| // SPDX-License-Identifier: GPL-2.0 | 
 | /* Maximum size of each resync request */ | 
 | #define RESYNC_BLOCK_SIZE (64*1024) | 
 | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) | 
 |  | 
 | /* | 
 |  * Number of guaranteed raid bios in case of extreme VM load: | 
 |  */ | 
 | #define	NR_RAID_BIOS 256 | 
 |  | 
 | /* when we get a read error on a read-only array, we redirect to another | 
 |  * device without failing the first device, or trying to over-write to | 
 |  * correct the read error.  To keep track of bad blocks on a per-bio | 
 |  * level, we store IO_BLOCKED in the appropriate 'bios' pointer | 
 |  */ | 
 | #define IO_BLOCKED ((struct bio *)1) | 
 | /* When we successfully write to a known bad-block, we need to remove the | 
 |  * bad-block marking which must be done from process context.  So we record | 
 |  * the success by setting devs[n].bio to IO_MADE_GOOD | 
 |  */ | 
 | #define IO_MADE_GOOD ((struct bio *)2) | 
 |  | 
 | #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) | 
 | #define MAX_PLUG_BIO 32 | 
 |  | 
 | /* for managing resync I/O pages */ | 
 | struct resync_pages { | 
 | 	void		*raid_bio; | 
 | 	struct page	*pages[RESYNC_PAGES]; | 
 | }; | 
 |  | 
 | struct raid1_plug_cb { | 
 | 	struct blk_plug_cb	cb; | 
 | 	struct bio_list		pending; | 
 | 	unsigned int		count; | 
 | }; | 
 |  | 
 | static void rbio_pool_free(void *rbio, void *data) | 
 | { | 
 | 	kfree(rbio); | 
 | } | 
 |  | 
 | static inline int resync_alloc_pages(struct resync_pages *rp, | 
 | 				     gfp_t gfp_flags) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < RESYNC_PAGES; i++) { | 
 | 		rp->pages[i] = alloc_page(gfp_flags); | 
 | 		if (!rp->pages[i]) | 
 | 			goto out_free; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	while (--i >= 0) | 
 | 		put_page(rp->pages[i]); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static inline void resync_free_pages(struct resync_pages *rp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < RESYNC_PAGES; i++) | 
 | 		put_page(rp->pages[i]); | 
 | } | 
 |  | 
 | static inline void resync_get_all_pages(struct resync_pages *rp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < RESYNC_PAGES; i++) | 
 | 		get_page(rp->pages[i]); | 
 | } | 
 |  | 
 | static inline struct page *resync_fetch_page(struct resync_pages *rp, | 
 | 					     unsigned idx) | 
 | { | 
 | 	if (WARN_ON_ONCE(idx >= RESYNC_PAGES)) | 
 | 		return NULL; | 
 | 	return rp->pages[idx]; | 
 | } | 
 |  | 
 | /* | 
 |  * 'strct resync_pages' stores actual pages used for doing the resync | 
 |  *  IO, and it is per-bio, so make .bi_private points to it. | 
 |  */ | 
 | static inline struct resync_pages *get_resync_pages(struct bio *bio) | 
 | { | 
 | 	return bio->bi_private; | 
 | } | 
 |  | 
 | /* generally called after bio_reset() for reseting bvec */ | 
 | static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp, | 
 | 			       int size) | 
 | { | 
 | 	int idx = 0; | 
 |  | 
 | 	/* initialize bvec table again */ | 
 | 	do { | 
 | 		struct page *page = resync_fetch_page(rp, idx); | 
 | 		int len = min_t(int, size, PAGE_SIZE); | 
 |  | 
 | 		if (WARN_ON(!bio_add_page(bio, page, len, 0))) { | 
 | 			bio->bi_status = BLK_STS_RESOURCE; | 
 | 			bio_endio(bio); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		size -= len; | 
 | 	} while (idx++ < RESYNC_PAGES && size > 0); | 
 | } | 
 |  | 
 |  | 
 | static inline void raid1_submit_write(struct bio *bio) | 
 | { | 
 | 	struct md_rdev *rdev = (void *)bio->bi_bdev; | 
 |  | 
 | 	bio->bi_next = NULL; | 
 | 	bio_set_dev(bio, rdev->bdev); | 
 | 	if (test_bit(Faulty, &rdev->flags)) | 
 | 		bio_io_error(bio); | 
 | 	else if (unlikely(bio_op(bio) ==  REQ_OP_DISCARD && | 
 | 			  !bdev_max_discard_sectors(bio->bi_bdev))) | 
 | 		/* Just ignore it */ | 
 | 		bio_endio(bio); | 
 | 	else | 
 | 		submit_bio_noacct(bio); | 
 | } | 
 |  | 
 | static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio, | 
 | 				      blk_plug_cb_fn unplug, int copies) | 
 | { | 
 | 	struct raid1_plug_cb *plug = NULL; | 
 | 	struct blk_plug_cb *cb; | 
 |  | 
 | 	/* | 
 | 	 * If bitmap is not enabled, it's safe to submit the io directly, and | 
 | 	 * this can get optimal performance. | 
 | 	 */ | 
 | 	if (!mddev->bitmap_ops->enabled(mddev)) { | 
 | 		raid1_submit_write(bio); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	cb = blk_check_plugged(unplug, mddev, sizeof(*plug)); | 
 | 	if (!cb) | 
 | 		return false; | 
 |  | 
 | 	plug = container_of(cb, struct raid1_plug_cb, cb); | 
 | 	bio_list_add(&plug->pending, bio); | 
 | 	if (++plug->count / MAX_PLUG_BIO >= copies) { | 
 | 		list_del(&cb->list); | 
 | 		cb->callback(cb, false); | 
 | 	} | 
 |  | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * current->bio_list will be set under submit_bio() context, in this case bitmap | 
 |  * io will be added to the list and wait for current io submission to finish, | 
 |  * while current io submission must wait for bitmap io to be done. In order to | 
 |  * avoid such deadlock, submit bitmap io asynchronously. | 
 |  */ | 
 | static inline void raid1_prepare_flush_writes(struct mddev *mddev) | 
 | { | 
 | 	mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Used by fix_read_error() to decay the per rdev read_errors. | 
 |  * We halve the read error count for every hour that has elapsed | 
 |  * since the last recorded read error. | 
 |  */ | 
 | static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	long cur_time_mon; | 
 | 	unsigned long hours_since_last; | 
 | 	unsigned int read_errors = atomic_read(&rdev->read_errors); | 
 |  | 
 | 	cur_time_mon = ktime_get_seconds(); | 
 |  | 
 | 	if (rdev->last_read_error == 0) { | 
 | 		/* first time we've seen a read error */ | 
 | 		rdev->last_read_error = cur_time_mon; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hours_since_last = (long)(cur_time_mon - | 
 | 			    rdev->last_read_error) / 3600; | 
 |  | 
 | 	rdev->last_read_error = cur_time_mon; | 
 |  | 
 | 	/* | 
 | 	 * if hours_since_last is > the number of bits in read_errors | 
 | 	 * just set read errors to 0. We do this to avoid | 
 | 	 * overflowing the shift of read_errors by hours_since_last. | 
 | 	 */ | 
 | 	if (hours_since_last >= 8 * sizeof(read_errors)) | 
 | 		atomic_set(&rdev->read_errors, 0); | 
 | 	else | 
 | 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last); | 
 | } | 
 |  | 
 | static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors); | 
 | 	int read_errors; | 
 |  | 
 | 	check_decay_read_errors(mddev, rdev); | 
 | 	read_errors =  atomic_inc_return(&rdev->read_errors); | 
 | 	if (read_errors > max_read_errors) { | 
 | 		pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n", | 
 | 			  mdname(mddev), rdev->bdev, read_errors, max_read_errors); | 
 | 		pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n", | 
 | 			  mdname(mddev), rdev->bdev); | 
 | 		md_error(mddev, rdev); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * raid1_check_read_range() - check a given read range for bad blocks, | 
 |  * available read length is returned; | 
 |  * @rdev: the rdev to read; | 
 |  * @this_sector: read position; | 
 |  * @len: read length; | 
 |  * | 
 |  * helper function for read_balance() | 
 |  * | 
 |  * 1) If there are no bad blocks in the range, @len is returned; | 
 |  * 2) If the range are all bad blocks, 0 is returned; | 
 |  * 3) If there are partial bad blocks: | 
 |  *  - If the bad block range starts after @this_sector, the length of first | 
 |  *  good region is returned; | 
 |  *  - If the bad block range starts before @this_sector, 0 is returned and | 
 |  *  the @len is updated to the offset into the region before we get to the | 
 |  *  good blocks; | 
 |  */ | 
 | static inline int raid1_check_read_range(struct md_rdev *rdev, | 
 | 					 sector_t this_sector, int *len) | 
 | { | 
 | 	sector_t first_bad; | 
 | 	int bad_sectors; | 
 |  | 
 | 	/* no bad block overlap */ | 
 | 	if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors)) | 
 | 		return *len; | 
 |  | 
 | 	/* | 
 | 	 * bad block range starts offset into our range so we can return the | 
 | 	 * number of sectors before the bad blocks start. | 
 | 	 */ | 
 | 	if (first_bad > this_sector) | 
 | 		return first_bad - this_sector; | 
 |  | 
 | 	/* read range is fully consumed by bad blocks. */ | 
 | 	if (this_sector + *len <= first_bad + bad_sectors) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * final case, bad block range starts before or at the start of our | 
 | 	 * range but does not cover our entire range so we still return 0 but | 
 | 	 * update the length with the number of sectors before we get to the | 
 | 	 * good ones. | 
 | 	 */ | 
 | 	*len = first_bad + bad_sectors - this_sector; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if read should choose the first rdev. | 
 |  * | 
 |  * Balance on the whole device if no resync is going on (recovery is ok) or | 
 |  * below the resync window. Otherwise, take the first readable disk. | 
 |  */ | 
 | static inline bool raid1_should_read_first(struct mddev *mddev, | 
 | 					   sector_t this_sector, int len) | 
 | { | 
 | 	if ((mddev->recovery_cp < this_sector + len)) | 
 | 		return true; | 
 |  | 
 | 	if (mddev_is_clustered(mddev) && | 
 | 	    md_cluster_ops->area_resyncing(mddev, READ, this_sector, | 
 | 					   this_sector + len)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } |