|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/radix-tree.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/uuid.h> | 
|  | #include <linux/semaphore.h> | 
|  | #include <linux/error-injection.h> | 
|  | #include <linux/crc32c.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <crypto/hash.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "bio.h" | 
|  | #include "print-tree.h" | 
|  | #include "locking.h" | 
|  | #include "tree-log.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "free-space-tree.h" | 
|  | #include "dev-replace.h" | 
|  | #include "raid56.h" | 
|  | #include "sysfs.h" | 
|  | #include "qgroup.h" | 
|  | #include "compression.h" | 
|  | #include "tree-checker.h" | 
|  | #include "ref-verify.h" | 
|  | #include "block-group.h" | 
|  | #include "discard.h" | 
|  | #include "space-info.h" | 
|  | #include "zoned.h" | 
|  | #include "subpage.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "extent-tree.h" | 
|  | #include "root-tree.h" | 
|  | #include "defrag.h" | 
|  | #include "uuid-tree.h" | 
|  | #include "relocation.h" | 
|  | #include "scrub.h" | 
|  | #include "super.h" | 
|  |  | 
|  | #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\ | 
|  | BTRFS_HEADER_FLAG_RELOC |\ | 
|  | BTRFS_SUPER_FLAG_ERROR |\ | 
|  | BTRFS_SUPER_FLAG_SEEDING |\ | 
|  | BTRFS_SUPER_FLAG_METADUMP |\ | 
|  | BTRFS_SUPER_FLAG_METADUMP_V2) | 
|  |  | 
|  | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); | 
|  | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); | 
|  |  | 
|  | static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | if (fs_info->csum_shash) | 
|  | crypto_free_shash(fs_info->csum_shash); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the csum of a btree block and store the result to provided buffer. | 
|  | */ | 
|  | static void csum_tree_block(struct extent_buffer *buf, u8 *result) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = buf->fs_info; | 
|  | int num_pages; | 
|  | u32 first_page_part; | 
|  | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
|  | char *kaddr; | 
|  | int i; | 
|  |  | 
|  | shash->tfm = fs_info->csum_shash; | 
|  | crypto_shash_init(shash); | 
|  |  | 
|  | if (buf->addr) { | 
|  | /* Pages are contiguous, handle them as a big one. */ | 
|  | kaddr = buf->addr; | 
|  | first_page_part = fs_info->nodesize; | 
|  | num_pages = 1; | 
|  | } else { | 
|  | kaddr = folio_address(buf->folios[0]); | 
|  | first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); | 
|  | num_pages = num_extent_pages(buf); | 
|  | } | 
|  |  | 
|  | crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, | 
|  | first_page_part - BTRFS_CSUM_SIZE); | 
|  |  | 
|  | /* | 
|  | * Multiple single-page folios case would reach here. | 
|  | * | 
|  | * nodesize <= PAGE_SIZE and large folio all handled by above | 
|  | * crypto_shash_update() already. | 
|  | */ | 
|  | for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { | 
|  | kaddr = folio_address(buf->folios[i]); | 
|  | crypto_shash_update(shash, kaddr, PAGE_SIZE); | 
|  | } | 
|  | memset(result, 0, BTRFS_CSUM_SIZE); | 
|  | crypto_shash_final(shash, result); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we can't consider a given block up to date unless the transid of the | 
|  | * block matches the transid in the parent node's pointer.  This is how we | 
|  | * detect blocks that either didn't get written at all or got written | 
|  | * in the wrong place. | 
|  | */ | 
|  | int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) | 
|  | { | 
|  | if (!extent_buffer_uptodate(eb)) | 
|  | return 0; | 
|  |  | 
|  | if (!parent_transid || btrfs_header_generation(eb) == parent_transid) | 
|  | return 1; | 
|  |  | 
|  | if (atomic) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (!extent_buffer_uptodate(eb) || | 
|  | btrfs_header_generation(eb) != parent_transid) { | 
|  | btrfs_err_rl(eb->fs_info, | 
|  | "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", | 
|  | eb->start, eb->read_mirror, | 
|  | parent_transid, btrfs_header_generation(eb)); | 
|  | clear_extent_buffer_uptodate(eb); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool btrfs_supported_super_csum(u16 csum_type) | 
|  | { | 
|  | switch (csum_type) { | 
|  | case BTRFS_CSUM_TYPE_CRC32: | 
|  | case BTRFS_CSUM_TYPE_XXHASH: | 
|  | case BTRFS_CSUM_TYPE_SHA256: | 
|  | case BTRFS_CSUM_TYPE_BLAKE2: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 0 if the superblock checksum type matches the checksum value of that | 
|  | * algorithm. Pass the raw disk superblock data. | 
|  | */ | 
|  | int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, | 
|  | const struct btrfs_super_block *disk_sb) | 
|  | { | 
|  | char result[BTRFS_CSUM_SIZE]; | 
|  | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
|  |  | 
|  | shash->tfm = fs_info->csum_shash; | 
|  |  | 
|  | /* | 
|  | * The super_block structure does not span the whole | 
|  | * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is | 
|  | * filled with zeros and is included in the checksum. | 
|  | */ | 
|  | crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, | 
|  | BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); | 
|  |  | 
|  | if (memcmp(disk_sb->csum, result, fs_info->csum_size)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, | 
|  | int mirror_num) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | int num_folios = num_extent_folios(eb); | 
|  | int ret = 0; | 
|  |  | 
|  | if (sb_rdonly(fs_info->sb)) | 
|  | return -EROFS; | 
|  |  | 
|  | for (int i = 0; i < num_folios; i++) { | 
|  | struct folio *folio = eb->folios[i]; | 
|  | u64 start = max_t(u64, eb->start, folio_pos(folio)); | 
|  | u64 end = min_t(u64, eb->start + eb->len, | 
|  | folio_pos(folio) + eb->folio_size); | 
|  | u32 len = end - start; | 
|  |  | 
|  | ret = btrfs_repair_io_failure(fs_info, 0, start, len, | 
|  | start, folio, offset_in_folio(folio, start), | 
|  | mirror_num); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to read a given tree block, doing retries as required when | 
|  | * the checksums don't match and we have alternate mirrors to try. | 
|  | * | 
|  | * @check:		expected tree parentness check, see the comments of the | 
|  | *			structure for details. | 
|  | */ | 
|  | int btrfs_read_extent_buffer(struct extent_buffer *eb, | 
|  | const struct btrfs_tree_parent_check *check) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | int failed = 0; | 
|  | int ret; | 
|  | int num_copies = 0; | 
|  | int mirror_num = 0; | 
|  | int failed_mirror = 0; | 
|  |  | 
|  | ASSERT(check); | 
|  |  | 
|  | while (1) { | 
|  | clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
|  | ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | num_copies = btrfs_num_copies(fs_info, | 
|  | eb->start, eb->len); | 
|  | if (num_copies == 1) | 
|  | break; | 
|  |  | 
|  | if (!failed_mirror) { | 
|  | failed = 1; | 
|  | failed_mirror = eb->read_mirror; | 
|  | } | 
|  |  | 
|  | mirror_num++; | 
|  | if (mirror_num == failed_mirror) | 
|  | mirror_num++; | 
|  |  | 
|  | if (mirror_num > num_copies) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (failed && !ret && failed_mirror) | 
|  | btrfs_repair_eb_io_failure(eb, failed_mirror); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checksum a dirty tree block before IO. | 
|  | */ | 
|  | blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct extent_buffer *eb = bbio->private; | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | u64 found_start = btrfs_header_bytenr(eb); | 
|  | u64 last_trans; | 
|  | u8 result[BTRFS_CSUM_SIZE]; | 
|  | int ret; | 
|  |  | 
|  | /* Btree blocks are always contiguous on disk. */ | 
|  | if (WARN_ON_ONCE(bbio->file_offset != eb->start)) | 
|  | return BLK_STS_IOERR; | 
|  | if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) | 
|  | return BLK_STS_IOERR; | 
|  |  | 
|  | /* | 
|  | * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't | 
|  | * checksum it but zero-out its content. This is done to preserve | 
|  | * ordering of I/O without unnecessarily writing out data. | 
|  | */ | 
|  | if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { | 
|  | memzero_extent_buffer(eb, 0, eb->len); | 
|  | return BLK_STS_OK; | 
|  | } | 
|  |  | 
|  | if (WARN_ON_ONCE(found_start != eb->start)) | 
|  | return BLK_STS_IOERR; | 
|  | if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0], | 
|  | eb->start, eb->len))) | 
|  | return BLK_STS_IOERR; | 
|  |  | 
|  | ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, | 
|  | offsetof(struct btrfs_header, fsid), | 
|  | BTRFS_FSID_SIZE) == 0); | 
|  | csum_tree_block(eb, result); | 
|  |  | 
|  | if (btrfs_header_level(eb)) | 
|  | ret = btrfs_check_node(eb); | 
|  | else | 
|  | ret = btrfs_check_leaf(eb); | 
|  |  | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * Also check the generation, the eb reached here must be newer than | 
|  | * last committed. Or something seriously wrong happened. | 
|  | */ | 
|  | last_trans = btrfs_get_last_trans_committed(fs_info); | 
|  | if (unlikely(btrfs_header_generation(eb) <= last_trans)) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_err(fs_info, | 
|  | "block=%llu bad generation, have %llu expect > %llu", | 
|  | eb->start, btrfs_header_generation(eb), last_trans); | 
|  | goto error; | 
|  | } | 
|  | write_extent_buffer(eb, result, 0, fs_info->csum_size); | 
|  | return BLK_STS_OK; | 
|  |  | 
|  | error: | 
|  | btrfs_print_tree(eb, 0); | 
|  | btrfs_err(fs_info, "block=%llu write time tree block corruption detected", | 
|  | eb->start); | 
|  | /* | 
|  | * Be noisy if this is an extent buffer from a log tree. We don't abort | 
|  | * a transaction in case there's a bad log tree extent buffer, we just | 
|  | * fallback to a transaction commit. Still we want to know when there is | 
|  | * a bad log tree extent buffer, as that may signal a bug somewhere. | 
|  | */ | 
|  | WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || | 
|  | btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); | 
|  | return errno_to_blk_status(ret); | 
|  | } | 
|  |  | 
|  | static bool check_tree_block_fsid(struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; | 
|  | u8 fsid[BTRFS_FSID_SIZE]; | 
|  |  | 
|  | read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), | 
|  | BTRFS_FSID_SIZE); | 
|  |  | 
|  | /* | 
|  | * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. | 
|  | * This is then overwritten by metadata_uuid if it is present in the | 
|  | * device_list_add(). The same true for a seed device as well. So use of | 
|  | * fs_devices::metadata_uuid is appropriate here. | 
|  | */ | 
|  | if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) | 
|  | return false; | 
|  |  | 
|  | list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) | 
|  | if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Do basic extent buffer checks at read time */ | 
|  | int btrfs_validate_extent_buffer(struct extent_buffer *eb, | 
|  | const struct btrfs_tree_parent_check *check) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = eb->fs_info; | 
|  | u64 found_start; | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  | u8 found_level; | 
|  | u8 result[BTRFS_CSUM_SIZE]; | 
|  | const u8 *header_csum; | 
|  | int ret = 0; | 
|  | const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); | 
|  |  | 
|  | ASSERT(check); | 
|  |  | 
|  | found_start = btrfs_header_bytenr(eb); | 
|  | if (found_start != eb->start) { | 
|  | btrfs_err_rl(fs_info, | 
|  | "bad tree block start, mirror %u want %llu have %llu", | 
|  | eb->read_mirror, eb->start, found_start); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | if (check_tree_block_fsid(eb)) { | 
|  | btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", | 
|  | eb->start, eb->read_mirror); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | found_level = btrfs_header_level(eb); | 
|  | if (found_level >= BTRFS_MAX_LEVEL) { | 
|  | btrfs_err(fs_info, | 
|  | "bad tree block level, mirror %u level %d on logical %llu", | 
|  | eb->read_mirror, btrfs_header_level(eb), eb->start); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | csum_tree_block(eb, result); | 
|  | header_csum = folio_address(eb->folios[0]) + | 
|  | get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); | 
|  |  | 
|  | if (memcmp(result, header_csum, csum_size) != 0) { | 
|  | btrfs_warn_rl(fs_info, | 
|  | "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", | 
|  | eb->start, eb->read_mirror, | 
|  | CSUM_FMT_VALUE(csum_size, header_csum), | 
|  | CSUM_FMT_VALUE(csum_size, result), | 
|  | btrfs_header_level(eb), | 
|  | ignore_csum ? ", ignored" : ""); | 
|  | if (!ignore_csum) { | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (found_level != check->level) { | 
|  | btrfs_err(fs_info, | 
|  | "level verify failed on logical %llu mirror %u wanted %u found %u", | 
|  | eb->start, eb->read_mirror, check->level, found_level); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(check->transid && | 
|  | btrfs_header_generation(eb) != check->transid)) { | 
|  | btrfs_err_rl(eb->fs_info, | 
|  | "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", | 
|  | eb->start, eb->read_mirror, check->transid, | 
|  | btrfs_header_generation(eb)); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | if (check->has_first_key) { | 
|  | const struct btrfs_key *expect_key = &check->first_key; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | if (found_level) | 
|  | btrfs_node_key_to_cpu(eb, &found_key, 0); | 
|  | else | 
|  | btrfs_item_key_to_cpu(eb, &found_key, 0); | 
|  | if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { | 
|  | btrfs_err(fs_info, | 
|  | "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", | 
|  | eb->start, check->transid, | 
|  | expect_key->objectid, | 
|  | expect_key->type, expect_key->offset, | 
|  | found_key.objectid, found_key.type, | 
|  | found_key.offset); | 
|  | ret = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (check->owner_root) { | 
|  | ret = btrfs_check_eb_owner(eb, check->owner_root); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is a leaf block and it is corrupt, set the corrupt bit so | 
|  | * that we don't try and read the other copies of this block, just | 
|  | * return -EIO. | 
|  | */ | 
|  | if (found_level == 0 && btrfs_check_leaf(eb)) { | 
|  | set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | if (found_level > 0 && btrfs_check_node(eb)) | 
|  | ret = -EIO; | 
|  |  | 
|  | if (ret) | 
|  | btrfs_err(fs_info, | 
|  | "read time tree block corruption detected on logical %llu mirror %u", | 
|  | eb->start, eb->read_mirror); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MIGRATION | 
|  | static int btree_migrate_folio(struct address_space *mapping, | 
|  | struct folio *dst, struct folio *src, enum migrate_mode mode) | 
|  | { | 
|  | /* | 
|  | * we can't safely write a btree page from here, | 
|  | * we haven't done the locking hook | 
|  | */ | 
|  | if (folio_test_dirty(src)) | 
|  | return -EAGAIN; | 
|  | /* | 
|  | * Buffers may be managed in a filesystem specific way. | 
|  | * We must have no buffers or drop them. | 
|  | */ | 
|  | if (folio_get_private(src) && | 
|  | !filemap_release_folio(src, GFP_KERNEL)) | 
|  | return -EAGAIN; | 
|  | return migrate_folio(mapping, dst, src, mode); | 
|  | } | 
|  | #else | 
|  | #define btree_migrate_folio NULL | 
|  | #endif | 
|  |  | 
|  | static int btree_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (wbc->sync_mode == WB_SYNC_NONE) { | 
|  | struct btrfs_fs_info *fs_info; | 
|  |  | 
|  | if (wbc->for_kupdate) | 
|  | return 0; | 
|  |  | 
|  | fs_info = inode_to_fs_info(mapping->host); | 
|  | /* this is a bit racy, but that's ok */ | 
|  | ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, | 
|  | BTRFS_DIRTY_METADATA_THRESH, | 
|  | fs_info->dirty_metadata_batch); | 
|  | if (ret < 0) | 
|  | return 0; | 
|  | } | 
|  | return btree_write_cache_pages(mapping, wbc); | 
|  | } | 
|  |  | 
|  | static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) | 
|  | { | 
|  | if (folio_test_writeback(folio) || folio_test_dirty(folio)) | 
|  | return false; | 
|  |  | 
|  | return try_release_extent_buffer(folio); | 
|  | } | 
|  |  | 
|  | static void btree_invalidate_folio(struct folio *folio, size_t offset, | 
|  | size_t length) | 
|  | { | 
|  | struct extent_io_tree *tree; | 
|  |  | 
|  | tree = &folio_to_inode(folio)->io_tree; | 
|  | extent_invalidate_folio(tree, folio, offset); | 
|  | btree_release_folio(folio, GFP_NOFS); | 
|  | if (folio_get_private(folio)) { | 
|  | btrfs_warn(folio_to_fs_info(folio), | 
|  | "folio private not zero on folio %llu", | 
|  | (unsigned long long)folio_pos(folio)); | 
|  | folio_detach_private(folio); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | static bool btree_dirty_folio(struct address_space *mapping, | 
|  | struct folio *folio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); | 
|  | struct btrfs_subpage_info *spi = fs_info->subpage_info; | 
|  | struct btrfs_subpage *subpage; | 
|  | struct extent_buffer *eb; | 
|  | int cur_bit = 0; | 
|  | u64 page_start = folio_pos(folio); | 
|  |  | 
|  | if (fs_info->sectorsize == PAGE_SIZE) { | 
|  | eb = folio_get_private(folio); | 
|  | BUG_ON(!eb); | 
|  | BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | BUG_ON(!atomic_read(&eb->refs)); | 
|  | btrfs_assert_tree_write_locked(eb); | 
|  | return filemap_dirty_folio(mapping, folio); | 
|  | } | 
|  |  | 
|  | ASSERT(spi); | 
|  | subpage = folio_get_private(folio); | 
|  |  | 
|  | for (cur_bit = spi->dirty_offset; | 
|  | cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; | 
|  | cur_bit++) { | 
|  | unsigned long flags; | 
|  | u64 cur; | 
|  |  | 
|  | spin_lock_irqsave(&subpage->lock, flags); | 
|  | if (!test_bit(cur_bit, subpage->bitmaps)) { | 
|  | spin_unlock_irqrestore(&subpage->lock, flags); | 
|  | continue; | 
|  | } | 
|  | spin_unlock_irqrestore(&subpage->lock, flags); | 
|  | cur = page_start + cur_bit * fs_info->sectorsize; | 
|  |  | 
|  | eb = find_extent_buffer(fs_info, cur); | 
|  | ASSERT(eb); | 
|  | ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | ASSERT(atomic_read(&eb->refs)); | 
|  | btrfs_assert_tree_write_locked(eb); | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; | 
|  | } | 
|  | return filemap_dirty_folio(mapping, folio); | 
|  | } | 
|  | #else | 
|  | #define btree_dirty_folio filemap_dirty_folio | 
|  | #endif | 
|  |  | 
|  | static const struct address_space_operations btree_aops = { | 
|  | .writepages	= btree_writepages, | 
|  | .release_folio	= btree_release_folio, | 
|  | .invalidate_folio = btree_invalidate_folio, | 
|  | .migrate_folio	= btree_migrate_folio, | 
|  | .dirty_folio	= btree_dirty_folio, | 
|  | }; | 
|  |  | 
|  | struct extent_buffer *btrfs_find_create_tree_block( | 
|  | struct btrfs_fs_info *fs_info, | 
|  | u64 bytenr, u64 owner_root, | 
|  | int level) | 
|  | { | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return alloc_test_extent_buffer(fs_info, bytenr); | 
|  | return alloc_extent_buffer(fs_info, bytenr, owner_root, level); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read tree block at logical address @bytenr and do variant basic but critical | 
|  | * verification. | 
|  | * | 
|  | * @check:		expected tree parentness check, see comments of the | 
|  | *			structure for details. | 
|  | */ | 
|  | struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | struct btrfs_tree_parent_check *check) | 
|  | { | 
|  | struct extent_buffer *buf = NULL; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(check); | 
|  |  | 
|  | buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, | 
|  | check->level); | 
|  | if (IS_ERR(buf)) | 
|  | return buf; | 
|  |  | 
|  | ret = btrfs_read_extent_buffer(buf, check); | 
|  | if (ret) { | 
|  | free_extent_buffer_stale(buf); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return buf; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, | 
|  | u64 objectid) | 
|  | { | 
|  | bool dummy = btrfs_is_testing(fs_info); | 
|  |  | 
|  | memset(&root->root_key, 0, sizeof(root->root_key)); | 
|  | memset(&root->root_item, 0, sizeof(root->root_item)); | 
|  | memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); | 
|  | root->fs_info = fs_info; | 
|  | root->root_key.objectid = objectid; | 
|  | root->node = NULL; | 
|  | root->commit_root = NULL; | 
|  | root->state = 0; | 
|  | RB_CLEAR_NODE(&root->rb_node); | 
|  |  | 
|  | btrfs_set_root_last_trans(root, 0); | 
|  | root->free_objectid = 0; | 
|  | root->nr_delalloc_inodes = 0; | 
|  | root->nr_ordered_extents = 0; | 
|  | xa_init(&root->inodes); | 
|  | xa_init(&root->delayed_nodes); | 
|  |  | 
|  | btrfs_init_root_block_rsv(root); | 
|  |  | 
|  | INIT_LIST_HEAD(&root->dirty_list); | 
|  | INIT_LIST_HEAD(&root->root_list); | 
|  | INIT_LIST_HEAD(&root->delalloc_inodes); | 
|  | INIT_LIST_HEAD(&root->delalloc_root); | 
|  | INIT_LIST_HEAD(&root->ordered_extents); | 
|  | INIT_LIST_HEAD(&root->ordered_root); | 
|  | INIT_LIST_HEAD(&root->reloc_dirty_list); | 
|  | spin_lock_init(&root->delalloc_lock); | 
|  | spin_lock_init(&root->ordered_extent_lock); | 
|  | spin_lock_init(&root->accounting_lock); | 
|  | spin_lock_init(&root->qgroup_meta_rsv_lock); | 
|  | mutex_init(&root->objectid_mutex); | 
|  | mutex_init(&root->log_mutex); | 
|  | mutex_init(&root->ordered_extent_mutex); | 
|  | mutex_init(&root->delalloc_mutex); | 
|  | init_waitqueue_head(&root->qgroup_flush_wait); | 
|  | init_waitqueue_head(&root->log_writer_wait); | 
|  | init_waitqueue_head(&root->log_commit_wait[0]); | 
|  | init_waitqueue_head(&root->log_commit_wait[1]); | 
|  | INIT_LIST_HEAD(&root->log_ctxs[0]); | 
|  | INIT_LIST_HEAD(&root->log_ctxs[1]); | 
|  | atomic_set(&root->log_commit[0], 0); | 
|  | atomic_set(&root->log_commit[1], 0); | 
|  | atomic_set(&root->log_writers, 0); | 
|  | atomic_set(&root->log_batch, 0); | 
|  | refcount_set(&root->refs, 1); | 
|  | atomic_set(&root->snapshot_force_cow, 0); | 
|  | atomic_set(&root->nr_swapfiles, 0); | 
|  | btrfs_set_root_log_transid(root, 0); | 
|  | root->log_transid_committed = -1; | 
|  | btrfs_set_root_last_log_commit(root, 0); | 
|  | root->anon_dev = 0; | 
|  | if (!dummy) { | 
|  | extent_io_tree_init(fs_info, &root->dirty_log_pages, | 
|  | IO_TREE_ROOT_DIRTY_LOG_PAGES); | 
|  | extent_io_tree_init(fs_info, &root->log_csum_range, | 
|  | IO_TREE_LOG_CSUM_RANGE); | 
|  | } | 
|  |  | 
|  | spin_lock_init(&root->root_item_lock); | 
|  | btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | INIT_LIST_HEAD(&root->leak_list); | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | list_add_tail(&root->leak_list, &fs_info->allocated_roots); | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, | 
|  | u64 objectid, gfp_t flags) | 
|  | { | 
|  | struct btrfs_root *root = kzalloc(sizeof(*root), flags); | 
|  | if (root) | 
|  | __setup_root(root, fs_info, objectid); | 
|  | return root; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | /* Should only be used by the testing infrastructure */ | 
|  | struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  |  | 
|  | if (!fs_info) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* We don't use the stripesize in selftest, set it as sectorsize */ | 
|  | root->alloc_bytenr = 0; | 
|  |  | 
|  | return root; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) | 
|  | { | 
|  | const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); | 
|  | const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); | 
|  |  | 
|  | return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); | 
|  | } | 
|  |  | 
|  | static int global_root_key_cmp(const void *k, const struct rb_node *node) | 
|  | { | 
|  | const struct btrfs_key *key = k; | 
|  | const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); | 
|  |  | 
|  | return btrfs_comp_cpu_keys(key, &root->root_key); | 
|  | } | 
|  |  | 
|  | int btrfs_global_root_insert(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct rb_node *tmp; | 
|  | int ret = 0; | 
|  |  | 
|  | write_lock(&fs_info->global_root_lock); | 
|  | tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); | 
|  | write_unlock(&fs_info->global_root_lock); | 
|  |  | 
|  | if (tmp) { | 
|  | ret = -EEXIST; | 
|  | btrfs_warn(fs_info, "global root %llu %llu already exists", | 
|  | btrfs_root_id(root), root->root_key.offset); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_global_root_delete(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | write_lock(&fs_info->global_root_lock); | 
|  | rb_erase(&root->rb_node, &fs_info->global_root_tree); | 
|  | write_unlock(&fs_info->global_root_lock); | 
|  | } | 
|  |  | 
|  | struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct btrfs_root *root = NULL; | 
|  |  | 
|  | read_lock(&fs_info->global_root_lock); | 
|  | node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); | 
|  | if (node) | 
|  | root = container_of(node, struct btrfs_root, rb_node); | 
|  | read_unlock(&fs_info->global_root_lock); | 
|  |  | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group *block_group; | 
|  | u64 ret; | 
|  |  | 
|  | if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) | 
|  | return 0; | 
|  |  | 
|  | if (bytenr) | 
|  | block_group = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | else | 
|  | block_group = btrfs_lookup_first_block_group(fs_info, bytenr); | 
|  | ASSERT(block_group); | 
|  | if (!block_group) | 
|  | return 0; | 
|  | ret = block_group->global_root_id; | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_key key = { | 
|  | .objectid = BTRFS_CSUM_TREE_OBJECTID, | 
|  | .type = BTRFS_ROOT_ITEM_KEY, | 
|  | .offset = btrfs_global_root_id(fs_info, bytenr), | 
|  | }; | 
|  |  | 
|  | return btrfs_global_root(fs_info, &key); | 
|  | } | 
|  |  | 
|  | struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_key key = { | 
|  | .objectid = BTRFS_EXTENT_TREE_OBJECTID, | 
|  | .type = BTRFS_ROOT_ITEM_KEY, | 
|  | .offset = btrfs_global_root_id(fs_info, bytenr), | 
|  | }; | 
|  |  | 
|  | return btrfs_global_root(fs_info, &key); | 
|  | } | 
|  |  | 
|  | struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, | 
|  | u64 objectid) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_key key; | 
|  | unsigned int nofs_flag; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * We're holding a transaction handle, so use a NOFS memory allocation | 
|  | * context to avoid deadlock if reclaim happens. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | root->root_key.objectid = objectid; | 
|  | root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root->root_key.offset = 0; | 
|  |  | 
|  | leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, | 
|  | 0, BTRFS_NESTING_NORMAL); | 
|  | if (IS_ERR(leaf)) { | 
|  | ret = PTR_ERR(leaf); | 
|  | leaf = NULL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | root->node = leaf; | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  |  | 
|  | root->commit_root = btrfs_root_node(root); | 
|  | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  |  | 
|  | btrfs_set_root_flags(&root->root_item, 0); | 
|  | btrfs_set_root_limit(&root->root_item, 0); | 
|  | btrfs_set_root_bytenr(&root->root_item, leaf->start); | 
|  | btrfs_set_root_generation(&root->root_item, trans->transid); | 
|  | btrfs_set_root_level(&root->root_item, 0); | 
|  | btrfs_set_root_refs(&root->root_item, 1); | 
|  | btrfs_set_root_used(&root->root_item, leaf->len); | 
|  | btrfs_set_root_last_snapshot(&root->root_item, 0); | 
|  | btrfs_set_root_dirid(&root->root_item, 0); | 
|  | if (is_fstree(objectid)) | 
|  | generate_random_guid(root->root_item.uuid); | 
|  | else | 
|  | export_guid(root->root_item.uuid, &guid_null); | 
|  | btrfs_set_root_drop_level(&root->root_item, 0); | 
|  |  | 
|  | btrfs_tree_unlock(leaf); | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | return root; | 
|  |  | 
|  | fail: | 
|  | btrfs_put_root(root); | 
|  |  | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  |  | 
|  | root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
|  | root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; | 
|  |  | 
|  | return root; | 
|  | } | 
|  |  | 
|  | int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | /* | 
|  | * DON'T set SHAREABLE bit for log trees. | 
|  | * | 
|  | * Log trees are not exposed to user space thus can't be snapshotted, | 
|  | * and they go away before a real commit is actually done. | 
|  | * | 
|  | * They do store pointers to file data extents, and those reference | 
|  | * counts still get updated (along with back refs to the log tree). | 
|  | */ | 
|  |  | 
|  | leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, | 
|  | NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); | 
|  | if (IS_ERR(leaf)) | 
|  | return PTR_ERR(leaf); | 
|  |  | 
|  | root->node = leaf; | 
|  |  | 
|  | btrfs_mark_buffer_dirty(trans, root->node); | 
|  | btrfs_tree_unlock(root->node); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *log_root; | 
|  |  | 
|  | log_root = alloc_log_tree(trans, fs_info); | 
|  | if (IS_ERR(log_root)) | 
|  | return PTR_ERR(log_root); | 
|  |  | 
|  | if (!btrfs_is_zoned(fs_info)) { | 
|  | int ret = btrfs_alloc_log_tree_node(trans, log_root); | 
|  |  | 
|  | if (ret) { | 
|  | btrfs_put_root(log_root); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | WARN_ON(fs_info->log_root_tree); | 
|  | fs_info->log_root_tree = log_root; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *log_root; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | int ret; | 
|  |  | 
|  | log_root = alloc_log_tree(trans, fs_info); | 
|  | if (IS_ERR(log_root)) | 
|  | return PTR_ERR(log_root); | 
|  |  | 
|  | ret = btrfs_alloc_log_tree_node(trans, log_root); | 
|  | if (ret) { | 
|  | btrfs_put_root(log_root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_set_root_last_trans(log_root, trans->transid); | 
|  | log_root->root_key.offset = btrfs_root_id(root); | 
|  |  | 
|  | inode_item = &log_root->root_item.inode; | 
|  | btrfs_set_stack_inode_generation(inode_item, 1); | 
|  | btrfs_set_stack_inode_size(inode_item, 3); | 
|  | btrfs_set_stack_inode_nlink(inode_item, 1); | 
|  | btrfs_set_stack_inode_nbytes(inode_item, | 
|  | fs_info->nodesize); | 
|  | btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); | 
|  |  | 
|  | btrfs_set_root_node(&log_root->root_item, log_root->node); | 
|  |  | 
|  | WARN_ON(root->log_root); | 
|  | root->log_root = log_root; | 
|  | btrfs_set_root_log_transid(root, 0); | 
|  | root->log_transid_committed = -1; | 
|  | btrfs_set_root_last_log_commit(root, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, | 
|  | struct btrfs_path *path, | 
|  | const struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_tree_parent_check check = { 0 }; | 
|  | struct btrfs_fs_info *fs_info = tree_root->fs_info; | 
|  | u64 generation; | 
|  | int ret; | 
|  | int level; | 
|  |  | 
|  | root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = btrfs_find_root(tree_root, key, path, | 
|  | &root->root_item, &root->root_key); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | generation = btrfs_root_generation(&root->root_item); | 
|  | level = btrfs_root_level(&root->root_item); | 
|  | check.level = level; | 
|  | check.transid = generation; | 
|  | check.owner_root = key->objectid; | 
|  | root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), | 
|  | &check); | 
|  | if (IS_ERR(root->node)) { | 
|  | ret = PTR_ERR(root->node); | 
|  | root->node = NULL; | 
|  | goto fail; | 
|  | } | 
|  | if (!btrfs_buffer_uptodate(root->node, generation, 0)) { | 
|  | ret = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For real fs, and not log/reloc trees, root owner must | 
|  | * match its root node owner | 
|  | */ | 
|  | if (!btrfs_is_testing(fs_info) && | 
|  | btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && | 
|  | btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && | 
|  | btrfs_root_id(root) != btrfs_header_owner(root->node)) { | 
|  | btrfs_crit(fs_info, | 
|  | "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", | 
|  | btrfs_root_id(root), root->node->start, | 
|  | btrfs_header_owner(root->node), | 
|  | btrfs_root_id(root)); | 
|  | ret = -EUCLEAN; | 
|  | goto fail; | 
|  | } | 
|  | root->commit_root = btrfs_root_node(root); | 
|  | return root; | 
|  | fail: | 
|  | btrfs_put_root(root); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, | 
|  | const struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | root = read_tree_root_path(tree_root, path, key); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | return root; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize subvolume root in-memory structure | 
|  | * | 
|  | * @anon_dev:	anonymous device to attach to the root, if zero, allocate new | 
|  | */ | 
|  | static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | btrfs_drew_lock_init(&root->snapshot_lock); | 
|  |  | 
|  | if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && | 
|  | !btrfs_is_data_reloc_root(root) && | 
|  | is_fstree(btrfs_root_id(root))) { | 
|  | set_bit(BTRFS_ROOT_SHAREABLE, &root->state); | 
|  | btrfs_check_and_init_root_item(&root->root_item); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't assign anonymous block device to roots that are not exposed to | 
|  | * userspace, the id pool is limited to 1M | 
|  | */ | 
|  | if (is_fstree(btrfs_root_id(root)) && | 
|  | btrfs_root_refs(&root->root_item) > 0) { | 
|  | if (!anon_dev) { | 
|  | ret = get_anon_bdev(&root->anon_dev); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } else { | 
|  | root->anon_dev = anon_dev; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_lock(&root->objectid_mutex); | 
|  | ret = btrfs_init_root_free_objectid(root); | 
|  | if (ret) { | 
|  | mutex_unlock(&root->objectid_mutex); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); | 
|  |  | 
|  | mutex_unlock(&root->objectid_mutex); | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | /* The caller is responsible to call btrfs_free_fs_root */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, | 
|  | u64 root_id) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | root = radix_tree_lookup(&fs_info->fs_roots_radix, | 
|  | (unsigned long)root_id); | 
|  | root = btrfs_grab_root(root); | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, | 
|  | u64 objectid) | 
|  | { | 
|  | struct btrfs_key key = { | 
|  | .objectid = objectid, | 
|  | .type = BTRFS_ROOT_ITEM_KEY, | 
|  | .offset = 0, | 
|  | }; | 
|  |  | 
|  | switch (objectid) { | 
|  | case BTRFS_ROOT_TREE_OBJECTID: | 
|  | return btrfs_grab_root(fs_info->tree_root); | 
|  | case BTRFS_EXTENT_TREE_OBJECTID: | 
|  | return btrfs_grab_root(btrfs_global_root(fs_info, &key)); | 
|  | case BTRFS_CHUNK_TREE_OBJECTID: | 
|  | return btrfs_grab_root(fs_info->chunk_root); | 
|  | case BTRFS_DEV_TREE_OBJECTID: | 
|  | return btrfs_grab_root(fs_info->dev_root); | 
|  | case BTRFS_CSUM_TREE_OBJECTID: | 
|  | return btrfs_grab_root(btrfs_global_root(fs_info, &key)); | 
|  | case BTRFS_QUOTA_TREE_OBJECTID: | 
|  | return btrfs_grab_root(fs_info->quota_root); | 
|  | case BTRFS_UUID_TREE_OBJECTID: | 
|  | return btrfs_grab_root(fs_info->uuid_root); | 
|  | case BTRFS_BLOCK_GROUP_TREE_OBJECTID: | 
|  | return btrfs_grab_root(fs_info->block_group_root); | 
|  | case BTRFS_FREE_SPACE_TREE_OBJECTID: | 
|  | return btrfs_grab_root(btrfs_global_root(fs_info, &key)); | 
|  | case BTRFS_RAID_STRIPE_TREE_OBJECTID: | 
|  | return btrfs_grab_root(fs_info->stripe_root); | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = radix_tree_preload(GFP_NOFS); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | ret = radix_tree_insert(&fs_info->fs_roots_radix, | 
|  | (unsigned long)btrfs_root_id(root), | 
|  | root); | 
|  | if (ret == 0) { | 
|  | btrfs_grab_root(root); | 
|  | set_bit(BTRFS_ROOT_IN_RADIX, &root->state); | 
|  | } | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | radix_tree_preload_end(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | struct btrfs_root *root; | 
|  |  | 
|  | while (!list_empty(&fs_info->allocated_roots)) { | 
|  | char buf[BTRFS_ROOT_NAME_BUF_LEN]; | 
|  |  | 
|  | root = list_first_entry(&fs_info->allocated_roots, | 
|  | struct btrfs_root, leak_list); | 
|  | btrfs_err(fs_info, "leaked root %s refcount %d", | 
|  | btrfs_root_name(&root->root_key, buf), | 
|  | refcount_read(&root->refs)); | 
|  | WARN_ON_ONCE(1); | 
|  | while (refcount_read(&root->refs) > 1) | 
|  | btrfs_put_root(root); | 
|  | btrfs_put_root(root); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void free_global_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct rb_node *node; | 
|  |  | 
|  | while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { | 
|  | root = rb_entry(node, struct btrfs_root, rb_node); | 
|  | rb_erase(&root->rb_node, &fs_info->global_root_tree); | 
|  | btrfs_put_root(root); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; | 
|  |  | 
|  | percpu_counter_destroy(&fs_info->dirty_metadata_bytes); | 
|  | percpu_counter_destroy(&fs_info->delalloc_bytes); | 
|  | percpu_counter_destroy(&fs_info->ordered_bytes); | 
|  | if (percpu_counter_initialized(em_counter)) | 
|  | ASSERT(percpu_counter_sum_positive(em_counter) == 0); | 
|  | percpu_counter_destroy(em_counter); | 
|  | percpu_counter_destroy(&fs_info->dev_replace.bio_counter); | 
|  | btrfs_free_csum_hash(fs_info); | 
|  | btrfs_free_stripe_hash_table(fs_info); | 
|  | btrfs_free_ref_cache(fs_info); | 
|  | kfree(fs_info->balance_ctl); | 
|  | kfree(fs_info->delayed_root); | 
|  | free_global_roots(fs_info); | 
|  | btrfs_put_root(fs_info->tree_root); | 
|  | btrfs_put_root(fs_info->chunk_root); | 
|  | btrfs_put_root(fs_info->dev_root); | 
|  | btrfs_put_root(fs_info->quota_root); | 
|  | btrfs_put_root(fs_info->uuid_root); | 
|  | btrfs_put_root(fs_info->fs_root); | 
|  | btrfs_put_root(fs_info->data_reloc_root); | 
|  | btrfs_put_root(fs_info->block_group_root); | 
|  | btrfs_put_root(fs_info->stripe_root); | 
|  | btrfs_check_leaked_roots(fs_info); | 
|  | btrfs_extent_buffer_leak_debug_check(fs_info); | 
|  | kfree(fs_info->super_copy); | 
|  | kfree(fs_info->super_for_commit); | 
|  | kvfree(fs_info); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Get an in-memory reference of a root structure. | 
|  | * | 
|  | * For essential trees like root/extent tree, we grab it from fs_info directly. | 
|  | * For subvolume trees, we check the cached filesystem roots first. If not | 
|  | * found, then read it from disk and add it to cached fs roots. | 
|  | * | 
|  | * Caller should release the root by calling btrfs_put_root() after the usage. | 
|  | * | 
|  | * NOTE: Reloc and log trees can't be read by this function as they share the | 
|  | *	 same root objectid. | 
|  | * | 
|  | * @objectid:	root id | 
|  | * @anon_dev:	preallocated anonymous block device number for new roots, | 
|  | *		pass NULL for a new allocation. | 
|  | * @check_ref:	whether to check root item references, If true, return -ENOENT | 
|  | *		for orphan roots | 
|  | */ | 
|  | static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, | 
|  | u64 objectid, dev_t *anon_dev, | 
|  | bool check_ref) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | root = btrfs_get_global_root(fs_info, objectid); | 
|  | if (root) | 
|  | return root; | 
|  |  | 
|  | /* | 
|  | * If we're called for non-subvolume trees, and above function didn't | 
|  | * find one, do not try to read it from disk. | 
|  | * | 
|  | * This is namely for free-space-tree and quota tree, which can change | 
|  | * at runtime and should only be grabbed from fs_info. | 
|  | */ | 
|  | if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) | 
|  | return ERR_PTR(-ENOENT); | 
|  | again: | 
|  | root = btrfs_lookup_fs_root(fs_info, objectid); | 
|  | if (root) { | 
|  | /* | 
|  | * Some other caller may have read out the newly inserted | 
|  | * subvolume already (for things like backref walk etc).  Not | 
|  | * that common but still possible.  In that case, we just need | 
|  | * to free the anon_dev. | 
|  | */ | 
|  | if (unlikely(anon_dev && *anon_dev)) { | 
|  | free_anon_bdev(*anon_dev); | 
|  | *anon_dev = 0; | 
|  | } | 
|  |  | 
|  | if (check_ref && btrfs_root_refs(&root->root_item) == 0) { | 
|  | btrfs_put_root(root); | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  | return root; | 
|  | } | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | root = btrfs_read_tree_root(fs_info->tree_root, &key); | 
|  | if (IS_ERR(root)) | 
|  | return root; | 
|  |  | 
|  | if (check_ref && btrfs_root_refs(&root->root_item) == 0) { | 
|  | ret = -ENOENT; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | key.objectid = BTRFS_ORPHAN_OBJECTID; | 
|  | key.type = BTRFS_ORPHAN_ITEM_KEY; | 
|  | key.offset = objectid; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
|  | btrfs_free_path(path); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | if (ret == 0) | 
|  | set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); | 
|  |  | 
|  | ret = btrfs_insert_fs_root(fs_info, root); | 
|  | if (ret) { | 
|  | if (ret == -EEXIST) { | 
|  | btrfs_put_root(root); | 
|  | goto again; | 
|  | } | 
|  | goto fail; | 
|  | } | 
|  | return root; | 
|  | fail: | 
|  | /* | 
|  | * If our caller provided us an anonymous device, then it's his | 
|  | * responsibility to free it in case we fail. So we have to set our | 
|  | * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() | 
|  | * and once again by our caller. | 
|  | */ | 
|  | if (anon_dev && *anon_dev) | 
|  | root->anon_dev = 0; | 
|  | btrfs_put_root(root); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get in-memory reference of a root structure | 
|  | * | 
|  | * @objectid:	tree objectid | 
|  | * @check_ref:	if set, verify that the tree exists and the item has at least | 
|  | *		one reference | 
|  | */ | 
|  | struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, | 
|  | u64 objectid, bool check_ref) | 
|  | { | 
|  | return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get in-memory reference of a root structure, created as new, optionally pass | 
|  | * the anonymous block device id | 
|  | * | 
|  | * @objectid:	tree objectid | 
|  | * @anon_dev:	if NULL, allocate a new anonymous block device or use the | 
|  | *		parameter value if not NULL | 
|  | */ | 
|  | struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, | 
|  | u64 objectid, dev_t *anon_dev) | 
|  | { | 
|  | return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a root for the given objectid. | 
|  | * | 
|  | * @fs_info:	the fs_info | 
|  | * @objectid:	the objectid we need to lookup | 
|  | * | 
|  | * This is exclusively used for backref walking, and exists specifically because | 
|  | * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref | 
|  | * creation time, which means we may have to read the tree_root in order to look | 
|  | * up a fs root that is not in memory.  If the root is not in memory we will | 
|  | * read the tree root commit root and look up the fs root from there.  This is a | 
|  | * temporary root, it will not be inserted into the radix tree as it doesn't | 
|  | * have the most uptodate information, it'll simply be discarded once the | 
|  | * backref code is finished using the root. | 
|  | */ | 
|  | struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | ASSERT(path->search_commit_root && path->skip_locking); | 
|  |  | 
|  | /* | 
|  | * This can return -ENOENT if we ask for a root that doesn't exist, but | 
|  | * since this is called via the backref walking code we won't be looking | 
|  | * up a root that doesn't exist, unless there's corruption.  So if root | 
|  | * != NULL just return it. | 
|  | */ | 
|  | root = btrfs_get_global_root(fs_info, objectid); | 
|  | if (root) | 
|  | return root; | 
|  |  | 
|  | root = btrfs_lookup_fs_root(fs_info, objectid); | 
|  | if (root) | 
|  | return root; | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | root = read_tree_root_path(fs_info->tree_root, path, &key); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static int cleaner_kthread(void *arg) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = arg; | 
|  | int again; | 
|  |  | 
|  | while (1) { | 
|  | again = 0; | 
|  |  | 
|  | set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); | 
|  |  | 
|  | /* Make the cleaner go to sleep early. */ | 
|  | if (btrfs_need_cleaner_sleep(fs_info)) | 
|  | goto sleep; | 
|  |  | 
|  | /* | 
|  | * Do not do anything if we might cause open_ctree() to block | 
|  | * before we have finished mounting the filesystem. | 
|  | */ | 
|  | if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) | 
|  | goto sleep; | 
|  |  | 
|  | if (!mutex_trylock(&fs_info->cleaner_mutex)) | 
|  | goto sleep; | 
|  |  | 
|  | /* | 
|  | * Avoid the problem that we change the status of the fs | 
|  | * during the above check and trylock. | 
|  | */ | 
|  | if (btrfs_need_cleaner_sleep(fs_info)) { | 
|  | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | goto sleep; | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) | 
|  | btrfs_sysfs_feature_update(fs_info); | 
|  |  | 
|  | btrfs_run_delayed_iputs(fs_info); | 
|  |  | 
|  | again = btrfs_clean_one_deleted_snapshot(fs_info); | 
|  | mutex_unlock(&fs_info->cleaner_mutex); | 
|  |  | 
|  | /* | 
|  | * The defragger has dealt with the R/O remount and umount, | 
|  | * needn't do anything special here. | 
|  | */ | 
|  | btrfs_run_defrag_inodes(fs_info); | 
|  |  | 
|  | /* | 
|  | * Acquires fs_info->reclaim_bgs_lock to avoid racing | 
|  | * with relocation (btrfs_relocate_chunk) and relocation | 
|  | * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) | 
|  | * after acquiring fs_info->reclaim_bgs_lock. So we | 
|  | * can't hold, nor need to, fs_info->cleaner_mutex when deleting | 
|  | * unused block groups. | 
|  | */ | 
|  | btrfs_delete_unused_bgs(fs_info); | 
|  |  | 
|  | /* | 
|  | * Reclaim block groups in the reclaim_bgs list after we deleted | 
|  | * all unused block_groups. This possibly gives us some more free | 
|  | * space. | 
|  | */ | 
|  | btrfs_reclaim_bgs(fs_info); | 
|  | sleep: | 
|  | clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); | 
|  | if (kthread_should_park()) | 
|  | kthread_parkme(); | 
|  | if (kthread_should_stop()) | 
|  | return 0; | 
|  | if (!again) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule(); | 
|  | __set_current_state(TASK_RUNNING); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int transaction_kthread(void *arg) | 
|  | { | 
|  | struct btrfs_root *root = arg; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_transaction *cur; | 
|  | u64 transid; | 
|  | time64_t delta; | 
|  | unsigned long delay; | 
|  | bool cannot_commit; | 
|  |  | 
|  | do { | 
|  | cannot_commit = false; | 
|  | delay = msecs_to_jiffies(fs_info->commit_interval * 1000); | 
|  | mutex_lock(&fs_info->transaction_kthread_mutex); | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | cur = fs_info->running_transaction; | 
|  | if (!cur) { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | goto sleep; | 
|  | } | 
|  |  | 
|  | delta = ktime_get_seconds() - cur->start_time; | 
|  | if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && | 
|  | cur->state < TRANS_STATE_COMMIT_PREP && | 
|  | delta < fs_info->commit_interval) { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | delay -= msecs_to_jiffies((delta - 1) * 1000); | 
|  | delay = min(delay, | 
|  | msecs_to_jiffies(fs_info->commit_interval * 1000)); | 
|  | goto sleep; | 
|  | } | 
|  | transid = cur->transid; | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | /* If the file system is aborted, this will always fail. */ | 
|  | trans = btrfs_attach_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (PTR_ERR(trans) != -ENOENT) | 
|  | cannot_commit = true; | 
|  | goto sleep; | 
|  | } | 
|  | if (transid == trans->transid) { | 
|  | btrfs_commit_transaction(trans); | 
|  | } else { | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  | sleep: | 
|  | wake_up_process(fs_info->cleaner_kthread); | 
|  | mutex_unlock(&fs_info->transaction_kthread_mutex); | 
|  |  | 
|  | if (BTRFS_FS_ERROR(fs_info)) | 
|  | btrfs_cleanup_transaction(fs_info); | 
|  | if (!kthread_should_stop() && | 
|  | (!btrfs_transaction_blocked(fs_info) || | 
|  | cannot_commit)) | 
|  | schedule_timeout_interruptible(delay); | 
|  | } while (!kthread_should_stop()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will find the highest generation in the array of root backups.  The | 
|  | * index of the highest array is returned, or -EINVAL if we can't find | 
|  | * anything. | 
|  | * | 
|  | * We check to make sure the array is valid by comparing the | 
|  | * generation of the latest  root in the array with the generation | 
|  | * in the super block.  If they don't match we pitch it. | 
|  | */ | 
|  | static int find_newest_super_backup(struct btrfs_fs_info *info) | 
|  | { | 
|  | const u64 newest_gen = btrfs_super_generation(info->super_copy); | 
|  | u64 cur; | 
|  | struct btrfs_root_backup *root_backup; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { | 
|  | root_backup = info->super_copy->super_roots + i; | 
|  | cur = btrfs_backup_tree_root_gen(root_backup); | 
|  | if (cur == newest_gen) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy all the root pointers into the super backup array. | 
|  | * this will bump the backup pointer by one when it is | 
|  | * done | 
|  | */ | 
|  | static void backup_super_roots(struct btrfs_fs_info *info) | 
|  | { | 
|  | const int next_backup = info->backup_root_index; | 
|  | struct btrfs_root_backup *root_backup; | 
|  |  | 
|  | root_backup = info->super_for_commit->super_roots + next_backup; | 
|  |  | 
|  | /* | 
|  | * make sure all of our padding and empty slots get zero filled | 
|  | * regardless of which ones we use today | 
|  | */ | 
|  | memset(root_backup, 0, sizeof(*root_backup)); | 
|  |  | 
|  | info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; | 
|  |  | 
|  | btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); | 
|  | btrfs_set_backup_tree_root_gen(root_backup, | 
|  | btrfs_header_generation(info->tree_root->node)); | 
|  |  | 
|  | btrfs_set_backup_tree_root_level(root_backup, | 
|  | btrfs_header_level(info->tree_root->node)); | 
|  |  | 
|  | btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); | 
|  | btrfs_set_backup_chunk_root_gen(root_backup, | 
|  | btrfs_header_generation(info->chunk_root->node)); | 
|  | btrfs_set_backup_chunk_root_level(root_backup, | 
|  | btrfs_header_level(info->chunk_root->node)); | 
|  |  | 
|  | if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { | 
|  | struct btrfs_root *extent_root = btrfs_extent_root(info, 0); | 
|  | struct btrfs_root *csum_root = btrfs_csum_root(info, 0); | 
|  |  | 
|  | btrfs_set_backup_extent_root(root_backup, | 
|  | extent_root->node->start); | 
|  | btrfs_set_backup_extent_root_gen(root_backup, | 
|  | btrfs_header_generation(extent_root->node)); | 
|  | btrfs_set_backup_extent_root_level(root_backup, | 
|  | btrfs_header_level(extent_root->node)); | 
|  |  | 
|  | btrfs_set_backup_csum_root(root_backup, csum_root->node->start); | 
|  | btrfs_set_backup_csum_root_gen(root_backup, | 
|  | btrfs_header_generation(csum_root->node)); | 
|  | btrfs_set_backup_csum_root_level(root_backup, | 
|  | btrfs_header_level(csum_root->node)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we might commit during log recovery, which happens before we set | 
|  | * the fs_root.  Make sure it is valid before we fill it in. | 
|  | */ | 
|  | if (info->fs_root && info->fs_root->node) { | 
|  | btrfs_set_backup_fs_root(root_backup, | 
|  | info->fs_root->node->start); | 
|  | btrfs_set_backup_fs_root_gen(root_backup, | 
|  | btrfs_header_generation(info->fs_root->node)); | 
|  | btrfs_set_backup_fs_root_level(root_backup, | 
|  | btrfs_header_level(info->fs_root->node)); | 
|  | } | 
|  |  | 
|  | btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); | 
|  | btrfs_set_backup_dev_root_gen(root_backup, | 
|  | btrfs_header_generation(info->dev_root->node)); | 
|  | btrfs_set_backup_dev_root_level(root_backup, | 
|  | btrfs_header_level(info->dev_root->node)); | 
|  |  | 
|  | btrfs_set_backup_total_bytes(root_backup, | 
|  | btrfs_super_total_bytes(info->super_copy)); | 
|  | btrfs_set_backup_bytes_used(root_backup, | 
|  | btrfs_super_bytes_used(info->super_copy)); | 
|  | btrfs_set_backup_num_devices(root_backup, | 
|  | btrfs_super_num_devices(info->super_copy)); | 
|  |  | 
|  | /* | 
|  | * if we don't copy this out to the super_copy, it won't get remembered | 
|  | * for the next commit | 
|  | */ | 
|  | memcpy(&info->super_copy->super_roots, | 
|  | &info->super_for_commit->super_roots, | 
|  | sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads a backup root based on the passed priority. Prio 0 is the newest, prio | 
|  | * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots | 
|  | * | 
|  | * @fs_info:  filesystem whose backup roots need to be read | 
|  | * @priority: priority of backup root required | 
|  | * | 
|  | * Returns backup root index on success and -EINVAL otherwise. | 
|  | */ | 
|  | static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) | 
|  | { | 
|  | int backup_index = find_newest_super_backup(fs_info); | 
|  | struct btrfs_super_block *super = fs_info->super_copy; | 
|  | struct btrfs_root_backup *root_backup; | 
|  |  | 
|  | if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { | 
|  | if (priority == 0) | 
|  | return backup_index; | 
|  |  | 
|  | backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; | 
|  | backup_index %= BTRFS_NUM_BACKUP_ROOTS; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | root_backup = super->super_roots + backup_index; | 
|  |  | 
|  | btrfs_set_super_generation(super, | 
|  | btrfs_backup_tree_root_gen(root_backup)); | 
|  | btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); | 
|  | btrfs_set_super_root_level(super, | 
|  | btrfs_backup_tree_root_level(root_backup)); | 
|  | btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); | 
|  |  | 
|  | /* | 
|  | * Fixme: the total bytes and num_devices need to match or we should | 
|  | * need a fsck | 
|  | */ | 
|  | btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); | 
|  | btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); | 
|  |  | 
|  | return backup_index; | 
|  | } | 
|  |  | 
|  | /* helper to cleanup workers */ | 
|  | static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | btrfs_destroy_workqueue(fs_info->fixup_workers); | 
|  | btrfs_destroy_workqueue(fs_info->delalloc_workers); | 
|  | btrfs_destroy_workqueue(fs_info->workers); | 
|  | if (fs_info->endio_workers) | 
|  | destroy_workqueue(fs_info->endio_workers); | 
|  | if (fs_info->rmw_workers) | 
|  | destroy_workqueue(fs_info->rmw_workers); | 
|  | if (fs_info->compressed_write_workers) | 
|  | destroy_workqueue(fs_info->compressed_write_workers); | 
|  | btrfs_destroy_workqueue(fs_info->endio_write_workers); | 
|  | btrfs_destroy_workqueue(fs_info->endio_freespace_worker); | 
|  | btrfs_destroy_workqueue(fs_info->delayed_workers); | 
|  | btrfs_destroy_workqueue(fs_info->caching_workers); | 
|  | btrfs_destroy_workqueue(fs_info->flush_workers); | 
|  | btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); | 
|  | if (fs_info->discard_ctl.discard_workers) | 
|  | destroy_workqueue(fs_info->discard_ctl.discard_workers); | 
|  | /* | 
|  | * Now that all other work queues are destroyed, we can safely destroy | 
|  | * the queues used for metadata I/O, since tasks from those other work | 
|  | * queues can do metadata I/O operations. | 
|  | */ | 
|  | if (fs_info->endio_meta_workers) | 
|  | destroy_workqueue(fs_info->endio_meta_workers); | 
|  | } | 
|  |  | 
|  | static void free_root_extent_buffers(struct btrfs_root *root) | 
|  | { | 
|  | if (root) { | 
|  | free_extent_buffer(root->node); | 
|  | free_extent_buffer(root->commit_root); | 
|  | root->node = NULL; | 
|  | root->commit_root = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_global_root_pointers(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root, *tmp; | 
|  |  | 
|  | rbtree_postorder_for_each_entry_safe(root, tmp, | 
|  | &fs_info->global_root_tree, | 
|  | rb_node) | 
|  | free_root_extent_buffers(root); | 
|  | } | 
|  |  | 
|  | /* helper to cleanup tree roots */ | 
|  | static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) | 
|  | { | 
|  | free_root_extent_buffers(info->tree_root); | 
|  |  | 
|  | free_global_root_pointers(info); | 
|  | free_root_extent_buffers(info->dev_root); | 
|  | free_root_extent_buffers(info->quota_root); | 
|  | free_root_extent_buffers(info->uuid_root); | 
|  | free_root_extent_buffers(info->fs_root); | 
|  | free_root_extent_buffers(info->data_reloc_root); | 
|  | free_root_extent_buffers(info->block_group_root); | 
|  | free_root_extent_buffers(info->stripe_root); | 
|  | if (free_chunk_root) | 
|  | free_root_extent_buffers(info->chunk_root); | 
|  | } | 
|  |  | 
|  | void btrfs_put_root(struct btrfs_root *root) | 
|  | { | 
|  | if (!root) | 
|  | return; | 
|  |  | 
|  | if (refcount_dec_and_test(&root->refs)) { | 
|  | if (WARN_ON(!xa_empty(&root->inodes))) | 
|  | xa_destroy(&root->inodes); | 
|  | WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); | 
|  | if (root->anon_dev) | 
|  | free_anon_bdev(root->anon_dev); | 
|  | free_root_extent_buffers(root); | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | spin_lock(&root->fs_info->fs_roots_radix_lock); | 
|  | list_del_init(&root->leak_list); | 
|  | spin_unlock(&root->fs_info->fs_roots_radix_lock); | 
|  | #endif | 
|  | kfree(root); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *gang[8]; | 
|  | int i; | 
|  |  | 
|  | while (!list_empty(&fs_info->dead_roots)) { | 
|  | gang[0] = list_entry(fs_info->dead_roots.next, | 
|  | struct btrfs_root, root_list); | 
|  | list_del(&gang[0]->root_list); | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) | 
|  | btrfs_drop_and_free_fs_root(fs_info, gang[0]); | 
|  | btrfs_put_root(gang[0]); | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
|  | (void **)gang, 0, | 
|  | ARRAY_SIZE(gang)); | 
|  | if (!ret) | 
|  | break; | 
|  | for (i = 0; i < ret; i++) | 
|  | btrfs_drop_and_free_fs_root(fs_info, gang[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | mutex_init(&fs_info->scrub_lock); | 
|  | atomic_set(&fs_info->scrubs_running, 0); | 
|  | atomic_set(&fs_info->scrub_pause_req, 0); | 
|  | atomic_set(&fs_info->scrubs_paused, 0); | 
|  | atomic_set(&fs_info->scrub_cancel_req, 0); | 
|  | init_waitqueue_head(&fs_info->scrub_pause_wait); | 
|  | refcount_set(&fs_info->scrub_workers_refcnt, 0); | 
|  | } | 
|  |  | 
|  | static void btrfs_init_balance(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | spin_lock_init(&fs_info->balance_lock); | 
|  | mutex_init(&fs_info->balance_mutex); | 
|  | atomic_set(&fs_info->balance_pause_req, 0); | 
|  | atomic_set(&fs_info->balance_cancel_req, 0); | 
|  | fs_info->balance_ctl = NULL; | 
|  | init_waitqueue_head(&fs_info->balance_wait_q); | 
|  | atomic_set(&fs_info->reloc_cancel_req, 0); | 
|  | } | 
|  |  | 
|  | static int btrfs_init_btree_inode(struct super_block *sb) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, | 
|  | fs_info->tree_root); | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = new_inode(sb); | 
|  | if (!inode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); | 
|  | set_nlink(inode, 1); | 
|  | /* | 
|  | * we set the i_size on the btree inode to the max possible int. | 
|  | * the real end of the address space is determined by all of | 
|  | * the devices in the system | 
|  | */ | 
|  | inode->i_size = OFFSET_MAX; | 
|  | inode->i_mapping->a_ops = &btree_aops; | 
|  | mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); | 
|  |  | 
|  | extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, | 
|  | IO_TREE_BTREE_INODE_IO); | 
|  | extent_map_tree_init(&BTRFS_I(inode)->extent_tree); | 
|  |  | 
|  | BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); | 
|  | set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); | 
|  | __insert_inode_hash(inode, hash); | 
|  | fs_info->btree_inode = inode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); | 
|  | init_rwsem(&fs_info->dev_replace.rwsem); | 
|  | init_waitqueue_head(&fs_info->dev_replace.replace_wait); | 
|  | } | 
|  |  | 
|  | static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | spin_lock_init(&fs_info->qgroup_lock); | 
|  | mutex_init(&fs_info->qgroup_ioctl_lock); | 
|  | fs_info->qgroup_tree = RB_ROOT; | 
|  | INIT_LIST_HEAD(&fs_info->dirty_qgroups); | 
|  | fs_info->qgroup_seq = 1; | 
|  | fs_info->qgroup_ulist = NULL; | 
|  | fs_info->qgroup_rescan_running = false; | 
|  | fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; | 
|  | mutex_init(&fs_info->qgroup_rescan_lock); | 
|  | } | 
|  |  | 
|  | static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u32 max_active = fs_info->thread_pool_size; | 
|  | unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; | 
|  | unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; | 
|  |  | 
|  | fs_info->workers = | 
|  | btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); | 
|  |  | 
|  | fs_info->delalloc_workers = | 
|  | btrfs_alloc_workqueue(fs_info, "delalloc", | 
|  | flags, max_active, 2); | 
|  |  | 
|  | fs_info->flush_workers = | 
|  | btrfs_alloc_workqueue(fs_info, "flush_delalloc", | 
|  | flags, max_active, 0); | 
|  |  | 
|  | fs_info->caching_workers = | 
|  | btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); | 
|  |  | 
|  | fs_info->fixup_workers = | 
|  | btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); | 
|  |  | 
|  | fs_info->endio_workers = | 
|  | alloc_workqueue("btrfs-endio", flags, max_active); | 
|  | fs_info->endio_meta_workers = | 
|  | alloc_workqueue("btrfs-endio-meta", flags, max_active); | 
|  | fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); | 
|  | fs_info->endio_write_workers = | 
|  | btrfs_alloc_workqueue(fs_info, "endio-write", flags, | 
|  | max_active, 2); | 
|  | fs_info->compressed_write_workers = | 
|  | alloc_workqueue("btrfs-compressed-write", flags, max_active); | 
|  | fs_info->endio_freespace_worker = | 
|  | btrfs_alloc_workqueue(fs_info, "freespace-write", flags, | 
|  | max_active, 0); | 
|  | fs_info->delayed_workers = | 
|  | btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, | 
|  | max_active, 0); | 
|  | fs_info->qgroup_rescan_workers = | 
|  | btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", | 
|  | ordered_flags); | 
|  | fs_info->discard_ctl.discard_workers = | 
|  | alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); | 
|  |  | 
|  | if (!(fs_info->workers && | 
|  | fs_info->delalloc_workers && fs_info->flush_workers && | 
|  | fs_info->endio_workers && fs_info->endio_meta_workers && | 
|  | fs_info->compressed_write_workers && | 
|  | fs_info->endio_write_workers && | 
|  | fs_info->endio_freespace_worker && fs_info->rmw_workers && | 
|  | fs_info->caching_workers && fs_info->fixup_workers && | 
|  | fs_info->delayed_workers && fs_info->qgroup_rescan_workers && | 
|  | fs_info->discard_ctl.discard_workers)) { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) | 
|  | { | 
|  | struct crypto_shash *csum_shash; | 
|  | const char *csum_driver = btrfs_super_csum_driver(csum_type); | 
|  |  | 
|  | csum_shash = crypto_alloc_shash(csum_driver, 0, 0); | 
|  |  | 
|  | if (IS_ERR(csum_shash)) { | 
|  | btrfs_err(fs_info, "error allocating %s hash for checksum", | 
|  | csum_driver); | 
|  | return PTR_ERR(csum_shash); | 
|  | } | 
|  |  | 
|  | fs_info->csum_shash = csum_shash; | 
|  |  | 
|  | /* | 
|  | * Check if the checksum implementation is a fast accelerated one. | 
|  | * As-is this is a bit of a hack and should be replaced once the csum | 
|  | * implementations provide that information themselves. | 
|  | */ | 
|  | switch (csum_type) { | 
|  | case BTRFS_CSUM_TYPE_CRC32: | 
|  | if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) | 
|  | set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); | 
|  | break; | 
|  | case BTRFS_CSUM_TYPE_XXHASH: | 
|  | set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_info(fs_info, "using %s (%s) checksum algorithm", | 
|  | btrfs_super_csum_name(csum_type), | 
|  | crypto_shash_driver_name(csum_shash)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_replay_log(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_tree_parent_check check = { 0 }; | 
|  | struct btrfs_root *log_tree_root; | 
|  | struct btrfs_super_block *disk_super = fs_info->super_copy; | 
|  | u64 bytenr = btrfs_super_log_root(disk_super); | 
|  | int level = btrfs_super_log_root_level(disk_super); | 
|  |  | 
|  | if (fs_devices->rw_devices == 0) { | 
|  | btrfs_warn(fs_info, "log replay required on RO media"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, | 
|  | GFP_KERNEL); | 
|  | if (!log_tree_root) | 
|  | return -ENOMEM; | 
|  |  | 
|  | check.level = level; | 
|  | check.transid = fs_info->generation + 1; | 
|  | check.owner_root = BTRFS_TREE_LOG_OBJECTID; | 
|  | log_tree_root->node = read_tree_block(fs_info, bytenr, &check); | 
|  | if (IS_ERR(log_tree_root->node)) { | 
|  | btrfs_warn(fs_info, "failed to read log tree"); | 
|  | ret = PTR_ERR(log_tree_root->node); | 
|  | log_tree_root->node = NULL; | 
|  | btrfs_put_root(log_tree_root); | 
|  | return ret; | 
|  | } | 
|  | if (!extent_buffer_uptodate(log_tree_root->node)) { | 
|  | btrfs_err(fs_info, "failed to read log tree"); | 
|  | btrfs_put_root(log_tree_root); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* returns with log_tree_root freed on success */ | 
|  | ret = btrfs_recover_log_trees(log_tree_root); | 
|  | if (ret) { | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "Failed to recover log tree"); | 
|  | btrfs_put_root(log_tree_root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (sb_rdonly(fs_info->sb)) { | 
|  | ret = btrfs_commit_super(fs_info); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int load_global_roots_objectid(struct btrfs_root *tree_root, | 
|  | struct btrfs_path *path, u64 objectid, | 
|  | const char *name) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = tree_root->fs_info; | 
|  | struct btrfs_root *root; | 
|  | u64 max_global_id = 0; | 
|  | int ret; | 
|  | struct btrfs_key key = { | 
|  | .objectid = objectid, | 
|  | .type = BTRFS_ROOT_ITEM_KEY, | 
|  | .offset = 0, | 
|  | }; | 
|  | bool found = false; | 
|  |  | 
|  | /* If we have IGNOREDATACSUMS skip loading these roots. */ | 
|  | if (objectid == BTRFS_CSUM_TREE_OBJECTID && | 
|  | btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { | 
|  | set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(tree_root, path); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid != objectid) | 
|  | break; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Just worry about this for extent tree, it'll be the same for | 
|  | * everybody. | 
|  | */ | 
|  | if (objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
|  | max_global_id = max(max_global_id, key.offset); | 
|  |  | 
|  | found = true; | 
|  | root = read_tree_root_path(tree_root, path, &key); | 
|  | if (IS_ERR(root)) { | 
|  | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) | 
|  | ret = PTR_ERR(root); | 
|  | break; | 
|  | } | 
|  | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | ret = btrfs_global_root_insert(root); | 
|  | if (ret) { | 
|  | btrfs_put_root(root); | 
|  | break; | 
|  | } | 
|  | key.offset++; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
|  | fs_info->nr_global_roots = max_global_id + 1; | 
|  |  | 
|  | if (!found || ret) { | 
|  | if (objectid == BTRFS_CSUM_TREE_OBJECTID) | 
|  | set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); | 
|  |  | 
|  | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) | 
|  | ret = ret ? ret : -ENOENT; | 
|  | else | 
|  | ret = 0; | 
|  | btrfs_err(fs_info, "failed to load root %s", name); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int load_global_roots(struct btrfs_root *tree_root) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = load_global_roots_objectid(tree_root, path, | 
|  | BTRFS_EXTENT_TREE_OBJECTID, "extent"); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = load_global_roots_objectid(tree_root, path, | 
|  | BTRFS_CSUM_TREE_OBJECTID, "csum"); | 
|  | if (ret) | 
|  | goto out; | 
|  | if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) | 
|  | goto out; | 
|  | ret = load_global_roots_objectid(tree_root, path, | 
|  | BTRFS_FREE_SPACE_TREE_OBJECTID, | 
|  | "free space"); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_read_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_key location; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(fs_info->tree_root); | 
|  |  | 
|  | ret = load_global_roots(tree_root); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | location.type = BTRFS_ROOT_ITEM_KEY; | 
|  | location.offset = 0; | 
|  |  | 
|  | if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { | 
|  | location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; | 
|  | root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (IS_ERR(root)) { | 
|  | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
|  | ret = PTR_ERR(root); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | fs_info->block_group_root = root; | 
|  | } | 
|  | } | 
|  |  | 
|  | location.objectid = BTRFS_DEV_TREE_OBJECTID; | 
|  | root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (IS_ERR(root)) { | 
|  | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
|  | ret = PTR_ERR(root); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | fs_info->dev_root = root; | 
|  | } | 
|  | /* Initialize fs_info for all devices in any case */ | 
|  | ret = btrfs_init_devices_late(fs_info); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * This tree can share blocks with some other fs tree during relocation | 
|  | * and we need a proper setup by btrfs_get_fs_root | 
|  | */ | 
|  | root = btrfs_get_fs_root(tree_root->fs_info, | 
|  | BTRFS_DATA_RELOC_TREE_OBJECTID, true); | 
|  | if (IS_ERR(root)) { | 
|  | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
|  | ret = PTR_ERR(root); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | fs_info->data_reloc_root = root; | 
|  | } | 
|  |  | 
|  | location.objectid = BTRFS_QUOTA_TREE_OBJECTID; | 
|  | root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (!IS_ERR(root)) { | 
|  | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | fs_info->quota_root = root; | 
|  | } | 
|  |  | 
|  | location.objectid = BTRFS_UUID_TREE_OBJECTID; | 
|  | root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (IS_ERR(root)) { | 
|  | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
|  | ret = PTR_ERR(root); | 
|  | if (ret != -ENOENT) | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | fs_info->uuid_root = root; | 
|  | } | 
|  |  | 
|  | if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { | 
|  | location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; | 
|  | root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (IS_ERR(root)) { | 
|  | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { | 
|  | ret = PTR_ERR(root); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); | 
|  | fs_info->stripe_root = root; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", | 
|  | location.objectid, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Real super block validation | 
|  | * NOTE: super csum type and incompat features will not be checked here. | 
|  | * | 
|  | * @sb:		super block to check | 
|  | * @mirror_num:	the super block number to check its bytenr: | 
|  | * 		0	the primary (1st) sb | 
|  | * 		1, 2	2nd and 3rd backup copy | 
|  | * 	       -1	skip bytenr check | 
|  | */ | 
|  | int btrfs_validate_super(const struct btrfs_fs_info *fs_info, | 
|  | const struct btrfs_super_block *sb, int mirror_num) | 
|  | { | 
|  | u64 nodesize = btrfs_super_nodesize(sb); | 
|  | u64 sectorsize = btrfs_super_sectorsize(sb); | 
|  | int ret = 0; | 
|  | const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); | 
|  |  | 
|  | if (btrfs_super_magic(sb) != BTRFS_MAGIC) { | 
|  | btrfs_err(fs_info, "no valid FS found"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { | 
|  | if (!ignore_flags) { | 
|  | btrfs_err(fs_info, | 
|  | "unrecognized or unsupported super flag 0x%llx", | 
|  | btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); | 
|  | ret = -EINVAL; | 
|  | } else { | 
|  | btrfs_info(fs_info, | 
|  | "unrecognized or unsupported super flags: 0x%llx, ignored", | 
|  | btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); | 
|  | } | 
|  | } | 
|  | if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
|  | btrfs_err(fs_info, "tree_root level too big: %d >= %d", | 
|  | btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
|  | btrfs_err(fs_info, "chunk_root level too big: %d >= %d", | 
|  | btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { | 
|  | btrfs_err(fs_info, "log_root level too big: %d >= %d", | 
|  | btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check sectorsize and nodesize first, other check will need it. | 
|  | * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. | 
|  | */ | 
|  | if (!is_power_of_2(sectorsize) || sectorsize < 4096 || | 
|  | sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
|  | btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We only support at most two sectorsizes: 4K and PAGE_SIZE. | 
|  | * | 
|  | * We can support 16K sectorsize with 64K page size without problem, | 
|  | * but such sectorsize/pagesize combination doesn't make much sense. | 
|  | * 4K will be our future standard, PAGE_SIZE is supported from the very | 
|  | * beginning. | 
|  | */ | 
|  | if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { | 
|  | btrfs_err(fs_info, | 
|  | "sectorsize %llu not yet supported for page size %lu", | 
|  | sectorsize, PAGE_SIZE); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!is_power_of_2(nodesize) || nodesize < sectorsize || | 
|  | nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
|  | btrfs_err(fs_info, "invalid nodesize %llu", nodesize); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { | 
|  | btrfs_err(fs_info, "invalid leafsize %u, should be %llu", | 
|  | le32_to_cpu(sb->__unused_leafsize), nodesize); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Root alignment check */ | 
|  | if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { | 
|  | btrfs_warn(fs_info, "tree_root block unaligned: %llu", | 
|  | btrfs_super_root(sb)); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { | 
|  | btrfs_warn(fs_info, "chunk_root block unaligned: %llu", | 
|  | btrfs_super_chunk_root(sb)); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { | 
|  | btrfs_warn(fs_info, "log_root block unaligned: %llu", | 
|  | btrfs_super_log_root(sb)); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!fs_info->fs_devices->temp_fsid && | 
|  | memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { | 
|  | btrfs_err(fs_info, | 
|  | "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", | 
|  | sb->fsid, fs_info->fs_devices->fsid); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), | 
|  | BTRFS_FSID_SIZE) != 0) { | 
|  | btrfs_err(fs_info, | 
|  | "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", | 
|  | btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, | 
|  | BTRFS_FSID_SIZE) != 0) { | 
|  | btrfs_err(fs_info, | 
|  | "dev_item UUID does not match metadata fsid: %pU != %pU", | 
|  | fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Artificial requirement for block-group-tree to force newer features | 
|  | * (free-space-tree, no-holes) so the test matrix is smaller. | 
|  | */ | 
|  | if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && | 
|  | (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || | 
|  | !btrfs_fs_incompat(fs_info, NO_HOLES))) { | 
|  | btrfs_err(fs_info, | 
|  | "block-group-tree feature requires free-space-tree and no-holes"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hint to catch really bogus numbers, bitflips or so, more exact checks are | 
|  | * done later | 
|  | */ | 
|  | if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { | 
|  | btrfs_err(fs_info, "bytes_used is too small %llu", | 
|  | btrfs_super_bytes_used(sb)); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (!is_power_of_2(btrfs_super_stripesize(sb))) { | 
|  | btrfs_err(fs_info, "invalid stripesize %u", | 
|  | btrfs_super_stripesize(sb)); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (btrfs_super_num_devices(sb) > (1UL << 31)) | 
|  | btrfs_warn(fs_info, "suspicious number of devices: %llu", | 
|  | btrfs_super_num_devices(sb)); | 
|  | if (btrfs_super_num_devices(sb) == 0) { | 
|  | btrfs_err(fs_info, "number of devices is 0"); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (mirror_num >= 0 && | 
|  | btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { | 
|  | btrfs_err(fs_info, "super offset mismatch %llu != %u", | 
|  | btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obvious sys_chunk_array corruptions, it must hold at least one key | 
|  | * and one chunk | 
|  | */ | 
|  | if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { | 
|  | btrfs_err(fs_info, "system chunk array too big %u > %u", | 
|  | btrfs_super_sys_array_size(sb), | 
|  | BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) | 
|  | + sizeof(struct btrfs_chunk)) { | 
|  | btrfs_err(fs_info, "system chunk array too small %u < %zu", | 
|  | btrfs_super_sys_array_size(sb), | 
|  | sizeof(struct btrfs_disk_key) | 
|  | + sizeof(struct btrfs_chunk)); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The generation is a global counter, we'll trust it more than the others | 
|  | * but it's still possible that it's the one that's wrong. | 
|  | */ | 
|  | if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) | 
|  | btrfs_warn(fs_info, | 
|  | "suspicious: generation < chunk_root_generation: %llu < %llu", | 
|  | btrfs_super_generation(sb), | 
|  | btrfs_super_chunk_root_generation(sb)); | 
|  | if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) | 
|  | && btrfs_super_cache_generation(sb) != (u64)-1) | 
|  | btrfs_warn(fs_info, | 
|  | "suspicious: generation < cache_generation: %llu < %llu", | 
|  | btrfs_super_generation(sb), | 
|  | btrfs_super_cache_generation(sb)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validation of super block at mount time. | 
|  | * Some checks already done early at mount time, like csum type and incompat | 
|  | * flags will be skipped. | 
|  | */ | 
|  | static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | return btrfs_validate_super(fs_info, fs_info->super_copy, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validation of super block at write time. | 
|  | * Some checks like bytenr check will be skipped as their values will be | 
|  | * overwritten soon. | 
|  | * Extra checks like csum type and incompat flags will be done here. | 
|  | */ | 
|  | static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_super_block *sb) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_validate_super(fs_info, sb, -1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_err(fs_info, "invalid csum type, has %u want %u", | 
|  | btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); | 
|  | goto out; | 
|  | } | 
|  | if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { | 
|  | ret = -EUCLEAN; | 
|  | btrfs_err(fs_info, | 
|  | "invalid incompat flags, has 0x%llx valid mask 0x%llx", | 
|  | btrfs_super_incompat_flags(sb), | 
|  | (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | if (ret < 0) | 
|  | btrfs_err(fs_info, | 
|  | "super block corruption detected before writing it to disk"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) | 
|  | { | 
|  | struct btrfs_tree_parent_check check = { | 
|  | .level = level, | 
|  | .transid = gen, | 
|  | .owner_root = btrfs_root_id(root) | 
|  | }; | 
|  | int ret = 0; | 
|  |  | 
|  | root->node = read_tree_block(root->fs_info, bytenr, &check); | 
|  | if (IS_ERR(root->node)) { | 
|  | ret = PTR_ERR(root->node); | 
|  | root->node = NULL; | 
|  | return ret; | 
|  | } | 
|  | if (!extent_buffer_uptodate(root->node)) { | 
|  | free_extent_buffer(root->node); | 
|  | root->node = NULL; | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | btrfs_set_root_node(&root->root_item, root->node); | 
|  | root->commit_root = btrfs_root_node(root); | 
|  | btrfs_set_root_refs(&root->root_item, 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int load_important_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_super_block *sb = fs_info->super_copy; | 
|  | u64 gen, bytenr; | 
|  | int level, ret; | 
|  |  | 
|  | bytenr = btrfs_super_root(sb); | 
|  | gen = btrfs_super_generation(sb); | 
|  | level = btrfs_super_root_level(sb); | 
|  | ret = load_super_root(fs_info->tree_root, bytenr, gen, level); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, "couldn't read tree root"); | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int backup_index = find_newest_super_backup(fs_info); | 
|  | struct btrfs_super_block *sb = fs_info->super_copy; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | bool handle_error = false; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { | 
|  | if (handle_error) { | 
|  | if (!IS_ERR(tree_root->node)) | 
|  | free_extent_buffer(tree_root->node); | 
|  | tree_root->node = NULL; | 
|  |  | 
|  | if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) | 
|  | break; | 
|  |  | 
|  | free_root_pointers(fs_info, 0); | 
|  |  | 
|  | /* | 
|  | * Don't use the log in recovery mode, it won't be | 
|  | * valid | 
|  | */ | 
|  | btrfs_set_super_log_root(sb, 0); | 
|  |  | 
|  | btrfs_warn(fs_info, "try to load backup roots slot %d", i); | 
|  | ret = read_backup_root(fs_info, i); | 
|  | backup_index = ret; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = load_important_roots(fs_info); | 
|  | if (ret) { | 
|  | handle_error = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to hold btrfs_root::objectid_mutex since the fs | 
|  | * hasn't been fully initialised and we are the only user | 
|  | */ | 
|  | ret = btrfs_init_root_free_objectid(tree_root); | 
|  | if (ret < 0) { | 
|  | handle_error = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); | 
|  |  | 
|  | ret = btrfs_read_roots(fs_info); | 
|  | if (ret < 0) { | 
|  | handle_error = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* All successful */ | 
|  | fs_info->generation = btrfs_header_generation(tree_root->node); | 
|  | btrfs_set_last_trans_committed(fs_info, fs_info->generation); | 
|  | fs_info->last_reloc_trans = 0; | 
|  |  | 
|  | /* Always begin writing backup roots after the one being used */ | 
|  | if (backup_index < 0) { | 
|  | fs_info->backup_root_index = 0; | 
|  | } else { | 
|  | fs_info->backup_root_index = backup_index + 1; | 
|  | fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); | 
|  | INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); | 
|  | INIT_LIST_HEAD(&fs_info->trans_list); | 
|  | INIT_LIST_HEAD(&fs_info->dead_roots); | 
|  | INIT_LIST_HEAD(&fs_info->delayed_iputs); | 
|  | INIT_LIST_HEAD(&fs_info->delalloc_roots); | 
|  | INIT_LIST_HEAD(&fs_info->caching_block_groups); | 
|  | spin_lock_init(&fs_info->delalloc_root_lock); | 
|  | spin_lock_init(&fs_info->trans_lock); | 
|  | spin_lock_init(&fs_info->fs_roots_radix_lock); | 
|  | spin_lock_init(&fs_info->delayed_iput_lock); | 
|  | spin_lock_init(&fs_info->defrag_inodes_lock); | 
|  | spin_lock_init(&fs_info->super_lock); | 
|  | spin_lock_init(&fs_info->buffer_lock); | 
|  | spin_lock_init(&fs_info->unused_bgs_lock); | 
|  | spin_lock_init(&fs_info->treelog_bg_lock); | 
|  | spin_lock_init(&fs_info->zone_active_bgs_lock); | 
|  | spin_lock_init(&fs_info->relocation_bg_lock); | 
|  | rwlock_init(&fs_info->tree_mod_log_lock); | 
|  | rwlock_init(&fs_info->global_root_lock); | 
|  | mutex_init(&fs_info->unused_bg_unpin_mutex); | 
|  | mutex_init(&fs_info->reclaim_bgs_lock); | 
|  | mutex_init(&fs_info->reloc_mutex); | 
|  | mutex_init(&fs_info->delalloc_root_mutex); | 
|  | mutex_init(&fs_info->zoned_meta_io_lock); | 
|  | mutex_init(&fs_info->zoned_data_reloc_io_lock); | 
|  | seqlock_init(&fs_info->profiles_lock); | 
|  |  | 
|  | btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); | 
|  | btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); | 
|  | btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); | 
|  | btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); | 
|  | btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, | 
|  | BTRFS_LOCKDEP_TRANS_COMMIT_PREP); | 
|  | btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, | 
|  | BTRFS_LOCKDEP_TRANS_UNBLOCKED); | 
|  | btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, | 
|  | BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); | 
|  | btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, | 
|  | BTRFS_LOCKDEP_TRANS_COMPLETED); | 
|  |  | 
|  | INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); | 
|  | INIT_LIST_HEAD(&fs_info->space_info); | 
|  | INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); | 
|  | INIT_LIST_HEAD(&fs_info->unused_bgs); | 
|  | INIT_LIST_HEAD(&fs_info->reclaim_bgs); | 
|  | INIT_LIST_HEAD(&fs_info->zone_active_bgs); | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | INIT_LIST_HEAD(&fs_info->allocated_roots); | 
|  | INIT_LIST_HEAD(&fs_info->allocated_ebs); | 
|  | spin_lock_init(&fs_info->eb_leak_lock); | 
|  | #endif | 
|  | fs_info->mapping_tree = RB_ROOT_CACHED; | 
|  | rwlock_init(&fs_info->mapping_tree_lock); | 
|  | btrfs_init_block_rsv(&fs_info->global_block_rsv, | 
|  | BTRFS_BLOCK_RSV_GLOBAL); | 
|  | btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); | 
|  | btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); | 
|  | btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); | 
|  | btrfs_init_block_rsv(&fs_info->delayed_block_rsv, | 
|  | BTRFS_BLOCK_RSV_DELOPS); | 
|  | btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, | 
|  | BTRFS_BLOCK_RSV_DELREFS); | 
|  |  | 
|  | atomic_set(&fs_info->async_delalloc_pages, 0); | 
|  | atomic_set(&fs_info->defrag_running, 0); | 
|  | atomic_set(&fs_info->nr_delayed_iputs, 0); | 
|  | atomic64_set(&fs_info->tree_mod_seq, 0); | 
|  | fs_info->global_root_tree = RB_ROOT; | 
|  | fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; | 
|  | fs_info->metadata_ratio = 0; | 
|  | fs_info->defrag_inodes = RB_ROOT; | 
|  | atomic64_set(&fs_info->free_chunk_space, 0); | 
|  | fs_info->tree_mod_log = RB_ROOT; | 
|  | fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; | 
|  | btrfs_init_ref_verify(fs_info); | 
|  |  | 
|  | fs_info->thread_pool_size = min_t(unsigned long, | 
|  | num_online_cpus() + 2, 8); | 
|  |  | 
|  | INIT_LIST_HEAD(&fs_info->ordered_roots); | 
|  | spin_lock_init(&fs_info->ordered_root_lock); | 
|  |  | 
|  | btrfs_init_scrub(fs_info); | 
|  | btrfs_init_balance(fs_info); | 
|  | btrfs_init_async_reclaim_work(fs_info); | 
|  |  | 
|  | rwlock_init(&fs_info->block_group_cache_lock); | 
|  | fs_info->block_group_cache_tree = RB_ROOT_CACHED; | 
|  |  | 
|  | extent_io_tree_init(fs_info, &fs_info->excluded_extents, | 
|  | IO_TREE_FS_EXCLUDED_EXTENTS); | 
|  |  | 
|  | mutex_init(&fs_info->ordered_operations_mutex); | 
|  | mutex_init(&fs_info->tree_log_mutex); | 
|  | mutex_init(&fs_info->chunk_mutex); | 
|  | mutex_init(&fs_info->transaction_kthread_mutex); | 
|  | mutex_init(&fs_info->cleaner_mutex); | 
|  | mutex_init(&fs_info->ro_block_group_mutex); | 
|  | init_rwsem(&fs_info->commit_root_sem); | 
|  | init_rwsem(&fs_info->cleanup_work_sem); | 
|  | init_rwsem(&fs_info->subvol_sem); | 
|  | sema_init(&fs_info->uuid_tree_rescan_sem, 1); | 
|  |  | 
|  | btrfs_init_dev_replace_locks(fs_info); | 
|  | btrfs_init_qgroup(fs_info); | 
|  | btrfs_discard_init(fs_info); | 
|  |  | 
|  | btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); | 
|  | btrfs_init_free_cluster(&fs_info->data_alloc_cluster); | 
|  |  | 
|  | init_waitqueue_head(&fs_info->transaction_throttle); | 
|  | init_waitqueue_head(&fs_info->transaction_wait); | 
|  | init_waitqueue_head(&fs_info->transaction_blocked_wait); | 
|  | init_waitqueue_head(&fs_info->async_submit_wait); | 
|  | init_waitqueue_head(&fs_info->delayed_iputs_wait); | 
|  |  | 
|  | /* Usable values until the real ones are cached from the superblock */ | 
|  | fs_info->nodesize = 4096; | 
|  | fs_info->sectorsize = 4096; | 
|  | fs_info->sectorsize_bits = ilog2(4096); | 
|  | fs_info->stripesize = 4096; | 
|  |  | 
|  | /* Default compress algorithm when user does -o compress */ | 
|  | fs_info->compress_type = BTRFS_COMPRESS_ZLIB; | 
|  |  | 
|  | fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; | 
|  |  | 
|  | spin_lock_init(&fs_info->swapfile_pins_lock); | 
|  | fs_info->swapfile_pins = RB_ROOT; | 
|  |  | 
|  | fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; | 
|  | INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); | 
|  | } | 
|  |  | 
|  | static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | fs_info->sb = sb; | 
|  | /* Temporary fixed values for block size until we read the superblock. */ | 
|  | sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; | 
|  | sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); | 
|  |  | 
|  | ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_init(&fs_info->extent_map_shrinker_lock); | 
|  |  | 
|  | ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | fs_info->dirty_metadata_batch = PAGE_SIZE * | 
|  | (1 + ilog2(nr_cpu_ids)); | 
|  |  | 
|  | ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, | 
|  | GFP_KERNEL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), | 
|  | GFP_KERNEL); | 
|  | if (!fs_info->delayed_root) | 
|  | return -ENOMEM; | 
|  | btrfs_init_delayed_root(fs_info->delayed_root); | 
|  |  | 
|  | if (sb_rdonly(sb)) | 
|  | set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); | 
|  | if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) | 
|  | set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); | 
|  |  | 
|  | return btrfs_alloc_stripe_hash_table(fs_info); | 
|  | } | 
|  |  | 
|  | static int btrfs_uuid_rescan_kthread(void *data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = data; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * 1st step is to iterate through the existing UUID tree and | 
|  | * to delete all entries that contain outdated data. | 
|  | * 2nd step is to add all missing entries to the UUID tree. | 
|  | */ | 
|  | ret = btrfs_uuid_tree_iterate(fs_info); | 
|  | if (ret < 0) { | 
|  | if (ret != -EINTR) | 
|  | btrfs_warn(fs_info, "iterating uuid_tree failed %d", | 
|  | ret); | 
|  | up(&fs_info->uuid_tree_rescan_sem); | 
|  | return ret; | 
|  | } | 
|  | return btrfs_uuid_scan_kthread(data); | 
|  | } | 
|  |  | 
|  | static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct task_struct *task; | 
|  |  | 
|  | down(&fs_info->uuid_tree_rescan_sem); | 
|  | task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); | 
|  | if (IS_ERR(task)) { | 
|  | /* fs_info->update_uuid_tree_gen remains 0 in all error case */ | 
|  | btrfs_warn(fs_info, "failed to start uuid_rescan task"); | 
|  | up(&fs_info->uuid_tree_rescan_sem); | 
|  | return PTR_ERR(task); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u64 root_objectid = 0; | 
|  | struct btrfs_root *gang[8]; | 
|  | int ret = 0; | 
|  |  | 
|  | while (1) { | 
|  | unsigned int found; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
|  | (void **)gang, root_objectid, | 
|  | ARRAY_SIZE(gang)); | 
|  | if (!found) { | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | break; | 
|  | } | 
|  | root_objectid = btrfs_root_id(gang[found - 1]) + 1; | 
|  |  | 
|  | for (int i = 0; i < found; i++) { | 
|  | /* Avoid to grab roots in dead_roots. */ | 
|  | if (btrfs_root_refs(&gang[i]->root_item) == 0) { | 
|  | gang[i] = NULL; | 
|  | continue; | 
|  | } | 
|  | /* Grab all the search result for later use. */ | 
|  | gang[i] = btrfs_grab_root(gang[i]); | 
|  | } | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  |  | 
|  | for (int i = 0; i < found; i++) { | 
|  | if (!gang[i]) | 
|  | continue; | 
|  | root_objectid = btrfs_root_id(gang[i]); | 
|  | /* | 
|  | * Continue to release the remaining roots after the first | 
|  | * error without cleanup and preserve the first error | 
|  | * for the return. | 
|  | */ | 
|  | if (!ret) | 
|  | ret = btrfs_orphan_cleanup(gang[i]); | 
|  | btrfs_put_root(gang[i]); | 
|  | } | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | root_objectid++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mounting logic specific to read-write file systems. Shared by open_ctree | 
|  | * and btrfs_remount when remounting from read-only to read-write. | 
|  | */ | 
|  | int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int ret; | 
|  | const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); | 
|  | bool rebuild_free_space_tree = false; | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, CLEAR_CACHE) && | 
|  | btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
|  | if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) | 
|  | btrfs_warn(fs_info, | 
|  | "'clear_cache' option is ignored with extent tree v2"); | 
|  | else | 
|  | rebuild_free_space_tree = true; | 
|  | } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && | 
|  | !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { | 
|  | btrfs_warn(fs_info, "free space tree is invalid"); | 
|  | rebuild_free_space_tree = true; | 
|  | } | 
|  |  | 
|  | if (rebuild_free_space_tree) { | 
|  | btrfs_info(fs_info, "rebuilding free space tree"); | 
|  | ret = btrfs_rebuild_free_space_tree(fs_info); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, | 
|  | "failed to rebuild free space tree: %d", ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && | 
|  | !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { | 
|  | btrfs_info(fs_info, "disabling free space tree"); | 
|  | ret = btrfs_delete_free_space_tree(fs_info); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, | 
|  | "failed to disable free space tree: %d", ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_find_orphan_roots() is responsible for finding all the dead | 
|  | * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load | 
|  | * them into the fs_info->fs_roots_radix tree. This must be done before | 
|  | * calling btrfs_orphan_cleanup() on the tree root. If we don't do it | 
|  | * first, then btrfs_orphan_cleanup() will delete a dead root's orphan | 
|  | * item before the root's tree is deleted - this means that if we unmount | 
|  | * or crash before the deletion completes, on the next mount we will not | 
|  | * delete what remains of the tree because the orphan item does not | 
|  | * exists anymore, which is what tells us we have a pending deletion. | 
|  | */ | 
|  | ret = btrfs_find_orphan_roots(fs_info); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_cleanup_fs_roots(fs_info); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | down_read(&fs_info->cleanup_work_sem); | 
|  | if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || | 
|  | (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { | 
|  | up_read(&fs_info->cleanup_work_sem); | 
|  | goto out; | 
|  | } | 
|  | up_read(&fs_info->cleanup_work_sem); | 
|  |  | 
|  | mutex_lock(&fs_info->cleaner_mutex); | 
|  | ret = btrfs_recover_relocation(fs_info); | 
|  | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | if (ret < 0) { | 
|  | btrfs_warn(fs_info, "failed to recover relocation: %d", ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && | 
|  | !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { | 
|  | btrfs_info(fs_info, "creating free space tree"); | 
|  | ret = btrfs_create_free_space_tree(fs_info); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, | 
|  | "failed to create free space tree: %d", ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { | 
|  | ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_resume_balance_async(fs_info); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_resume_dev_replace_async(fs_info); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, "failed to resume dev_replace"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_qgroup_rescan_resume(fs_info); | 
|  |  | 
|  | if (!fs_info->uuid_root) { | 
|  | btrfs_info(fs_info, "creating UUID tree"); | 
|  | ret = btrfs_create_uuid_tree(fs_info); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, | 
|  | "failed to create the UUID tree %d", ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do various sanity and dependency checks of different features. | 
|  | * | 
|  | * @is_rw_mount:	If the mount is read-write. | 
|  | * | 
|  | * This is the place for less strict checks (like for subpage or artificial | 
|  | * feature dependencies). | 
|  | * | 
|  | * For strict checks or possible corruption detection, see | 
|  | * btrfs_validate_super(). | 
|  | * | 
|  | * This should be called after btrfs_parse_options(), as some mount options | 
|  | * (space cache related) can modify on-disk format like free space tree and | 
|  | * screw up certain feature dependencies. | 
|  | */ | 
|  | int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) | 
|  | { | 
|  | struct btrfs_super_block *disk_super = fs_info->super_copy; | 
|  | u64 incompat = btrfs_super_incompat_flags(disk_super); | 
|  | const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); | 
|  | const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); | 
|  |  | 
|  | if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { | 
|  | btrfs_err(fs_info, | 
|  | "cannot mount because of unknown incompat features (0x%llx)", | 
|  | incompat); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Runtime limitation for mixed block groups. */ | 
|  | if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && | 
|  | (fs_info->sectorsize != fs_info->nodesize)) { | 
|  | btrfs_err(fs_info, | 
|  | "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", | 
|  | fs_info->nodesize, fs_info->sectorsize); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Mixed backref is an always-enabled feature. */ | 
|  | incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; | 
|  |  | 
|  | /* Set compression related flags just in case. */ | 
|  | if (fs_info->compress_type == BTRFS_COMPRESS_LZO) | 
|  | incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; | 
|  | else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) | 
|  | incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; | 
|  |  | 
|  | /* | 
|  | * An ancient flag, which should really be marked deprecated. | 
|  | * Such runtime limitation doesn't really need a incompat flag. | 
|  | */ | 
|  | if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) | 
|  | incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; | 
|  |  | 
|  | if (compat_ro_unsupp && is_rw_mount) { | 
|  | btrfs_err(fs_info, | 
|  | "cannot mount read-write because of unknown compat_ro features (0x%llx)", | 
|  | compat_ro); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have unsupported RO compat features, although RO mounted, we | 
|  | * should not cause any metadata writes, including log replay. | 
|  | * Or we could screw up whatever the new feature requires. | 
|  | */ | 
|  | if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && | 
|  | !btrfs_test_opt(fs_info, NOLOGREPLAY)) { | 
|  | btrfs_err(fs_info, | 
|  | "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", | 
|  | compat_ro); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Artificial limitations for block group tree, to force | 
|  | * block-group-tree to rely on no-holes and free-space-tree. | 
|  | */ | 
|  | if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && | 
|  | (!btrfs_fs_incompat(fs_info, NO_HOLES) || | 
|  | !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { | 
|  | btrfs_err(fs_info, | 
|  | "block-group-tree feature requires no-holes and free-space-tree features"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subpage runtime limitation on v1 cache. | 
|  | * | 
|  | * V1 space cache still has some hard codeed PAGE_SIZE usage, while | 
|  | * we're already defaulting to v2 cache, no need to bother v1 as it's | 
|  | * going to be deprecated anyway. | 
|  | */ | 
|  | if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { | 
|  | btrfs_warn(fs_info, | 
|  | "v1 space cache is not supported for page size %lu with sectorsize %u", | 
|  | PAGE_SIZE, fs_info->sectorsize); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* This can be called by remount, we need to protect the super block. */ | 
|  | spin_lock(&fs_info->super_lock); | 
|  | btrfs_set_super_incompat_flags(disk_super, incompat); | 
|  | spin_unlock(&fs_info->super_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, | 
|  | const char *options) | 
|  | { | 
|  | u32 sectorsize; | 
|  | u32 nodesize; | 
|  | u32 stripesize; | 
|  | u64 generation; | 
|  | u16 csum_type; | 
|  | struct btrfs_super_block *disk_super; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | struct btrfs_root *tree_root; | 
|  | struct btrfs_root *chunk_root; | 
|  | int ret; | 
|  | int level; | 
|  |  | 
|  | ret = init_mount_fs_info(fs_info, sb); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | /* These need to be init'ed before we start creating inodes and such. */ | 
|  | tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, | 
|  | GFP_KERNEL); | 
|  | fs_info->tree_root = tree_root; | 
|  | chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, | 
|  | GFP_KERNEL); | 
|  | fs_info->chunk_root = chunk_root; | 
|  | if (!tree_root || !chunk_root) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_btree_inode(sb); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | invalidate_bdev(fs_devices->latest_dev->bdev); | 
|  |  | 
|  | /* | 
|  | * Read super block and check the signature bytes only | 
|  | */ | 
|  | disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); | 
|  | if (IS_ERR(disk_super)) { | 
|  | ret = PTR_ERR(disk_super); | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); | 
|  | /* | 
|  | * Verify the type first, if that or the checksum value are | 
|  | * corrupted, we'll find out | 
|  | */ | 
|  | csum_type = btrfs_super_csum_type(disk_super); | 
|  | if (!btrfs_supported_super_csum(csum_type)) { | 
|  | btrfs_err(fs_info, "unsupported checksum algorithm: %u", | 
|  | csum_type); | 
|  | ret = -EINVAL; | 
|  | btrfs_release_disk_super(disk_super); | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | fs_info->csum_size = btrfs_super_csum_size(disk_super); | 
|  |  | 
|  | ret = btrfs_init_csum_hash(fs_info, csum_type); | 
|  | if (ret) { | 
|  | btrfs_release_disk_super(disk_super); | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to check superblock checksum, the type is stored inside. | 
|  | * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). | 
|  | */ | 
|  | if (btrfs_check_super_csum(fs_info, disk_super)) { | 
|  | btrfs_err(fs_info, "superblock checksum mismatch"); | 
|  | ret = -EINVAL; | 
|  | btrfs_release_disk_super(disk_super); | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * super_copy is zeroed at allocation time and we never touch the | 
|  | * following bytes up to INFO_SIZE, the checksum is calculated from | 
|  | * the whole block of INFO_SIZE | 
|  | */ | 
|  | memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); | 
|  | btrfs_release_disk_super(disk_super); | 
|  |  | 
|  | disk_super = fs_info->super_copy; | 
|  |  | 
|  | memcpy(fs_info->super_for_commit, fs_info->super_copy, | 
|  | sizeof(*fs_info->super_for_commit)); | 
|  |  | 
|  | ret = btrfs_validate_mount_super(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "superblock contains fatal errors"); | 
|  | ret = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | if (!btrfs_super_root(disk_super)) { | 
|  | btrfs_err(fs_info, "invalid superblock tree root bytenr"); | 
|  | ret = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | /* check FS state, whether FS is broken. */ | 
|  | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) | 
|  | WRITE_ONCE(fs_info->fs_error, -EUCLEAN); | 
|  |  | 
|  | /* Set up fs_info before parsing mount options */ | 
|  | nodesize = btrfs_super_nodesize(disk_super); | 
|  | sectorsize = btrfs_super_sectorsize(disk_super); | 
|  | stripesize = sectorsize; | 
|  | fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); | 
|  | fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); | 
|  |  | 
|  | fs_info->nodesize = nodesize; | 
|  | fs_info->sectorsize = sectorsize; | 
|  | fs_info->sectorsize_bits = ilog2(sectorsize); | 
|  | fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits); | 
|  | fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; | 
|  | fs_info->stripesize = stripesize; | 
|  |  | 
|  | /* | 
|  | * Handle the space caching options appropriately now that we have the | 
|  | * super block loaded and validated. | 
|  | */ | 
|  | btrfs_set_free_space_cache_settings(fs_info); | 
|  |  | 
|  | if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { | 
|  | ret = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); | 
|  | if (ret < 0) | 
|  | goto fail_alloc; | 
|  |  | 
|  | /* | 
|  | * At this point our mount options are validated, if we set ->max_inline | 
|  | * to something non-standard make sure we truncate it to sectorsize. | 
|  | */ | 
|  | fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); | 
|  |  | 
|  | if (sectorsize < PAGE_SIZE) | 
|  | btrfs_warn(fs_info, | 
|  | "read-write for sector size %u with page size %lu is experimental", | 
|  | sectorsize, PAGE_SIZE); | 
|  |  | 
|  | ret = btrfs_init_workqueues(fs_info); | 
|  | if (ret) | 
|  | goto fail_sb_buffer; | 
|  |  | 
|  | sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); | 
|  | sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); | 
|  |  | 
|  | /* Update the values for the current filesystem. */ | 
|  | sb->s_blocksize = sectorsize; | 
|  | sb->s_blocksize_bits = blksize_bits(sectorsize); | 
|  | memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | ret = btrfs_read_sys_array(fs_info); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to read the system array: %d", ret); | 
|  | goto fail_sb_buffer; | 
|  | } | 
|  |  | 
|  | generation = btrfs_super_chunk_root_generation(disk_super); | 
|  | level = btrfs_super_chunk_root_level(disk_super); | 
|  | ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), | 
|  | generation, level); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to read chunk root"); | 
|  | goto fail_tree_roots; | 
|  | } | 
|  |  | 
|  | read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, | 
|  | offsetof(struct btrfs_header, chunk_tree_uuid), | 
|  | BTRFS_UUID_SIZE); | 
|  |  | 
|  | ret = btrfs_read_chunk_tree(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to read chunk tree: %d", ret); | 
|  | goto fail_tree_roots; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point we know all the devices that make this filesystem, | 
|  | * including the seed devices but we don't know yet if the replace | 
|  | * target is required. So free devices that are not part of this | 
|  | * filesystem but skip the replace target device which is checked | 
|  | * below in btrfs_init_dev_replace(). | 
|  | */ | 
|  | btrfs_free_extra_devids(fs_devices); | 
|  | if (!fs_devices->latest_dev->bdev) { | 
|  | btrfs_err(fs_info, "failed to read devices"); | 
|  | ret = -EIO; | 
|  | goto fail_tree_roots; | 
|  | } | 
|  |  | 
|  | ret = init_tree_roots(fs_info); | 
|  | if (ret) | 
|  | goto fail_tree_roots; | 
|  |  | 
|  | /* | 
|  | * Get zone type information of zoned block devices. This will also | 
|  | * handle emulation of a zoned filesystem if a regular device has the | 
|  | * zoned incompat feature flag set. | 
|  | */ | 
|  | ret = btrfs_get_dev_zone_info_all_devices(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, | 
|  | "zoned: failed to read device zone info: %d", ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have a uuid root and we're not being told to rescan we need to | 
|  | * check the generation here so we can set the | 
|  | * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the | 
|  | * transaction during a balance or the log replay without updating the | 
|  | * uuid generation, and then if we crash we would rescan the uuid tree, | 
|  | * even though it was perfectly fine. | 
|  | */ | 
|  | if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && | 
|  | fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) | 
|  | set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); | 
|  |  | 
|  | ret = btrfs_verify_dev_extents(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, | 
|  | "failed to verify dev extents against chunks: %d", | 
|  | ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  | ret = btrfs_recover_balance(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to recover balance: %d", ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_dev_stats(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to init dev_stats: %d", ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_dev_replace(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to init dev_replace: %d", ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | ret = btrfs_check_zoned_mode(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to initialize zoned mode: %d", | 
|  | ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | ret = btrfs_sysfs_add_fsid(fs_devices); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", | 
|  | ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | ret = btrfs_sysfs_add_mounted(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); | 
|  | goto fail_fsdev_sysfs; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_space_info(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to initialize space info: %d", ret); | 
|  | goto fail_sysfs; | 
|  | } | 
|  |  | 
|  | ret = btrfs_read_block_groups(fs_info); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, "failed to read block groups: %d", ret); | 
|  | goto fail_sysfs; | 
|  | } | 
|  |  | 
|  | btrfs_free_zone_cache(fs_info); | 
|  |  | 
|  | btrfs_check_active_zone_reservation(fs_info); | 
|  |  | 
|  | if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && | 
|  | !btrfs_check_rw_degradable(fs_info, NULL)) { | 
|  | btrfs_warn(fs_info, | 
|  | "writable mount is not allowed due to too many missing devices"); | 
|  | ret = -EINVAL; | 
|  | goto fail_sysfs; | 
|  | } | 
|  |  | 
|  | fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, | 
|  | "btrfs-cleaner"); | 
|  | if (IS_ERR(fs_info->cleaner_kthread)) { | 
|  | ret = PTR_ERR(fs_info->cleaner_kthread); | 
|  | goto fail_sysfs; | 
|  | } | 
|  |  | 
|  | fs_info->transaction_kthread = kthread_run(transaction_kthread, | 
|  | tree_root, | 
|  | "btrfs-transaction"); | 
|  | if (IS_ERR(fs_info->transaction_kthread)) { | 
|  | ret = PTR_ERR(fs_info->transaction_kthread); | 
|  | goto fail_cleaner; | 
|  | } | 
|  |  | 
|  | ret = btrfs_read_qgroup_config(fs_info); | 
|  | if (ret) | 
|  | goto fail_trans_kthread; | 
|  |  | 
|  | if (btrfs_build_ref_tree(fs_info)) | 
|  | btrfs_err(fs_info, "couldn't build ref tree"); | 
|  |  | 
|  | /* do not make disk changes in broken FS or nologreplay is given */ | 
|  | if (btrfs_super_log_root(disk_super) != 0 && | 
|  | !btrfs_test_opt(fs_info, NOLOGREPLAY)) { | 
|  | btrfs_info(fs_info, "start tree-log replay"); | 
|  | ret = btrfs_replay_log(fs_info, fs_devices); | 
|  | if (ret) | 
|  | goto fail_qgroup; | 
|  | } | 
|  |  | 
|  | fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); | 
|  | if (IS_ERR(fs_info->fs_root)) { | 
|  | ret = PTR_ERR(fs_info->fs_root); | 
|  | btrfs_warn(fs_info, "failed to read fs tree: %d", ret); | 
|  | fs_info->fs_root = NULL; | 
|  | goto fail_qgroup; | 
|  | } | 
|  |  | 
|  | if (sb_rdonly(sb)) | 
|  | return 0; | 
|  |  | 
|  | ret = btrfs_start_pre_rw_mount(fs_info); | 
|  | if (ret) { | 
|  | close_ctree(fs_info); | 
|  | return ret; | 
|  | } | 
|  | btrfs_discard_resume(fs_info); | 
|  |  | 
|  | if (fs_info->uuid_root && | 
|  | (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || | 
|  | fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { | 
|  | btrfs_info(fs_info, "checking UUID tree"); | 
|  | ret = btrfs_check_uuid_tree(fs_info); | 
|  | if (ret) { | 
|  | btrfs_warn(fs_info, | 
|  | "failed to check the UUID tree: %d", ret); | 
|  | close_ctree(fs_info); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | set_bit(BTRFS_FS_OPEN, &fs_info->flags); | 
|  |  | 
|  | /* Kick the cleaner thread so it'll start deleting snapshots. */ | 
|  | if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) | 
|  | wake_up_process(fs_info->cleaner_kthread); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_qgroup: | 
|  | btrfs_free_qgroup_config(fs_info); | 
|  | fail_trans_kthread: | 
|  | kthread_stop(fs_info->transaction_kthread); | 
|  | btrfs_cleanup_transaction(fs_info); | 
|  | btrfs_free_fs_roots(fs_info); | 
|  | fail_cleaner: | 
|  | kthread_stop(fs_info->cleaner_kthread); | 
|  |  | 
|  | /* | 
|  | * make sure we're done with the btree inode before we stop our | 
|  | * kthreads | 
|  | */ | 
|  | filemap_write_and_wait(fs_info->btree_inode->i_mapping); | 
|  |  | 
|  | fail_sysfs: | 
|  | btrfs_sysfs_remove_mounted(fs_info); | 
|  |  | 
|  | fail_fsdev_sysfs: | 
|  | btrfs_sysfs_remove_fsid(fs_info->fs_devices); | 
|  |  | 
|  | fail_block_groups: | 
|  | btrfs_put_block_group_cache(fs_info); | 
|  |  | 
|  | fail_tree_roots: | 
|  | if (fs_info->data_reloc_root) | 
|  | btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); | 
|  | free_root_pointers(fs_info, true); | 
|  | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
|  |  | 
|  | fail_sb_buffer: | 
|  | btrfs_stop_all_workers(fs_info); | 
|  | btrfs_free_block_groups(fs_info); | 
|  | fail_alloc: | 
|  | btrfs_mapping_tree_free(fs_info); | 
|  |  | 
|  | iput(fs_info->btree_inode); | 
|  | fail: | 
|  | btrfs_close_devices(fs_info->fs_devices); | 
|  | ASSERT(ret < 0); | 
|  | return ret; | 
|  | } | 
|  | ALLOW_ERROR_INJECTION(open_ctree, ERRNO); | 
|  |  | 
|  | static void btrfs_end_super_write(struct bio *bio) | 
|  | { | 
|  | struct btrfs_device *device = bio->bi_private; | 
|  | struct folio_iter fi; | 
|  |  | 
|  | bio_for_each_folio_all(fi, bio) { | 
|  | if (bio->bi_status) { | 
|  | btrfs_warn_rl_in_rcu(device->fs_info, | 
|  | "lost super block write due to IO error on %s (%d)", | 
|  | btrfs_dev_name(device), | 
|  | blk_status_to_errno(bio->bi_status)); | 
|  | btrfs_dev_stat_inc_and_print(device, | 
|  | BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | /* Ensure failure if the primary sb fails. */ | 
|  | if (bio->bi_opf & REQ_FUA) | 
|  | atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, | 
|  | &device->sb_write_errors); | 
|  | else | 
|  | atomic_inc(&device->sb_write_errors); | 
|  | } | 
|  | folio_unlock(fi.folio); | 
|  | folio_put(fi.folio); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, | 
|  | int copy_num, bool drop_cache) | 
|  | { | 
|  | struct btrfs_super_block *super; | 
|  | struct page *page; | 
|  | u64 bytenr, bytenr_orig; | 
|  | struct address_space *mapping = bdev->bd_mapping; | 
|  | int ret; | 
|  |  | 
|  | bytenr_orig = btrfs_sb_offset(copy_num); | 
|  | ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); | 
|  | if (ret == -ENOENT) | 
|  | return ERR_PTR(-EINVAL); | 
|  | else if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (drop_cache) { | 
|  | /* This should only be called with the primary sb. */ | 
|  | ASSERT(copy_num == 0); | 
|  |  | 
|  | /* | 
|  | * Drop the page of the primary superblock, so later read will | 
|  | * always read from the device. | 
|  | */ | 
|  | invalidate_inode_pages2_range(mapping, | 
|  | bytenr >> PAGE_SHIFT, | 
|  | (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); | 
|  | if (IS_ERR(page)) | 
|  | return ERR_CAST(page); | 
|  |  | 
|  | super = page_address(page); | 
|  | if (btrfs_super_magic(super) != BTRFS_MAGIC) { | 
|  | btrfs_release_disk_super(super); | 
|  | return ERR_PTR(-ENODATA); | 
|  | } | 
|  |  | 
|  | if (btrfs_super_bytenr(super) != bytenr_orig) { | 
|  | btrfs_release_disk_super(super); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | return super; | 
|  | } | 
|  |  | 
|  |  | 
|  | struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) | 
|  | { | 
|  | struct btrfs_super_block *super, *latest = NULL; | 
|  | int i; | 
|  | u64 transid = 0; | 
|  |  | 
|  | /* we would like to check all the supers, but that would make | 
|  | * a btrfs mount succeed after a mkfs from a different FS. | 
|  | * So, we need to add a special mount option to scan for | 
|  | * later supers, using BTRFS_SUPER_MIRROR_MAX instead | 
|  | */ | 
|  | for (i = 0; i < 1; i++) { | 
|  | super = btrfs_read_dev_one_super(bdev, i, false); | 
|  | if (IS_ERR(super)) | 
|  | continue; | 
|  |  | 
|  | if (!latest || btrfs_super_generation(super) > transid) { | 
|  | if (latest) | 
|  | btrfs_release_disk_super(super); | 
|  |  | 
|  | latest = super; | 
|  | transid = btrfs_super_generation(super); | 
|  | } | 
|  | } | 
|  |  | 
|  | return super; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write superblock @sb to the @device. Do not wait for completion, all the | 
|  | * folios we use for writing are locked. | 
|  | * | 
|  | * Write @max_mirrors copies of the superblock, where 0 means default that fit | 
|  | * the expected device size at commit time. Note that max_mirrors must be | 
|  | * same for write and wait phases. | 
|  | * | 
|  | * Return number of errors when folio is not found or submission fails. | 
|  | */ | 
|  | static int write_dev_supers(struct btrfs_device *device, | 
|  | struct btrfs_super_block *sb, int max_mirrors) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct address_space *mapping = device->bdev->bd_mapping; | 
|  | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
|  | int i; | 
|  | int ret; | 
|  | u64 bytenr, bytenr_orig; | 
|  |  | 
|  | atomic_set(&device->sb_write_errors, 0); | 
|  |  | 
|  | if (max_mirrors == 0) | 
|  | max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
|  |  | 
|  | shash->tfm = fs_info->csum_shash; | 
|  |  | 
|  | for (i = 0; i < max_mirrors; i++) { | 
|  | struct folio *folio; | 
|  | struct bio *bio; | 
|  | struct btrfs_super_block *disk_super; | 
|  | size_t offset; | 
|  |  | 
|  | bytenr_orig = btrfs_sb_offset(i); | 
|  | ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); | 
|  | if (ret == -ENOENT) { | 
|  | continue; | 
|  | } else if (ret < 0) { | 
|  | btrfs_err(device->fs_info, | 
|  | "couldn't get super block location for mirror %d", | 
|  | i); | 
|  | atomic_inc(&device->sb_write_errors); | 
|  | continue; | 
|  | } | 
|  | if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
|  | device->commit_total_bytes) | 
|  | break; | 
|  |  | 
|  | btrfs_set_super_bytenr(sb, bytenr_orig); | 
|  |  | 
|  | crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, | 
|  | BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, | 
|  | sb->csum); | 
|  |  | 
|  | folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, | 
|  | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, | 
|  | GFP_NOFS); | 
|  | if (IS_ERR(folio)) { | 
|  | btrfs_err(device->fs_info, | 
|  | "couldn't get super block page for bytenr %llu", | 
|  | bytenr); | 
|  | atomic_inc(&device->sb_write_errors); | 
|  | continue; | 
|  | } | 
|  | ASSERT(folio_order(folio) == 0); | 
|  |  | 
|  | offset = offset_in_folio(folio, bytenr); | 
|  | disk_super = folio_address(folio) + offset; | 
|  | memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); | 
|  |  | 
|  | /* | 
|  | * Directly use bios here instead of relying on the page cache | 
|  | * to do I/O, so we don't lose the ability to do integrity | 
|  | * checking. | 
|  | */ | 
|  | bio = bio_alloc(device->bdev, 1, | 
|  | REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, | 
|  | GFP_NOFS); | 
|  | bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; | 
|  | bio->bi_private = device; | 
|  | bio->bi_end_io = btrfs_end_super_write; | 
|  | bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); | 
|  |  | 
|  | /* | 
|  | * We FUA only the first super block.  The others we allow to | 
|  | * go down lazy and there's a short window where the on-disk | 
|  | * copies might still contain the older version. | 
|  | */ | 
|  | if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) | 
|  | bio->bi_opf |= REQ_FUA; | 
|  | submit_bio(bio); | 
|  |  | 
|  | if (btrfs_advance_sb_log(device, i)) | 
|  | atomic_inc(&device->sb_write_errors); | 
|  | } | 
|  | return atomic_read(&device->sb_write_errors) < i ? 0 : -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for write completion of superblocks done by write_dev_supers, | 
|  | * @max_mirrors same for write and wait phases. | 
|  | * | 
|  | * Return -1 if primary super block write failed or when there were no super block | 
|  | * copies written. Otherwise 0. | 
|  | */ | 
|  | static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) | 
|  | { | 
|  | int i; | 
|  | int errors = 0; | 
|  | bool primary_failed = false; | 
|  | int ret; | 
|  | u64 bytenr; | 
|  |  | 
|  | if (max_mirrors == 0) | 
|  | max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
|  |  | 
|  | for (i = 0; i < max_mirrors; i++) { | 
|  | struct folio *folio; | 
|  |  | 
|  | ret = btrfs_sb_log_location(device, i, READ, &bytenr); | 
|  | if (ret == -ENOENT) { | 
|  | break; | 
|  | } else if (ret < 0) { | 
|  | errors++; | 
|  | if (i == 0) | 
|  | primary_failed = true; | 
|  | continue; | 
|  | } | 
|  | if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
|  | device->commit_total_bytes) | 
|  | break; | 
|  |  | 
|  | folio = filemap_get_folio(device->bdev->bd_mapping, | 
|  | bytenr >> PAGE_SHIFT); | 
|  | /* If the folio has been removed, then we know it completed. */ | 
|  | if (IS_ERR(folio)) | 
|  | continue; | 
|  | ASSERT(folio_order(folio) == 0); | 
|  |  | 
|  | /* Folio will be unlocked once the write completes. */ | 
|  | folio_wait_locked(folio); | 
|  | folio_put(folio); | 
|  | } | 
|  |  | 
|  | errors += atomic_read(&device->sb_write_errors); | 
|  | if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) | 
|  | primary_failed = true; | 
|  | if (primary_failed) { | 
|  | btrfs_err(device->fs_info, "error writing primary super block to device %llu", | 
|  | device->devid); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return errors < i ? 0 : -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * endio for the write_dev_flush, this will wake anyone waiting | 
|  | * for the barrier when it is done | 
|  | */ | 
|  | static void btrfs_end_empty_barrier(struct bio *bio) | 
|  | { | 
|  | bio_uninit(bio); | 
|  | complete(bio->bi_private); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit a flush request to the device if it supports it. Error handling is | 
|  | * done in the waiting counterpart. | 
|  | */ | 
|  | static void write_dev_flush(struct btrfs_device *device) | 
|  | { | 
|  | struct bio *bio = &device->flush_bio; | 
|  |  | 
|  | device->last_flush_error = BLK_STS_OK; | 
|  |  | 
|  | bio_init(bio, device->bdev, NULL, 0, | 
|  | REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); | 
|  | bio->bi_end_io = btrfs_end_empty_barrier; | 
|  | init_completion(&device->flush_wait); | 
|  | bio->bi_private = &device->flush_wait; | 
|  | submit_bio(bio); | 
|  | set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the flush bio has been submitted by write_dev_flush, wait for it. | 
|  | * Return true for any error, and false otherwise. | 
|  | */ | 
|  | static bool wait_dev_flush(struct btrfs_device *device) | 
|  | { | 
|  | struct bio *bio = &device->flush_bio; | 
|  |  | 
|  | if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) | 
|  | return false; | 
|  |  | 
|  | wait_for_completion_io(&device->flush_wait); | 
|  |  | 
|  | if (bio->bi_status) { | 
|  | device->last_flush_error = bio->bi_status; | 
|  | btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * send an empty flush down to each device in parallel, | 
|  | * then wait for them | 
|  | */ | 
|  | static int barrier_all_devices(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct list_head *head; | 
|  | struct btrfs_device *dev; | 
|  | int errors_wait = 0; | 
|  |  | 
|  | lockdep_assert_held(&info->fs_devices->device_list_mutex); | 
|  | /* send down all the barriers */ | 
|  | head = &info->fs_devices->devices; | 
|  | list_for_each_entry(dev, head, dev_list) { | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
|  | continue; | 
|  | if (!dev->bdev) | 
|  | continue; | 
|  | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
|  | continue; | 
|  |  | 
|  | write_dev_flush(dev); | 
|  | } | 
|  |  | 
|  | /* wait for all the barriers */ | 
|  | list_for_each_entry(dev, head, dev_list) { | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
|  | continue; | 
|  | if (!dev->bdev) { | 
|  | errors_wait++; | 
|  | continue; | 
|  | } | 
|  | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
|  | continue; | 
|  |  | 
|  | if (wait_dev_flush(dev)) | 
|  | errors_wait++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks last_flush_error of disks in order to determine the device | 
|  | * state. | 
|  | */ | 
|  | if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) | 
|  | return -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) | 
|  | { | 
|  | int raid_type; | 
|  | int min_tolerated = INT_MAX; | 
|  |  | 
|  | if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || | 
|  | (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) | 
|  | min_tolerated = min_t(int, min_tolerated, | 
|  | btrfs_raid_array[BTRFS_RAID_SINGLE]. | 
|  | tolerated_failures); | 
|  |  | 
|  | for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { | 
|  | if (raid_type == BTRFS_RAID_SINGLE) | 
|  | continue; | 
|  | if (!(flags & btrfs_raid_array[raid_type].bg_flag)) | 
|  | continue; | 
|  | min_tolerated = min_t(int, min_tolerated, | 
|  | btrfs_raid_array[raid_type]. | 
|  | tolerated_failures); | 
|  | } | 
|  |  | 
|  | if (min_tolerated == INT_MAX) { | 
|  | pr_warn("BTRFS: unknown raid flag: %llu", flags); | 
|  | min_tolerated = 0; | 
|  | } | 
|  |  | 
|  | return min_tolerated; | 
|  | } | 
|  |  | 
|  | int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) | 
|  | { | 
|  | struct list_head *head; | 
|  | struct btrfs_device *dev; | 
|  | struct btrfs_super_block *sb; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | int ret; | 
|  | int do_barriers; | 
|  | int max_errors; | 
|  | int total_errors = 0; | 
|  | u64 flags; | 
|  |  | 
|  | do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); | 
|  |  | 
|  | /* | 
|  | * max_mirrors == 0 indicates we're from commit_transaction, | 
|  | * not from fsync where the tree roots in fs_info have not | 
|  | * been consistent on disk. | 
|  | */ | 
|  | if (max_mirrors == 0) | 
|  | backup_super_roots(fs_info); | 
|  |  | 
|  | sb = fs_info->super_for_commit; | 
|  | dev_item = &sb->dev_item; | 
|  |  | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | head = &fs_info->fs_devices->devices; | 
|  | max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; | 
|  |  | 
|  | if (do_barriers) { | 
|  | ret = barrier_all_devices(fs_info); | 
|  | if (ret) { | 
|  | mutex_unlock( | 
|  | &fs_info->fs_devices->device_list_mutex); | 
|  | btrfs_handle_fs_error(fs_info, ret, | 
|  | "errors while submitting device barriers."); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(dev, head, dev_list) { | 
|  | if (!dev->bdev) { | 
|  | total_errors++; | 
|  | continue; | 
|  | } | 
|  | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
|  | continue; | 
|  |  | 
|  | btrfs_set_stack_device_generation(dev_item, 0); | 
|  | btrfs_set_stack_device_type(dev_item, dev->type); | 
|  | btrfs_set_stack_device_id(dev_item, dev->devid); | 
|  | btrfs_set_stack_device_total_bytes(dev_item, | 
|  | dev->commit_total_bytes); | 
|  | btrfs_set_stack_device_bytes_used(dev_item, | 
|  | dev->commit_bytes_used); | 
|  | btrfs_set_stack_device_io_align(dev_item, dev->io_align); | 
|  | btrfs_set_stack_device_io_width(dev_item, dev->io_width); | 
|  | btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); | 
|  | memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); | 
|  | memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, | 
|  | BTRFS_FSID_SIZE); | 
|  |  | 
|  | flags = btrfs_super_flags(sb); | 
|  | btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); | 
|  |  | 
|  | ret = btrfs_validate_write_super(fs_info, sb); | 
|  | if (ret < 0) { | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | btrfs_handle_fs_error(fs_info, -EUCLEAN, | 
|  | "unexpected superblock corruption detected"); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | ret = write_dev_supers(dev, sb, max_mirrors); | 
|  | if (ret) | 
|  | total_errors++; | 
|  | } | 
|  | if (total_errors > max_errors) { | 
|  | btrfs_err(fs_info, "%d errors while writing supers", | 
|  | total_errors); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | /* FUA is masked off if unsupported and can't be the reason */ | 
|  | btrfs_handle_fs_error(fs_info, -EIO, | 
|  | "%d errors while writing supers", | 
|  | total_errors); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | total_errors = 0; | 
|  | list_for_each_entry(dev, head, dev_list) { | 
|  | if (!dev->bdev) | 
|  | continue; | 
|  | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) | 
|  | continue; | 
|  |  | 
|  | ret = wait_dev_supers(dev, max_mirrors); | 
|  | if (ret) | 
|  | total_errors++; | 
|  | } | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | if (total_errors > max_errors) { | 
|  | btrfs_handle_fs_error(fs_info, -EIO, | 
|  | "%d errors while writing supers", | 
|  | total_errors); | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Drop a fs root from the radix tree and free it. */ | 
|  | void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | bool drop_ref = false; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | radix_tree_delete(&fs_info->fs_roots_radix, | 
|  | (unsigned long)btrfs_root_id(root)); | 
|  | if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) | 
|  | drop_ref = true; | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  |  | 
|  | if (BTRFS_FS_ERROR(fs_info)) { | 
|  | ASSERT(root->log_root == NULL); | 
|  | if (root->reloc_root) { | 
|  | btrfs_put_root(root->reloc_root); | 
|  | root->reloc_root = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (drop_ref) | 
|  | btrfs_put_root(root); | 
|  | } | 
|  |  | 
|  | int btrfs_commit_super(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | mutex_lock(&fs_info->cleaner_mutex); | 
|  | btrfs_run_delayed_iputs(fs_info); | 
|  | mutex_unlock(&fs_info->cleaner_mutex); | 
|  | wake_up_process(fs_info->cleaner_kthread); | 
|  |  | 
|  | /* wait until ongoing cleanup work done */ | 
|  | down_write(&fs_info->cleanup_work_sem); | 
|  | up_write(&fs_info->cleanup_work_sem); | 
|  |  | 
|  | return btrfs_commit_current_transaction(fs_info->tree_root); | 
|  | } | 
|  |  | 
|  | static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_transaction *trans; | 
|  | struct btrfs_transaction *tmp; | 
|  | bool found = false; | 
|  |  | 
|  | /* | 
|  | * This function is only called at the very end of close_ctree(), | 
|  | * thus no other running transaction, no need to take trans_lock. | 
|  | */ | 
|  | ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); | 
|  | list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { | 
|  | struct extent_state *cached = NULL; | 
|  | u64 dirty_bytes = 0; | 
|  | u64 cur = 0; | 
|  | u64 found_start; | 
|  | u64 found_end; | 
|  |  | 
|  | found = true; | 
|  | while (find_first_extent_bit(&trans->dirty_pages, cur, | 
|  | &found_start, &found_end, EXTENT_DIRTY, &cached)) { | 
|  | dirty_bytes += found_end + 1 - found_start; | 
|  | cur = found_end + 1; | 
|  | } | 
|  | btrfs_warn(fs_info, | 
|  | "transaction %llu (with %llu dirty metadata bytes) is not committed", | 
|  | trans->transid, dirty_bytes); | 
|  | btrfs_cleanup_one_transaction(trans, fs_info); | 
|  |  | 
|  | if (trans == fs_info->running_transaction) | 
|  | fs_info->running_transaction = NULL; | 
|  | list_del_init(&trans->list); | 
|  |  | 
|  | btrfs_put_transaction(trans); | 
|  | trace_btrfs_transaction_commit(fs_info); | 
|  | } | 
|  | ASSERT(!found); | 
|  | } | 
|  |  | 
|  | void __cold close_ctree(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); | 
|  |  | 
|  | /* | 
|  | * If we had UNFINISHED_DROPS we could still be processing them, so | 
|  | * clear that bit and wake up relocation so it can stop. | 
|  | * We must do this before stopping the block group reclaim task, because | 
|  | * at btrfs_relocate_block_group() we wait for this bit, and after the | 
|  | * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we | 
|  | * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will | 
|  | * return 1. | 
|  | */ | 
|  | btrfs_wake_unfinished_drop(fs_info); | 
|  |  | 
|  | /* | 
|  | * We may have the reclaim task running and relocating a data block group, | 
|  | * in which case it may create delayed iputs. So stop it before we park | 
|  | * the cleaner kthread otherwise we can get new delayed iputs after | 
|  | * parking the cleaner, and that can make the async reclaim task to hang | 
|  | * if it's waiting for delayed iputs to complete, since the cleaner is | 
|  | * parked and can not run delayed iputs - this will make us hang when | 
|  | * trying to stop the async reclaim task. | 
|  | */ | 
|  | cancel_work_sync(&fs_info->reclaim_bgs_work); | 
|  | /* | 
|  | * We don't want the cleaner to start new transactions, add more delayed | 
|  | * iputs, etc. while we're closing. We can't use kthread_stop() yet | 
|  | * because that frees the task_struct, and the transaction kthread might | 
|  | * still try to wake up the cleaner. | 
|  | */ | 
|  | kthread_park(fs_info->cleaner_kthread); | 
|  |  | 
|  | /* wait for the qgroup rescan worker to stop */ | 
|  | btrfs_qgroup_wait_for_completion(fs_info, false); | 
|  |  | 
|  | /* wait for the uuid_scan task to finish */ | 
|  | down(&fs_info->uuid_tree_rescan_sem); | 
|  | /* avoid complains from lockdep et al., set sem back to initial state */ | 
|  | up(&fs_info->uuid_tree_rescan_sem); | 
|  |  | 
|  | /* pause restriper - we want to resume on mount */ | 
|  | btrfs_pause_balance(fs_info); | 
|  |  | 
|  | btrfs_dev_replace_suspend_for_unmount(fs_info); | 
|  |  | 
|  | btrfs_scrub_cancel(fs_info); | 
|  |  | 
|  | /* wait for any defraggers to finish */ | 
|  | wait_event(fs_info->transaction_wait, | 
|  | (atomic_read(&fs_info->defrag_running) == 0)); | 
|  |  | 
|  | /* clear out the rbtree of defraggable inodes */ | 
|  | btrfs_cleanup_defrag_inodes(fs_info); | 
|  |  | 
|  | /* | 
|  | * After we parked the cleaner kthread, ordered extents may have | 
|  | * completed and created new delayed iputs. If one of the async reclaim | 
|  | * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we | 
|  | * can hang forever trying to stop it, because if a delayed iput is | 
|  | * added after it ran btrfs_run_delayed_iputs() and before it called | 
|  | * btrfs_wait_on_delayed_iputs(), it will hang forever since there is | 
|  | * no one else to run iputs. | 
|  | * | 
|  | * So wait for all ongoing ordered extents to complete and then run | 
|  | * delayed iputs. This works because once we reach this point no one | 
|  | * can either create new ordered extents nor create delayed iputs | 
|  | * through some other means. | 
|  | * | 
|  | * Also note that btrfs_wait_ordered_roots() is not safe here, because | 
|  | * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, | 
|  | * but the delayed iput for the respective inode is made only when doing | 
|  | * the final btrfs_put_ordered_extent() (which must happen at | 
|  | * btrfs_finish_ordered_io() when we are unmounting). | 
|  | */ | 
|  | btrfs_flush_workqueue(fs_info->endio_write_workers); | 
|  | /* Ordered extents for free space inodes. */ | 
|  | btrfs_flush_workqueue(fs_info->endio_freespace_worker); | 
|  | btrfs_run_delayed_iputs(fs_info); | 
|  |  | 
|  | cancel_work_sync(&fs_info->async_reclaim_work); | 
|  | cancel_work_sync(&fs_info->async_data_reclaim_work); | 
|  | cancel_work_sync(&fs_info->preempt_reclaim_work); | 
|  |  | 
|  | /* Cancel or finish ongoing discard work */ | 
|  | btrfs_discard_cleanup(fs_info); | 
|  |  | 
|  | if (!sb_rdonly(fs_info->sb)) { | 
|  | /* | 
|  | * The cleaner kthread is stopped, so do one final pass over | 
|  | * unused block groups. | 
|  | */ | 
|  | btrfs_delete_unused_bgs(fs_info); | 
|  |  | 
|  | /* | 
|  | * There might be existing delayed inode workers still running | 
|  | * and holding an empty delayed inode item. We must wait for | 
|  | * them to complete first because they can create a transaction. | 
|  | * This happens when someone calls btrfs_balance_delayed_items() | 
|  | * and then a transaction commit runs the same delayed nodes | 
|  | * before any delayed worker has done something with the nodes. | 
|  | * We must wait for any worker here and not at transaction | 
|  | * commit time since that could cause a deadlock. | 
|  | * This is a very rare case. | 
|  | */ | 
|  | btrfs_flush_workqueue(fs_info->delayed_workers); | 
|  |  | 
|  | ret = btrfs_commit_super(fs_info); | 
|  | if (ret) | 
|  | btrfs_err(fs_info, "commit super ret %d", ret); | 
|  | } | 
|  |  | 
|  | if (BTRFS_FS_ERROR(fs_info)) | 
|  | btrfs_error_commit_super(fs_info); | 
|  |  | 
|  | kthread_stop(fs_info->transaction_kthread); | 
|  | kthread_stop(fs_info->cleaner_kthread); | 
|  |  | 
|  | ASSERT(list_empty(&fs_info->delayed_iputs)); | 
|  | set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); | 
|  |  | 
|  | if (btrfs_check_quota_leak(fs_info)) { | 
|  | WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); | 
|  | btrfs_err(fs_info, "qgroup reserved space leaked"); | 
|  | } | 
|  |  | 
|  | btrfs_free_qgroup_config(fs_info); | 
|  | ASSERT(list_empty(&fs_info->delalloc_roots)); | 
|  |  | 
|  | if (percpu_counter_sum(&fs_info->delalloc_bytes)) { | 
|  | btrfs_info(fs_info, "at unmount delalloc count %lld", | 
|  | percpu_counter_sum(&fs_info->delalloc_bytes)); | 
|  | } | 
|  |  | 
|  | if (percpu_counter_sum(&fs_info->ordered_bytes)) | 
|  | btrfs_info(fs_info, "at unmount dio bytes count %lld", | 
|  | percpu_counter_sum(&fs_info->ordered_bytes)); | 
|  |  | 
|  | btrfs_sysfs_remove_mounted(fs_info); | 
|  | btrfs_sysfs_remove_fsid(fs_info->fs_devices); | 
|  |  | 
|  | btrfs_put_block_group_cache(fs_info); | 
|  |  | 
|  | /* | 
|  | * we must make sure there is not any read request to | 
|  | * submit after we stopping all workers. | 
|  | */ | 
|  | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
|  | btrfs_stop_all_workers(fs_info); | 
|  |  | 
|  | /* We shouldn't have any transaction open at this point */ | 
|  | warn_about_uncommitted_trans(fs_info); | 
|  |  | 
|  | clear_bit(BTRFS_FS_OPEN, &fs_info->flags); | 
|  | free_root_pointers(fs_info, true); | 
|  | btrfs_free_fs_roots(fs_info); | 
|  |  | 
|  | /* | 
|  | * We must free the block groups after dropping the fs_roots as we could | 
|  | * have had an IO error and have left over tree log blocks that aren't | 
|  | * cleaned up until the fs roots are freed.  This makes the block group | 
|  | * accounting appear to be wrong because there's pending reserved bytes, | 
|  | * so make sure we do the block group cleanup afterwards. | 
|  | */ | 
|  | btrfs_free_block_groups(fs_info); | 
|  |  | 
|  | iput(fs_info->btree_inode); | 
|  |  | 
|  | btrfs_mapping_tree_free(fs_info); | 
|  | btrfs_close_devices(fs_info->fs_devices); | 
|  | } | 
|  |  | 
|  | void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, | 
|  | struct extent_buffer *buf) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = buf->fs_info; | 
|  | u64 transid = btrfs_header_generation(buf); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | /* | 
|  | * This is a fast path so only do this check if we have sanity tests | 
|  | * enabled.  Normal people shouldn't be using unmapped buffers as dirty | 
|  | * outside of the sanity tests. | 
|  | */ | 
|  | if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) | 
|  | return; | 
|  | #endif | 
|  | /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ | 
|  | ASSERT(trans->transid == fs_info->generation); | 
|  | btrfs_assert_tree_write_locked(buf); | 
|  | if (unlikely(transid != fs_info->generation)) { | 
|  | btrfs_abort_transaction(trans, -EUCLEAN); | 
|  | btrfs_crit(fs_info, | 
|  | "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", | 
|  | buf->start, transid, fs_info->generation); | 
|  | } | 
|  | set_extent_buffer_dirty(buf); | 
|  | } | 
|  |  | 
|  | static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, | 
|  | int flush_delayed) | 
|  | { | 
|  | /* | 
|  | * looks as though older kernels can get into trouble with | 
|  | * this code, they end up stuck in balance_dirty_pages forever | 
|  | */ | 
|  | int ret; | 
|  |  | 
|  | if (current->flags & PF_MEMALLOC) | 
|  | return; | 
|  |  | 
|  | if (flush_delayed) | 
|  | btrfs_balance_delayed_items(fs_info); | 
|  |  | 
|  | ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, | 
|  | BTRFS_DIRTY_METADATA_THRESH, | 
|  | fs_info->dirty_metadata_batch); | 
|  | if (ret > 0) { | 
|  | balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | __btrfs_btree_balance_dirty(fs_info, 1); | 
|  | } | 
|  |  | 
|  | void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | __btrfs_btree_balance_dirty(fs_info, 0); | 
|  | } | 
|  |  | 
|  | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | /* cleanup FS via transaction */ | 
|  | btrfs_cleanup_transaction(fs_info); | 
|  |  | 
|  | mutex_lock(&fs_info->cleaner_mutex); | 
|  | btrfs_run_delayed_iputs(fs_info); | 
|  | mutex_unlock(&fs_info->cleaner_mutex); | 
|  |  | 
|  | down_write(&fs_info->cleanup_work_sem); | 
|  | up_write(&fs_info->cleanup_work_sem); | 
|  | } | 
|  |  | 
|  | static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *gang[8]; | 
|  | u64 root_objectid = 0; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
|  | (void **)gang, root_objectid, | 
|  | ARRAY_SIZE(gang))) != 0) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ret; i++) | 
|  | gang[i] = btrfs_grab_root(gang[i]); | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  |  | 
|  | for (i = 0; i < ret; i++) { | 
|  | if (!gang[i]) | 
|  | continue; | 
|  | root_objectid = btrfs_root_id(gang[i]); | 
|  | btrfs_free_log(NULL, gang[i]); | 
|  | btrfs_put_root(gang[i]); | 
|  | } | 
|  | root_objectid++; | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | btrfs_free_log_root_tree(NULL, fs_info); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_ordered_extents(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | /* | 
|  | * This will just short circuit the ordered completion stuff which will | 
|  | * make sure the ordered extent gets properly cleaned up. | 
|  | */ | 
|  | list_for_each_entry(ordered, &root->ordered_extents, | 
|  | root_extent_list) | 
|  | set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | LIST_HEAD(splice); | 
|  |  | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | list_splice_init(&fs_info->ordered_roots, &splice); | 
|  | while (!list_empty(&splice)) { | 
|  | root = list_first_entry(&splice, struct btrfs_root, | 
|  | ordered_root); | 
|  | list_move_tail(&root->ordered_root, | 
|  | &fs_info->ordered_roots); | 
|  |  | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  | btrfs_destroy_ordered_extents(root); | 
|  |  | 
|  | cond_resched(); | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  |  | 
|  | /* | 
|  | * We need this here because if we've been flipped read-only we won't | 
|  | * get sync() from the umount, so we need to make sure any ordered | 
|  | * extents that haven't had their dirty pages IO start writeout yet | 
|  | * actually get run and error out properly. | 
|  | */ | 
|  | btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  |  | 
|  | spin_lock(&delayed_refs->lock); | 
|  | while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct rb_node *n; | 
|  | bool pin_bytes = false; | 
|  |  | 
|  | head = rb_entry(node, struct btrfs_delayed_ref_head, | 
|  | href_node); | 
|  | if (btrfs_delayed_ref_lock(delayed_refs, head)) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&head->lock); | 
|  | while ((n = rb_first_cached(&head->ref_tree)) != NULL) { | 
|  | ref = rb_entry(n, struct btrfs_delayed_ref_node, | 
|  | ref_node); | 
|  | rb_erase_cached(&ref->ref_node, &head->ref_tree); | 
|  | RB_CLEAR_NODE(&ref->ref_node); | 
|  | if (!list_empty(&ref->add_list)) | 
|  | list_del(&ref->add_list); | 
|  | atomic_dec(&delayed_refs->num_entries); | 
|  | btrfs_put_delayed_ref(ref); | 
|  | btrfs_delayed_refs_rsv_release(fs_info, 1, 0); | 
|  | } | 
|  | if (head->must_insert_reserved) | 
|  | pin_bytes = true; | 
|  | btrfs_free_delayed_extent_op(head->extent_op); | 
|  | btrfs_delete_ref_head(delayed_refs, head); | 
|  | spin_unlock(&head->lock); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | mutex_unlock(&head->mutex); | 
|  |  | 
|  | if (pin_bytes) { | 
|  | struct btrfs_block_group *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, head->bytenr); | 
|  | BUG_ON(!cache); | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned += head->num_bytes; | 
|  | btrfs_space_info_update_bytes_pinned(fs_info, | 
|  | cache->space_info, head->num_bytes); | 
|  | cache->reserved -= head->num_bytes; | 
|  | cache->space_info->bytes_reserved -= head->num_bytes; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | btrfs_error_unpin_extent_range(fs_info, head->bytenr, | 
|  | head->bytenr + head->num_bytes - 1); | 
|  | } | 
|  | btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | cond_resched(); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | } | 
|  | btrfs_qgroup_destroy_extent_records(trans); | 
|  |  | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_inode *btrfs_inode; | 
|  | LIST_HEAD(splice); | 
|  |  | 
|  | spin_lock(&root->delalloc_lock); | 
|  | list_splice_init(&root->delalloc_inodes, &splice); | 
|  |  | 
|  | while (!list_empty(&splice)) { | 
|  | struct inode *inode = NULL; | 
|  | btrfs_inode = list_first_entry(&splice, struct btrfs_inode, | 
|  | delalloc_inodes); | 
|  | btrfs_del_delalloc_inode(btrfs_inode); | 
|  | spin_unlock(&root->delalloc_lock); | 
|  |  | 
|  | /* | 
|  | * Make sure we get a live inode and that it'll not disappear | 
|  | * meanwhile. | 
|  | */ | 
|  | inode = igrab(&btrfs_inode->vfs_inode); | 
|  | if (inode) { | 
|  | unsigned int nofs_flag; | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | invalidate_inode_pages2(inode->i_mapping); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | iput(inode); | 
|  | } | 
|  | spin_lock(&root->delalloc_lock); | 
|  | } | 
|  | spin_unlock(&root->delalloc_lock); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | LIST_HEAD(splice); | 
|  |  | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | list_splice_init(&fs_info->delalloc_roots, &splice); | 
|  | while (!list_empty(&splice)) { | 
|  | root = list_first_entry(&splice, struct btrfs_root, | 
|  | delalloc_root); | 
|  | root = btrfs_grab_root(root); | 
|  | BUG_ON(!root); | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  |  | 
|  | btrfs_destroy_delalloc_inodes(root); | 
|  | btrfs_put_root(root); | 
|  |  | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, | 
|  | struct extent_io_tree *dirty_pages, | 
|  | int mark) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | u64 start = 0; | 
|  | u64 end; | 
|  |  | 
|  | while (find_first_extent_bit(dirty_pages, start, &start, &end, | 
|  | mark, NULL)) { | 
|  | clear_extent_bits(dirty_pages, start, end, mark); | 
|  | while (start <= end) { | 
|  | eb = find_extent_buffer(fs_info, start); | 
|  | start += fs_info->nodesize; | 
|  | if (!eb) | 
|  | continue; | 
|  |  | 
|  | btrfs_tree_lock(eb); | 
|  | wait_on_extent_buffer_writeback(eb); | 
|  | btrfs_clear_buffer_dirty(NULL, eb); | 
|  | btrfs_tree_unlock(eb); | 
|  |  | 
|  | free_extent_buffer_stale(eb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, | 
|  | struct extent_io_tree *unpin) | 
|  | { | 
|  | u64 start; | 
|  | u64 end; | 
|  |  | 
|  | while (1) { | 
|  | struct extent_state *cached_state = NULL; | 
|  |  | 
|  | /* | 
|  | * The btrfs_finish_extent_commit() may get the same range as | 
|  | * ours between find_first_extent_bit and clear_extent_dirty. | 
|  | * Hence, hold the unused_bg_unpin_mutex to avoid double unpin | 
|  | * the same extent range. | 
|  | */ | 
|  | mutex_lock(&fs_info->unused_bg_unpin_mutex); | 
|  | if (!find_first_extent_bit(unpin, 0, &start, &end, | 
|  | EXTENT_DIRTY, &cached_state)) { | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | clear_extent_dirty(unpin, start, end, &cached_state); | 
|  | free_extent_state(cached_state); | 
|  | btrfs_error_unpin_extent_range(fs_info, start, end); | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = cache->io_ctl.inode; | 
|  | if (inode) { | 
|  | unsigned int nofs_flag; | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | invalidate_inode_pages2(inode->i_mapping); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  |  | 
|  | BTRFS_I(inode)->generation = 0; | 
|  | cache->io_ctl.inode = NULL; | 
|  | iput(inode); | 
|  | } | 
|  | ASSERT(cache->io_ctl.pages == NULL); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_group *cache; | 
|  |  | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | while (!list_empty(&cur_trans->dirty_bgs)) { | 
|  | cache = list_first_entry(&cur_trans->dirty_bgs, | 
|  | struct btrfs_block_group, | 
|  | dirty_list); | 
|  |  | 
|  | if (!list_empty(&cache->io_list)) { | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | list_del_init(&cache->io_list); | 
|  | btrfs_cleanup_bg_io(cache); | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | } | 
|  |  | 
|  | list_del_init(&cache->dirty_list); | 
|  | spin_lock(&cache->lock); | 
|  | cache->disk_cache_state = BTRFS_DC_ERROR; | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | btrfs_put_block_group(cache); | 
|  | btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | } | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  |  | 
|  | /* | 
|  | * Refer to the definition of io_bgs member for details why it's safe | 
|  | * to use it without any locking | 
|  | */ | 
|  | while (!list_empty(&cur_trans->io_bgs)) { | 
|  | cache = list_first_entry(&cur_trans->io_bgs, | 
|  | struct btrfs_block_group, | 
|  | io_list); | 
|  |  | 
|  | list_del_init(&cache->io_list); | 
|  | spin_lock(&cache->lock); | 
|  | cache->disk_cache_state = BTRFS_DC_ERROR; | 
|  | spin_unlock(&cache->lock); | 
|  | btrfs_cleanup_bg_io(cache); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *gang[8]; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | while (1) { | 
|  | ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, | 
|  | (void **)gang, 0, | 
|  | ARRAY_SIZE(gang), | 
|  | BTRFS_ROOT_TRANS_TAG); | 
|  | if (ret == 0) | 
|  | break; | 
|  | for (i = 0; i < ret; i++) { | 
|  | struct btrfs_root *root = gang[i]; | 
|  |  | 
|  | btrfs_qgroup_free_meta_all_pertrans(root); | 
|  | radix_tree_tag_clear(&fs_info->fs_roots_radix, | 
|  | (unsigned long)btrfs_root_id(root), | 
|  | BTRFS_ROOT_TRANS_TAG); | 
|  | } | 
|  | } | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | } | 
|  |  | 
|  | void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_device *dev, *tmp; | 
|  |  | 
|  | btrfs_cleanup_dirty_bgs(cur_trans, fs_info); | 
|  | ASSERT(list_empty(&cur_trans->dirty_bgs)); | 
|  | ASSERT(list_empty(&cur_trans->io_bgs)); | 
|  |  | 
|  | list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, | 
|  | post_commit_list) { | 
|  | list_del_init(&dev->post_commit_list); | 
|  | } | 
|  |  | 
|  | btrfs_destroy_delayed_refs(cur_trans, fs_info); | 
|  |  | 
|  | cur_trans->state = TRANS_STATE_COMMIT_START; | 
|  | wake_up(&fs_info->transaction_blocked_wait); | 
|  |  | 
|  | cur_trans->state = TRANS_STATE_UNBLOCKED; | 
|  | wake_up(&fs_info->transaction_wait); | 
|  |  | 
|  | btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, | 
|  | EXTENT_DIRTY); | 
|  | btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); | 
|  |  | 
|  | cur_trans->state =TRANS_STATE_COMPLETED; | 
|  | wake_up(&cur_trans->commit_wait); | 
|  | } | 
|  |  | 
|  | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_transaction *t; | 
|  |  | 
|  | mutex_lock(&fs_info->transaction_kthread_mutex); | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | while (!list_empty(&fs_info->trans_list)) { | 
|  | t = list_first_entry(&fs_info->trans_list, | 
|  | struct btrfs_transaction, list); | 
|  | if (t->state >= TRANS_STATE_COMMIT_PREP) { | 
|  | refcount_inc(&t->use_count); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | btrfs_wait_for_commit(fs_info, t->transid); | 
|  | btrfs_put_transaction(t); | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | continue; | 
|  | } | 
|  | if (t == fs_info->running_transaction) { | 
|  | t->state = TRANS_STATE_COMMIT_DOING; | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | /* | 
|  | * We wait for 0 num_writers since we don't hold a trans | 
|  | * handle open currently for this transaction. | 
|  | */ | 
|  | wait_event(t->writer_wait, | 
|  | atomic_read(&t->num_writers) == 0); | 
|  | } else { | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | } | 
|  | btrfs_cleanup_one_transaction(t, fs_info); | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | if (t == fs_info->running_transaction) | 
|  | fs_info->running_transaction = NULL; | 
|  | list_del_init(&t->list); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | btrfs_put_transaction(t); | 
|  | trace_btrfs_transaction_commit(fs_info); | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  | btrfs_destroy_all_ordered_extents(fs_info); | 
|  | btrfs_destroy_delayed_inodes(fs_info); | 
|  | btrfs_assert_delayed_root_empty(fs_info); | 
|  | btrfs_destroy_all_delalloc_inodes(fs_info); | 
|  | btrfs_drop_all_logs(fs_info); | 
|  | btrfs_free_all_qgroup_pertrans(fs_info); | 
|  | mutex_unlock(&fs_info->transaction_kthread_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_init_root_free_objectid(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | struct extent_buffer *l; | 
|  | struct btrfs_key search_key; | 
|  | struct btrfs_key found_key; | 
|  | int slot; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | search_key.objectid = BTRFS_LAST_FREE_OBJECTID; | 
|  | search_key.type = -1; | 
|  | search_key.offset = (u64)-1; | 
|  | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * Key with offset -1 found, there would have to exist a root | 
|  | * with such id, but this is out of valid range. | 
|  | */ | 
|  | ret = -EUCLEAN; | 
|  | goto error; | 
|  | } | 
|  | if (path->slots[0] > 0) { | 
|  | slot = path->slots[0] - 1; | 
|  | l = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(l, &found_key, slot); | 
|  | root->free_objectid = max_t(u64, found_key.objectid + 1, | 
|  | BTRFS_FIRST_FREE_OBJECTID); | 
|  | } else { | 
|  | root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) | 
|  | { | 
|  | int ret; | 
|  | mutex_lock(&root->objectid_mutex); | 
|  |  | 
|  | if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { | 
|  | btrfs_warn(root->fs_info, | 
|  | "the objectid of root %llu reaches its highest value", | 
|  | btrfs_root_id(root)); | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *objectid = root->free_objectid++; | 
|  | ret = 0; | 
|  | out: | 
|  | mutex_unlock(&root->objectid_mutex); | 
|  | return ret; | 
|  | } |