | 
|  | ip = anchor - hashed; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ip += hashed; | 
|  | } | 
|  |  | 
|  | return iend - anchor; | 
|  | } | 
|  |  | 
|  | /*! ZSTD_ldm_reduceTable() : | 
|  | *  reduce table indexes by `reducerValue` */ | 
|  | static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size, | 
|  | U32 const reducerValue) | 
|  | { | 
|  | U32 u; | 
|  | for (u = 0; u < size; u++) { | 
|  | if (table[u].offset < reducerValue) table[u].offset = 0; | 
|  | else table[u].offset -= reducerValue; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t ZSTD_ldm_generateSequences( | 
|  | ldmState_t* ldmState, rawSeqStore_t* sequences, | 
|  | ldmParams_t const* params, void const* src, size_t srcSize) | 
|  | { | 
|  | U32 const maxDist = 1U << params->windowLog; | 
|  | BYTE const* const istart = (BYTE const*)src; | 
|  | BYTE const* const iend = istart + srcSize; | 
|  | size_t const kMaxChunkSize = 1 << 20; | 
|  | size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0); | 
|  | size_t chunk; | 
|  | size_t leftoverSize = 0; | 
|  |  | 
|  | assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize); | 
|  | /* Check that ZSTD_window_update() has been called for this chunk prior | 
|  | * to passing it to this function. | 
|  | */ | 
|  | assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize); | 
|  | /* The input could be very large (in zstdmt), so it must be broken up into | 
|  | * chunks to enforce the maximum distance and handle overflow correction. | 
|  | */ | 
|  | assert(sequences->pos <= sequences->size); | 
|  | assert(sequences->size <= sequences->capacity); | 
|  | for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) { | 
|  | BYTE const* const chunkStart = istart + chunk * kMaxChunkSize; | 
|  | size_t const remaining = (size_t)(iend - chunkStart); | 
|  | BYTE const *const chunkEnd = | 
|  | (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize; | 
|  | size_t const chunkSize = chunkEnd - chunkStart; | 
|  | size_t newLeftoverSize; | 
|  | size_t const prevSize = sequences->size; | 
|  |  | 
|  | assert(chunkStart < iend); | 
|  | /* 1. Perform overflow correction if necessary. */ | 
|  | if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) { | 
|  | U32 const ldmHSize = 1U << params->hashLog; | 
|  | U32 const correction = ZSTD_window_correctOverflow( | 
|  | &ldmState->window, /* cycleLog */ 0, maxDist, chunkStart); | 
|  | ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction); | 
|  | /* invalidate dictionaries on overflow correction */ | 
|  | ldmState->loadedDictEnd = 0; | 
|  | } | 
|  | /* 2. We enforce the maximum offset allowed. | 
|  | * | 
|  | * kMaxChunkSize should be small enough that we don't lose too much of | 
|  | * the window through early invalidation. | 
|  | * TODO: * Test the chunk size. | 
|  | *       * Try invalidation after the sequence generation and test the | 
|  | *         the offset against maxDist directly. | 
|  | * | 
|  | * NOTE: Because of dictionaries + sequence splitting we MUST make sure | 
|  | * that any offset used is valid at the END of the sequence, since it may | 
|  | * be split into two sequences. This condition holds when using | 
|  | * ZSTD_window_enforceMaxDist(), but if we move to checking offsets | 
|  | * against maxDist directly, we'll have to carefully handle that case. | 
|  | */ | 
|  | ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL); | 
|  | /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */ | 
|  | newLeftoverSize = ZSTD_ldm_generateSequences_internal( | 
|  | ldmState, sequences, params, chunkStart, chunkSize); | 
|  | if (ZSTD_isError(newLeftoverSize)) | 
|  | return newLeftoverSize; | 
|  | /* 4. We add the leftover literals from previous iterations to the first | 
|  | *    newly generated sequence, or add the `newLeftoverSize` if none are | 
|  | *    generated. | 
|  | */ | 
|  | /* Prepend the leftover literals from the last call */ | 
|  | if (prevSize < sequences->size) { | 
|  | sequences->seq[prevSize].litLength += (U32)leftoverSize; | 
|  | leftoverSize = newLeftoverSize; | 
|  | } else { | 
|  | assert(newLeftoverSize == chunkSize); | 
|  | leftoverSize += chunkSize; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) | 
|  | { | 
|  | while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) { | 
|  | rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos; | 
|  | if (srcSize <= seq->litLength) { | 
|  | /* Skip past srcSize literals */ | 
|  | seq->litLength -= (U32)srcSize; | 
|  | return; | 
|  | } | 
|  | srcSize -= seq->litLength; | 
|  | seq->litLength = 0; | 
|  | if (srcSize < seq->matchLength) { | 
|  | /* Skip past the first srcSize of the match */ | 
|  | seq->matchLength -= (U32)srcSize; | 
|  | if (seq->matchLength < minMatch) { | 
|  | /* The match is too short, omit it */ | 
|  | if (rawSeqStore->pos + 1 < rawSeqStore->size) { | 
|  | seq[1].litLength += seq[0].matchLength; | 
|  | } | 
|  | rawSeqStore->pos++; | 
|  | } | 
|  | return; | 
|  | } | 
|  | srcSize -= seq->matchLength; | 
|  | seq->matchLength = 0; | 
|  | rawSeqStore->pos++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the sequence length is longer than remaining then the sequence is split | 
|  | * between this block and the next. | 
|  | * | 
|  | * Returns the current sequence to handle, or if the rest of the block should | 
|  | * be literals, it returns a sequence with offset == 0. | 
|  | */ | 
|  | static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore, | 
|  | U32 const remaining, U32 const minMatch) | 
|  | { | 
|  | rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos]; | 
|  | assert(sequence.offset > 0); | 
|  | /* Likely: No partial sequence */ | 
|  | if (remaining >= sequence.litLength + sequence.matchLength) { | 
|  | rawSeqStore->pos++; | 
|  | return sequence; | 
|  | } | 
|  | /* Cut the sequence short (offset == 0 ==> rest is literals). */ | 
|  | if (remaining <= sequence.litLength) { | 
|  | sequence.offset = 0; | 
|  | } else if (remaining < sequence.litLength + sequence.matchLength) { | 
|  | sequence.matchLength = remaining - sequence.litLength; | 
|  | if (sequence.matchLength < minMatch) { | 
|  | sequence.offset = 0; | 
|  | } | 
|  | } | 
|  | /* Skip past `remaining` bytes for the future sequences. */ | 
|  | ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch); | 
|  | return sequence; | 
|  | } | 
|  |  | 
|  | void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) { | 
|  | U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes); | 
|  | while (currPos && rawSeqStore->pos < rawSeqStore->size) { | 
|  | rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos]; | 
|  | if (currPos >= currSeq.litLength + currSeq.matchLength) { | 
|  | currPos -= currSeq.litLength + currSeq.matchLength; | 
|  | rawSeqStore->pos++; | 
|  | } else { | 
|  | rawSeqStore->posInSequence = currPos; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) { | 
|  | rawSeqStore->posInSequence = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore, | 
|  | ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], | 
|  | ZSTD_paramSwitch_e useRowMatchFinder, | 
|  | void const* src, size_t srcSize) | 
|  | { | 
|  | const ZSTD_compressionParameters* const cParams = &ms->cParams; | 
|  | unsigned const minMatch = cParams->minMatch; | 
|  | ZSTD_blockCompressor const blockCompressor = | 
|  | ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms)); | 
|  | /* Input bounds */ | 
|  | BYTE const* const istart = (BYTE const*)src; | 
|  | BYTE const* const iend = istart + srcSize; | 
|  | /* Input positions */ | 
|  | BYTE const* ip = istart; | 
|  |  | 
|  | DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize); | 
|  | /* If using opt parser, use LDMs only as candidates rather than always accepting them */ | 
|  | if (cParams->strategy >= ZSTD_btopt) { | 
|  | size_t lastLLSize; | 
|  | ms->ldmSeqStore = rawSeqStore; | 
|  | lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize); | 
|  | ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize); | 
|  | return lastLLSize; | 
|  | } | 
|  |  | 
|  | assert(rawSeqStore->pos <= rawSeqStore->size); | 
|  | assert(rawSeqStore->size <= rawSeqStore->capacity); | 
|  | /* Loop through each sequence and apply the block compressor to the literals */ | 
|  | while (rawSeqStore->pos < rawSeqStore->size && ip < iend) { | 
|  | /* maybeSplitSequence updates rawSeqStore->pos */ | 
|  | rawSeq const sequence = maybeSplitSequence(rawSeqStore, | 
|  | (U32)(iend - ip), minMatch); | 
|  | int i; | 
|  | /* End signal */ | 
|  | if (sequence.offset == 0) | 
|  | break; | 
|  |  | 
|  | assert(ip + sequence.litLength + sequence.matchLength <= iend); | 
|  |  | 
|  | /* Fill tables for block compressor */ | 
|  | ZSTD_ldm_limitTableUpdate(ms, ip); | 
|  | ZSTD_ldm_fillFastTables(ms, ip); | 
|  | /* Run the block compressor */ | 
|  | DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength); | 
|  | { | 
|  | size_t const newLitLength = | 
|  | blockCompressor(ms, seqStore, rep, ip, sequence.litLength); | 
|  | ip += sequence.litLength; | 
|  | /* Update the repcodes */ | 
|  | for (i = ZSTD_REP_NUM - 1; i > 0; i--) | 
|  | rep[i] = rep[i-1]; | 
|  | rep[0] = sequence.offset; | 
|  | /* Store the sequence */ | 
|  | ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend, | 
|  | STORE_OFFSET(sequence.offset), | 
|  | sequence.matchLength); | 
|  | ip += sequence.matchLength; | 
|  | } | 
|  | } | 
|  | /* Fill the tables for the block compressor */ | 
|  | ZSTD_ldm_limitTableUpdate(ms, ip); | 
|  | ZSTD_ldm_fillFastTables(ms, ip); | 
|  | /* Compress the last literals */ | 
|  | return blockCompressor(ms, seqStore, rep, ip, iend - ip); | 
|  | } |