|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com | 
|  | * Copyright (c) 2016 Facebook | 
|  | */ | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/btf.h> | 
|  | #include <linux/jhash.h> | 
|  | #include <linux/filter.h> | 
|  | #include <linux/rculist_nulls.h> | 
|  | #include <linux/rcupdate_wait.h> | 
|  | #include <linux/random.h> | 
|  | #include <uapi/linux/btf.h> | 
|  | #include <linux/rcupdate_trace.h> | 
|  | #include <linux/btf_ids.h> | 
|  | #include "percpu_freelist.h" | 
|  | #include "bpf_lru_list.h" | 
|  | #include "map_in_map.h" | 
|  | #include <linux/bpf_mem_alloc.h> | 
|  |  | 
|  | #define HTAB_CREATE_FLAG_MASK						\ | 
|  | (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\ | 
|  | BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) | 
|  |  | 
|  | #define BATCH_OPS(_name)			\ | 
|  | .map_lookup_batch =			\ | 
|  | _name##_map_lookup_batch,		\ | 
|  | .map_lookup_and_delete_batch =		\ | 
|  | _name##_map_lookup_and_delete_batch,	\ | 
|  | .map_update_batch =			\ | 
|  | generic_map_update_batch,		\ | 
|  | .map_delete_batch =			\ | 
|  | generic_map_delete_batch | 
|  |  | 
|  | /* | 
|  | * The bucket lock has two protection scopes: | 
|  | * | 
|  | * 1) Serializing concurrent operations from BPF programs on different | 
|  | *    CPUs | 
|  | * | 
|  | * 2) Serializing concurrent operations from BPF programs and sys_bpf() | 
|  | * | 
|  | * BPF programs can execute in any context including perf, kprobes and | 
|  | * tracing. As there are almost no limits where perf, kprobes and tracing | 
|  | * can be invoked from the lock operations need to be protected against | 
|  | * deadlocks. Deadlocks can be caused by recursion and by an invocation in | 
|  | * the lock held section when functions which acquire this lock are invoked | 
|  | * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU | 
|  | * variable bpf_prog_active, which prevents BPF programs attached to perf | 
|  | * events, kprobes and tracing to be invoked before the prior invocation | 
|  | * from one of these contexts completed. sys_bpf() uses the same mechanism | 
|  | * by pinning the task to the current CPU and incrementing the recursion | 
|  | * protection across the map operation. | 
|  | * | 
|  | * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain | 
|  | * operations like memory allocations (even with GFP_ATOMIC) from atomic | 
|  | * contexts. This is required because even with GFP_ATOMIC the memory | 
|  | * allocator calls into code paths which acquire locks with long held lock | 
|  | * sections. To ensure the deterministic behaviour these locks are regular | 
|  | * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only | 
|  | * true atomic contexts on an RT kernel are the low level hardware | 
|  | * handling, scheduling, low level interrupt handling, NMIs etc. None of | 
|  | * these contexts should ever do memory allocations. | 
|  | * | 
|  | * As regular device interrupt handlers and soft interrupts are forced into | 
|  | * thread context, the existing code which does | 
|  | *   spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); | 
|  | * just works. | 
|  | * | 
|  | * In theory the BPF locks could be converted to regular spinlocks as well, | 
|  | * but the bucket locks and percpu_freelist locks can be taken from | 
|  | * arbitrary contexts (perf, kprobes, tracepoints) which are required to be | 
|  | * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, | 
|  | * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, | 
|  | * because there is no memory allocation within the lock held sections. However | 
|  | * after hash map was fully converted to use bpf_mem_alloc, there will be | 
|  | * non-synchronous memory allocation for non-preallocated hash map, so it is | 
|  | * safe to always use raw spinlock for bucket lock. | 
|  | */ | 
|  | struct bucket { | 
|  | struct hlist_nulls_head head; | 
|  | raw_spinlock_t raw_lock; | 
|  | }; | 
|  |  | 
|  | #define HASHTAB_MAP_LOCK_COUNT 8 | 
|  | #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) | 
|  |  | 
|  | struct bpf_htab { | 
|  | struct bpf_map map; | 
|  | struct bpf_mem_alloc ma; | 
|  | struct bpf_mem_alloc pcpu_ma; | 
|  | struct bucket *buckets; | 
|  | void *elems; | 
|  | union { | 
|  | struct pcpu_freelist freelist; | 
|  | struct bpf_lru lru; | 
|  | }; | 
|  | struct htab_elem *__percpu *extra_elems; | 
|  | /* number of elements in non-preallocated hashtable are kept | 
|  | * in either pcount or count | 
|  | */ | 
|  | struct percpu_counter pcount; | 
|  | atomic_t count; | 
|  | bool use_percpu_counter; | 
|  | u32 n_buckets;	/* number of hash buckets */ | 
|  | u32 elem_size;	/* size of each element in bytes */ | 
|  | u32 hashrnd; | 
|  | struct lock_class_key lockdep_key; | 
|  | int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; | 
|  | }; | 
|  |  | 
|  | /* each htab element is struct htab_elem + key + value */ | 
|  | struct htab_elem { | 
|  | union { | 
|  | struct hlist_nulls_node hash_node; | 
|  | struct { | 
|  | void *padding; | 
|  | union { | 
|  | struct pcpu_freelist_node fnode; | 
|  | struct htab_elem *batch_flink; | 
|  | }; | 
|  | }; | 
|  | }; | 
|  | union { | 
|  | /* pointer to per-cpu pointer */ | 
|  | void *ptr_to_pptr; | 
|  | struct bpf_lru_node lru_node; | 
|  | }; | 
|  | u32 hash; | 
|  | char key[] __aligned(8); | 
|  | }; | 
|  |  | 
|  | static inline bool htab_is_prealloc(const struct bpf_htab *htab) | 
|  | { | 
|  | return !(htab->map.map_flags & BPF_F_NO_PREALLOC); | 
|  | } | 
|  |  | 
|  | static void htab_init_buckets(struct bpf_htab *htab) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < htab->n_buckets; i++) { | 
|  | INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); | 
|  | raw_spin_lock_init(&htab->buckets[i].raw_lock); | 
|  | lockdep_set_class(&htab->buckets[i].raw_lock, | 
|  | &htab->lockdep_key); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int htab_lock_bucket(const struct bpf_htab *htab, | 
|  | struct bucket *b, u32 hash, | 
|  | unsigned long *pflags) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); | 
|  |  | 
|  | preempt_disable(); | 
|  | local_irq_save(flags); | 
|  | if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { | 
|  | __this_cpu_dec(*(htab->map_locked[hash])); | 
|  | local_irq_restore(flags); | 
|  | preempt_enable(); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | raw_spin_lock(&b->raw_lock); | 
|  | *pflags = flags; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void htab_unlock_bucket(const struct bpf_htab *htab, | 
|  | struct bucket *b, u32 hash, | 
|  | unsigned long flags) | 
|  | { | 
|  | hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); | 
|  | raw_spin_unlock(&b->raw_lock); | 
|  | __this_cpu_dec(*(htab->map_locked[hash])); | 
|  | local_irq_restore(flags); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); | 
|  |  | 
|  | static bool htab_is_lru(const struct bpf_htab *htab) | 
|  | { | 
|  | return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || | 
|  | htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; | 
|  | } | 
|  |  | 
|  | static bool htab_is_percpu(const struct bpf_htab *htab) | 
|  | { | 
|  | return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || | 
|  | htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; | 
|  | } | 
|  |  | 
|  | static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, | 
|  | void __percpu *pptr) | 
|  | { | 
|  | *(void __percpu **)(l->key + key_size) = pptr; | 
|  | } | 
|  |  | 
|  | static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) | 
|  | { | 
|  | return *(void __percpu **)(l->key + key_size); | 
|  | } | 
|  |  | 
|  | static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) | 
|  | { | 
|  | return *(void **)(l->key + roundup(map->key_size, 8)); | 
|  | } | 
|  |  | 
|  | static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) | 
|  | { | 
|  | return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); | 
|  | } | 
|  |  | 
|  | static bool htab_has_extra_elems(struct bpf_htab *htab) | 
|  | { | 
|  | return !htab_is_percpu(htab) && !htab_is_lru(htab); | 
|  | } | 
|  |  | 
|  | static void htab_free_prealloced_timers_and_wq(struct bpf_htab *htab) | 
|  | { | 
|  | u32 num_entries = htab->map.max_entries; | 
|  | int i; | 
|  |  | 
|  | if (htab_has_extra_elems(htab)) | 
|  | num_entries += num_possible_cpus(); | 
|  |  | 
|  | for (i = 0; i < num_entries; i++) { | 
|  | struct htab_elem *elem; | 
|  |  | 
|  | elem = get_htab_elem(htab, i); | 
|  | if (btf_record_has_field(htab->map.record, BPF_TIMER)) | 
|  | bpf_obj_free_timer(htab->map.record, | 
|  | elem->key + round_up(htab->map.key_size, 8)); | 
|  | if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) | 
|  | bpf_obj_free_workqueue(htab->map.record, | 
|  | elem->key + round_up(htab->map.key_size, 8)); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void htab_free_prealloced_fields(struct bpf_htab *htab) | 
|  | { | 
|  | u32 num_entries = htab->map.max_entries; | 
|  | int i; | 
|  |  | 
|  | if (IS_ERR_OR_NULL(htab->map.record)) | 
|  | return; | 
|  | if (htab_has_extra_elems(htab)) | 
|  | num_entries += num_possible_cpus(); | 
|  | for (i = 0; i < num_entries; i++) { | 
|  | struct htab_elem *elem; | 
|  |  | 
|  | elem = get_htab_elem(htab, i); | 
|  | if (htab_is_percpu(htab)) { | 
|  | void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); | 
|  | cond_resched(); | 
|  | } | 
|  | } else { | 
|  | bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); | 
|  | cond_resched(); | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void htab_free_elems(struct bpf_htab *htab) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!htab_is_percpu(htab)) | 
|  | goto free_elems; | 
|  |  | 
|  | for (i = 0; i < htab->map.max_entries; i++) { | 
|  | void __percpu *pptr; | 
|  |  | 
|  | pptr = htab_elem_get_ptr(get_htab_elem(htab, i), | 
|  | htab->map.key_size); | 
|  | free_percpu(pptr); | 
|  | cond_resched(); | 
|  | } | 
|  | free_elems: | 
|  | bpf_map_area_free(htab->elems); | 
|  | } | 
|  |  | 
|  | /* The LRU list has a lock (lru_lock). Each htab bucket has a lock | 
|  | * (bucket_lock). If both locks need to be acquired together, the lock | 
|  | * order is always lru_lock -> bucket_lock and this only happens in | 
|  | * bpf_lru_list.c logic. For example, certain code path of | 
|  | * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), | 
|  | * will acquire lru_lock first followed by acquiring bucket_lock. | 
|  | * | 
|  | * In hashtab.c, to avoid deadlock, lock acquisition of | 
|  | * bucket_lock followed by lru_lock is not allowed. In such cases, | 
|  | * bucket_lock needs to be released first before acquiring lru_lock. | 
|  | */ | 
|  | static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, | 
|  | u32 hash) | 
|  | { | 
|  | struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); | 
|  | struct htab_elem *l; | 
|  |  | 
|  | if (node) { | 
|  | bpf_map_inc_elem_count(&htab->map); | 
|  | l = container_of(node, struct htab_elem, lru_node); | 
|  | memcpy(l->key, key, htab->map.key_size); | 
|  | return l; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int prealloc_init(struct bpf_htab *htab) | 
|  | { | 
|  | u32 num_entries = htab->map.max_entries; | 
|  | int err = -ENOMEM, i; | 
|  |  | 
|  | if (htab_has_extra_elems(htab)) | 
|  | num_entries += num_possible_cpus(); | 
|  |  | 
|  | htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, | 
|  | htab->map.numa_node); | 
|  | if (!htab->elems) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!htab_is_percpu(htab)) | 
|  | goto skip_percpu_elems; | 
|  |  | 
|  | for (i = 0; i < num_entries; i++) { | 
|  | u32 size = round_up(htab->map.value_size, 8); | 
|  | void __percpu *pptr; | 
|  |  | 
|  | pptr = bpf_map_alloc_percpu(&htab->map, size, 8, | 
|  | GFP_USER | __GFP_NOWARN); | 
|  | if (!pptr) | 
|  | goto free_elems; | 
|  | htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, | 
|  | pptr); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | skip_percpu_elems: | 
|  | if (htab_is_lru(htab)) | 
|  | err = bpf_lru_init(&htab->lru, | 
|  | htab->map.map_flags & BPF_F_NO_COMMON_LRU, | 
|  | offsetof(struct htab_elem, hash) - | 
|  | offsetof(struct htab_elem, lru_node), | 
|  | htab_lru_map_delete_node, | 
|  | htab); | 
|  | else | 
|  | err = pcpu_freelist_init(&htab->freelist); | 
|  |  | 
|  | if (err) | 
|  | goto free_elems; | 
|  |  | 
|  | if (htab_is_lru(htab)) | 
|  | bpf_lru_populate(&htab->lru, htab->elems, | 
|  | offsetof(struct htab_elem, lru_node), | 
|  | htab->elem_size, num_entries); | 
|  | else | 
|  | pcpu_freelist_populate(&htab->freelist, | 
|  | htab->elems + offsetof(struct htab_elem, fnode), | 
|  | htab->elem_size, num_entries); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_elems: | 
|  | htab_free_elems(htab); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void prealloc_destroy(struct bpf_htab *htab) | 
|  | { | 
|  | htab_free_elems(htab); | 
|  |  | 
|  | if (htab_is_lru(htab)) | 
|  | bpf_lru_destroy(&htab->lru); | 
|  | else | 
|  | pcpu_freelist_destroy(&htab->freelist); | 
|  | } | 
|  |  | 
|  | static int alloc_extra_elems(struct bpf_htab *htab) | 
|  | { | 
|  | struct htab_elem *__percpu *pptr, *l_new; | 
|  | struct pcpu_freelist_node *l; | 
|  | int cpu; | 
|  |  | 
|  | pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, | 
|  | GFP_USER | __GFP_NOWARN); | 
|  | if (!pptr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | l = pcpu_freelist_pop(&htab->freelist); | 
|  | /* pop will succeed, since prealloc_init() | 
|  | * preallocated extra num_possible_cpus elements | 
|  | */ | 
|  | l_new = container_of(l, struct htab_elem, fnode); | 
|  | *per_cpu_ptr(pptr, cpu) = l_new; | 
|  | } | 
|  | htab->extra_elems = pptr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Called from syscall */ | 
|  | static int htab_map_alloc_check(union bpf_attr *attr) | 
|  | { | 
|  | bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || | 
|  | attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); | 
|  | bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || | 
|  | attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); | 
|  | /* percpu_lru means each cpu has its own LRU list. | 
|  | * it is different from BPF_MAP_TYPE_PERCPU_HASH where | 
|  | * the map's value itself is percpu.  percpu_lru has | 
|  | * nothing to do with the map's value. | 
|  | */ | 
|  | bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); | 
|  | bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); | 
|  | bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); | 
|  | int numa_node = bpf_map_attr_numa_node(attr); | 
|  |  | 
|  | BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != | 
|  | offsetof(struct htab_elem, hash_node.pprev)); | 
|  |  | 
|  | if (zero_seed && !capable(CAP_SYS_ADMIN)) | 
|  | /* Guard against local DoS, and discourage production use. */ | 
|  | return -EPERM; | 
|  |  | 
|  | if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || | 
|  | !bpf_map_flags_access_ok(attr->map_flags)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!lru && percpu_lru) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (lru && !prealloc) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* check sanity of attributes. | 
|  | * value_size == 0 may be allowed in the future to use map as a set | 
|  | */ | 
|  | if (attr->max_entries == 0 || attr->key_size == 0 || | 
|  | attr->value_size == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - | 
|  | sizeof(struct htab_elem)) | 
|  | /* if key_size + value_size is bigger, the user space won't be | 
|  | * able to access the elements via bpf syscall. This check | 
|  | * also makes sure that the elem_size doesn't overflow and it's | 
|  | * kmalloc-able later in htab_map_update_elem() | 
|  | */ | 
|  | return -E2BIG; | 
|  | /* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */ | 
|  | if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE) | 
|  | return -E2BIG; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct bpf_map *htab_map_alloc(union bpf_attr *attr) | 
|  | { | 
|  | bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || | 
|  | attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); | 
|  | bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || | 
|  | attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); | 
|  | /* percpu_lru means each cpu has its own LRU list. | 
|  | * it is different from BPF_MAP_TYPE_PERCPU_HASH where | 
|  | * the map's value itself is percpu.  percpu_lru has | 
|  | * nothing to do with the map's value. | 
|  | */ | 
|  | bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); | 
|  | bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); | 
|  | struct bpf_htab *htab; | 
|  | int err, i; | 
|  |  | 
|  | htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); | 
|  | if (!htab) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | lockdep_register_key(&htab->lockdep_key); | 
|  |  | 
|  | bpf_map_init_from_attr(&htab->map, attr); | 
|  |  | 
|  | if (percpu_lru) { | 
|  | /* ensure each CPU's lru list has >=1 elements. | 
|  | * since we are at it, make each lru list has the same | 
|  | * number of elements. | 
|  | */ | 
|  | htab->map.max_entries = roundup(attr->max_entries, | 
|  | num_possible_cpus()); | 
|  | if (htab->map.max_entries < attr->max_entries) | 
|  | htab->map.max_entries = rounddown(attr->max_entries, | 
|  | num_possible_cpus()); | 
|  | } | 
|  |  | 
|  | /* hash table size must be power of 2; roundup_pow_of_two() can overflow | 
|  | * into UB on 32-bit arches, so check that first | 
|  | */ | 
|  | err = -E2BIG; | 
|  | if (htab->map.max_entries > 1UL << 31) | 
|  | goto free_htab; | 
|  |  | 
|  | htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); | 
|  |  | 
|  | htab->elem_size = sizeof(struct htab_elem) + | 
|  | round_up(htab->map.key_size, 8); | 
|  | if (percpu) | 
|  | htab->elem_size += sizeof(void *); | 
|  | else | 
|  | htab->elem_size += round_up(htab->map.value_size, 8); | 
|  |  | 
|  | /* check for u32 overflow */ | 
|  | if (htab->n_buckets > U32_MAX / sizeof(struct bucket)) | 
|  | goto free_htab; | 
|  |  | 
|  | err = bpf_map_init_elem_count(&htab->map); | 
|  | if (err) | 
|  | goto free_htab; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | htab->buckets = bpf_map_area_alloc(htab->n_buckets * | 
|  | sizeof(struct bucket), | 
|  | htab->map.numa_node); | 
|  | if (!htab->buckets) | 
|  | goto free_elem_count; | 
|  |  | 
|  | for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { | 
|  | htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, | 
|  | sizeof(int), | 
|  | sizeof(int), | 
|  | GFP_USER); | 
|  | if (!htab->map_locked[i]) | 
|  | goto free_map_locked; | 
|  | } | 
|  |  | 
|  | if (htab->map.map_flags & BPF_F_ZERO_SEED) | 
|  | htab->hashrnd = 0; | 
|  | else | 
|  | htab->hashrnd = get_random_u32(); | 
|  |  | 
|  | htab_init_buckets(htab); | 
|  |  | 
|  | /* compute_batch_value() computes batch value as num_online_cpus() * 2 | 
|  | * and __percpu_counter_compare() needs | 
|  | * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() | 
|  | * for percpu_counter to be faster than atomic_t. In practice the average bpf | 
|  | * hash map size is 10k, which means that a system with 64 cpus will fill | 
|  | * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore | 
|  | * define our own batch count as 32 then 10k hash map can be filled up to 80%: | 
|  | * 10k - 8k > 32 _batch_ * 64 _cpus_ | 
|  | * and __percpu_counter_compare() will still be fast. At that point hash map | 
|  | * collisions will dominate its performance anyway. Assume that hash map filled | 
|  | * to 50+% isn't going to be O(1) and use the following formula to choose | 
|  | * between percpu_counter and atomic_t. | 
|  | */ | 
|  | #define PERCPU_COUNTER_BATCH 32 | 
|  | if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) | 
|  | htab->use_percpu_counter = true; | 
|  |  | 
|  | if (htab->use_percpu_counter) { | 
|  | err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); | 
|  | if (err) | 
|  | goto free_map_locked; | 
|  | } | 
|  |  | 
|  | if (prealloc) { | 
|  | err = prealloc_init(htab); | 
|  | if (err) | 
|  | goto free_map_locked; | 
|  |  | 
|  | if (!percpu && !lru) { | 
|  | /* lru itself can remove the least used element, so | 
|  | * there is no need for an extra elem during map_update. | 
|  | */ | 
|  | err = alloc_extra_elems(htab); | 
|  | if (err) | 
|  | goto free_prealloc; | 
|  | } | 
|  | } else { | 
|  | err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); | 
|  | if (err) | 
|  | goto free_map_locked; | 
|  | if (percpu) { | 
|  | err = bpf_mem_alloc_init(&htab->pcpu_ma, | 
|  | round_up(htab->map.value_size, 8), true); | 
|  | if (err) | 
|  | goto free_map_locked; | 
|  | } | 
|  | } | 
|  |  | 
|  | return &htab->map; | 
|  |  | 
|  | free_prealloc: | 
|  | prealloc_destroy(htab); | 
|  | free_map_locked: | 
|  | if (htab->use_percpu_counter) | 
|  | percpu_counter_destroy(&htab->pcount); | 
|  | for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) | 
|  | free_percpu(htab->map_locked[i]); | 
|  | bpf_map_area_free(htab->buckets); | 
|  | bpf_mem_alloc_destroy(&htab->pcpu_ma); | 
|  | bpf_mem_alloc_destroy(&htab->ma); | 
|  | free_elem_count: | 
|  | bpf_map_free_elem_count(&htab->map); | 
|  | free_htab: | 
|  | lockdep_unregister_key(&htab->lockdep_key); | 
|  | bpf_map_area_free(htab); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) | 
|  | { | 
|  | if (likely(key_len % 4 == 0)) | 
|  | return jhash2(key, key_len / 4, hashrnd); | 
|  | return jhash(key, key_len, hashrnd); | 
|  | } | 
|  |  | 
|  | static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) | 
|  | { | 
|  | return &htab->buckets[hash & (htab->n_buckets - 1)]; | 
|  | } | 
|  |  | 
|  | static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) | 
|  | { | 
|  | return &__select_bucket(htab, hash)->head; | 
|  | } | 
|  |  | 
|  | /* this lookup function can only be called with bucket lock taken */ | 
|  | static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, | 
|  | void *key, u32 key_size) | 
|  | { | 
|  | struct hlist_nulls_node *n; | 
|  | struct htab_elem *l; | 
|  |  | 
|  | hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) | 
|  | if (l->hash == hash && !memcmp(&l->key, key, key_size)) | 
|  | return l; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* can be called without bucket lock. it will repeat the loop in | 
|  | * the unlikely event when elements moved from one bucket into another | 
|  | * while link list is being walked | 
|  | */ | 
|  | static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, | 
|  | u32 hash, void *key, | 
|  | u32 key_size, u32 n_buckets) | 
|  | { | 
|  | struct hlist_nulls_node *n; | 
|  | struct htab_elem *l; | 
|  |  | 
|  | again: | 
|  | hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) | 
|  | if (l->hash == hash && !memcmp(&l->key, key, key_size)) | 
|  | return l; | 
|  |  | 
|  | if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) | 
|  | goto again; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Called from syscall or from eBPF program directly, so | 
|  | * arguments have to match bpf_map_lookup_elem() exactly. | 
|  | * The return value is adjusted by BPF instructions | 
|  | * in htab_map_gen_lookup(). | 
|  | */ | 
|  | static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_nulls_head *head; | 
|  | struct htab_elem *l; | 
|  | u32 hash, key_size; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  |  | 
|  | head = select_bucket(htab, hash); | 
|  |  | 
|  | l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); | 
|  |  | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static void *htab_map_lookup_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct htab_elem *l = __htab_map_lookup_elem(map, key); | 
|  |  | 
|  | if (l) | 
|  | return l->key + round_up(map->key_size, 8); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* inline bpf_map_lookup_elem() call. | 
|  | * Instead of: | 
|  | * bpf_prog | 
|  | *   bpf_map_lookup_elem | 
|  | *     map->ops->map_lookup_elem | 
|  | *       htab_map_lookup_elem | 
|  | *         __htab_map_lookup_elem | 
|  | * do: | 
|  | * bpf_prog | 
|  | *   __htab_map_lookup_elem | 
|  | */ | 
|  | static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) | 
|  | { | 
|  | struct bpf_insn *insn = insn_buf; | 
|  | const int ret = BPF_REG_0; | 
|  |  | 
|  | BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, | 
|  | (void *(*)(struct bpf_map *map, void *key))NULL)); | 
|  | *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); | 
|  | *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); | 
|  | *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, | 
|  | offsetof(struct htab_elem, key) + | 
|  | round_up(map->key_size, 8)); | 
|  | return insn - insn_buf; | 
|  | } | 
|  |  | 
|  | static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, | 
|  | void *key, const bool mark) | 
|  | { | 
|  | struct htab_elem *l = __htab_map_lookup_elem(map, key); | 
|  |  | 
|  | if (l) { | 
|  | if (mark) | 
|  | bpf_lru_node_set_ref(&l->lru_node); | 
|  | return l->key + round_up(map->key_size, 8); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | return __htab_lru_map_lookup_elem(map, key, true); | 
|  | } | 
|  |  | 
|  | static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) | 
|  | { | 
|  | return __htab_lru_map_lookup_elem(map, key, false); | 
|  | } | 
|  |  | 
|  | static int htab_lru_map_gen_lookup(struct bpf_map *map, | 
|  | struct bpf_insn *insn_buf) | 
|  | { | 
|  | struct bpf_insn *insn = insn_buf; | 
|  | const int ret = BPF_REG_0; | 
|  | const int ref_reg = BPF_REG_1; | 
|  |  | 
|  | BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, | 
|  | (void *(*)(struct bpf_map *map, void *key))NULL)); | 
|  | *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); | 
|  | *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); | 
|  | *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, | 
|  | offsetof(struct htab_elem, lru_node) + | 
|  | offsetof(struct bpf_lru_node, ref)); | 
|  | *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); | 
|  | *insn++ = BPF_ST_MEM(BPF_B, ret, | 
|  | offsetof(struct htab_elem, lru_node) + | 
|  | offsetof(struct bpf_lru_node, ref), | 
|  | 1); | 
|  | *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, | 
|  | offsetof(struct htab_elem, key) + | 
|  | round_up(map->key_size, 8)); | 
|  | return insn - insn_buf; | 
|  | } | 
|  |  | 
|  | static void check_and_free_fields(struct bpf_htab *htab, | 
|  | struct htab_elem *elem) | 
|  | { | 
|  | if (htab_is_percpu(htab)) { | 
|  | void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); | 
|  | } else { | 
|  | void *map_value = elem->key + round_up(htab->map.key_size, 8); | 
|  |  | 
|  | bpf_obj_free_fields(htab->map.record, map_value); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* It is called from the bpf_lru_list when the LRU needs to delete | 
|  | * older elements from the htab. | 
|  | */ | 
|  | static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) | 
|  | { | 
|  | struct bpf_htab *htab = arg; | 
|  | struct htab_elem *l = NULL, *tgt_l; | 
|  | struct hlist_nulls_head *head; | 
|  | struct hlist_nulls_node *n; | 
|  | unsigned long flags; | 
|  | struct bucket *b; | 
|  | int ret; | 
|  |  | 
|  | tgt_l = container_of(node, struct htab_elem, lru_node); | 
|  | b = __select_bucket(htab, tgt_l->hash); | 
|  | head = &b->head; | 
|  |  | 
|  | ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) | 
|  | if (l == tgt_l) { | 
|  | hlist_nulls_del_rcu(&l->hash_node); | 
|  | check_and_free_fields(htab, l); | 
|  | bpf_map_dec_elem_count(&htab->map); | 
|  | break; | 
|  | } | 
|  |  | 
|  | htab_unlock_bucket(htab, b, tgt_l->hash, flags); | 
|  |  | 
|  | return l == tgt_l; | 
|  | } | 
|  |  | 
|  | /* Called from syscall */ | 
|  | static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_nulls_head *head; | 
|  | struct htab_elem *l, *next_l; | 
|  | u32 hash, key_size; | 
|  | int i = 0; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | if (!key) | 
|  | goto find_first_elem; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  |  | 
|  | head = select_bucket(htab, hash); | 
|  |  | 
|  | /* lookup the key */ | 
|  | l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); | 
|  |  | 
|  | if (!l) | 
|  | goto find_first_elem; | 
|  |  | 
|  | /* key was found, get next key in the same bucket */ | 
|  | next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), | 
|  | struct htab_elem, hash_node); | 
|  |  | 
|  | if (next_l) { | 
|  | /* if next elem in this hash list is non-zero, just return it */ | 
|  | memcpy(next_key, next_l->key, key_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* no more elements in this hash list, go to the next bucket */ | 
|  | i = hash & (htab->n_buckets - 1); | 
|  | i++; | 
|  |  | 
|  | find_first_elem: | 
|  | /* iterate over buckets */ | 
|  | for (; i < htab->n_buckets; i++) { | 
|  | head = select_bucket(htab, i); | 
|  |  | 
|  | /* pick first element in the bucket */ | 
|  | next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), | 
|  | struct htab_elem, hash_node); | 
|  | if (next_l) { | 
|  | /* if it's not empty, just return it */ | 
|  | memcpy(next_key, next_l->key, key_size); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* iterated over all buckets and all elements */ | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) | 
|  | { | 
|  | check_and_free_fields(htab, l); | 
|  | if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) | 
|  | bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); | 
|  | bpf_mem_cache_free(&htab->ma, l); | 
|  | } | 
|  |  | 
|  | static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) | 
|  | { | 
|  | struct bpf_map *map = &htab->map; | 
|  | void *ptr; | 
|  |  | 
|  | if (map->ops->map_fd_put_ptr) { | 
|  | ptr = fd_htab_map_get_ptr(map, l); | 
|  | map->ops->map_fd_put_ptr(map, ptr, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_map_full(struct bpf_htab *htab) | 
|  | { | 
|  | if (htab->use_percpu_counter) | 
|  | return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, | 
|  | PERCPU_COUNTER_BATCH) >= 0; | 
|  | return atomic_read(&htab->count) >= htab->map.max_entries; | 
|  | } | 
|  |  | 
|  | static void inc_elem_count(struct bpf_htab *htab) | 
|  | { | 
|  | bpf_map_inc_elem_count(&htab->map); | 
|  |  | 
|  | if (htab->use_percpu_counter) | 
|  | percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); | 
|  | else | 
|  | atomic_inc(&htab->count); | 
|  | } | 
|  |  | 
|  | static void dec_elem_count(struct bpf_htab *htab) | 
|  | { | 
|  | bpf_map_dec_elem_count(&htab->map); | 
|  |  | 
|  | if (htab->use_percpu_counter) | 
|  | percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); | 
|  | else | 
|  | atomic_dec(&htab->count); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) | 
|  | { | 
|  | htab_put_fd_value(htab, l); | 
|  |  | 
|  | if (htab_is_prealloc(htab)) { | 
|  | bpf_map_dec_elem_count(&htab->map); | 
|  | check_and_free_fields(htab, l); | 
|  | __pcpu_freelist_push(&htab->freelist, &l->fnode); | 
|  | } else { | 
|  | dec_elem_count(htab); | 
|  | htab_elem_free(htab, l); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, | 
|  | void *value, bool onallcpus) | 
|  | { | 
|  | if (!onallcpus) { | 
|  | /* copy true value_size bytes */ | 
|  | copy_map_value(&htab->map, this_cpu_ptr(pptr), value); | 
|  | } else { | 
|  | u32 size = round_up(htab->map.value_size, 8); | 
|  | int off = 0, cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); | 
|  | off += size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, | 
|  | void *value, bool onallcpus) | 
|  | { | 
|  | /* When not setting the initial value on all cpus, zero-fill element | 
|  | * values for other cpus. Otherwise, bpf program has no way to ensure | 
|  | * known initial values for cpus other than current one | 
|  | * (onallcpus=false always when coming from bpf prog). | 
|  | */ | 
|  | if (!onallcpus) { | 
|  | int current_cpu = raw_smp_processor_id(); | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (cpu == current_cpu) | 
|  | copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); | 
|  | else /* Since elem is preallocated, we cannot touch special fields */ | 
|  | zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); | 
|  | } | 
|  | } else { | 
|  | pcpu_copy_value(htab, pptr, value, onallcpus); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) | 
|  | { | 
|  | return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && | 
|  | BITS_PER_LONG == 64; | 
|  | } | 
|  |  | 
|  | static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, | 
|  | void *value, u32 key_size, u32 hash, | 
|  | bool percpu, bool onallcpus, | 
|  | struct htab_elem *old_elem) | 
|  | { | 
|  | u32 size = htab->map.value_size; | 
|  | bool prealloc = htab_is_prealloc(htab); | 
|  | struct htab_elem *l_new, **pl_new; | 
|  | void __percpu *pptr; | 
|  |  | 
|  | if (prealloc) { | 
|  | if (old_elem) { | 
|  | /* if we're updating the existing element, | 
|  | * use per-cpu extra elems to avoid freelist_pop/push | 
|  | */ | 
|  | pl_new = this_cpu_ptr(htab->extra_elems); | 
|  | l_new = *pl_new; | 
|  | htab_put_fd_value(htab, old_elem); | 
|  | *pl_new = old_elem; | 
|  | } else { | 
|  | struct pcpu_freelist_node *l; | 
|  |  | 
|  | l = __pcpu_freelist_pop(&htab->freelist); | 
|  | if (!l) | 
|  | return ERR_PTR(-E2BIG); | 
|  | l_new = container_of(l, struct htab_elem, fnode); | 
|  | bpf_map_inc_elem_count(&htab->map); | 
|  | } | 
|  | } else { | 
|  | if (is_map_full(htab)) | 
|  | if (!old_elem) | 
|  | /* when map is full and update() is replacing | 
|  | * old element, it's ok to allocate, since | 
|  | * old element will be freed immediately. | 
|  | * Otherwise return an error | 
|  | */ | 
|  | return ERR_PTR(-E2BIG); | 
|  | inc_elem_count(htab); | 
|  | l_new = bpf_mem_cache_alloc(&htab->ma); | 
|  | if (!l_new) { | 
|  | l_new = ERR_PTR(-ENOMEM); | 
|  | goto dec_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | memcpy(l_new->key, key, key_size); | 
|  | if (percpu) { | 
|  | if (prealloc) { | 
|  | pptr = htab_elem_get_ptr(l_new, key_size); | 
|  | } else { | 
|  | /* alloc_percpu zero-fills */ | 
|  | void *ptr = bpf_mem_cache_alloc(&htab->pcpu_ma); | 
|  |  | 
|  | if (!ptr) { | 
|  | bpf_mem_cache_free(&htab->ma, l_new); | 
|  | l_new = ERR_PTR(-ENOMEM); | 
|  | goto dec_count; | 
|  | } | 
|  | l_new->ptr_to_pptr = ptr; | 
|  | pptr = *(void __percpu **)ptr; | 
|  | } | 
|  |  | 
|  | pcpu_init_value(htab, pptr, value, onallcpus); | 
|  |  | 
|  | if (!prealloc) | 
|  | htab_elem_set_ptr(l_new, key_size, pptr); | 
|  | } else if (fd_htab_map_needs_adjust(htab)) { | 
|  | size = round_up(size, 8); | 
|  | memcpy(l_new->key + round_up(key_size, 8), value, size); | 
|  | } else { | 
|  | copy_map_value(&htab->map, | 
|  | l_new->key + round_up(key_size, 8), | 
|  | value); | 
|  | } | 
|  |  | 
|  | l_new->hash = hash; | 
|  | return l_new; | 
|  | dec_count: | 
|  | dec_elem_count(htab); | 
|  | return l_new; | 
|  | } | 
|  |  | 
|  | static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, | 
|  | u64 map_flags) | 
|  | { | 
|  | if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) | 
|  | /* elem already exists */ | 
|  | return -EEXIST; | 
|  |  | 
|  | if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) | 
|  | /* elem doesn't exist, cannot update it */ | 
|  | return -ENOENT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Called from syscall or from eBPF program */ | 
|  | static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, | 
|  | u64 map_flags) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct htab_elem *l_new = NULL, *l_old; | 
|  | struct hlist_nulls_head *head; | 
|  | unsigned long flags; | 
|  | struct bucket *b; | 
|  | u32 key_size, hash; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) | 
|  | /* unknown flags */ | 
|  | return -EINVAL; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  |  | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | if (unlikely(map_flags & BPF_F_LOCK)) { | 
|  | if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) | 
|  | return -EINVAL; | 
|  | /* find an element without taking the bucket lock */ | 
|  | l_old = lookup_nulls_elem_raw(head, hash, key, key_size, | 
|  | htab->n_buckets); | 
|  | ret = check_flags(htab, l_old, map_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (l_old) { | 
|  | /* grab the element lock and update value in place */ | 
|  | copy_map_value_locked(map, | 
|  | l_old->key + round_up(key_size, 8), | 
|  | value, false); | 
|  | return 0; | 
|  | } | 
|  | /* fall through, grab the bucket lock and lookup again. | 
|  | * 99.9% chance that the element won't be found, | 
|  | * but second lookup under lock has to be done. | 
|  | */ | 
|  | } | 
|  |  | 
|  | ret = htab_lock_bucket(htab, b, hash, &flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | l_old = lookup_elem_raw(head, hash, key, key_size); | 
|  |  | 
|  | ret = check_flags(htab, l_old, map_flags); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { | 
|  | /* first lookup without the bucket lock didn't find the element, | 
|  | * but second lookup with the bucket lock found it. | 
|  | * This case is highly unlikely, but has to be dealt with: | 
|  | * grab the element lock in addition to the bucket lock | 
|  | * and update element in place | 
|  | */ | 
|  | copy_map_value_locked(map, | 
|  | l_old->key + round_up(key_size, 8), | 
|  | value, false); | 
|  | ret = 0; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, | 
|  | l_old); | 
|  | if (IS_ERR(l_new)) { | 
|  | /* all pre-allocated elements are in use or memory exhausted */ | 
|  | ret = PTR_ERR(l_new); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* add new element to the head of the list, so that | 
|  | * concurrent search will find it before old elem | 
|  | */ | 
|  | hlist_nulls_add_head_rcu(&l_new->hash_node, head); | 
|  | if (l_old) { | 
|  | hlist_nulls_del_rcu(&l_old->hash_node); | 
|  | if (!htab_is_prealloc(htab)) | 
|  | free_htab_elem(htab, l_old); | 
|  | else | 
|  | check_and_free_fields(htab, l_old); | 
|  | } | 
|  | ret = 0; | 
|  | err: | 
|  | htab_unlock_bucket(htab, b, hash, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) | 
|  | { | 
|  | check_and_free_fields(htab, elem); | 
|  | bpf_map_dec_elem_count(&htab->map); | 
|  | bpf_lru_push_free(&htab->lru, &elem->lru_node); | 
|  | } | 
|  |  | 
|  | static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, | 
|  | u64 map_flags) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct htab_elem *l_new, *l_old = NULL; | 
|  | struct hlist_nulls_head *head; | 
|  | unsigned long flags; | 
|  | struct bucket *b; | 
|  | u32 key_size, hash; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(map_flags > BPF_EXIST)) | 
|  | /* unknown flags */ | 
|  | return -EINVAL; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  |  | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | /* For LRU, we need to alloc before taking bucket's | 
|  | * spinlock because getting free nodes from LRU may need | 
|  | * to remove older elements from htab and this removal | 
|  | * operation will need a bucket lock. | 
|  | */ | 
|  | l_new = prealloc_lru_pop(htab, key, hash); | 
|  | if (!l_new) | 
|  | return -ENOMEM; | 
|  | copy_map_value(&htab->map, | 
|  | l_new->key + round_up(map->key_size, 8), value); | 
|  |  | 
|  | ret = htab_lock_bucket(htab, b, hash, &flags); | 
|  | if (ret) | 
|  | goto err_lock_bucket; | 
|  |  | 
|  | l_old = lookup_elem_raw(head, hash, key, key_size); | 
|  |  | 
|  | ret = check_flags(htab, l_old, map_flags); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | /* add new element to the head of the list, so that | 
|  | * concurrent search will find it before old elem | 
|  | */ | 
|  | hlist_nulls_add_head_rcu(&l_new->hash_node, head); | 
|  | if (l_old) { | 
|  | bpf_lru_node_set_ref(&l_new->lru_node); | 
|  | hlist_nulls_del_rcu(&l_old->hash_node); | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | err: | 
|  | htab_unlock_bucket(htab, b, hash, flags); | 
|  |  | 
|  | err_lock_bucket: | 
|  | if (ret) | 
|  | htab_lru_push_free(htab, l_new); | 
|  | else if (l_old) | 
|  | htab_lru_push_free(htab, l_old); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, | 
|  | void *value, u64 map_flags, | 
|  | bool onallcpus) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct htab_elem *l_new = NULL, *l_old; | 
|  | struct hlist_nulls_head *head; | 
|  | unsigned long flags; | 
|  | struct bucket *b; | 
|  | u32 key_size, hash; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(map_flags > BPF_EXIST)) | 
|  | /* unknown flags */ | 
|  | return -EINVAL; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  |  | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | ret = htab_lock_bucket(htab, b, hash, &flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | l_old = lookup_elem_raw(head, hash, key, key_size); | 
|  |  | 
|  | ret = check_flags(htab, l_old, map_flags); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | if (l_old) { | 
|  | /* per-cpu hash map can update value in-place */ | 
|  | pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), | 
|  | value, onallcpus); | 
|  | } else { | 
|  | l_new = alloc_htab_elem(htab, key, value, key_size, | 
|  | hash, true, onallcpus, NULL); | 
|  | if (IS_ERR(l_new)) { | 
|  | ret = PTR_ERR(l_new); | 
|  | goto err; | 
|  | } | 
|  | hlist_nulls_add_head_rcu(&l_new->hash_node, head); | 
|  | } | 
|  | ret = 0; | 
|  | err: | 
|  | htab_unlock_bucket(htab, b, hash, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, | 
|  | void *value, u64 map_flags, | 
|  | bool onallcpus) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct htab_elem *l_new = NULL, *l_old; | 
|  | struct hlist_nulls_head *head; | 
|  | unsigned long flags; | 
|  | struct bucket *b; | 
|  | u32 key_size, hash; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(map_flags > BPF_EXIST)) | 
|  | /* unknown flags */ | 
|  | return -EINVAL; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  |  | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | /* For LRU, we need to alloc before taking bucket's | 
|  | * spinlock because LRU's elem alloc may need | 
|  | * to remove older elem from htab and this removal | 
|  | * operation will need a bucket lock. | 
|  | */ | 
|  | if (map_flags != BPF_EXIST) { | 
|  | l_new = prealloc_lru_pop(htab, key, hash); | 
|  | if (!l_new) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = htab_lock_bucket(htab, b, hash, &flags); | 
|  | if (ret) | 
|  | goto err_lock_bucket; | 
|  |  | 
|  | l_old = lookup_elem_raw(head, hash, key, key_size); | 
|  |  | 
|  | ret = check_flags(htab, l_old, map_flags); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | if (l_old) { | 
|  | bpf_lru_node_set_ref(&l_old->lru_node); | 
|  |  | 
|  | /* per-cpu hash map can update value in-place */ | 
|  | pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), | 
|  | value, onallcpus); | 
|  | } else { | 
|  | pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), | 
|  | value, onallcpus); | 
|  | hlist_nulls_add_head_rcu(&l_new->hash_node, head); | 
|  | l_new = NULL; | 
|  | } | 
|  | ret = 0; | 
|  | err: | 
|  | htab_unlock_bucket(htab, b, hash, flags); | 
|  | err_lock_bucket: | 
|  | if (l_new) { | 
|  | bpf_map_dec_elem_count(&htab->map); | 
|  | bpf_lru_push_free(&htab->lru, &l_new->lru_node); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, | 
|  | void *value, u64 map_flags) | 
|  | { | 
|  | return __htab_percpu_map_update_elem(map, key, value, map_flags, false); | 
|  | } | 
|  |  | 
|  | static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, | 
|  | void *value, u64 map_flags) | 
|  | { | 
|  | return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, | 
|  | false); | 
|  | } | 
|  |  | 
|  | /* Called from syscall or from eBPF program */ | 
|  | static long htab_map_delete_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_nulls_head *head; | 
|  | struct bucket *b; | 
|  | struct htab_elem *l; | 
|  | unsigned long flags; | 
|  | u32 hash, key_size; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | ret = htab_lock_bucket(htab, b, hash, &flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | l = lookup_elem_raw(head, hash, key, key_size); | 
|  |  | 
|  | if (l) { | 
|  | hlist_nulls_del_rcu(&l->hash_node); | 
|  | free_htab_elem(htab, l); | 
|  | } else { | 
|  | ret = -ENOENT; | 
|  | } | 
|  |  | 
|  | htab_unlock_bucket(htab, b, hash, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_nulls_head *head; | 
|  | struct bucket *b; | 
|  | struct htab_elem *l; | 
|  | unsigned long flags; | 
|  | u32 hash, key_size; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && | 
|  | !rcu_read_lock_bh_held()); | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | ret = htab_lock_bucket(htab, b, hash, &flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | l = lookup_elem_raw(head, hash, key, key_size); | 
|  |  | 
|  | if (l) | 
|  | hlist_nulls_del_rcu(&l->hash_node); | 
|  | else | 
|  | ret = -ENOENT; | 
|  |  | 
|  | htab_unlock_bucket(htab, b, hash, flags); | 
|  | if (l) | 
|  | htab_lru_push_free(htab, l); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void delete_all_elements(struct bpf_htab *htab) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* It's called from a worker thread, so disable migration here, | 
|  | * since bpf_mem_cache_free() relies on that. | 
|  | */ | 
|  | migrate_disable(); | 
|  | for (i = 0; i < htab->n_buckets; i++) { | 
|  | struct hlist_nulls_head *head = select_bucket(htab, i); | 
|  | struct hlist_nulls_node *n; | 
|  | struct htab_elem *l; | 
|  |  | 
|  | hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { | 
|  | hlist_nulls_del_rcu(&l->hash_node); | 
|  | htab_elem_free(htab, l); | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  | migrate_enable(); | 
|  | } | 
|  |  | 
|  | static void htab_free_malloced_timers_and_wq(struct bpf_htab *htab) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < htab->n_buckets; i++) { | 
|  | struct hlist_nulls_head *head = select_bucket(htab, i); | 
|  | struct hlist_nulls_node *n; | 
|  | struct htab_elem *l; | 
|  |  | 
|  | hlist_nulls_for_each_entry(l, n, head, hash_node) { | 
|  | /* We only free timer on uref dropping to zero */ | 
|  | if (btf_record_has_field(htab->map.record, BPF_TIMER)) | 
|  | bpf_obj_free_timer(htab->map.record, | 
|  | l->key + round_up(htab->map.key_size, 8)); | 
|  | if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) | 
|  | bpf_obj_free_workqueue(htab->map.record, | 
|  | l->key + round_up(htab->map.key_size, 8)); | 
|  | } | 
|  | cond_resched_rcu(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void htab_map_free_timers_and_wq(struct bpf_map *map) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  |  | 
|  | /* We only free timer and workqueue on uref dropping to zero */ | 
|  | if (btf_record_has_field(htab->map.record, BPF_TIMER | BPF_WORKQUEUE)) { | 
|  | if (!htab_is_prealloc(htab)) | 
|  | htab_free_malloced_timers_and_wq(htab); | 
|  | else | 
|  | htab_free_prealloced_timers_and_wq(htab); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ | 
|  | static void htab_map_free(struct bpf_map *map) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | int i; | 
|  |  | 
|  | /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. | 
|  | * bpf_free_used_maps() is called after bpf prog is no longer executing. | 
|  | * There is no need to synchronize_rcu() here to protect map elements. | 
|  | */ | 
|  |  | 
|  | /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it | 
|  | * underneath and is responsible for waiting for callbacks to finish | 
|  | * during bpf_mem_alloc_destroy(). | 
|  | */ | 
|  | if (!htab_is_prealloc(htab)) { | 
|  | delete_all_elements(htab); | 
|  | } else { | 
|  | htab_free_prealloced_fields(htab); | 
|  | prealloc_destroy(htab); | 
|  | } | 
|  |  | 
|  | bpf_map_free_elem_count(map); | 
|  | free_percpu(htab->extra_elems); | 
|  | bpf_map_area_free(htab->buckets); | 
|  | bpf_mem_alloc_destroy(&htab->pcpu_ma); | 
|  | bpf_mem_alloc_destroy(&htab->ma); | 
|  | if (htab->use_percpu_counter) | 
|  | percpu_counter_destroy(&htab->pcount); | 
|  | for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) | 
|  | free_percpu(htab->map_locked[i]); | 
|  | lockdep_unregister_key(&htab->lockdep_key); | 
|  | bpf_map_area_free(htab); | 
|  | } | 
|  |  | 
|  | static void htab_map_seq_show_elem(struct bpf_map *map, void *key, | 
|  | struct seq_file *m) | 
|  | { | 
|  | void *value; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | value = htab_map_lookup_elem(map, key); | 
|  | if (!value) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); | 
|  | seq_puts(m, ": "); | 
|  | btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); | 
|  | seq_putc(m, '\n'); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, | 
|  | void *value, bool is_lru_map, | 
|  | bool is_percpu, u64 flags) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_nulls_head *head; | 
|  | unsigned long bflags; | 
|  | struct htab_elem *l; | 
|  | u32 hash, key_size; | 
|  | struct bucket *b; | 
|  | int ret; | 
|  |  | 
|  | key_size = map->key_size; | 
|  |  | 
|  | hash = htab_map_hash(key, key_size, htab->hashrnd); | 
|  | b = __select_bucket(htab, hash); | 
|  | head = &b->head; | 
|  |  | 
|  | ret = htab_lock_bucket(htab, b, hash, &bflags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | l = lookup_elem_raw(head, hash, key, key_size); | 
|  | if (!l) { | 
|  | ret = -ENOENT; | 
|  | } else { | 
|  | if (is_percpu) { | 
|  | u32 roundup_value_size = round_up(map->value_size, 8); | 
|  | void __percpu *pptr; | 
|  | int off = 0, cpu; | 
|  |  | 
|  | pptr = htab_elem_get_ptr(l, key_size); | 
|  | for_each_possible_cpu(cpu) { | 
|  | copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); | 
|  | check_and_init_map_value(&htab->map, value + off); | 
|  | off += roundup_value_size; | 
|  | } | 
|  | } else { | 
|  | u32 roundup_key_size = round_up(map->key_size, 8); | 
|  |  | 
|  | if (flags & BPF_F_LOCK) | 
|  | copy_map_value_locked(map, value, l->key + | 
|  | roundup_key_size, | 
|  | true); | 
|  | else | 
|  | copy_map_value(map, value, l->key + | 
|  | roundup_key_size); | 
|  | /* Zeroing special fields in the temp buffer */ | 
|  | check_and_init_map_value(map, value); | 
|  | } | 
|  |  | 
|  | hlist_nulls_del_rcu(&l->hash_node); | 
|  | if (!is_lru_map) | 
|  | free_htab_elem(htab, l); | 
|  | } | 
|  |  | 
|  | htab_unlock_bucket(htab, b, hash, bflags); | 
|  |  | 
|  | if (is_lru_map && l) | 
|  | htab_lru_push_free(htab, l); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, | 
|  | void *value, u64 flags) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_elem(map, key, value, false, false, | 
|  | flags); | 
|  | } | 
|  |  | 
|  | static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, | 
|  | void *key, void *value, | 
|  | u64 flags) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_elem(map, key, value, false, true, | 
|  | flags); | 
|  | } | 
|  |  | 
|  | static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, | 
|  | void *value, u64 flags) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_elem(map, key, value, true, false, | 
|  | flags); | 
|  | } | 
|  |  | 
|  | static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, | 
|  | void *key, void *value, | 
|  | u64 flags) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_elem(map, key, value, true, true, | 
|  | flags); | 
|  | } | 
|  |  | 
|  | static int | 
|  | __htab_map_lookup_and_delete_batch(struct bpf_map *map, | 
|  | const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr, | 
|  | bool do_delete, bool is_lru_map, | 
|  | bool is_percpu) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | u32 bucket_cnt, total, key_size, value_size, roundup_key_size; | 
|  | void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; | 
|  | void __user *uvalues = u64_to_user_ptr(attr->batch.values); | 
|  | void __user *ukeys = u64_to_user_ptr(attr->batch.keys); | 
|  | void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); | 
|  | u32 batch, max_count, size, bucket_size, map_id; | 
|  | struct htab_elem *node_to_free = NULL; | 
|  | u64 elem_map_flags, map_flags; | 
|  | struct hlist_nulls_head *head; | 
|  | struct hlist_nulls_node *n; | 
|  | unsigned long flags = 0; | 
|  | bool locked = false; | 
|  | struct htab_elem *l; | 
|  | struct bucket *b; | 
|  | int ret = 0; | 
|  |  | 
|  | elem_map_flags = attr->batch.elem_flags; | 
|  | if ((elem_map_flags & ~BPF_F_LOCK) || | 
|  | ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) | 
|  | return -EINVAL; | 
|  |  | 
|  | map_flags = attr->batch.flags; | 
|  | if (map_flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | max_count = attr->batch.count; | 
|  | if (!max_count) | 
|  | return 0; | 
|  |  | 
|  | if (put_user(0, &uattr->batch.count)) | 
|  | return -EFAULT; | 
|  |  | 
|  | batch = 0; | 
|  | if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (batch >= htab->n_buckets) | 
|  | return -ENOENT; | 
|  |  | 
|  | key_size = htab->map.key_size; | 
|  | roundup_key_size = round_up(htab->map.key_size, 8); | 
|  | value_size = htab->map.value_size; | 
|  | size = round_up(value_size, 8); | 
|  | if (is_percpu) | 
|  | value_size = size * num_possible_cpus(); | 
|  | total = 0; | 
|  | /* while experimenting with hash tables with sizes ranging from 10 to | 
|  | * 1000, it was observed that a bucket can have up to 5 entries. | 
|  | */ | 
|  | bucket_size = 5; | 
|  |  | 
|  | alloc: | 
|  | /* We cannot do copy_from_user or copy_to_user inside | 
|  | * the rcu_read_lock. Allocate enough space here. | 
|  | */ | 
|  | keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); | 
|  | values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); | 
|  | if (!keys || !values) { | 
|  | ret = -ENOMEM; | 
|  | goto after_loop; | 
|  | } | 
|  |  | 
|  | again: | 
|  | bpf_disable_instrumentation(); | 
|  | rcu_read_lock(); | 
|  | again_nocopy: | 
|  | dst_key = keys; | 
|  | dst_val = values; | 
|  | b = &htab->buckets[batch]; | 
|  | head = &b->head; | 
|  | /* do not grab the lock unless need it (bucket_cnt > 0). */ | 
|  | if (locked) { | 
|  | ret = htab_lock_bucket(htab, b, batch, &flags); | 
|  | if (ret) { | 
|  | rcu_read_unlock(); | 
|  | bpf_enable_instrumentation(); | 
|  | goto after_loop; | 
|  | } | 
|  | } | 
|  |  | 
|  | bucket_cnt = 0; | 
|  | hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) | 
|  | bucket_cnt++; | 
|  |  | 
|  | if (bucket_cnt && !locked) { | 
|  | locked = true; | 
|  | goto again_nocopy; | 
|  | } | 
|  |  | 
|  | if (bucket_cnt > (max_count - total)) { | 
|  | if (total == 0) | 
|  | ret = -ENOSPC; | 
|  | /* Note that since bucket_cnt > 0 here, it is implicit | 
|  | * that the locked was grabbed, so release it. | 
|  | */ | 
|  | htab_unlock_bucket(htab, b, batch, flags); | 
|  | rcu_read_unlock(); | 
|  | bpf_enable_instrumentation(); | 
|  | goto after_loop; | 
|  | } | 
|  |  | 
|  | if (bucket_cnt > bucket_size) { | 
|  | bucket_size = bucket_cnt; | 
|  | /* Note that since bucket_cnt > 0 here, it is implicit | 
|  | * that the locked was grabbed, so release it. | 
|  | */ | 
|  | htab_unlock_bucket(htab, b, batch, flags); | 
|  | rcu_read_unlock(); | 
|  | bpf_enable_instrumentation(); | 
|  | kvfree(keys); | 
|  | kvfree(values); | 
|  | goto alloc; | 
|  | } | 
|  |  | 
|  | /* Next block is only safe to run if you have grabbed the lock */ | 
|  | if (!locked) | 
|  | goto next_batch; | 
|  |  | 
|  | hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { | 
|  | memcpy(dst_key, l->key, key_size); | 
|  |  | 
|  | if (is_percpu) { | 
|  | int off = 0, cpu; | 
|  | void __percpu *pptr; | 
|  |  | 
|  | pptr = htab_elem_get_ptr(l, map->key_size); | 
|  | for_each_possible_cpu(cpu) { | 
|  | copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); | 
|  | check_and_init_map_value(&htab->map, dst_val + off); | 
|  | off += size; | 
|  | } | 
|  | } else { | 
|  | value = l->key + roundup_key_size; | 
|  | if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { | 
|  | struct bpf_map **inner_map = value; | 
|  |  | 
|  | /* Actual value is the id of the inner map */ | 
|  | map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); | 
|  | value = &map_id; | 
|  | } | 
|  |  | 
|  | if (elem_map_flags & BPF_F_LOCK) | 
|  | copy_map_value_locked(map, dst_val, value, | 
|  | true); | 
|  | else | 
|  | copy_map_value(map, dst_val, value); | 
|  | /* Zeroing special fields in the temp buffer */ | 
|  | check_and_init_map_value(map, dst_val); | 
|  | } | 
|  | if (do_delete) { | 
|  | hlist_nulls_del_rcu(&l->hash_node); | 
|  |  | 
|  | /* bpf_lru_push_free() will acquire lru_lock, which | 
|  | * may cause deadlock. See comments in function | 
|  | * prealloc_lru_pop(). Let us do bpf_lru_push_free() | 
|  | * after releasing the bucket lock. | 
|  | */ | 
|  | if (is_lru_map) { | 
|  | l->batch_flink = node_to_free; | 
|  | node_to_free = l; | 
|  | } else { | 
|  | free_htab_elem(htab, l); | 
|  | } | 
|  | } | 
|  | dst_key += key_size; | 
|  | dst_val += value_size; | 
|  | } | 
|  |  | 
|  | htab_unlock_bucket(htab, b, batch, flags); | 
|  | locked = false; | 
|  |  | 
|  | while (node_to_free) { | 
|  | l = node_to_free; | 
|  | node_to_free = node_to_free->batch_flink; | 
|  | htab_lru_push_free(htab, l); | 
|  | } | 
|  |  | 
|  | next_batch: | 
|  | /* If we are not copying data, we can go to next bucket and avoid | 
|  | * unlocking the rcu. | 
|  | */ | 
|  | if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { | 
|  | batch++; | 
|  | goto again_nocopy; | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | bpf_enable_instrumentation(); | 
|  | if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, | 
|  | key_size * bucket_cnt) || | 
|  | copy_to_user(uvalues + total * value_size, values, | 
|  | value_size * bucket_cnt))) { | 
|  | ret = -EFAULT; | 
|  | goto after_loop; | 
|  | } | 
|  |  | 
|  | total += bucket_cnt; | 
|  | batch++; | 
|  | if (batch >= htab->n_buckets) { | 
|  | ret = -ENOENT; | 
|  | goto after_loop; | 
|  | } | 
|  | goto again; | 
|  |  | 
|  | after_loop: | 
|  | if (ret == -EFAULT) | 
|  | goto out; | 
|  |  | 
|  | /* copy # of entries and next batch */ | 
|  | ubatch = u64_to_user_ptr(attr->batch.out_batch); | 
|  | if (copy_to_user(ubatch, &batch, sizeof(batch)) || | 
|  | put_user(total, &uattr->batch.count)) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | out: | 
|  | kvfree(keys); | 
|  | kvfree(values); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, | 
|  | false, true); | 
|  | } | 
|  |  | 
|  | static int | 
|  | htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, | 
|  | const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, | 
|  | false, true); | 
|  | } | 
|  |  | 
|  | static int | 
|  | htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, | 
|  | false, false); | 
|  | } | 
|  |  | 
|  | static int | 
|  | htab_map_lookup_and_delete_batch(struct bpf_map *map, | 
|  | const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, | 
|  | false, false); | 
|  | } | 
|  |  | 
|  | static int | 
|  | htab_lru_percpu_map_lookup_batch(struct bpf_map *map, | 
|  | const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, | 
|  | true, true); | 
|  | } | 
|  |  | 
|  | static int | 
|  | htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, | 
|  | const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, | 
|  | true, true); | 
|  | } | 
|  |  | 
|  | static int | 
|  | htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, | 
|  | true, false); | 
|  | } | 
|  |  | 
|  | static int | 
|  | htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, | 
|  | const union bpf_attr *attr, | 
|  | union bpf_attr __user *uattr) | 
|  | { | 
|  | return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, | 
|  | true, false); | 
|  | } | 
|  |  | 
|  | struct bpf_iter_seq_hash_map_info { | 
|  | struct bpf_map *map; | 
|  | struct bpf_htab *htab; | 
|  | void *percpu_value_buf; // non-zero means percpu hash | 
|  | u32 bucket_id; | 
|  | u32 skip_elems; | 
|  | }; | 
|  |  | 
|  | static struct htab_elem * | 
|  | bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, | 
|  | struct htab_elem *prev_elem) | 
|  | { | 
|  | const struct bpf_htab *htab = info->htab; | 
|  | u32 skip_elems = info->skip_elems; | 
|  | u32 bucket_id = info->bucket_id; | 
|  | struct hlist_nulls_head *head; | 
|  | struct hlist_nulls_node *n; | 
|  | struct htab_elem *elem; | 
|  | struct bucket *b; | 
|  | u32 i, count; | 
|  |  | 
|  | if (bucket_id >= htab->n_buckets) | 
|  | return NULL; | 
|  |  | 
|  | /* try to find next elem in the same bucket */ | 
|  | if (prev_elem) { | 
|  | /* no update/deletion on this bucket, prev_elem should be still valid | 
|  | * and we won't skip elements. | 
|  | */ | 
|  | n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); | 
|  | elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); | 
|  | if (elem) | 
|  | return elem; | 
|  |  | 
|  | /* not found, unlock and go to the next bucket */ | 
|  | b = &htab->buckets[bucket_id++]; | 
|  | rcu_read_unlock(); | 
|  | skip_elems = 0; | 
|  | } | 
|  |  | 
|  | for (i = bucket_id; i < htab->n_buckets; i++) { | 
|  | b = &htab->buckets[i]; | 
|  | rcu_read_lock(); | 
|  |  | 
|  | count = 0; | 
|  | head = &b->head; | 
|  | hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { | 
|  | if (count >= skip_elems) { | 
|  | info->bucket_id = i; | 
|  | info->skip_elems = count; | 
|  | return elem; | 
|  | } | 
|  | count++; | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | skip_elems = 0; | 
|  | } | 
|  |  | 
|  | info->bucket_id = i; | 
|  | info->skip_elems = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | { | 
|  | struct bpf_iter_seq_hash_map_info *info = seq->private; | 
|  | struct htab_elem *elem; | 
|  |  | 
|  | elem = bpf_hash_map_seq_find_next(info, NULL); | 
|  | if (!elem) | 
|  | return NULL; | 
|  |  | 
|  | if (*pos == 0) | 
|  | ++*pos; | 
|  | return elem; | 
|  | } | 
|  |  | 
|  | static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct bpf_iter_seq_hash_map_info *info = seq->private; | 
|  |  | 
|  | ++*pos; | 
|  | ++info->skip_elems; | 
|  | return bpf_hash_map_seq_find_next(info, v); | 
|  | } | 
|  |  | 
|  | static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) | 
|  | { | 
|  | struct bpf_iter_seq_hash_map_info *info = seq->private; | 
|  | u32 roundup_key_size, roundup_value_size; | 
|  | struct bpf_iter__bpf_map_elem ctx = {}; | 
|  | struct bpf_map *map = info->map; | 
|  | struct bpf_iter_meta meta; | 
|  | int ret = 0, off = 0, cpu; | 
|  | struct bpf_prog *prog; | 
|  | void __percpu *pptr; | 
|  |  | 
|  | meta.seq = seq; | 
|  | prog = bpf_iter_get_info(&meta, elem == NULL); | 
|  | if (prog) { | 
|  | ctx.meta = &meta; | 
|  | ctx.map = info->map; | 
|  | if (elem) { | 
|  | roundup_key_size = round_up(map->key_size, 8); | 
|  | ctx.key = elem->key; | 
|  | if (!info->percpu_value_buf) { | 
|  | ctx.value = elem->key + roundup_key_size; | 
|  | } else { | 
|  | roundup_value_size = round_up(map->value_size, 8); | 
|  | pptr = htab_elem_get_ptr(elem, map->key_size); | 
|  | for_each_possible_cpu(cpu) { | 
|  | copy_map_value_long(map, info->percpu_value_buf + off, | 
|  | per_cpu_ptr(pptr, cpu)); | 
|  | check_and_init_map_value(map, info->percpu_value_buf + off); | 
|  | off += roundup_value_size; | 
|  | } | 
|  | ctx.value = info->percpu_value_buf; | 
|  | } | 
|  | } | 
|  | ret = bpf_iter_run_prog(prog, &ctx); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | return __bpf_hash_map_seq_show(seq, v); | 
|  | } | 
|  |  | 
|  | static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) | 
|  | { | 
|  | if (!v) | 
|  | (void)__bpf_hash_map_seq_show(seq, NULL); | 
|  | else | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int bpf_iter_init_hash_map(void *priv_data, | 
|  | struct bpf_iter_aux_info *aux) | 
|  | { | 
|  | struct bpf_iter_seq_hash_map_info *seq_info = priv_data; | 
|  | struct bpf_map *map = aux->map; | 
|  | void *value_buf; | 
|  | u32 buf_size; | 
|  |  | 
|  | if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || | 
|  | map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { | 
|  | buf_size = round_up(map->value_size, 8) * num_possible_cpus(); | 
|  | value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); | 
|  | if (!value_buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | seq_info->percpu_value_buf = value_buf; | 
|  | } | 
|  |  | 
|  | bpf_map_inc_with_uref(map); | 
|  | seq_info->map = map; | 
|  | seq_info->htab = container_of(map, struct bpf_htab, map); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bpf_iter_fini_hash_map(void *priv_data) | 
|  | { | 
|  | struct bpf_iter_seq_hash_map_info *seq_info = priv_data; | 
|  |  | 
|  | bpf_map_put_with_uref(seq_info->map); | 
|  | kfree(seq_info->percpu_value_buf); | 
|  | } | 
|  |  | 
|  | static const struct seq_operations bpf_hash_map_seq_ops = { | 
|  | .start	= bpf_hash_map_seq_start, | 
|  | .next	= bpf_hash_map_seq_next, | 
|  | .stop	= bpf_hash_map_seq_stop, | 
|  | .show	= bpf_hash_map_seq_show, | 
|  | }; | 
|  |  | 
|  | static const struct bpf_iter_seq_info iter_seq_info = { | 
|  | .seq_ops		= &bpf_hash_map_seq_ops, | 
|  | .init_seq_private	= bpf_iter_init_hash_map, | 
|  | .fini_seq_private	= bpf_iter_fini_hash_map, | 
|  | .seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info), | 
|  | }; | 
|  |  | 
|  | static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, | 
|  | void *callback_ctx, u64 flags) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_nulls_head *head; | 
|  | struct hlist_nulls_node *n; | 
|  | struct htab_elem *elem; | 
|  | u32 roundup_key_size; | 
|  | int i, num_elems = 0; | 
|  | void __percpu *pptr; | 
|  | struct bucket *b; | 
|  | void *key, *val; | 
|  | bool is_percpu; | 
|  | u64 ret = 0; | 
|  |  | 
|  | if (flags != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | is_percpu = htab_is_percpu(htab); | 
|  |  | 
|  | roundup_key_size = round_up(map->key_size, 8); | 
|  | /* disable migration so percpu value prepared here will be the | 
|  | * same as the one seen by the bpf program with bpf_map_lookup_elem(). | 
|  | */ | 
|  | if (is_percpu) | 
|  | migrate_disable(); | 
|  | for (i = 0; i < htab->n_buckets; i++) { | 
|  | b = &htab->buckets[i]; | 
|  | rcu_read_lock(); | 
|  | head = &b->head; | 
|  | hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { | 
|  | key = elem->key; | 
|  | if (is_percpu) { | 
|  | /* current cpu value for percpu map */ | 
|  | pptr = htab_elem_get_ptr(elem, map->key_size); | 
|  | val = this_cpu_ptr(pptr); | 
|  | } else { | 
|  | val = elem->key + roundup_key_size; | 
|  | } | 
|  | num_elems++; | 
|  | ret = callback_fn((u64)(long)map, (u64)(long)key, | 
|  | (u64)(long)val, (u64)(long)callback_ctx, 0); | 
|  | /* return value: 0 - continue, 1 - stop and return */ | 
|  | if (ret) { | 
|  | rcu_read_unlock(); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | out: | 
|  | if (is_percpu) | 
|  | migrate_enable(); | 
|  | return num_elems; | 
|  | } | 
|  |  | 
|  | static u64 htab_map_mem_usage(const struct bpf_map *map) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | u32 value_size = round_up(htab->map.value_size, 8); | 
|  | bool prealloc = htab_is_prealloc(htab); | 
|  | bool percpu = htab_is_percpu(htab); | 
|  | bool lru = htab_is_lru(htab); | 
|  | u64 num_entries; | 
|  | u64 usage = sizeof(struct bpf_htab); | 
|  |  | 
|  | usage += sizeof(struct bucket) * htab->n_buckets; | 
|  | usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; | 
|  | if (prealloc) { | 
|  | num_entries = map->max_entries; | 
|  | if (htab_has_extra_elems(htab)) | 
|  | num_entries += num_possible_cpus(); | 
|  |  | 
|  | usage += htab->elem_size * num_entries; | 
|  |  | 
|  | if (percpu) | 
|  | usage += value_size * num_possible_cpus() * num_entries; | 
|  | else if (!lru) | 
|  | usage += sizeof(struct htab_elem *) * num_possible_cpus(); | 
|  | } else { | 
|  | #define LLIST_NODE_SZ sizeof(struct llist_node) | 
|  |  | 
|  | num_entries = htab->use_percpu_counter ? | 
|  | percpu_counter_sum(&htab->pcount) : | 
|  | atomic_read(&htab->count); | 
|  | usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; | 
|  | if (percpu) { | 
|  | usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; | 
|  | usage += value_size * num_possible_cpus() * num_entries; | 
|  | } | 
|  | } | 
|  | return usage; | 
|  | } | 
|  |  | 
|  | BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) | 
|  | const struct bpf_map_ops htab_map_ops = { | 
|  | .map_meta_equal = bpf_map_meta_equal, | 
|  | .map_alloc_check = htab_map_alloc_check, | 
|  | .map_alloc = htab_map_alloc, | 
|  | .map_free = htab_map_free, | 
|  | .map_get_next_key = htab_map_get_next_key, | 
|  | .map_release_uref = htab_map_free_timers_and_wq, | 
|  | .map_lookup_elem = htab_map_lookup_elem, | 
|  | .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, | 
|  | .map_update_elem = htab_map_update_elem, | 
|  | .map_delete_elem = htab_map_delete_elem, | 
|  | .map_gen_lookup = htab_map_gen_lookup, | 
|  | .map_seq_show_elem = htab_map_seq_show_elem, | 
|  | .map_set_for_each_callback_args = map_set_for_each_callback_args, | 
|  | .map_for_each_callback = bpf_for_each_hash_elem, | 
|  | .map_mem_usage = htab_map_mem_usage, | 
|  | BATCH_OPS(htab), | 
|  | .map_btf_id = &htab_map_btf_ids[0], | 
|  | .iter_seq_info = &iter_seq_info, | 
|  | }; | 
|  |  | 
|  | const struct bpf_map_ops htab_lru_map_ops = { | 
|  | .map_meta_equal = bpf_map_meta_equal, | 
|  | .map_alloc_check = htab_map_alloc_check, | 
|  | .map_alloc = htab_map_alloc, | 
|  | .map_free = htab_map_free, | 
|  | .map_get_next_key = htab_map_get_next_key, | 
|  | .map_release_uref = htab_map_free_timers_and_wq, | 
|  | .map_lookup_elem = htab_lru_map_lookup_elem, | 
|  | .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, | 
|  | .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, | 
|  | .map_update_elem = htab_lru_map_update_elem, | 
|  | .map_delete_elem = htab_lru_map_delete_elem, | 
|  | .map_gen_lookup = htab_lru_map_gen_lookup, | 
|  | .map_seq_show_elem = htab_map_seq_show_elem, | 
|  | .map_set_for_each_callback_args = map_set_for_each_callback_args, | 
|  | .map_for_each_callback = bpf_for_each_hash_elem, | 
|  | .map_mem_usage = htab_map_mem_usage, | 
|  | BATCH_OPS(htab_lru), | 
|  | .map_btf_id = &htab_map_btf_ids[0], | 
|  | .iter_seq_info = &iter_seq_info, | 
|  | }; | 
|  |  | 
|  | /* Called from eBPF program */ | 
|  | static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct htab_elem *l = __htab_map_lookup_elem(map, key); | 
|  |  | 
|  | if (l) | 
|  | return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* inline bpf_map_lookup_elem() call for per-CPU hashmap */ | 
|  | static int htab_percpu_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) | 
|  | { | 
|  | struct bpf_insn *insn = insn_buf; | 
|  |  | 
|  | if (!bpf_jit_supports_percpu_insn()) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, | 
|  | (void *(*)(struct bpf_map *map, void *key))NULL)); | 
|  | *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); | 
|  | *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3); | 
|  | *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, | 
|  | offsetof(struct htab_elem, key) + map->key_size); | 
|  | *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); | 
|  | *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); | 
|  |  | 
|  | return insn - insn_buf; | 
|  | } | 
|  |  | 
|  | static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) | 
|  | { | 
|  | struct htab_elem *l; | 
|  |  | 
|  | if (cpu >= nr_cpu_ids) | 
|  | return NULL; | 
|  |  | 
|  | l = __htab_map_lookup_elem(map, key); | 
|  | if (l) | 
|  | return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct htab_elem *l = __htab_map_lookup_elem(map, key); | 
|  |  | 
|  | if (l) { | 
|  | bpf_lru_node_set_ref(&l->lru_node); | 
|  | return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) | 
|  | { | 
|  | struct htab_elem *l; | 
|  |  | 
|  | if (cpu >= nr_cpu_ids) | 
|  | return NULL; | 
|  |  | 
|  | l = __htab_map_lookup_elem(map, key); | 
|  | if (l) { | 
|  | bpf_lru_node_set_ref(&l->lru_node); | 
|  | return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) | 
|  | { | 
|  | struct htab_elem *l; | 
|  | void __percpu *pptr; | 
|  | int ret = -ENOENT; | 
|  | int cpu, off = 0; | 
|  | u32 size; | 
|  |  | 
|  | /* per_cpu areas are zero-filled and bpf programs can only | 
|  | * access 'value_size' of them, so copying rounded areas | 
|  | * will not leak any kernel data | 
|  | */ | 
|  | size = round_up(map->value_size, 8); | 
|  | rcu_read_lock(); | 
|  | l = __htab_map_lookup_elem(map, key); | 
|  | if (!l) | 
|  | goto out; | 
|  | /* We do not mark LRU map element here in order to not mess up | 
|  | * eviction heuristics when user space does a map walk. | 
|  | */ | 
|  | pptr = htab_elem_get_ptr(l, map->key_size); | 
|  | for_each_possible_cpu(cpu) { | 
|  | copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); | 
|  | check_and_init_map_value(map, value + off); | 
|  | off += size; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, | 
|  | u64 map_flags) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (htab_is_lru(htab)) | 
|  | ret = __htab_lru_percpu_map_update_elem(map, key, value, | 
|  | map_flags, true); | 
|  | else | 
|  | ret = __htab_percpu_map_update_elem(map, key, value, map_flags, | 
|  | true); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, | 
|  | struct seq_file *m) | 
|  | { | 
|  | struct htab_elem *l; | 
|  | void __percpu *pptr; | 
|  | int cpu; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | l = __htab_map_lookup_elem(map, key); | 
|  | if (!l) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); | 
|  | seq_puts(m, ": {\n"); | 
|  | pptr = htab_elem_get_ptr(l, map->key_size); | 
|  | for_each_possible_cpu(cpu) { | 
|  | seq_printf(m, "\tcpu%d: ", cpu); | 
|  | btf_type_seq_show(map->btf, map->btf_value_type_id, | 
|  | per_cpu_ptr(pptr, cpu), m); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  | seq_puts(m, "}\n"); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | const struct bpf_map_ops htab_percpu_map_ops = { | 
|  | .map_meta_equal = bpf_map_meta_equal, | 
|  | .map_alloc_check = htab_map_alloc_check, | 
|  | .map_alloc = htab_map_alloc, | 
|  | .map_free = htab_map_free, | 
|  | .map_get_next_key = htab_map_get_next_key, | 
|  | .map_lookup_elem = htab_percpu_map_lookup_elem, | 
|  | .map_gen_lookup = htab_percpu_map_gen_lookup, | 
|  | .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, | 
|  | .map_update_elem = htab_percpu_map_update_elem, | 
|  | .map_delete_elem = htab_map_delete_elem, | 
|  | .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, | 
|  | .map_seq_show_elem = htab_percpu_map_seq_show_elem, | 
|  | .map_set_for_each_callback_args = map_set_for_each_callback_args, | 
|  | .map_for_each_callback = bpf_for_each_hash_elem, | 
|  | .map_mem_usage = htab_map_mem_usage, | 
|  | BATCH_OPS(htab_percpu), | 
|  | .map_btf_id = &htab_map_btf_ids[0], | 
|  | .iter_seq_info = &iter_seq_info, | 
|  | }; | 
|  |  | 
|  | const struct bpf_map_ops htab_lru_percpu_map_ops = { | 
|  | .map_meta_equal = bpf_map_meta_equal, | 
|  | .map_alloc_check = htab_map_alloc_check, | 
|  | .map_alloc = htab_map_alloc, | 
|  | .map_free = htab_map_free, | 
|  | .map_get_next_key = htab_map_get_next_key, | 
|  | .map_lookup_elem = htab_lru_percpu_map_lookup_elem, | 
|  | .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, | 
|  | .map_update_elem = htab_lru_percpu_map_update_elem, | 
|  | .map_delete_elem = htab_lru_map_delete_elem, | 
|  | .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, | 
|  | .map_seq_show_elem = htab_percpu_map_seq_show_elem, | 
|  | .map_set_for_each_callback_args = map_set_for_each_callback_args, | 
|  | .map_for_each_callback = bpf_for_each_hash_elem, | 
|  | .map_mem_usage = htab_map_mem_usage, | 
|  | BATCH_OPS(htab_lru_percpu), | 
|  | .map_btf_id = &htab_map_btf_ids[0], | 
|  | .iter_seq_info = &iter_seq_info, | 
|  | }; | 
|  |  | 
|  | static int fd_htab_map_alloc_check(union bpf_attr *attr) | 
|  | { | 
|  | if (attr->value_size != sizeof(u32)) | 
|  | return -EINVAL; | 
|  | return htab_map_alloc_check(attr); | 
|  | } | 
|  |  | 
|  | static void fd_htab_map_free(struct bpf_map *map) | 
|  | { | 
|  | struct bpf_htab *htab = container_of(map, struct bpf_htab, map); | 
|  | struct hlist_nulls_node *n; | 
|  | struct hlist_nulls_head *head; | 
|  | struct htab_elem *l; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < htab->n_buckets; i++) { | 
|  | head = select_bucket(htab, i); | 
|  |  | 
|  | hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { | 
|  | void *ptr = fd_htab_map_get_ptr(map, l); | 
|  |  | 
|  | map->ops->map_fd_put_ptr(map, ptr, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | htab_map_free(map); | 
|  | } | 
|  |  | 
|  | /* only called from syscall */ | 
|  | int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) | 
|  | { | 
|  | void **ptr; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!map->ops->map_fd_sys_lookup_elem) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ptr = htab_map_lookup_elem(map, key); | 
|  | if (ptr) | 
|  | *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); | 
|  | else | 
|  | ret = -ENOENT; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* only called from syscall */ | 
|  | int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, | 
|  | void *key, void *value, u64 map_flags) | 
|  | { | 
|  | void *ptr; | 
|  | int ret; | 
|  | u32 ufd = *(u32 *)value; | 
|  |  | 
|  | ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); | 
|  | if (IS_ERR(ptr)) | 
|  | return PTR_ERR(ptr); | 
|  |  | 
|  | /* The htab bucket lock is always held during update operations in fd | 
|  | * htab map, and the following rcu_read_lock() is only used to avoid | 
|  | * the WARN_ON_ONCE in htab_map_update_elem(). | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | ret = htab_map_update_elem(map, key, &ptr, map_flags); | 
|  | rcu_read_unlock(); | 
|  | if (ret) | 
|  | map->ops->map_fd_put_ptr(map, ptr, false); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) | 
|  | { | 
|  | struct bpf_map *map, *inner_map_meta; | 
|  |  | 
|  | inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); | 
|  | if (IS_ERR(inner_map_meta)) | 
|  | return inner_map_meta; | 
|  |  | 
|  | map = htab_map_alloc(attr); | 
|  | if (IS_ERR(map)) { | 
|  | bpf_map_meta_free(inner_map_meta); | 
|  | return map; | 
|  | } | 
|  |  | 
|  | map->inner_map_meta = inner_map_meta; | 
|  |  | 
|  | return map; | 
|  | } | 
|  |  | 
|  | static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) | 
|  | { | 
|  | struct bpf_map **inner_map  = htab_map_lookup_elem(map, key); | 
|  |  | 
|  | if (!inner_map) | 
|  | return NULL; | 
|  |  | 
|  | return READ_ONCE(*inner_map); | 
|  | } | 
|  |  | 
|  | static int htab_of_map_gen_lookup(struct bpf_map *map, | 
|  | struct bpf_insn *insn_buf) | 
|  | { | 
|  | struct bpf_insn *insn = insn_buf; | 
|  | const int ret = BPF_REG_0; | 
|  |  | 
|  | BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, | 
|  | (void *(*)(struct bpf_map *map, void *key))NULL)); | 
|  | *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); | 
|  | *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); | 
|  | *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, | 
|  | offsetof(struct htab_elem, key) + | 
|  | round_up(map->key_size, 8)); | 
|  | *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); | 
|  |  | 
|  | return insn - insn_buf; | 
|  | } | 
|  |  | 
|  | static void htab_of_map_free(struct bpf_map *map) | 
|  | { | 
|  | bpf_map_meta_free(map->inner_map_meta); | 
|  | fd_htab_map_free(map); | 
|  | } | 
|  |  | 
|  | const struct bpf_map_ops htab_of_maps_map_ops = { | 
|  | .map_alloc_check = fd_htab_map_alloc_check, | 
|  | .map_alloc = htab_of_map_alloc, | 
|  | .map_free = htab_of_map_free, | 
|  | .map_get_next_key = htab_map_get_next_key, | 
|  | .map_lookup_elem = htab_of_map_lookup_elem, | 
|  | .map_delete_elem = htab_map_delete_elem, | 
|  | .map_fd_get_ptr = bpf_map_fd_get_ptr, | 
|  | .map_fd_put_ptr = bpf_map_fd_put_ptr, | 
|  | .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, | 
|  | .map_gen_lookup = htab_of_map_gen_lookup, | 
|  | .map_check_btf = map_check_no_btf, | 
|  | .map_mem_usage = htab_map_mem_usage, | 
|  | BATCH_OPS(htab), | 
|  | .map_btf_id = &htab_map_btf_ids[0], | 
|  | }; |