| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fprobe - Simple ftrace probe wrapper for function entry. |
| */ |
| #define pr_fmt(fmt) "fprobe: " fmt |
| |
| #include <linux/err.h> |
| #include <linux/fprobe.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kprobes.h> |
| #include <linux/list.h> |
| #include <linux/mutex.h> |
| #include <linux/rhashtable.h> |
| #include <linux/slab.h> |
| #include <linux/sort.h> |
| |
| #include <asm/fprobe.h> |
| |
| #include "trace.h" |
| |
| #define FPROBE_IP_HASH_BITS 8 |
| #define FPROBE_IP_TABLE_SIZE (1 << FPROBE_IP_HASH_BITS) |
| |
| #define FPROBE_HASH_BITS 6 |
| #define FPROBE_TABLE_SIZE (1 << FPROBE_HASH_BITS) |
| |
| #define SIZE_IN_LONG(x) ((x + sizeof(long) - 1) >> (sizeof(long) == 8 ? 3 : 2)) |
| |
| /* |
| * fprobe_table: hold 'fprobe_hlist::hlist' for checking the fprobe still |
| * exists. The key is the address of fprobe instance. |
| * fprobe_ip_table: hold 'fprobe_hlist::array[*]' for searching the fprobe |
| * instance related to the function address. The key is the ftrace IP |
| * address. |
| * |
| * When unregistering the fprobe, fprobe_hlist::fp and fprobe_hlist::array[*].fp |
| * are set NULL and delete those from both hash tables (by hlist_del_rcu). |
| * After an RCU grace period, the fprobe_hlist itself will be released. |
| * |
| * fprobe_table and fprobe_ip_table can be accessed from either |
| * - Normal hlist traversal and RCU add/del under 'fprobe_mutex' is held. |
| * - RCU hlist traversal under disabling preempt |
| */ |
| static struct hlist_head fprobe_table[FPROBE_TABLE_SIZE]; |
| static struct rhltable fprobe_ip_table; |
| static DEFINE_MUTEX(fprobe_mutex); |
| static struct fgraph_ops fprobe_graph_ops; |
| |
| static u32 fprobe_node_hashfn(const void *data, u32 len, u32 seed) |
| { |
| return hash_ptr(*(unsigned long **)data, 32); |
| } |
| |
| static int fprobe_node_cmp(struct rhashtable_compare_arg *arg, |
| const void *ptr) |
| { |
| unsigned long key = *(unsigned long *)arg->key; |
| const struct fprobe_hlist_node *n = ptr; |
| |
| return n->addr != key; |
| } |
| |
| static u32 fprobe_node_obj_hashfn(const void *data, u32 len, u32 seed) |
| { |
| const struct fprobe_hlist_node *n = data; |
| |
| return hash_ptr((void *)n->addr, 32); |
| } |
| |
| static const struct rhashtable_params fprobe_rht_params = { |
| .head_offset = offsetof(struct fprobe_hlist_node, hlist), |
| .key_offset = offsetof(struct fprobe_hlist_node, addr), |
| .key_len = sizeof_field(struct fprobe_hlist_node, addr), |
| .hashfn = fprobe_node_hashfn, |
| .obj_hashfn = fprobe_node_obj_hashfn, |
| .obj_cmpfn = fprobe_node_cmp, |
| .automatic_shrinking = true, |
| }; |
| |
| /* Node insertion and deletion requires the fprobe_mutex */ |
| static int insert_fprobe_node(struct fprobe_hlist_node *node) |
| { |
| lockdep_assert_held(&fprobe_mutex); |
| |
| return rhltable_insert(&fprobe_ip_table, &node->hlist, fprobe_rht_params); |
| } |
| |
| /* Return true if there are synonims */ |
| static bool delete_fprobe_node(struct fprobe_hlist_node *node) |
| { |
| lockdep_assert_held(&fprobe_mutex); |
| bool ret; |
| |
| /* Avoid double deleting */ |
| if (READ_ONCE(node->fp) != NULL) { |
| WRITE_ONCE(node->fp, NULL); |
| rhltable_remove(&fprobe_ip_table, &node->hlist, |
| fprobe_rht_params); |
| } |
| |
| rcu_read_lock(); |
| ret = !!rhltable_lookup(&fprobe_ip_table, &node->addr, |
| fprobe_rht_params); |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| /* Check existence of the fprobe */ |
| static bool is_fprobe_still_exist(struct fprobe *fp) |
| { |
| struct hlist_head *head; |
| struct fprobe_hlist *fph; |
| |
| head = &fprobe_table[hash_ptr(fp, FPROBE_HASH_BITS)]; |
| hlist_for_each_entry_rcu(fph, head, hlist, |
| lockdep_is_held(&fprobe_mutex)) { |
| if (fph->fp == fp) |
| return true; |
| } |
| return false; |
| } |
| NOKPROBE_SYMBOL(is_fprobe_still_exist); |
| |
| static int add_fprobe_hash(struct fprobe *fp) |
| { |
| struct fprobe_hlist *fph = fp->hlist_array; |
| struct hlist_head *head; |
| |
| lockdep_assert_held(&fprobe_mutex); |
| |
| if (WARN_ON_ONCE(!fph)) |
| return -EINVAL; |
| |
| if (is_fprobe_still_exist(fp)) |
| return -EEXIST; |
| |
| head = &fprobe_table[hash_ptr(fp, FPROBE_HASH_BITS)]; |
| hlist_add_head_rcu(&fp->hlist_array->hlist, head); |
| return 0; |
| } |
| |
| static int del_fprobe_hash(struct fprobe *fp) |
| { |
| struct fprobe_hlist *fph = fp->hlist_array; |
| |
| lockdep_assert_held(&fprobe_mutex); |
| |
| if (WARN_ON_ONCE(!fph)) |
| return -EINVAL; |
| |
| if (!is_fprobe_still_exist(fp)) |
| return -ENOENT; |
| |
| fph->fp = NULL; |
| hlist_del_rcu(&fph->hlist); |
| return 0; |
| } |
| |
| #ifdef ARCH_DEFINE_ENCODE_FPROBE_HEADER |
| |
| /* The arch should encode fprobe_header info into one unsigned long */ |
| #define FPROBE_HEADER_SIZE_IN_LONG 1 |
| |
| static inline bool write_fprobe_header(unsigned long *stack, |
| struct fprobe *fp, unsigned int size_words) |
| { |
| if (WARN_ON_ONCE(size_words > MAX_FPROBE_DATA_SIZE_WORD || |
| !arch_fprobe_header_encodable(fp))) |
| return false; |
| |
| *stack = arch_encode_fprobe_header(fp, size_words); |
| return true; |
| } |
| |
| static inline void read_fprobe_header(unsigned long *stack, |
| struct fprobe **fp, unsigned int *size_words) |
| { |
| *fp = arch_decode_fprobe_header_fp(*stack); |
| *size_words = arch_decode_fprobe_header_size(*stack); |
| } |
| |
| #else |
| |
| /* Generic fprobe_header */ |
| struct __fprobe_header { |
| struct fprobe *fp; |
| unsigned long size_words; |
| } __packed; |
| |
| #define FPROBE_HEADER_SIZE_IN_LONG SIZE_IN_LONG(sizeof(struct __fprobe_header)) |
| |
| static inline bool write_fprobe_header(unsigned long *stack, |
| struct fprobe *fp, unsigned int size_words) |
| { |
| struct __fprobe_header *fph = (struct __fprobe_header *)stack; |
| |
| if (WARN_ON_ONCE(size_words > MAX_FPROBE_DATA_SIZE_WORD)) |
| return false; |
| |
| fph->fp = fp; |
| fph->size_words = size_words; |
| return true; |
| } |
| |
| static inline void read_fprobe_header(unsigned long *stack, |
| struct fprobe **fp, unsigned int *size_words) |
| { |
| struct __fprobe_header *fph = (struct __fprobe_header *)stack; |
| |
| *fp = fph->fp; |
| *size_words = fph->size_words; |
| } |
| |
| #endif |
| |
| /* |
| * fprobe shadow stack management: |
| * Since fprobe shares a single fgraph_ops, it needs to share the stack entry |
| * among the probes on the same function exit. Note that a new probe can be |
| * registered before a target function is returning, we can not use the hash |
| * table to find the corresponding probes. Thus the probe address is stored on |
| * the shadow stack with its entry data size. |
| * |
| */ |
| static inline int __fprobe_handler(unsigned long ip, unsigned long parent_ip, |
| struct fprobe *fp, struct ftrace_regs *fregs, |
| void *data) |
| { |
| if (!fp->entry_handler) |
| return 0; |
| |
| return fp->entry_handler(fp, ip, parent_ip, fregs, data); |
| } |
| |
| static inline int __fprobe_kprobe_handler(unsigned long ip, unsigned long parent_ip, |
| struct fprobe *fp, struct ftrace_regs *fregs, |
| void *data) |
| { |
| int ret; |
| /* |
| * This user handler is shared with other kprobes and is not expected to be |
| * called recursively. So if any other kprobe handler is running, this will |
| * exit as kprobe does. See the section 'Share the callbacks with kprobes' |
| * in Documentation/trace/fprobe.rst for more information. |
| */ |
| if (unlikely(kprobe_running())) { |
| fp->nmissed++; |
| return 0; |
| } |
| |
| kprobe_busy_begin(); |
| ret = __fprobe_handler(ip, parent_ip, fp, fregs, data); |
| kprobe_busy_end(); |
| return ret; |
| } |
| |
| #if defined(CONFIG_DYNAMIC_FTRACE_WITH_ARGS) || defined(CONFIG_DYNAMIC_FTRACE_WITH_REGS) |
| /* ftrace_ops callback, this processes fprobes which have only entry_handler. */ |
| static void fprobe_ftrace_entry(unsigned long ip, unsigned long parent_ip, |
| struct ftrace_ops *ops, struct ftrace_regs *fregs) |
| { |
| struct fprobe_hlist_node *node; |
| struct rhlist_head *head, *pos; |
| struct fprobe *fp; |
| int bit; |
| |
| bit = ftrace_test_recursion_trylock(ip, parent_ip); |
| if (bit < 0) |
| return; |
| |
| /* |
| * ftrace_test_recursion_trylock() disables preemption, but |
| * rhltable_lookup() checks whether rcu_read_lcok is held. |
| * So we take rcu_read_lock() here. |
| */ |
| rcu_read_lock(); |
| head = rhltable_lookup(&fprobe_ip_table, &ip, fprobe_rht_params); |
| |
| rhl_for_each_entry_rcu(node, pos, head, hlist) { |
| if (node->addr != ip) |
| break; |
| fp = READ_ONCE(node->fp); |
| if (unlikely(!fp || fprobe_disabled(fp) || fp->exit_handler)) |
| continue; |
| |
| if (fprobe_shared_with_kprobes(fp)) |
| __fprobe_kprobe_handler(ip, parent_ip, fp, fregs, NULL); |
| else |
| __fprobe_handler(ip, parent_ip, fp, fregs, NULL); |
| } |
| rcu_read_unlock(); |
| ftrace_test_recursion_unlock(bit); |
| } |
| NOKPROBE_SYMBOL(fprobe_ftrace_entry); |
| |
| static struct ftrace_ops fprobe_ftrace_ops = { |
| .func = fprobe_ftrace_entry, |
| .flags = FTRACE_OPS_FL_SAVE_ARGS, |
| }; |
| static int fprobe_ftrace_active; |
| |
| static int fprobe_ftrace_add_ips(unsigned long *addrs, int num) |
| { |
| int ret; |
| |
| lockdep_assert_held(&fprobe_mutex); |
| |
| ret = ftrace_set_filter_ips(&fprobe_ftrace_ops, addrs, num, 0, 0); |
| if (ret) |
| return ret; |
| |
| if (!fprobe_ftrace_active) { |
| ret = register_ftrace_function(&fprobe_ftrace_ops); |
| if (ret) { |
| ftrace_free_filter(&fprobe_ftrace_ops); |
| return ret; |
| } |
| } |
| fprobe_ftrace_active++; |
| return 0; |
| } |
| |
| static void fprobe_ftrace_remove_ips(unsigned long *addrs, int num) |
| { |
| lockdep_assert_held(&fprobe_mutex); |
| |
| fprobe_ftrace_active--; |
| if (!fprobe_ftrace_active) |
| unregister_ftrace_function(&fprobe_ftrace_ops); |
| if (num) |
| ftrace_set_filter_ips(&fprobe_ftrace_ops, addrs, num, 1, 0); |
| } |
| |
| static bool fprobe_is_ftrace(struct fprobe *fp) |
| { |
| return !fp->exit_handler; |
| } |
| |
| #ifdef CONFIG_MODULES |
| static void fprobe_set_ips(unsigned long *ips, unsigned int cnt, int remove, |
| int reset) |
| { |
| ftrace_set_filter_ips(&fprobe_graph_ops.ops, ips, cnt, remove, reset); |
| ftrace_set_filter_ips(&fprobe_ftrace_ops, ips, cnt, remove, reset); |
| } |
| #endif |
| #else |
| static int fprobe_ftrace_add_ips(unsigned long *addrs, int num) |
| { |
| return -ENOENT; |
| } |
| |
| static void fprobe_ftrace_remove_ips(unsigned long *addrs, int num) |
| { |
| } |
| |
| static bool fprobe_is_ftrace(struct fprobe *fp) |
| { |
| return false; |
| } |
| |
| #ifdef CONFIG_MODULES |
| static void fprobe_set_ips(unsigned long *ips, unsigned int cnt, int remove, |
| int reset) |
| { |
| ftrace_set_filter_ips(&fprobe_graph_ops.ops, ips, cnt, remove, reset); |
| } |
| #endif |
| #endif /* !CONFIG_DYNAMIC_FTRACE_WITH_ARGS && !CONFIG_DYNAMIC_FTRACE_WITH_REGS */ |
| |
| /* fgraph_ops callback, this processes fprobes which have exit_handler. */ |
| static int fprobe_fgraph_entry(struct ftrace_graph_ent *trace, struct fgraph_ops *gops, |
| struct ftrace_regs *fregs) |
| { |
| unsigned long *fgraph_data = NULL; |
| unsigned long func = trace->func; |
| struct fprobe_hlist_node *node; |
| struct rhlist_head *head, *pos; |
| unsigned long ret_ip; |
| int reserved_words; |
| struct fprobe *fp; |
| int used, ret; |
| |
| if (WARN_ON_ONCE(!fregs)) |
| return 0; |
| |
| guard(rcu)(); |
| head = rhltable_lookup(&fprobe_ip_table, &func, fprobe_rht_params); |
| reserved_words = 0; |
| rhl_for_each_entry_rcu(node, pos, head, hlist) { |
| if (node->addr != func) |
| continue; |
| fp = READ_ONCE(node->fp); |
| if (!fp || !fp->exit_handler) |
| continue; |
| /* |
| * Since fprobe can be enabled until the next loop, we ignore the |
| * fprobe's disabled flag in this loop. |
| */ |
| reserved_words += |
| FPROBE_HEADER_SIZE_IN_LONG + SIZE_IN_LONG(fp->entry_data_size); |
| } |
| if (reserved_words) { |
| fgraph_data = fgraph_reserve_data(gops->idx, reserved_words * sizeof(long)); |
| if (unlikely(!fgraph_data)) { |
| rhl_for_each_entry_rcu(node, pos, head, hlist) { |
| if (node->addr != func) |
| continue; |
| fp = READ_ONCE(node->fp); |
| if (fp && !fprobe_disabled(fp) && !fprobe_is_ftrace(fp)) |
| fp->nmissed++; |
| } |
| return 0; |
| } |
| } |
| |
| /* |
| * TODO: recursion detection has been done in the fgraph. Thus we need |
| * to add a callback to increment missed counter. |
| */ |
| ret_ip = ftrace_regs_get_return_address(fregs); |
| used = 0; |
| rhl_for_each_entry_rcu(node, pos, head, hlist) { |
| int data_size; |
| void *data; |
| |
| if (node->addr != func) |
| continue; |
| fp = READ_ONCE(node->fp); |
| if (unlikely(!fp || fprobe_disabled(fp) || fprobe_is_ftrace(fp))) |
| continue; |
| |
| data_size = fp->entry_data_size; |
| if (data_size && fp->exit_handler) |
| data = fgraph_data + used + FPROBE_HEADER_SIZE_IN_LONG; |
| else |
| data = NULL; |
| |
| if (fprobe_shared_with_kprobes(fp)) |
| ret = __fprobe_kprobe_handler(func, ret_ip, fp, fregs, data); |
| else |
| ret = __fprobe_handler(func, ret_ip, fp, fregs, data); |
| |
| /* If entry_handler returns !0, nmissed is not counted but skips exit_handler. */ |
| if (!ret && fp->exit_handler) { |
| int size_words = SIZE_IN_LONG(data_size); |
| |
| if (write_fprobe_header(&fgraph_data[used], fp, size_words)) |
| used += FPROBE_HEADER_SIZE_IN_LONG + size_words; |
| } |
| } |
| if (used < reserved_words) |
| memset(fgraph_data + used, 0, reserved_words - used); |
| |
| /* If any exit_handler is set, data must be used. */ |
| return used != 0; |
| } |
| NOKPROBE_SYMBOL(fprobe_fgraph_entry); |
| |
| static void fprobe_return(struct ftrace_graph_ret *trace, |
| struct fgraph_ops *gops, |
| struct ftrace_regs *fregs) |
| { |
| unsigned long *fgraph_data = NULL; |
| unsigned long ret_ip; |
| struct fprobe *fp; |
| int size, curr; |
| int size_words; |
| |
| fgraph_data = (unsigned long *)fgraph_retrieve_data(gops->idx, &size); |
| if (WARN_ON_ONCE(!fgraph_data)) |
| return; |
| size_words = SIZE_IN_LONG(size); |
| ret_ip = ftrace_regs_get_instruction_pointer(fregs); |
| |
| preempt_disable_notrace(); |
| |
| curr = 0; |
| while (size_words > curr) { |
| read_fprobe_header(&fgraph_data[curr], &fp, &size); |
| if (!fp) |
| break; |
| curr += FPROBE_HEADER_SIZE_IN_LONG; |
| if (is_fprobe_still_exist(fp) && !fprobe_disabled(fp)) { |
| if (WARN_ON_ONCE(curr + size > size_words)) |
| break; |
| fp->exit_handler(fp, trace->func, ret_ip, fregs, |
| size ? fgraph_data + curr : NULL); |
| } |
| curr += size; |
| } |
| preempt_enable_notrace(); |
| } |
| NOKPROBE_SYMBOL(fprobe_return); |
| |
| static struct fgraph_ops fprobe_graph_ops = { |
| .entryfunc = fprobe_fgraph_entry, |
| .retfunc = fprobe_return, |
| }; |
| static int fprobe_graph_active; |
| |
| /* Add @addrs to the ftrace filter and register fgraph if needed. */ |
| static int fprobe_graph_add_ips(unsigned long *addrs, int num) |
| { |
| int ret; |
| |
| lockdep_assert_held(&fprobe_mutex); |
| |
| ret = ftrace_set_filter_ips(&fprobe_graph_ops.ops, addrs, num, 0, 0); |
| if (ret) |
| return ret; |
| |
| if (!fprobe_graph_active) { |
| ret = register_ftrace_graph(&fprobe_graph_ops); |
| if (WARN_ON_ONCE(ret)) { |
| ftrace_free_filter(&fprobe_graph_ops.ops); |
| return ret; |
| } |
| } |
| fprobe_graph_active++; |
| return 0; |
| } |
| |
| /* Remove @addrs from the ftrace filter and unregister fgraph if possible. */ |
| static void fprobe_graph_remove_ips(unsigned long *addrs, int num) |
| { |
| lockdep_assert_held(&fprobe_mutex); |
| |
| fprobe_graph_active--; |
| /* Q: should we unregister it ? */ |
| if (!fprobe_graph_active) |
| unregister_ftrace_graph(&fprobe_graph_ops); |
| |
| if (num) |
| ftrace_set_filter_ips(&fprobe_graph_ops.ops, addrs, num, 1, 0); |
| } |
| |
| #ifdef CONFIG_MODULES |
| |
| #define FPROBE_IPS_BATCH_INIT 8 |
| /* instruction pointer address list */ |
| struct fprobe_addr_list { |
| int index; |
| int size; |
| unsigned long *addrs; |
| }; |
| |
| static int fprobe_addr_list_add(struct fprobe_addr_list *alist, unsigned long addr) |
| { |
| unsigned long *addrs; |
| |
| /* Previously we failed to expand the list. */ |
| if (alist->index == alist->size) |
| return -ENOSPC; |
| |
| alist->addrs[alist->index++] = addr; |
| if (alist->index < alist->size) |
| return 0; |
| |
| /* Expand the address list */ |
| addrs = kcalloc(alist->size * 2, sizeof(*addrs), GFP_KERNEL); |
| if (!addrs) |
| return -ENOMEM; |
| |
| memcpy(addrs, alist->addrs, alist->size * sizeof(*addrs)); |
| alist->size *= 2; |
| kfree(alist->addrs); |
| alist->addrs = addrs; |
| |
| return 0; |
| } |
| |
| static void fprobe_remove_node_in_module(struct module *mod, struct fprobe_hlist_node *node, |
| struct fprobe_addr_list *alist) |
| { |
| if (!within_module(node->addr, mod)) |
| return; |
| if (delete_fprobe_node(node)) |
| return; |
| /* |
| * If failed to update alist, just continue to update hlist. |
| * Therefore, at list user handler will not hit anymore. |
| */ |
| fprobe_addr_list_add(alist, node->addr); |
| } |
| |
| /* Handle module unloading to manage fprobe_ip_table. */ |
| static int fprobe_module_callback(struct notifier_block *nb, |
| unsigned long val, void *data) |
| { |
| struct fprobe_addr_list alist = {.size = FPROBE_IPS_BATCH_INIT}; |
| struct fprobe_hlist_node *node; |
| struct rhashtable_iter iter; |
| struct module *mod = data; |
| |
| if (val != MODULE_STATE_GOING) |
| return NOTIFY_DONE; |
| |
| alist.addrs = kcalloc(alist.size, sizeof(*alist.addrs), GFP_KERNEL); |
| /* If failed to alloc memory, we can not remove ips from hash. */ |
| if (!alist.addrs) |
| return NOTIFY_DONE; |
| |
| mutex_lock(&fprobe_mutex); |
| rhltable_walk_enter(&fprobe_ip_table, &iter); |
| do { |
| rhashtable_walk_start(&iter); |
| |
| while ((node = rhashtable_walk_next(&iter)) && !IS_ERR(node)) |
| fprobe_remove_node_in_module(mod, node, &alist); |
| |
| rhashtable_walk_stop(&iter); |
| } while (node == ERR_PTR(-EAGAIN)); |
| rhashtable_walk_exit(&iter); |
| |
| if (alist.index > 0) |
| fprobe_set_ips(alist.addrs, alist.index, 1, 0); |
| mutex_unlock(&fprobe_mutex); |
| |
| kfree(alist.addrs); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block fprobe_module_nb = { |
| .notifier_call = fprobe_module_callback, |
| .priority = 0, |
| }; |
| |
| static int __init init_fprobe_module(void) |
| { |
| return register_module_notifier(&fprobe_module_nb); |
| } |
| early_initcall(init_fprobe_module); |
| #endif |
| |
| static int symbols_cmp(const void *a, const void *b) |
| { |
| const char **str_a = (const char **) a; |
| const char **str_b = (const char **) b; |
| |
| return strcmp(*str_a, *str_b); |
| } |
| |
| /* Convert ftrace location address from symbols */ |
| static unsigned long *get_ftrace_locations(const char **syms, int num) |
| { |
| unsigned long *addrs; |
| |
| /* Convert symbols to symbol address */ |
| addrs = kcalloc(num, sizeof(*addrs), GFP_KERNEL); |
| if (!addrs) |
| return ERR_PTR(-ENOMEM); |
| |
| /* ftrace_lookup_symbols expects sorted symbols */ |
| sort(syms, num, sizeof(*syms), symbols_cmp, NULL); |
| |
| if (!ftrace_lookup_symbols(syms, num, addrs)) |
| return addrs; |
| |
| kfree(addrs); |
| return ERR_PTR(-ENOENT); |
| } |
| |
| struct filter_match_data { |
| const char *filter; |
| const char *notfilter; |
| size_t index; |
| size_t size; |
| unsigned long *addrs; |
| struct module **mods; |
| }; |
| |
| static int filter_match_callback(void *data, const char *name, unsigned long addr) |
| { |
| struct filter_match_data *match = data; |
| |
| if (!glob_match(match->filter, name) || |
| (match->notfilter && glob_match(match->notfilter, name))) |
| return 0; |
| |
| if (!ftrace_location(addr)) |
| return 0; |
| |
| if (match->addrs) { |
| struct module *mod = __module_text_address(addr); |
| |
| if (mod && !try_module_get(mod)) |
| return 0; |
| |
| match->mods[match->index] = mod; |
| match->addrs[match->index] = addr; |
| } |
| match->index++; |
| return match->index == match->size; |
| } |
| |
| /* |
| * Make IP list from the filter/no-filter glob patterns. |
| * Return the number of matched symbols, or errno. |
| * If @addrs == NULL, this just counts the number of matched symbols. If @addrs |
| * is passed with an array, we need to pass the an @mods array of the same size |
| * to increment the module refcount for each symbol. |
| * This means we also need to call `module_put` for each element of @mods after |
| * using the @addrs. |
| */ |
| static int get_ips_from_filter(const char *filter, const char *notfilter, |
| unsigned long *addrs, struct module **mods, |
| size_t size) |
| { |
| struct filter_match_data match = { .filter = filter, .notfilter = notfilter, |
| .index = 0, .size = size, .addrs = addrs, .mods = mods}; |
| int ret; |
| |
| if (addrs && !mods) |
| return -EINVAL; |
| |
| ret = kallsyms_on_each_symbol(filter_match_callback, &match); |
| if (ret < 0) |
| return ret; |
| if (IS_ENABLED(CONFIG_MODULES)) { |
| ret = module_kallsyms_on_each_symbol(NULL, filter_match_callback, &match); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return match.index ?: -ENOENT; |
| } |
| |
| static void fprobe_fail_cleanup(struct fprobe *fp) |
| { |
| kfree(fp->hlist_array); |
| fp->hlist_array = NULL; |
| } |
| |
| /* Initialize the fprobe data structure. */ |
| static int fprobe_init(struct fprobe *fp, unsigned long *addrs, int num) |
| { |
| struct fprobe_hlist *hlist_array; |
| unsigned long addr; |
| int size, i; |
| |
| if (!fp || !addrs || num <= 0) |
| return -EINVAL; |
| |
| size = ALIGN(fp->entry_data_size, sizeof(long)); |
| if (size > MAX_FPROBE_DATA_SIZE) |
| return -E2BIG; |
| fp->entry_data_size = size; |
| |
| hlist_array = kzalloc(struct_size(hlist_array, array, num), GFP_KERNEL); |
| if (!hlist_array) |
| return -ENOMEM; |
| |
| fp->nmissed = 0; |
| |
| hlist_array->size = num; |
| fp->hlist_array = hlist_array; |
| hlist_array->fp = fp; |
| for (i = 0; i < num; i++) { |
| hlist_array->array[i].fp = fp; |
| addr = ftrace_location(addrs[i]); |
| if (!addr) { |
| fprobe_fail_cleanup(fp); |
| return -ENOENT; |
| } |
| hlist_array->array[i].addr = addr; |
| } |
| return 0; |
| } |
| |
| #define FPROBE_IPS_MAX INT_MAX |
| |
| int fprobe_count_ips_from_filter(const char *filter, const char *notfilter) |
| { |
| return get_ips_from_filter(filter, notfilter, NULL, NULL, FPROBE_IPS_MAX); |
| } |
| |
| /** |
| * register_fprobe() - Register fprobe to ftrace by pattern. |
| * @fp: A fprobe data structure to be registered. |
| * @filter: A wildcard pattern of probed symbols. |
| * @notfilter: A wildcard pattern of NOT probed symbols. |
| * |
| * Register @fp to ftrace for enabling the probe on the symbols matched to @filter. |
| * If @notfilter is not NULL, the symbols matched the @notfilter are not probed. |
| * |
| * Return 0 if @fp is registered successfully, -errno if not. |
| */ |
| int register_fprobe(struct fprobe *fp, const char *filter, const char *notfilter) |
| { |
| unsigned long *addrs __free(kfree) = NULL; |
| struct module **mods __free(kfree) = NULL; |
| int ret, num; |
| |
| if (!fp || !filter) |
| return -EINVAL; |
| |
| num = get_ips_from_filter(filter, notfilter, NULL, NULL, FPROBE_IPS_MAX); |
| if (num < 0) |
| return num; |
| |
| addrs = kcalloc(num, sizeof(*addrs), GFP_KERNEL); |
| if (!addrs) |
| return -ENOMEM; |
| |
| mods = kcalloc(num, sizeof(*mods), GFP_KERNEL); |
| if (!mods) |
| return -ENOMEM; |
| |
| ret = get_ips_from_filter(filter, notfilter, addrs, mods, num); |
| if (ret < 0) |
| return ret; |
| |
| ret = register_fprobe_ips(fp, addrs, ret); |
| |
| for (int i = 0; i < num; i++) { |
| if (mods[i]) |
| module_put(mods[i]); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(register_fprobe); |
| |
| /** |
| * register_fprobe_ips() - Register fprobe to ftrace by address. |
| * @fp: A fprobe data structure to be registered. |
| * @addrs: An array of target function address. |
| * @num: The number of entries of @addrs. |
| * |
| * Register @fp to ftrace for enabling the probe on the address given by @addrs. |
| * The @addrs must be the addresses of ftrace location address, which may be |
| * the symbol address + arch-dependent offset. |
| * If you unsure what this mean, please use other registration functions. |
| * |
| * Return 0 if @fp is registered successfully, -errno if not. |
| */ |
| int register_fprobe_ips(struct fprobe *fp, unsigned long *addrs, int num) |
| { |
| struct fprobe_hlist *hlist_array; |
| int ret, i; |
| |
| ret = fprobe_init(fp, addrs, num); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&fprobe_mutex); |
| |
| hlist_array = fp->hlist_array; |
| if (fprobe_is_ftrace(fp)) |
| ret = fprobe_ftrace_add_ips(addrs, num); |
| else |
| ret = fprobe_graph_add_ips(addrs, num); |
| |
| if (!ret) { |
| add_fprobe_hash(fp); |
| for (i = 0; i < hlist_array->size; i++) { |
| ret = insert_fprobe_node(&hlist_array->array[i]); |
| if (ret) |
| break; |
| } |
| /* fallback on insert error */ |
| if (ret) { |
| for (i--; i >= 0; i--) |
| delete_fprobe_node(&hlist_array->array[i]); |
| } |
| } |
| mutex_unlock(&fprobe_mutex); |
| |
| if (ret) |
| fprobe_fail_cleanup(fp); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(register_fprobe_ips); |
| |
| /** |
| * register_fprobe_syms() - Register fprobe to ftrace by symbols. |
| * @fp: A fprobe data structure to be registered. |
| * @syms: An array of target symbols. |
| * @num: The number of entries of @syms. |
| * |
| * Register @fp to the symbols given by @syms array. This will be useful if |
| * you are sure the symbols exist in the kernel. |
| * |
| * Return 0 if @fp is registered successfully, -errno if not. |
| */ |
| int register_fprobe_syms(struct fprobe *fp, const char **syms, int num) |
| { |
| unsigned long *addrs; |
| int ret; |
| |
| if (!fp || !syms || num <= 0) |
| return -EINVAL; |
| |
| addrs = get_ftrace_locations(syms, num); |
| if (IS_ERR(addrs)) |
| return PTR_ERR(addrs); |
| |
| ret = register_fprobe_ips(fp, addrs, num); |
| |
| kfree(addrs); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(register_fprobe_syms); |
| |
| bool fprobe_is_registered(struct fprobe *fp) |
| { |
| if (!fp || !fp->hlist_array) |
| return false; |
| return true; |
| } |
| |
| /** |
| * unregister_fprobe() - Unregister fprobe. |
| * @fp: A fprobe data structure to be unregistered. |
| * |
| * Unregister fprobe (and remove ftrace hooks from the function entries). |
| * |
| * Return 0 if @fp is unregistered successfully, -errno if not. |
| */ |
| int unregister_fprobe(struct fprobe *fp) |
| { |
| struct fprobe_hlist *hlist_array; |
| unsigned long *addrs = NULL; |
| int ret = 0, i, count; |
| |
| mutex_lock(&fprobe_mutex); |
| if (!fp || !is_fprobe_still_exist(fp)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| hlist_array = fp->hlist_array; |
| addrs = kcalloc(hlist_array->size, sizeof(unsigned long), GFP_KERNEL); |
| if (!addrs) { |
| ret = -ENOMEM; /* TODO: Fallback to one-by-one loop */ |
| goto out; |
| } |
| |
| /* Remove non-synonim ips from table and hash */ |
| count = 0; |
| for (i = 0; i < hlist_array->size; i++) { |
| if (!delete_fprobe_node(&hlist_array->array[i])) |
| addrs[count++] = hlist_array->array[i].addr; |
| } |
| del_fprobe_hash(fp); |
| |
| if (fprobe_is_ftrace(fp)) |
| fprobe_ftrace_remove_ips(addrs, count); |
| else |
| fprobe_graph_remove_ips(addrs, count); |
| |
| kfree_rcu(hlist_array, rcu); |
| fp->hlist_array = NULL; |
| |
| out: |
| mutex_unlock(&fprobe_mutex); |
| |
| kfree(addrs); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(unregister_fprobe); |
| |
| static int __init fprobe_initcall(void) |
| { |
| rhltable_init(&fprobe_ip_table, &fprobe_rht_params); |
| return 0; |
| } |
| core_initcall(fprobe_initcall); |