|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_defer.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_extfree_item.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_rmap.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_log_recover.h" | 
|  |  | 
|  | struct kmem_cache	*xfs_efi_cache; | 
|  | struct kmem_cache	*xfs_efd_cache; | 
|  |  | 
|  | static const struct xfs_item_ops xfs_efi_item_ops; | 
|  |  | 
|  | static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) | 
|  | { | 
|  | return container_of(lip, struct xfs_efi_log_item, efi_item); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efi_item_free( | 
|  | struct xfs_efi_log_item	*efip) | 
|  | { | 
|  | kvfree(efip->efi_item.li_lv_shadow); | 
|  | if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) | 
|  | kfree(efip); | 
|  | else | 
|  | kmem_cache_free(xfs_efi_cache, efip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freeing the efi requires that we remove it from the AIL if it has already | 
|  | * been placed there. However, the EFI may not yet have been placed in the AIL | 
|  | * when called by xfs_efi_release() from EFD processing due to the ordering of | 
|  | * committed vs unpin operations in bulk insert operations. Hence the reference | 
|  | * count to ensure only the last caller frees the EFI. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_release( | 
|  | struct xfs_efi_log_item	*efip) | 
|  | { | 
|  | ASSERT(atomic_read(&efip->efi_refcount) > 0); | 
|  | if (!atomic_dec_and_test(&efip->efi_refcount)) | 
|  | return; | 
|  |  | 
|  | xfs_trans_ail_delete(&efip->efi_item, 0); | 
|  | xfs_efi_item_free(efip); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efi_item_size( | 
|  | struct xfs_log_item	*lip, | 
|  | int			*nvecs, | 
|  | int			*nbytes) | 
|  | { | 
|  | struct xfs_efi_log_item	*efip = EFI_ITEM(lip); | 
|  |  | 
|  | *nvecs += 1; | 
|  | *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given efi log item. We use only 1 iovec, and we point that | 
|  | * at the efi_log_format structure embedded in the efi item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the efi item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_format( | 
|  | struct xfs_log_item	*lip, | 
|  | struct xfs_log_vec	*lv) | 
|  | { | 
|  | struct xfs_efi_log_item	*efip = EFI_ITEM(lip); | 
|  | struct xfs_log_iovec	*vecp = NULL; | 
|  |  | 
|  | ASSERT(atomic_read(&efip->efi_next_extent) == | 
|  | efip->efi_format.efi_nextents); | 
|  |  | 
|  | efip->efi_format.efi_type = XFS_LI_EFI; | 
|  | efip->efi_format.efi_size = 1; | 
|  |  | 
|  | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, | 
|  | &efip->efi_format, | 
|  | xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The unpin operation is the last place an EFI is manipulated in the log. It is | 
|  | * either inserted in the AIL or aborted in the event of a log I/O error. In | 
|  | * either case, the EFI transaction has been successfully committed to make it | 
|  | * this far. Therefore, we expect whoever committed the EFI to either construct | 
|  | * and commit the EFD or drop the EFD's reference in the event of error. Simply | 
|  | * drop the log's EFI reference now that the log is done with it. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_unpin( | 
|  | struct xfs_log_item	*lip, | 
|  | int			remove) | 
|  | { | 
|  | struct xfs_efi_log_item	*efip = EFI_ITEM(lip); | 
|  | xfs_efi_release(efip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFI has been either committed or aborted if the transaction has been | 
|  | * cancelled. If the transaction was cancelled, an EFD isn't going to be | 
|  | * constructed and thus we free the EFI here directly. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_release( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | xfs_efi_release(EFI_ITEM(lip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an efi item with the given number of extents. | 
|  | */ | 
|  | STATIC struct xfs_efi_log_item * | 
|  | xfs_efi_init( | 
|  | struct xfs_mount	*mp, | 
|  | uint			nextents) | 
|  |  | 
|  | { | 
|  | struct xfs_efi_log_item	*efip; | 
|  |  | 
|  | ASSERT(nextents > 0); | 
|  | if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | efip = kzalloc(xfs_efi_log_item_sizeof(nextents), | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  | } else { | 
|  | efip = kmem_cache_zalloc(xfs_efi_cache, | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  | } | 
|  |  | 
|  | xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); | 
|  | efip->efi_format.efi_nextents = nextents; | 
|  | efip->efi_format.efi_id = (uintptr_t)(void *)efip; | 
|  | atomic_set(&efip->efi_next_extent, 0); | 
|  | atomic_set(&efip->efi_refcount, 2); | 
|  |  | 
|  | return efip; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy an EFI format buffer from the given buf, and into the destination | 
|  | * EFI format structure. | 
|  | * The given buffer can be in 32 bit or 64 bit form (which has different padding), | 
|  | * one of which will be the native format for this kernel. | 
|  | * It will handle the conversion of formats if necessary. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) | 
|  | { | 
|  | xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; | 
|  | uint i; | 
|  | uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents); | 
|  | uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents); | 
|  | uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents); | 
|  |  | 
|  | if (buf->i_len == len) { | 
|  | memcpy(dst_efi_fmt, src_efi_fmt, | 
|  | offsetof(struct xfs_efi_log_format, efi_extents)); | 
|  | for (i = 0; i < src_efi_fmt->efi_nextents; i++) | 
|  | memcpy(&dst_efi_fmt->efi_extents[i], | 
|  | &src_efi_fmt->efi_extents[i], | 
|  | sizeof(struct xfs_extent)); | 
|  | return 0; | 
|  | } else if (buf->i_len == len32) { | 
|  | xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; | 
|  |  | 
|  | dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type; | 
|  | dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size; | 
|  | dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; | 
|  | dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id; | 
|  | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | 
|  | dst_efi_fmt->efi_extents[i].ext_start = | 
|  | src_efi_fmt_32->efi_extents[i].ext_start; | 
|  | dst_efi_fmt->efi_extents[i].ext_len = | 
|  | src_efi_fmt_32->efi_extents[i].ext_len; | 
|  | } | 
|  | return 0; | 
|  | } else if (buf->i_len == len64) { | 
|  | xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; | 
|  |  | 
|  | dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type; | 
|  | dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size; | 
|  | dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; | 
|  | dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id; | 
|  | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | 
|  | dst_efi_fmt->efi_extents[i].ext_start = | 
|  | src_efi_fmt_64->efi_extents[i].ext_start; | 
|  | dst_efi_fmt->efi_extents[i].ext_len = | 
|  | src_efi_fmt_64->efi_extents[i].ext_len; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr, | 
|  | buf->i_len); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) | 
|  | { | 
|  | return container_of(lip, struct xfs_efd_log_item, efd_item); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efd_item_free(struct xfs_efd_log_item *efdp) | 
|  | { | 
|  | kvfree(efdp->efd_item.li_lv_shadow); | 
|  | if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) | 
|  | kfree(efdp); | 
|  | else | 
|  | kmem_cache_free(xfs_efd_cache, efdp); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efd_item_size( | 
|  | struct xfs_log_item	*lip, | 
|  | int			*nvecs, | 
|  | int			*nbytes) | 
|  | { | 
|  | struct xfs_efd_log_item	*efdp = EFD_ITEM(lip); | 
|  |  | 
|  | *nvecs += 1; | 
|  | *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given efd log item. We use only 1 iovec, and we point that | 
|  | * at the efd_log_format structure embedded in the efd item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the efd item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_format( | 
|  | struct xfs_log_item	*lip, | 
|  | struct xfs_log_vec	*lv) | 
|  | { | 
|  | struct xfs_efd_log_item	*efdp = EFD_ITEM(lip); | 
|  | struct xfs_log_iovec	*vecp = NULL; | 
|  |  | 
|  | ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); | 
|  |  | 
|  | efdp->efd_format.efd_type = XFS_LI_EFD; | 
|  | efdp->efd_format.efd_size = 1; | 
|  |  | 
|  | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, | 
|  | &efdp->efd_format, | 
|  | xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFD is either committed or aborted if the transaction is cancelled. If | 
|  | * the transaction is cancelled, drop our reference to the EFI and free the EFD. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_release( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | struct xfs_efd_log_item	*efdp = EFD_ITEM(lip); | 
|  |  | 
|  | xfs_efi_release(efdp->efd_efip); | 
|  | xfs_efd_item_free(efdp); | 
|  | } | 
|  |  | 
|  | static struct xfs_log_item * | 
|  | xfs_efd_item_intent( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | return &EFD_ITEM(lip)->efd_efip->efi_item; | 
|  | } | 
|  |  | 
|  | static const struct xfs_item_ops xfs_efd_item_ops = { | 
|  | .flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED | | 
|  | XFS_ITEM_INTENT_DONE, | 
|  | .iop_size	= xfs_efd_item_size, | 
|  | .iop_format	= xfs_efd_item_format, | 
|  | .iop_release	= xfs_efd_item_release, | 
|  | .iop_intent	= xfs_efd_item_intent, | 
|  | }; | 
|  |  | 
|  | static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e) | 
|  | { | 
|  | return list_entry(e, struct xfs_extent_free_item, xefi_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill the EFD with all extents from the EFI when we need to roll the | 
|  | * transaction and continue with a new EFI. | 
|  | * | 
|  | * This simply copies all the extents in the EFI to the EFD rather than make | 
|  | * assumptions about which extents in the EFI have already been processed. We | 
|  | * currently keep the xefi list in the same order as the EFI extent list, but | 
|  | * that may not always be the case. Copying everything avoids leaving a landmine | 
|  | * were we fail to cancel all the extents in an EFI if the xefi list is | 
|  | * processed in a different order to the extents in the EFI. | 
|  | */ | 
|  | static void | 
|  | xfs_efd_from_efi( | 
|  | struct xfs_efd_log_item	*efdp) | 
|  | { | 
|  | struct xfs_efi_log_item *efip = efdp->efd_efip; | 
|  | uint                    i; | 
|  |  | 
|  | ASSERT(efip->efi_format.efi_nextents > 0); | 
|  | ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents); | 
|  |  | 
|  | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | 
|  | efdp->efd_format.efd_extents[i] = | 
|  | efip->efi_format.efi_extents[i]; | 
|  | } | 
|  | efdp->efd_next_extent = efip->efi_format.efi_nextents; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_efd_add_extent( | 
|  | struct xfs_efd_log_item		*efdp, | 
|  | struct xfs_extent_free_item	*xefi) | 
|  | { | 
|  | struct xfs_extent		*extp; | 
|  |  | 
|  | ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents); | 
|  |  | 
|  | extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent]; | 
|  | extp->ext_start = xefi->xefi_startblock; | 
|  | extp->ext_len = xefi->xefi_blockcount; | 
|  |  | 
|  | efdp->efd_next_extent++; | 
|  | } | 
|  |  | 
|  | /* Sort bmap items by AG. */ | 
|  | static int | 
|  | xfs_extent_free_diff_items( | 
|  | void				*priv, | 
|  | const struct list_head		*a, | 
|  | const struct list_head		*b) | 
|  | { | 
|  | struct xfs_extent_free_item	*ra = xefi_entry(a); | 
|  | struct xfs_extent_free_item	*rb = xefi_entry(b); | 
|  |  | 
|  | return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno; | 
|  | } | 
|  |  | 
|  | /* Log a free extent to the intent item. */ | 
|  | STATIC void | 
|  | xfs_extent_free_log_item( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_efi_log_item		*efip, | 
|  | struct xfs_extent_free_item	*xefi) | 
|  | { | 
|  | uint				next_extent; | 
|  | struct xfs_extent		*extp; | 
|  |  | 
|  | /* | 
|  | * atomic_inc_return gives us the value after the increment; | 
|  | * we want to use it as an array index so we need to subtract 1 from | 
|  | * it. | 
|  | */ | 
|  | next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; | 
|  | ASSERT(next_extent < efip->efi_format.efi_nextents); | 
|  | extp = &efip->efi_format.efi_extents[next_extent]; | 
|  | extp->ext_start = xefi->xefi_startblock; | 
|  | extp->ext_len = xefi->xefi_blockcount; | 
|  | } | 
|  |  | 
|  | static struct xfs_log_item * | 
|  | xfs_extent_free_create_intent( | 
|  | struct xfs_trans		*tp, | 
|  | struct list_head		*items, | 
|  | unsigned int			count, | 
|  | bool				sort) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count); | 
|  | struct xfs_extent_free_item	*xefi; | 
|  |  | 
|  | ASSERT(count > 0); | 
|  |  | 
|  | if (sort) | 
|  | list_sort(mp, items, xfs_extent_free_diff_items); | 
|  | list_for_each_entry(xefi, items, xefi_list) | 
|  | xfs_extent_free_log_item(tp, efip, xefi); | 
|  | return &efip->efi_item; | 
|  | } | 
|  |  | 
|  | /* Get an EFD so we can process all the free extents. */ | 
|  | static struct xfs_log_item * | 
|  | xfs_extent_free_create_done( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_log_item		*intent, | 
|  | unsigned int			count) | 
|  | { | 
|  | struct xfs_efi_log_item		*efip = EFI_ITEM(intent); | 
|  | struct xfs_efd_log_item		*efdp; | 
|  |  | 
|  | ASSERT(count > 0); | 
|  |  | 
|  | if (count > XFS_EFD_MAX_FAST_EXTENTS) { | 
|  | efdp = kzalloc(xfs_efd_log_item_sizeof(count), | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  | } else { | 
|  | efdp = kmem_cache_zalloc(xfs_efd_cache, | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  | } | 
|  |  | 
|  | xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, | 
|  | &xfs_efd_item_ops); | 
|  | efdp->efd_efip = efip; | 
|  | efdp->efd_format.efd_nextents = count; | 
|  | efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; | 
|  |  | 
|  | return &efdp->efd_item; | 
|  | } | 
|  |  | 
|  | /* Add this deferred EFI to the transaction. */ | 
|  | void | 
|  | xfs_extent_free_defer_add( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_extent_free_item	*xefi, | 
|  | struct xfs_defer_pending	**dfpp) | 
|  | { | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  |  | 
|  | trace_xfs_extent_free_defer(mp, xefi); | 
|  |  | 
|  | xefi->xefi_pag = xfs_perag_intent_get(mp, xefi->xefi_startblock); | 
|  | if (xefi->xefi_agresv == XFS_AG_RESV_AGFL) | 
|  | *dfpp = xfs_defer_add(tp, &xefi->xefi_list, | 
|  | &xfs_agfl_free_defer_type); | 
|  | else | 
|  | *dfpp = xfs_defer_add(tp, &xefi->xefi_list, | 
|  | &xfs_extent_free_defer_type); | 
|  | } | 
|  |  | 
|  | /* Cancel a free extent. */ | 
|  | STATIC void | 
|  | xfs_extent_free_cancel_item( | 
|  | struct list_head		*item) | 
|  | { | 
|  | struct xfs_extent_free_item	*xefi = xefi_entry(item); | 
|  |  | 
|  | xfs_perag_intent_put(xefi->xefi_pag); | 
|  | kmem_cache_free(xfs_extfree_item_cache, xefi); | 
|  | } | 
|  |  | 
|  | /* Process a free extent. */ | 
|  | STATIC int | 
|  | xfs_extent_free_finish_item( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_log_item		*done, | 
|  | struct list_head		*item, | 
|  | struct xfs_btree_cur		**state) | 
|  | { | 
|  | struct xfs_owner_info		oinfo = { }; | 
|  | struct xfs_extent_free_item	*xefi = xefi_entry(item); | 
|  | struct xfs_efd_log_item		*efdp = EFD_ITEM(done); | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | xfs_agblock_t			agbno; | 
|  | int				error = 0; | 
|  |  | 
|  | agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); | 
|  |  | 
|  | oinfo.oi_owner = xefi->xefi_owner; | 
|  | if (xefi->xefi_flags & XFS_EFI_ATTR_FORK) | 
|  | oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; | 
|  | if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK) | 
|  | oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; | 
|  |  | 
|  | trace_xfs_extent_free_deferred(mp, xefi); | 
|  |  | 
|  | /* | 
|  | * If we need a new transaction to make progress, the caller will log a | 
|  | * new EFI with the current contents. It will also log an EFD to cancel | 
|  | * the existing EFI, and so we need to copy all the unprocessed extents | 
|  | * in this EFI to the EFD so this works correctly. | 
|  | */ | 
|  | if (!(xefi->xefi_flags & XFS_EFI_CANCELLED)) | 
|  | error = __xfs_free_extent(tp, xefi->xefi_pag, agbno, | 
|  | xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv, | 
|  | xefi->xefi_flags & XFS_EFI_SKIP_DISCARD); | 
|  | if (error == -EAGAIN) { | 
|  | xfs_efd_from_efi(efdp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | xfs_efd_add_extent(efdp, xefi); | 
|  | xfs_extent_free_cancel_item(item); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Abort all pending EFIs. */ | 
|  | STATIC void | 
|  | xfs_extent_free_abort_intent( | 
|  | struct xfs_log_item		*intent) | 
|  | { | 
|  | xfs_efi_release(EFI_ITEM(intent)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AGFL blocks are accounted differently in the reserve pools and are not | 
|  | * inserted into the busy extent list. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_agfl_free_finish_item( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_log_item		*done, | 
|  | struct list_head		*item, | 
|  | struct xfs_btree_cur		**state) | 
|  | { | 
|  | struct xfs_owner_info		oinfo = { }; | 
|  | struct xfs_mount		*mp = tp->t_mountp; | 
|  | struct xfs_efd_log_item		*efdp = EFD_ITEM(done); | 
|  | struct xfs_extent_free_item	*xefi = xefi_entry(item); | 
|  | struct xfs_buf			*agbp; | 
|  | int				error; | 
|  | xfs_agblock_t			agbno; | 
|  |  | 
|  | ASSERT(xefi->xefi_blockcount == 1); | 
|  | agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); | 
|  | oinfo.oi_owner = xefi->xefi_owner; | 
|  |  | 
|  | trace_xfs_agfl_free_deferred(mp, xefi); | 
|  |  | 
|  | error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp); | 
|  | if (!error) | 
|  | error = xfs_free_ag_extent(tp, agbp, xefi->xefi_pag->pag_agno, | 
|  | agbno, 1, &oinfo, XFS_AG_RESV_AGFL); | 
|  |  | 
|  | xfs_efd_add_extent(efdp, xefi); | 
|  | xfs_extent_free_cancel_item(&xefi->xefi_list); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Is this recovered EFI ok? */ | 
|  | static inline bool | 
|  | xfs_efi_validate_ext( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_extent		*extp) | 
|  | { | 
|  | return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | xfs_efi_recover_work( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_defer_pending	*dfp, | 
|  | struct xfs_extent		*extp) | 
|  | { | 
|  | struct xfs_extent_free_item	*xefi; | 
|  |  | 
|  | xefi = kmem_cache_zalloc(xfs_extfree_item_cache, | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  | xefi->xefi_startblock = extp->ext_start; | 
|  | xefi->xefi_blockcount = extp->ext_len; | 
|  | xefi->xefi_agresv = XFS_AG_RESV_NONE; | 
|  | xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN; | 
|  | xefi->xefi_pag = xfs_perag_intent_get(mp, extp->ext_start); | 
|  |  | 
|  | xfs_defer_add_item(dfp, &xefi->xefi_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an extent free intent item that was recovered from | 
|  | * the log.  We need to free the extents that it describes. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_extent_free_recover_work( | 
|  | struct xfs_defer_pending	*dfp, | 
|  | struct list_head		*capture_list) | 
|  | { | 
|  | struct xfs_trans_res		resv; | 
|  | struct xfs_log_item		*lip = dfp->dfp_intent; | 
|  | struct xfs_efi_log_item		*efip = EFI_ITEM(lip); | 
|  | struct xfs_mount		*mp = lip->li_log->l_mp; | 
|  | struct xfs_trans		*tp; | 
|  | int				i; | 
|  | int				error = 0; | 
|  |  | 
|  | /* | 
|  | * First check the validity of the extents described by the | 
|  | * EFI.  If any are bad, then assume that all are bad and | 
|  | * just toss the EFI. | 
|  | */ | 
|  | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | 
|  | if (!xfs_efi_validate_ext(mp, | 
|  | &efip->efi_format.efi_extents[i])) { | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, | 
|  | &efip->efi_format, | 
|  | sizeof(efip->efi_format)); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]); | 
|  | } | 
|  |  | 
|  | resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); | 
|  | error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xlog_recover_finish_intent(tp, dfp); | 
|  | if (error == -EFSCORRUPTED) | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, | 
|  | &efip->efi_format, | 
|  | sizeof(efip->efi_format)); | 
|  | if (error) | 
|  | goto abort_error; | 
|  |  | 
|  | return xfs_defer_ops_capture_and_commit(tp, capture_list); | 
|  |  | 
|  | abort_error: | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Relog an intent item to push the log tail forward. */ | 
|  | static struct xfs_log_item * | 
|  | xfs_extent_free_relog_intent( | 
|  | struct xfs_trans		*tp, | 
|  | struct xfs_log_item		*intent, | 
|  | struct xfs_log_item		*done_item) | 
|  | { | 
|  | struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item); | 
|  | struct xfs_efi_log_item		*efip; | 
|  | struct xfs_extent		*extp; | 
|  | unsigned int			count; | 
|  |  | 
|  | count = EFI_ITEM(intent)->efi_format.efi_nextents; | 
|  | extp = EFI_ITEM(intent)->efi_format.efi_extents; | 
|  |  | 
|  | efdp->efd_next_extent = count; | 
|  | memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); | 
|  |  | 
|  | efip = xfs_efi_init(tp->t_mountp, count); | 
|  | memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); | 
|  | atomic_set(&efip->efi_next_extent, count); | 
|  |  | 
|  | return &efip->efi_item; | 
|  | } | 
|  |  | 
|  | const struct xfs_defer_op_type xfs_extent_free_defer_type = { | 
|  | .name		= "extent_free", | 
|  | .max_items	= XFS_EFI_MAX_FAST_EXTENTS, | 
|  | .create_intent	= xfs_extent_free_create_intent, | 
|  | .abort_intent	= xfs_extent_free_abort_intent, | 
|  | .create_done	= xfs_extent_free_create_done, | 
|  | .finish_item	= xfs_extent_free_finish_item, | 
|  | .cancel_item	= xfs_extent_free_cancel_item, | 
|  | .recover_work	= xfs_extent_free_recover_work, | 
|  | .relog_intent	= xfs_extent_free_relog_intent, | 
|  | }; | 
|  |  | 
|  | /* sub-type with special handling for AGFL deferred frees */ | 
|  | const struct xfs_defer_op_type xfs_agfl_free_defer_type = { | 
|  | .name		= "agfl_free", | 
|  | .max_items	= XFS_EFI_MAX_FAST_EXTENTS, | 
|  | .create_intent	= xfs_extent_free_create_intent, | 
|  | .abort_intent	= xfs_extent_free_abort_intent, | 
|  | .create_done	= xfs_extent_free_create_done, | 
|  | .finish_item	= xfs_agfl_free_finish_item, | 
|  | .cancel_item	= xfs_extent_free_cancel_item, | 
|  | .recover_work	= xfs_extent_free_recover_work, | 
|  | .relog_intent	= xfs_extent_free_relog_intent, | 
|  | }; | 
|  |  | 
|  | STATIC bool | 
|  | xfs_efi_item_match( | 
|  | struct xfs_log_item	*lip, | 
|  | uint64_t		intent_id) | 
|  | { | 
|  | return EFI_ITEM(lip)->efi_format.efi_id == intent_id; | 
|  | } | 
|  |  | 
|  | static const struct xfs_item_ops xfs_efi_item_ops = { | 
|  | .flags		= XFS_ITEM_INTENT, | 
|  | .iop_size	= xfs_efi_item_size, | 
|  | .iop_format	= xfs_efi_item_format, | 
|  | .iop_unpin	= xfs_efi_item_unpin, | 
|  | .iop_release	= xfs_efi_item_release, | 
|  | .iop_match	= xfs_efi_item_match, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This routine is called to create an in-core extent free intent | 
|  | * item from the efi format structure which was logged on disk. | 
|  | * It allocates an in-core efi, copies the extents from the format | 
|  | * structure into it, and adds the efi to the AIL with the given | 
|  | * LSN. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_efi_commit_pass2( | 
|  | struct xlog			*log, | 
|  | struct list_head		*buffer_list, | 
|  | struct xlog_recover_item	*item, | 
|  | xfs_lsn_t			lsn) | 
|  | { | 
|  | struct xfs_mount		*mp = log->l_mp; | 
|  | struct xfs_efi_log_item		*efip; | 
|  | struct xfs_efi_log_format	*efi_formatp; | 
|  | int				error; | 
|  |  | 
|  | efi_formatp = item->ri_buf[0].i_addr; | 
|  |  | 
|  | if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) { | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, | 
|  | item->ri_buf[0].i_addr, item->ri_buf[0].i_len); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | efip = xfs_efi_init(mp, efi_formatp->efi_nextents); | 
|  | error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); | 
|  | if (error) { | 
|  | xfs_efi_item_free(efip); | 
|  | return error; | 
|  | } | 
|  | atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); | 
|  |  | 
|  | xlog_recover_intent_item(log, &efip->efi_item, lsn, | 
|  | &xfs_extent_free_defer_type); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct xlog_recover_item_ops xlog_efi_item_ops = { | 
|  | .item_type		= XFS_LI_EFI, | 
|  | .commit_pass2		= xlog_recover_efi_commit_pass2, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This routine is called when an EFD format structure is found in a committed | 
|  | * transaction in the log. Its purpose is to cancel the corresponding EFI if it | 
|  | * was still in the log. To do this it searches the AIL for the EFI with an id | 
|  | * equal to that in the EFD format structure. If we find it we drop the EFD | 
|  | * reference, which removes the EFI from the AIL and frees it. | 
|  | */ | 
|  | STATIC int | 
|  | xlog_recover_efd_commit_pass2( | 
|  | struct xlog			*log, | 
|  | struct list_head		*buffer_list, | 
|  | struct xlog_recover_item	*item, | 
|  | xfs_lsn_t			lsn) | 
|  | { | 
|  | struct xfs_efd_log_format	*efd_formatp; | 
|  | int				buflen = item->ri_buf[0].i_len; | 
|  |  | 
|  | efd_formatp = item->ri_buf[0].i_addr; | 
|  |  | 
|  | if (buflen < sizeof(struct xfs_efd_log_format)) { | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, | 
|  | efd_formatp, buflen); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof( | 
|  | efd_formatp->efd_nextents) && | 
|  | item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof( | 
|  | efd_formatp->efd_nextents)) { | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, | 
|  | efd_formatp, buflen); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct xlog_recover_item_ops xlog_efd_item_ops = { | 
|  | .item_type		= XFS_LI_EFD, | 
|  | .commit_pass2		= xlog_recover_efd_commit_pass2, | 
|  | }; |