|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | *  Kernel Probes (KProbes) | 
|  | * | 
|  | * Copyright (C) IBM Corporation, 2002, 2004 | 
|  | * | 
|  | * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel | 
|  | *		Probes initial implementation (includes suggestions from | 
|  | *		Rusty Russell). | 
|  | * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with | 
|  | *		hlists and exceptions notifier as suggested by Andi Kleen. | 
|  | * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes | 
|  | *		interface to access function arguments. | 
|  | * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes | 
|  | *		exceptions notifier to be first on the priority list. | 
|  | * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston | 
|  | *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi | 
|  | *		<prasanna@in.ibm.com> added function-return probes. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "kprobes: " fmt | 
|  |  | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/jump_label.h> | 
|  | #include <linux/static_call.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/execmem.h> | 
|  |  | 
|  | #include <asm/sections.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/errno.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #define KPROBE_HASH_BITS 6 | 
|  | #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) | 
|  |  | 
|  | #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL) | 
|  | #define kprobe_sysctls_init() do { } while (0) | 
|  | #endif | 
|  |  | 
|  | static int kprobes_initialized; | 
|  | /* kprobe_table can be accessed by | 
|  | * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held. | 
|  | * Or | 
|  | * - RCU hlist traversal under disabling preempt (breakpoint handlers) | 
|  | */ | 
|  | static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; | 
|  |  | 
|  | /* NOTE: change this value only with 'kprobe_mutex' held */ | 
|  | static bool kprobes_all_disarmed; | 
|  |  | 
|  | /* This protects 'kprobe_table' and 'optimizing_list' */ | 
|  | static DEFINE_MUTEX(kprobe_mutex); | 
|  | static DEFINE_PER_CPU(struct kprobe *, kprobe_instance); | 
|  |  | 
|  | kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, | 
|  | unsigned int __unused) | 
|  | { | 
|  | return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where | 
|  | * kprobes can not probe. | 
|  | */ | 
|  | static LIST_HEAD(kprobe_blacklist); | 
|  |  | 
|  | #ifdef __ARCH_WANT_KPROBES_INSN_SLOT | 
|  | /* | 
|  | * 'kprobe::ainsn.insn' points to the copy of the instruction to be | 
|  | * single-stepped. x86_64, POWER4 and above have no-exec support and | 
|  | * stepping on the instruction on a vmalloced/kmalloced/data page | 
|  | * is a recipe for disaster | 
|  | */ | 
|  | struct kprobe_insn_page { | 
|  | struct list_head list; | 
|  | kprobe_opcode_t *insns;		/* Page of instruction slots */ | 
|  | struct kprobe_insn_cache *cache; | 
|  | int nused; | 
|  | int ngarbage; | 
|  | char slot_used[]; | 
|  | }; | 
|  |  | 
|  | #define KPROBE_INSN_PAGE_SIZE(slots)			\ | 
|  | (offsetof(struct kprobe_insn_page, slot_used) +	\ | 
|  | (sizeof(char) * (slots))) | 
|  |  | 
|  | static int slots_per_page(struct kprobe_insn_cache *c) | 
|  | { | 
|  | return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); | 
|  | } | 
|  |  | 
|  | enum kprobe_slot_state { | 
|  | SLOT_CLEAN = 0, | 
|  | SLOT_DIRTY = 1, | 
|  | SLOT_USED = 2, | 
|  | }; | 
|  |  | 
|  | void __weak *alloc_insn_page(void) | 
|  | { | 
|  | /* | 
|  | * Use execmem_alloc() so this page is within +/- 2GB of where the | 
|  | * kernel image and loaded module images reside. This is required | 
|  | * for most of the architectures. | 
|  | * (e.g. x86-64 needs this to handle the %rip-relative fixups.) | 
|  | */ | 
|  | return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void free_insn_page(void *page) | 
|  | { | 
|  | execmem_free(page); | 
|  | } | 
|  |  | 
|  | struct kprobe_insn_cache kprobe_insn_slots = { | 
|  | .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), | 
|  | .alloc = alloc_insn_page, | 
|  | .free = free_insn_page, | 
|  | .sym = KPROBE_INSN_PAGE_SYM, | 
|  | .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), | 
|  | .insn_size = MAX_INSN_SIZE, | 
|  | .nr_garbage = 0, | 
|  | }; | 
|  | static int collect_garbage_slots(struct kprobe_insn_cache *c); | 
|  |  | 
|  | /** | 
|  | * __get_insn_slot() - Find a slot on an executable page for an instruction. | 
|  | * We allocate an executable page if there's no room on existing ones. | 
|  | */ | 
|  | kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) | 
|  | { | 
|  | struct kprobe_insn_page *kip; | 
|  | kprobe_opcode_t *slot = NULL; | 
|  |  | 
|  | /* Since the slot array is not protected by rcu, we need a mutex */ | 
|  | mutex_lock(&c->mutex); | 
|  | retry: | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(kip, &c->pages, list) { | 
|  | if (kip->nused < slots_per_page(c)) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < slots_per_page(c); i++) { | 
|  | if (kip->slot_used[i] == SLOT_CLEAN) { | 
|  | kip->slot_used[i] = SLOT_USED; | 
|  | kip->nused++; | 
|  | slot = kip->insns + (i * c->insn_size); | 
|  | rcu_read_unlock(); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | /* kip->nused is broken. Fix it. */ | 
|  | kip->nused = slots_per_page(c); | 
|  | WARN_ON(1); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* If there are any garbage slots, collect it and try again. */ | 
|  | if (c->nr_garbage && collect_garbage_slots(c) == 0) | 
|  | goto retry; | 
|  |  | 
|  | /* All out of space.  Need to allocate a new page. */ | 
|  | kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); | 
|  | if (!kip) | 
|  | goto out; | 
|  |  | 
|  | kip->insns = c->alloc(); | 
|  | if (!kip->insns) { | 
|  | kfree(kip); | 
|  | goto out; | 
|  | } | 
|  | INIT_LIST_HEAD(&kip->list); | 
|  | memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); | 
|  | kip->slot_used[0] = SLOT_USED; | 
|  | kip->nused = 1; | 
|  | kip->ngarbage = 0; | 
|  | kip->cache = c; | 
|  | list_add_rcu(&kip->list, &c->pages); | 
|  | slot = kip->insns; | 
|  |  | 
|  | /* Record the perf ksymbol register event after adding the page */ | 
|  | perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, | 
|  | PAGE_SIZE, false, c->sym); | 
|  | out: | 
|  | mutex_unlock(&c->mutex); | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | /* Return true if all garbages are collected, otherwise false. */ | 
|  | static bool collect_one_slot(struct kprobe_insn_page *kip, int idx) | 
|  | { | 
|  | kip->slot_used[idx] = SLOT_CLEAN; | 
|  | kip->nused--; | 
|  | if (kip->nused == 0) { | 
|  | /* | 
|  | * Page is no longer in use.  Free it unless | 
|  | * it's the last one.  We keep the last one | 
|  | * so as not to have to set it up again the | 
|  | * next time somebody inserts a probe. | 
|  | */ | 
|  | if (!list_is_singular(&kip->list)) { | 
|  | /* | 
|  | * Record perf ksymbol unregister event before removing | 
|  | * the page. | 
|  | */ | 
|  | perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, | 
|  | (unsigned long)kip->insns, PAGE_SIZE, true, | 
|  | kip->cache->sym); | 
|  | list_del_rcu(&kip->list); | 
|  | synchronize_rcu(); | 
|  | kip->cache->free(kip->insns); | 
|  | kfree(kip); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int collect_garbage_slots(struct kprobe_insn_cache *c) | 
|  | { | 
|  | struct kprobe_insn_page *kip, *next; | 
|  |  | 
|  | /* Ensure no-one is interrupted on the garbages */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | list_for_each_entry_safe(kip, next, &c->pages, list) { | 
|  | int i; | 
|  |  | 
|  | if (kip->ngarbage == 0) | 
|  | continue; | 
|  | kip->ngarbage = 0;	/* we will collect all garbages */ | 
|  | for (i = 0; i < slots_per_page(c); i++) { | 
|  | if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | c->nr_garbage = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __free_insn_slot(struct kprobe_insn_cache *c, | 
|  | kprobe_opcode_t *slot, int dirty) | 
|  | { | 
|  | struct kprobe_insn_page *kip; | 
|  | long idx; | 
|  |  | 
|  | mutex_lock(&c->mutex); | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(kip, &c->pages, list) { | 
|  | idx = ((long)slot - (long)kip->insns) / | 
|  | (c->insn_size * sizeof(kprobe_opcode_t)); | 
|  | if (idx >= 0 && idx < slots_per_page(c)) | 
|  | goto out; | 
|  | } | 
|  | /* Could not find this slot. */ | 
|  | WARN_ON(1); | 
|  | kip = NULL; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | /* Mark and sweep: this may sleep */ | 
|  | if (kip) { | 
|  | /* Check double free */ | 
|  | WARN_ON(kip->slot_used[idx] != SLOT_USED); | 
|  | if (dirty) { | 
|  | kip->slot_used[idx] = SLOT_DIRTY; | 
|  | kip->ngarbage++; | 
|  | if (++c->nr_garbage > slots_per_page(c)) | 
|  | collect_garbage_slots(c); | 
|  | } else { | 
|  | collect_one_slot(kip, idx); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&c->mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check given address is on the page of kprobe instruction slots. | 
|  | * This will be used for checking whether the address on a stack | 
|  | * is on a text area or not. | 
|  | */ | 
|  | bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) | 
|  | { | 
|  | struct kprobe_insn_page *kip; | 
|  | bool ret = false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(kip, &c->pages, list) { | 
|  | if (addr >= (unsigned long)kip->insns && | 
|  | addr < (unsigned long)kip->insns + PAGE_SIZE) { | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, | 
|  | unsigned long *value, char *type, char *sym) | 
|  | { | 
|  | struct kprobe_insn_page *kip; | 
|  | int ret = -ERANGE; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(kip, &c->pages, list) { | 
|  | if ((*symnum)--) | 
|  | continue; | 
|  | strscpy(sym, c->sym, KSYM_NAME_LEN); | 
|  | *type = 't'; | 
|  | *value = (unsigned long)kip->insns; | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_OPTPROBES | 
|  | void __weak *alloc_optinsn_page(void) | 
|  | { | 
|  | return alloc_insn_page(); | 
|  | } | 
|  |  | 
|  | void __weak free_optinsn_page(void *page) | 
|  | { | 
|  | free_insn_page(page); | 
|  | } | 
|  |  | 
|  | /* For optimized_kprobe buffer */ | 
|  | struct kprobe_insn_cache kprobe_optinsn_slots = { | 
|  | .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), | 
|  | .alloc = alloc_optinsn_page, | 
|  | .free = free_optinsn_page, | 
|  | .sym = KPROBE_OPTINSN_PAGE_SYM, | 
|  | .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), | 
|  | /* .insn_size is initialized later */ | 
|  | .nr_garbage = 0, | 
|  | }; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* We have preemption disabled.. so it is safe to use __ versions */ | 
|  | static inline void set_kprobe_instance(struct kprobe *kp) | 
|  | { | 
|  | __this_cpu_write(kprobe_instance, kp); | 
|  | } | 
|  |  | 
|  | static inline void reset_kprobe_instance(void) | 
|  | { | 
|  | __this_cpu_write(kprobe_instance, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called either: | 
|  | *	- under the 'kprobe_mutex' - during kprobe_[un]register(). | 
|  | *				OR | 
|  | *	- with preemption disabled - from architecture specific code. | 
|  | */ | 
|  | struct kprobe *get_kprobe(void *addr) | 
|  | { | 
|  | struct hlist_head *head; | 
|  | struct kprobe *p; | 
|  |  | 
|  | head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; | 
|  | hlist_for_each_entry_rcu(p, head, hlist, | 
|  | lockdep_is_held(&kprobe_mutex)) { | 
|  | if (p->addr == addr) | 
|  | return p; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | NOKPROBE_SYMBOL(get_kprobe); | 
|  |  | 
|  | static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); | 
|  |  | 
|  | /* Return true if 'p' is an aggregator */ | 
|  | static inline bool kprobe_aggrprobe(struct kprobe *p) | 
|  | { | 
|  | return p->pre_handler == aggr_pre_handler; | 
|  | } | 
|  |  | 
|  | /* Return true if 'p' is unused */ | 
|  | static inline bool kprobe_unused(struct kprobe *p) | 
|  | { | 
|  | return kprobe_aggrprobe(p) && kprobe_disabled(p) && | 
|  | list_empty(&p->list); | 
|  | } | 
|  |  | 
|  | /* Keep all fields in the kprobe consistent. */ | 
|  | static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) | 
|  | { | 
|  | memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); | 
|  | memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_OPTPROBES | 
|  | /* NOTE: This is protected by 'kprobe_mutex'. */ | 
|  | static bool kprobes_allow_optimization; | 
|  |  | 
|  | /* | 
|  | * Call all 'kprobe::pre_handler' on the list, but ignores its return value. | 
|  | * This must be called from arch-dep optimized caller. | 
|  | */ | 
|  | void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *kp; | 
|  |  | 
|  | list_for_each_entry_rcu(kp, &p->list, list) { | 
|  | if (kp->pre_handler && likely(!kprobe_disabled(kp))) { | 
|  | set_kprobe_instance(kp); | 
|  | kp->pre_handler(kp, regs); | 
|  | } | 
|  | reset_kprobe_instance(); | 
|  | } | 
|  | } | 
|  | NOKPROBE_SYMBOL(opt_pre_handler); | 
|  |  | 
|  | /* Free optimized instructions and optimized_kprobe */ | 
|  | static void free_aggr_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  | arch_remove_optimized_kprobe(op); | 
|  | arch_remove_kprobe(p); | 
|  | kfree(op); | 
|  | } | 
|  |  | 
|  | /* Return true if the kprobe is ready for optimization. */ | 
|  | static inline int kprobe_optready(struct kprobe *p) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | if (kprobe_aggrprobe(p)) { | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  | return arch_prepared_optinsn(&op->optinsn); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return true if the kprobe is disarmed. Note: p must be on hash list */ | 
|  | bool kprobe_disarmed(struct kprobe *p) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ | 
|  | if (!kprobe_aggrprobe(p)) | 
|  | return kprobe_disabled(p); | 
|  |  | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  |  | 
|  | return kprobe_disabled(p) && list_empty(&op->list); | 
|  | } | 
|  |  | 
|  | /* Return true if the probe is queued on (un)optimizing lists */ | 
|  | static bool kprobe_queued(struct kprobe *p) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | if (kprobe_aggrprobe(p)) { | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  | if (!list_empty(&op->list)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return an optimized kprobe whose optimizing code replaces | 
|  | * instructions including 'addr' (exclude breakpoint). | 
|  | */ | 
|  | static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr) | 
|  | { | 
|  | int i; | 
|  | struct kprobe *p = NULL; | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | /* Don't check i == 0, since that is a breakpoint case. */ | 
|  | for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++) | 
|  | p = get_kprobe(addr - i); | 
|  |  | 
|  | if (p && kprobe_optready(p)) { | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  | if (arch_within_optimized_kprobe(op, addr)) | 
|  | return p; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Optimization staging list, protected by 'kprobe_mutex' */ | 
|  | static LIST_HEAD(optimizing_list); | 
|  | static LIST_HEAD(unoptimizing_list); | 
|  | static LIST_HEAD(freeing_list); | 
|  |  | 
|  | static void kprobe_optimizer(struct work_struct *work); | 
|  | static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); | 
|  | #define OPTIMIZE_DELAY 5 | 
|  |  | 
|  | /* | 
|  | * Optimize (replace a breakpoint with a jump) kprobes listed on | 
|  | * 'optimizing_list'. | 
|  | */ | 
|  | static void do_optimize_kprobes(void) | 
|  | { | 
|  | lockdep_assert_held(&text_mutex); | 
|  | /* | 
|  | * The optimization/unoptimization refers 'online_cpus' via | 
|  | * stop_machine() and cpu-hotplug modifies the 'online_cpus'. | 
|  | * And same time, 'text_mutex' will be held in cpu-hotplug and here. | 
|  | * This combination can cause a deadlock (cpu-hotplug tries to lock | 
|  | * 'text_mutex' but stop_machine() can not be done because | 
|  | * the 'online_cpus' has been changed) | 
|  | * To avoid this deadlock, caller must have locked cpu-hotplug | 
|  | * for preventing cpu-hotplug outside of 'text_mutex' locking. | 
|  | */ | 
|  | lockdep_assert_cpus_held(); | 
|  |  | 
|  | /* Optimization never be done when disarmed */ | 
|  | if (kprobes_all_disarmed || !kprobes_allow_optimization || | 
|  | list_empty(&optimizing_list)) | 
|  | return; | 
|  |  | 
|  | arch_optimize_kprobes(&optimizing_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unoptimize (replace a jump with a breakpoint and remove the breakpoint | 
|  | * if need) kprobes listed on 'unoptimizing_list'. | 
|  | */ | 
|  | static void do_unoptimize_kprobes(void) | 
|  | { | 
|  | struct optimized_kprobe *op, *tmp; | 
|  |  | 
|  | lockdep_assert_held(&text_mutex); | 
|  | /* See comment in do_optimize_kprobes() */ | 
|  | lockdep_assert_cpus_held(); | 
|  |  | 
|  | if (!list_empty(&unoptimizing_list)) | 
|  | arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); | 
|  |  | 
|  | /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */ | 
|  | list_for_each_entry_safe(op, tmp, &freeing_list, list) { | 
|  | /* Switching from detour code to origin */ | 
|  | op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; | 
|  | /* Disarm probes if marked disabled and not gone */ | 
|  | if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp)) | 
|  | arch_disarm_kprobe(&op->kp); | 
|  | if (kprobe_unused(&op->kp)) { | 
|  | /* | 
|  | * Remove unused probes from hash list. After waiting | 
|  | * for synchronization, these probes are reclaimed. | 
|  | * (reclaiming is done by do_free_cleaned_kprobes().) | 
|  | */ | 
|  | hlist_del_rcu(&op->kp.hlist); | 
|  | } else | 
|  | list_del_init(&op->list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reclaim all kprobes on the 'freeing_list' */ | 
|  | static void do_free_cleaned_kprobes(void) | 
|  | { | 
|  | struct optimized_kprobe *op, *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(op, tmp, &freeing_list, list) { | 
|  | list_del_init(&op->list); | 
|  | if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { | 
|  | /* | 
|  | * This must not happen, but if there is a kprobe | 
|  | * still in use, keep it on kprobes hash list. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | free_aggr_kprobe(&op->kp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Start optimizer after OPTIMIZE_DELAY passed */ | 
|  | static void kick_kprobe_optimizer(void) | 
|  | { | 
|  | schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); | 
|  | } | 
|  |  | 
|  | /* Kprobe jump optimizer */ | 
|  | static void kprobe_optimizer(struct work_struct *work) | 
|  | { | 
|  | mutex_lock(&kprobe_mutex); | 
|  | cpus_read_lock(); | 
|  | mutex_lock(&text_mutex); | 
|  |  | 
|  | /* | 
|  | * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) | 
|  | * kprobes before waiting for quiesence period. | 
|  | */ | 
|  | do_unoptimize_kprobes(); | 
|  |  | 
|  | /* | 
|  | * Step 2: Wait for quiesence period to ensure all potentially | 
|  | * preempted tasks to have normally scheduled. Because optprobe | 
|  | * may modify multiple instructions, there is a chance that Nth | 
|  | * instruction is preempted. In that case, such tasks can return | 
|  | * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. | 
|  | * Note that on non-preemptive kernel, this is transparently converted | 
|  | * to synchronoze_sched() to wait for all interrupts to have completed. | 
|  | */ | 
|  | synchronize_rcu_tasks(); | 
|  |  | 
|  | /* Step 3: Optimize kprobes after quiesence period */ | 
|  | do_optimize_kprobes(); | 
|  |  | 
|  | /* Step 4: Free cleaned kprobes after quiesence period */ | 
|  | do_free_cleaned_kprobes(); | 
|  |  | 
|  | mutex_unlock(&text_mutex); | 
|  | cpus_read_unlock(); | 
|  |  | 
|  | /* Step 5: Kick optimizer again if needed */ | 
|  | if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) | 
|  | kick_kprobe_optimizer(); | 
|  |  | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | } | 
|  |  | 
|  | /* Wait for completing optimization and unoptimization */ | 
|  | void wait_for_kprobe_optimizer(void) | 
|  | { | 
|  | mutex_lock(&kprobe_mutex); | 
|  |  | 
|  | while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { | 
|  | mutex_unlock(&kprobe_mutex); | 
|  |  | 
|  | /* This will also make 'optimizing_work' execute immmediately */ | 
|  | flush_delayed_work(&optimizing_work); | 
|  | /* 'optimizing_work' might not have been queued yet, relax */ | 
|  | cpu_relax(); | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | } | 
|  |  | 
|  | bool optprobe_queued_unopt(struct optimized_kprobe *op) | 
|  | { | 
|  | struct optimized_kprobe *_op; | 
|  |  | 
|  | list_for_each_entry(_op, &unoptimizing_list, list) { | 
|  | if (op == _op) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Optimize kprobe if p is ready to be optimized */ | 
|  | static void optimize_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | /* Check if the kprobe is disabled or not ready for optimization. */ | 
|  | if (!kprobe_optready(p) || !kprobes_allow_optimization || | 
|  | (kprobe_disabled(p) || kprobes_all_disarmed)) | 
|  | return; | 
|  |  | 
|  | /* kprobes with 'post_handler' can not be optimized */ | 
|  | if (p->post_handler) | 
|  | return; | 
|  |  | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  |  | 
|  | /* Check there is no other kprobes at the optimized instructions */ | 
|  | if (arch_check_optimized_kprobe(op) < 0) | 
|  | return; | 
|  |  | 
|  | /* Check if it is already optimized. */ | 
|  | if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { | 
|  | if (optprobe_queued_unopt(op)) { | 
|  | /* This is under unoptimizing. Just dequeue the probe */ | 
|  | list_del_init(&op->list); | 
|  | } | 
|  | return; | 
|  | } | 
|  | op->kp.flags |= KPROBE_FLAG_OPTIMIZED; | 
|  |  | 
|  | /* | 
|  | * On the 'unoptimizing_list' and 'optimizing_list', | 
|  | * 'op' must have OPTIMIZED flag | 
|  | */ | 
|  | if (WARN_ON_ONCE(!list_empty(&op->list))) | 
|  | return; | 
|  |  | 
|  | list_add(&op->list, &optimizing_list); | 
|  | kick_kprobe_optimizer(); | 
|  | } | 
|  |  | 
|  | /* Short cut to direct unoptimizing */ | 
|  | static void force_unoptimize_kprobe(struct optimized_kprobe *op) | 
|  | { | 
|  | lockdep_assert_cpus_held(); | 
|  | arch_unoptimize_kprobe(op); | 
|  | op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; | 
|  | } | 
|  |  | 
|  | /* Unoptimize a kprobe if p is optimized */ | 
|  | static void unoptimize_kprobe(struct kprobe *p, bool force) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) | 
|  | return; /* This is not an optprobe nor optimized */ | 
|  |  | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  | if (!kprobe_optimized(p)) | 
|  | return; | 
|  |  | 
|  | if (!list_empty(&op->list)) { | 
|  | if (optprobe_queued_unopt(op)) { | 
|  | /* Queued in unoptimizing queue */ | 
|  | if (force) { | 
|  | /* | 
|  | * Forcibly unoptimize the kprobe here, and queue it | 
|  | * in the freeing list for release afterwards. | 
|  | */ | 
|  | force_unoptimize_kprobe(op); | 
|  | list_move(&op->list, &freeing_list); | 
|  | } | 
|  | } else { | 
|  | /* Dequeue from the optimizing queue */ | 
|  | list_del_init(&op->list); | 
|  | op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Optimized kprobe case */ | 
|  | if (force) { | 
|  | /* Forcibly update the code: this is a special case */ | 
|  | force_unoptimize_kprobe(op); | 
|  | } else { | 
|  | list_add(&op->list, &unoptimizing_list); | 
|  | kick_kprobe_optimizer(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cancel unoptimizing for reusing */ | 
|  | static int reuse_unused_kprobe(struct kprobe *ap) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | /* | 
|  | * Unused kprobe MUST be on the way of delayed unoptimizing (means | 
|  | * there is still a relative jump) and disabled. | 
|  | */ | 
|  | op = container_of(ap, struct optimized_kprobe, kp); | 
|  | WARN_ON_ONCE(list_empty(&op->list)); | 
|  | /* Enable the probe again */ | 
|  | ap->flags &= ~KPROBE_FLAG_DISABLED; | 
|  | /* Optimize it again. (remove from 'op->list') */ | 
|  | if (!kprobe_optready(ap)) | 
|  | return -EINVAL; | 
|  |  | 
|  | optimize_kprobe(ap); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Remove optimized instructions */ | 
|  | static void kill_optimized_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  | if (!list_empty(&op->list)) | 
|  | /* Dequeue from the (un)optimization queue */ | 
|  | list_del_init(&op->list); | 
|  | op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; | 
|  |  | 
|  | if (kprobe_unused(p)) { | 
|  | /* | 
|  | * Unused kprobe is on unoptimizing or freeing list. We move it | 
|  | * to freeing_list and let the kprobe_optimizer() remove it from | 
|  | * the kprobe hash list and free it. | 
|  | */ | 
|  | if (optprobe_queued_unopt(op)) | 
|  | list_move(&op->list, &freeing_list); | 
|  | } | 
|  |  | 
|  | /* Don't touch the code, because it is already freed. */ | 
|  | arch_remove_optimized_kprobe(op); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) | 
|  | { | 
|  | if (!kprobe_ftrace(p)) | 
|  | arch_prepare_optimized_kprobe(op, p); | 
|  | } | 
|  |  | 
|  | /* Try to prepare optimized instructions */ | 
|  | static void prepare_optimized_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | op = container_of(p, struct optimized_kprobe, kp); | 
|  | __prepare_optimized_kprobe(op, p); | 
|  | } | 
|  |  | 
|  | /* Allocate new optimized_kprobe and try to prepare optimized instructions. */ | 
|  | static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); | 
|  | if (!op) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&op->list); | 
|  | op->kp.addr = p->addr; | 
|  | __prepare_optimized_kprobe(op, p); | 
|  |  | 
|  | return &op->kp; | 
|  | } | 
|  |  | 
|  | static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); | 
|  |  | 
|  | /* | 
|  | * Prepare an optimized_kprobe and optimize it. | 
|  | * NOTE: 'p' must be a normal registered kprobe. | 
|  | */ | 
|  | static void try_to_optimize_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *ap; | 
|  | struct optimized_kprobe *op; | 
|  |  | 
|  | /* Impossible to optimize ftrace-based kprobe. */ | 
|  | if (kprobe_ftrace(p)) | 
|  | return; | 
|  |  | 
|  | /* For preparing optimization, jump_label_text_reserved() is called. */ | 
|  | cpus_read_lock(); | 
|  | jump_label_lock(); | 
|  | mutex_lock(&text_mutex); | 
|  |  | 
|  | ap = alloc_aggr_kprobe(p); | 
|  | if (!ap) | 
|  | goto out; | 
|  |  | 
|  | op = container_of(ap, struct optimized_kprobe, kp); | 
|  | if (!arch_prepared_optinsn(&op->optinsn)) { | 
|  | /* If failed to setup optimizing, fallback to kprobe. */ | 
|  | arch_remove_optimized_kprobe(op); | 
|  | kfree(op); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | init_aggr_kprobe(ap, p); | 
|  | optimize_kprobe(ap);	/* This just kicks optimizer thread. */ | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&text_mutex); | 
|  | jump_label_unlock(); | 
|  | cpus_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void optimize_all_kprobes(void) | 
|  | { | 
|  | struct hlist_head *head; | 
|  | struct kprobe *p; | 
|  | unsigned int i; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  | /* If optimization is already allowed, just return. */ | 
|  | if (kprobes_allow_optimization) | 
|  | goto out; | 
|  |  | 
|  | cpus_read_lock(); | 
|  | kprobes_allow_optimization = true; | 
|  | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { | 
|  | head = &kprobe_table[i]; | 
|  | hlist_for_each_entry(p, head, hlist) | 
|  | if (!kprobe_disabled(p)) | 
|  | optimize_kprobe(p); | 
|  | } | 
|  | cpus_read_unlock(); | 
|  | pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n"); | 
|  | out: | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static void unoptimize_all_kprobes(void) | 
|  | { | 
|  | struct hlist_head *head; | 
|  | struct kprobe *p; | 
|  | unsigned int i; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  | /* If optimization is already prohibited, just return. */ | 
|  | if (!kprobes_allow_optimization) { | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cpus_read_lock(); | 
|  | kprobes_allow_optimization = false; | 
|  | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { | 
|  | head = &kprobe_table[i]; | 
|  | hlist_for_each_entry(p, head, hlist) { | 
|  | if (!kprobe_disabled(p)) | 
|  | unoptimize_kprobe(p, false); | 
|  | } | 
|  | } | 
|  | cpus_read_unlock(); | 
|  | mutex_unlock(&kprobe_mutex); | 
|  |  | 
|  | /* Wait for unoptimizing completion. */ | 
|  | wait_for_kprobe_optimizer(); | 
|  | pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n"); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(kprobe_sysctl_mutex); | 
|  | static int sysctl_kprobes_optimization; | 
|  | static int proc_kprobes_optimization_handler(const struct ctl_table *table, | 
|  | int write, void *buffer, | 
|  | size_t *length, loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&kprobe_sysctl_mutex); | 
|  | sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; | 
|  | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
|  |  | 
|  | if (sysctl_kprobes_optimization) | 
|  | optimize_all_kprobes(); | 
|  | else | 
|  | unoptimize_all_kprobes(); | 
|  | mutex_unlock(&kprobe_sysctl_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct ctl_table kprobe_sysctls[] = { | 
|  | { | 
|  | .procname	= "kprobes-optimization", | 
|  | .data		= &sysctl_kprobes_optimization, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_kprobes_optimization_handler, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_ONE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void __init kprobe_sysctls_init(void) | 
|  | { | 
|  | register_sysctl_init("debug", kprobe_sysctls); | 
|  | } | 
|  | #endif /* CONFIG_SYSCTL */ | 
|  |  | 
|  | /* Put a breakpoint for a probe. */ | 
|  | static void __arm_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *_p; | 
|  |  | 
|  | lockdep_assert_held(&text_mutex); | 
|  |  | 
|  | /* Find the overlapping optimized kprobes. */ | 
|  | _p = get_optimized_kprobe(p->addr); | 
|  | if (unlikely(_p)) | 
|  | /* Fallback to unoptimized kprobe */ | 
|  | unoptimize_kprobe(_p, true); | 
|  |  | 
|  | arch_arm_kprobe(p); | 
|  | optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */ | 
|  | } | 
|  |  | 
|  | /* Remove the breakpoint of a probe. */ | 
|  | static void __disarm_kprobe(struct kprobe *p, bool reopt) | 
|  | { | 
|  | struct kprobe *_p; | 
|  |  | 
|  | lockdep_assert_held(&text_mutex); | 
|  |  | 
|  | /* Try to unoptimize */ | 
|  | unoptimize_kprobe(p, kprobes_all_disarmed); | 
|  |  | 
|  | if (!kprobe_queued(p)) { | 
|  | arch_disarm_kprobe(p); | 
|  | /* If another kprobe was blocked, re-optimize it. */ | 
|  | _p = get_optimized_kprobe(p->addr); | 
|  | if (unlikely(_p) && reopt) | 
|  | optimize_kprobe(_p); | 
|  | } | 
|  | /* | 
|  | * TODO: Since unoptimization and real disarming will be done by | 
|  | * the worker thread, we can not check whether another probe are | 
|  | * unoptimized because of this probe here. It should be re-optimized | 
|  | * by the worker thread. | 
|  | */ | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_OPTPROBES */ | 
|  |  | 
|  | #define optimize_kprobe(p)			do {} while (0) | 
|  | #define unoptimize_kprobe(p, f)			do {} while (0) | 
|  | #define kill_optimized_kprobe(p)		do {} while (0) | 
|  | #define prepare_optimized_kprobe(p)		do {} while (0) | 
|  | #define try_to_optimize_kprobe(p)		do {} while (0) | 
|  | #define __arm_kprobe(p)				arch_arm_kprobe(p) | 
|  | #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p) | 
|  | #define kprobe_disarmed(p)			kprobe_disabled(p) | 
|  | #define wait_for_kprobe_optimizer()		do {} while (0) | 
|  |  | 
|  | static int reuse_unused_kprobe(struct kprobe *ap) | 
|  | { | 
|  | /* | 
|  | * If the optimized kprobe is NOT supported, the aggr kprobe is | 
|  | * released at the same time that the last aggregated kprobe is | 
|  | * unregistered. | 
|  | * Thus there should be no chance to reuse unused kprobe. | 
|  | */ | 
|  | WARN_ON_ONCE(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void free_aggr_kprobe(struct kprobe *p) | 
|  | { | 
|  | arch_remove_kprobe(p); | 
|  | kfree(p); | 
|  | } | 
|  |  | 
|  | static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) | 
|  | { | 
|  | return kzalloc(sizeof(struct kprobe), GFP_KERNEL); | 
|  | } | 
|  | #endif /* CONFIG_OPTPROBES */ | 
|  |  | 
|  | #ifdef CONFIG_KPROBES_ON_FTRACE | 
|  | static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { | 
|  | .func = kprobe_ftrace_handler, | 
|  | .flags = FTRACE_OPS_FL_SAVE_REGS, | 
|  | }; | 
|  |  | 
|  | static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { | 
|  | .func = kprobe_ftrace_handler, | 
|  | .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, | 
|  | }; | 
|  |  | 
|  | static int kprobe_ipmodify_enabled; | 
|  | static int kprobe_ftrace_enabled; | 
|  | bool kprobe_ftrace_disabled; | 
|  |  | 
|  | static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, | 
|  | int *cnt) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&kprobe_mutex); | 
|  |  | 
|  | ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); | 
|  | if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret)) | 
|  | return ret; | 
|  |  | 
|  | if (*cnt == 0) { | 
|  | ret = register_ftrace_function(ops); | 
|  | if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) | 
|  | goto err_ftrace; | 
|  | } | 
|  |  | 
|  | (*cnt)++; | 
|  | return ret; | 
|  |  | 
|  | err_ftrace: | 
|  | /* | 
|  | * At this point, sinec ops is not registered, we should be sefe from | 
|  | * registering empty filter. | 
|  | */ | 
|  | ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int arm_kprobe_ftrace(struct kprobe *p) | 
|  | { | 
|  | bool ipmodify = (p->post_handler != NULL); | 
|  |  | 
|  | return __arm_kprobe_ftrace(p, | 
|  | ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, | 
|  | ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); | 
|  | } | 
|  |  | 
|  | static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, | 
|  | int *cnt) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&kprobe_mutex); | 
|  |  | 
|  | if (*cnt == 1) { | 
|  | ret = unregister_ftrace_function(ops); | 
|  | if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret)) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | (*cnt)--; | 
|  |  | 
|  | ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); | 
|  | WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n", | 
|  | p->addr, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int disarm_kprobe_ftrace(struct kprobe *p) | 
|  | { | 
|  | bool ipmodify = (p->post_handler != NULL); | 
|  |  | 
|  | return __disarm_kprobe_ftrace(p, | 
|  | ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, | 
|  | ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); | 
|  | } | 
|  |  | 
|  | void kprobe_ftrace_kill(void) | 
|  | { | 
|  | kprobe_ftrace_disabled = true; | 
|  | } | 
|  | #else	/* !CONFIG_KPROBES_ON_FTRACE */ | 
|  | static inline int arm_kprobe_ftrace(struct kprobe *p) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static inline int disarm_kprobe_ftrace(struct kprobe *p) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int prepare_kprobe(struct kprobe *p) | 
|  | { | 
|  | /* Must ensure p->addr is really on ftrace */ | 
|  | if (kprobe_ftrace(p)) | 
|  | return arch_prepare_kprobe_ftrace(p); | 
|  |  | 
|  | return arch_prepare_kprobe(p); | 
|  | } | 
|  |  | 
|  | static int arm_kprobe(struct kprobe *kp) | 
|  | { | 
|  | if (unlikely(kprobe_ftrace(kp))) | 
|  | return arm_kprobe_ftrace(kp); | 
|  |  | 
|  | cpus_read_lock(); | 
|  | mutex_lock(&text_mutex); | 
|  | __arm_kprobe(kp); | 
|  | mutex_unlock(&text_mutex); | 
|  | cpus_read_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int disarm_kprobe(struct kprobe *kp, bool reopt) | 
|  | { | 
|  | if (unlikely(kprobe_ftrace(kp))) | 
|  | return disarm_kprobe_ftrace(kp); | 
|  |  | 
|  | cpus_read_lock(); | 
|  | mutex_lock(&text_mutex); | 
|  | __disarm_kprobe(kp, reopt); | 
|  | mutex_unlock(&text_mutex); | 
|  | cpus_read_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Aggregate handlers for multiple kprobes support - these handlers | 
|  | * take care of invoking the individual kprobe handlers on p->list | 
|  | */ | 
|  | static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *kp; | 
|  |  | 
|  | list_for_each_entry_rcu(kp, &p->list, list) { | 
|  | if (kp->pre_handler && likely(!kprobe_disabled(kp))) { | 
|  | set_kprobe_instance(kp); | 
|  | if (kp->pre_handler(kp, regs)) | 
|  | return 1; | 
|  | } | 
|  | reset_kprobe_instance(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(aggr_pre_handler); | 
|  |  | 
|  | static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct kprobe *kp; | 
|  |  | 
|  | list_for_each_entry_rcu(kp, &p->list, list) { | 
|  | if (kp->post_handler && likely(!kprobe_disabled(kp))) { | 
|  | set_kprobe_instance(kp); | 
|  | kp->post_handler(kp, regs, flags); | 
|  | reset_kprobe_instance(); | 
|  | } | 
|  | } | 
|  | } | 
|  | NOKPROBE_SYMBOL(aggr_post_handler); | 
|  |  | 
|  | /* Walks the list and increments 'nmissed' if 'p' has child probes. */ | 
|  | void kprobes_inc_nmissed_count(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *kp; | 
|  |  | 
|  | if (!kprobe_aggrprobe(p)) { | 
|  | p->nmissed++; | 
|  | } else { | 
|  | list_for_each_entry_rcu(kp, &p->list, list) | 
|  | kp->nmissed++; | 
|  | } | 
|  | } | 
|  | NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); | 
|  |  | 
|  | static struct kprobe kprobe_busy = { | 
|  | .addr = (void *) get_kprobe, | 
|  | }; | 
|  |  | 
|  | void kprobe_busy_begin(void) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb; | 
|  |  | 
|  | preempt_disable(); | 
|  | __this_cpu_write(current_kprobe, &kprobe_busy); | 
|  | kcb = get_kprobe_ctlblk(); | 
|  | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  | } | 
|  |  | 
|  | void kprobe_busy_end(void) | 
|  | { | 
|  | __this_cpu_write(current_kprobe, NULL); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* Add the new probe to 'ap->list'. */ | 
|  | static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) | 
|  | { | 
|  | if (p->post_handler) | 
|  | unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */ | 
|  |  | 
|  | list_add_rcu(&p->list, &ap->list); | 
|  | if (p->post_handler && !ap->post_handler) | 
|  | ap->post_handler = aggr_post_handler; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill in the required fields of the aggregator kprobe. Replace the | 
|  | * earlier kprobe in the hlist with the aggregator kprobe. | 
|  | */ | 
|  | static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) | 
|  | { | 
|  | /* Copy the insn slot of 'p' to 'ap'. */ | 
|  | copy_kprobe(p, ap); | 
|  | flush_insn_slot(ap); | 
|  | ap->addr = p->addr; | 
|  | ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; | 
|  | ap->pre_handler = aggr_pre_handler; | 
|  | /* We don't care the kprobe which has gone. */ | 
|  | if (p->post_handler && !kprobe_gone(p)) | 
|  | ap->post_handler = aggr_post_handler; | 
|  |  | 
|  | INIT_LIST_HEAD(&ap->list); | 
|  | INIT_HLIST_NODE(&ap->hlist); | 
|  |  | 
|  | list_add_rcu(&p->list, &ap->list); | 
|  | hlist_replace_rcu(&p->hlist, &ap->hlist); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This registers the second or subsequent kprobe at the same address. | 
|  | */ | 
|  | static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) | 
|  | { | 
|  | int ret = 0; | 
|  | struct kprobe *ap = orig_p; | 
|  |  | 
|  | cpus_read_lock(); | 
|  |  | 
|  | /* For preparing optimization, jump_label_text_reserved() is called */ | 
|  | jump_label_lock(); | 
|  | mutex_lock(&text_mutex); | 
|  |  | 
|  | if (!kprobe_aggrprobe(orig_p)) { | 
|  | /* If 'orig_p' is not an 'aggr_kprobe', create new one. */ | 
|  | ap = alloc_aggr_kprobe(orig_p); | 
|  | if (!ap) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | init_aggr_kprobe(ap, orig_p); | 
|  | } else if (kprobe_unused(ap)) { | 
|  | /* This probe is going to die. Rescue it */ | 
|  | ret = reuse_unused_kprobe(ap); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kprobe_gone(ap)) { | 
|  | /* | 
|  | * Attempting to insert new probe at the same location that | 
|  | * had a probe in the module vaddr area which already | 
|  | * freed. So, the instruction slot has already been | 
|  | * released. We need a new slot for the new probe. | 
|  | */ | 
|  | ret = arch_prepare_kprobe(ap); | 
|  | if (ret) | 
|  | /* | 
|  | * Even if fail to allocate new slot, don't need to | 
|  | * free the 'ap'. It will be used next time, or | 
|  | * freed by unregister_kprobe(). | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | /* Prepare optimized instructions if possible. */ | 
|  | prepare_optimized_kprobe(ap); | 
|  |  | 
|  | /* | 
|  | * Clear gone flag to prevent allocating new slot again, and | 
|  | * set disabled flag because it is not armed yet. | 
|  | */ | 
|  | ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) | 
|  | | KPROBE_FLAG_DISABLED; | 
|  | } | 
|  |  | 
|  | /* Copy the insn slot of 'p' to 'ap'. */ | 
|  | copy_kprobe(ap, p); | 
|  | ret = add_new_kprobe(ap, p); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&text_mutex); | 
|  | jump_label_unlock(); | 
|  | cpus_read_unlock(); | 
|  |  | 
|  | if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { | 
|  | ap->flags &= ~KPROBE_FLAG_DISABLED; | 
|  | if (!kprobes_all_disarmed) { | 
|  | /* Arm the breakpoint again. */ | 
|  | ret = arm_kprobe(ap); | 
|  | if (ret) { | 
|  | ap->flags |= KPROBE_FLAG_DISABLED; | 
|  | list_del_rcu(&p->list); | 
|  | synchronize_rcu(); | 
|  | } | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool __weak arch_within_kprobe_blacklist(unsigned long addr) | 
|  | { | 
|  | /* The '__kprobes' functions and entry code must not be probed. */ | 
|  | return addr >= (unsigned long)__kprobes_text_start && | 
|  | addr < (unsigned long)__kprobes_text_end; | 
|  | } | 
|  |  | 
|  | static bool __within_kprobe_blacklist(unsigned long addr) | 
|  | { | 
|  | struct kprobe_blacklist_entry *ent; | 
|  |  | 
|  | if (arch_within_kprobe_blacklist(addr)) | 
|  | return true; | 
|  | /* | 
|  | * If 'kprobe_blacklist' is defined, check the address and | 
|  | * reject any probe registration in the prohibited area. | 
|  | */ | 
|  | list_for_each_entry(ent, &kprobe_blacklist, list) { | 
|  | if (addr >= ent->start_addr && addr < ent->end_addr) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool within_kprobe_blacklist(unsigned long addr) | 
|  | { | 
|  | char symname[KSYM_NAME_LEN], *p; | 
|  |  | 
|  | if (__within_kprobe_blacklist(addr)) | 
|  | return true; | 
|  |  | 
|  | /* Check if the address is on a suffixed-symbol */ | 
|  | if (!lookup_symbol_name(addr, symname)) { | 
|  | p = strchr(symname, '.'); | 
|  | if (!p) | 
|  | return false; | 
|  | *p = '\0'; | 
|  | addr = (unsigned long)kprobe_lookup_name(symname, 0); | 
|  | if (addr) | 
|  | return __within_kprobe_blacklist(addr); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * arch_adjust_kprobe_addr - adjust the address | 
|  | * @addr: symbol base address | 
|  | * @offset: offset within the symbol | 
|  | * @on_func_entry: was this @addr+@offset on the function entry | 
|  | * | 
|  | * Typically returns @addr + @offset, except for special cases where the | 
|  | * function might be prefixed by a CFI landing pad, in that case any offset | 
|  | * inside the landing pad is mapped to the first 'real' instruction of the | 
|  | * symbol. | 
|  | * | 
|  | * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C | 
|  | * instruction at +0. | 
|  | */ | 
|  | kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr, | 
|  | unsigned long offset, | 
|  | bool *on_func_entry) | 
|  | { | 
|  | *on_func_entry = !offset; | 
|  | return (kprobe_opcode_t *)(addr + offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If 'symbol_name' is specified, look it up and add the 'offset' | 
|  | * to it. This way, we can specify a relative address to a symbol. | 
|  | * This returns encoded errors if it fails to look up symbol or invalid | 
|  | * combination of parameters. | 
|  | */ | 
|  | static kprobe_opcode_t * | 
|  | _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, | 
|  | unsigned long offset, bool *on_func_entry) | 
|  | { | 
|  | if ((symbol_name && addr) || (!symbol_name && !addr)) | 
|  | goto invalid; | 
|  |  | 
|  | if (symbol_name) { | 
|  | /* | 
|  | * Input: @sym + @offset | 
|  | * Output: @addr + @offset | 
|  | * | 
|  | * NOTE: kprobe_lookup_name() does *NOT* fold the offset | 
|  | *       argument into it's output! | 
|  | */ | 
|  | addr = kprobe_lookup_name(symbol_name, offset); | 
|  | if (!addr) | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * So here we have @addr + @offset, displace it into a new | 
|  | * @addr' + @offset' where @addr' is the symbol start address. | 
|  | */ | 
|  | addr = (void *)addr + offset; | 
|  | if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset)) | 
|  | return ERR_PTR(-ENOENT); | 
|  | addr = (void *)addr - offset; | 
|  |  | 
|  | /* | 
|  | * Then ask the architecture to re-combine them, taking care of | 
|  | * magical function entry details while telling us if this was indeed | 
|  | * at the start of the function. | 
|  | */ | 
|  | addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry); | 
|  | if (addr) | 
|  | return addr; | 
|  |  | 
|  | invalid: | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | static kprobe_opcode_t *kprobe_addr(struct kprobe *p) | 
|  | { | 
|  | bool on_func_entry; | 
|  | return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the 'p' is valid and return the aggregator kprobe | 
|  | * at the same address. | 
|  | */ | 
|  | static struct kprobe *__get_valid_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *ap, *list_p; | 
|  |  | 
|  | lockdep_assert_held(&kprobe_mutex); | 
|  |  | 
|  | ap = get_kprobe(p->addr); | 
|  | if (unlikely(!ap)) | 
|  | return NULL; | 
|  |  | 
|  | if (p != ap) { | 
|  | list_for_each_entry(list_p, &ap->list, list) | 
|  | if (list_p == p) | 
|  | /* kprobe p is a valid probe */ | 
|  | goto valid; | 
|  | return NULL; | 
|  | } | 
|  | valid: | 
|  | return ap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Warn and return error if the kprobe is being re-registered since | 
|  | * there must be a software bug. | 
|  | */ | 
|  | static inline int warn_kprobe_rereg(struct kprobe *p) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  | if (WARN_ON_ONCE(__get_valid_kprobe(p))) | 
|  | ret = -EINVAL; | 
|  | mutex_unlock(&kprobe_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int check_ftrace_location(struct kprobe *p) | 
|  | { | 
|  | unsigned long addr = (unsigned long)p->addr; | 
|  |  | 
|  | if (ftrace_location(addr) == addr) { | 
|  | #ifdef CONFIG_KPROBES_ON_FTRACE | 
|  | p->flags |= KPROBE_FLAG_FTRACE; | 
|  | #else	/* !CONFIG_KPROBES_ON_FTRACE */ | 
|  | return -EINVAL; | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_cfi_preamble_symbol(unsigned long addr) | 
|  | { | 
|  | char symbuf[KSYM_NAME_LEN]; | 
|  |  | 
|  | if (lookup_symbol_name(addr, symbuf)) | 
|  | return false; | 
|  |  | 
|  | return str_has_prefix(symbuf, "__cfi_") || | 
|  | str_has_prefix(symbuf, "__pfx_"); | 
|  | } | 
|  |  | 
|  | static int check_kprobe_address_safe(struct kprobe *p, | 
|  | struct module **probed_mod) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = check_ftrace_location(p); | 
|  | if (ret) | 
|  | return ret; | 
|  | jump_label_lock(); | 
|  | preempt_disable(); | 
|  |  | 
|  | /* Ensure the address is in a text area, and find a module if exists. */ | 
|  | *probed_mod = NULL; | 
|  | if (!core_kernel_text((unsigned long) p->addr)) { | 
|  | *probed_mod = __module_text_address((unsigned long) p->addr); | 
|  | if (!(*probed_mod)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | /* Ensure it is not in reserved area. */ | 
|  | if (in_gate_area_no_mm((unsigned long) p->addr) || | 
|  | within_kprobe_blacklist((unsigned long) p->addr) || | 
|  | jump_label_text_reserved(p->addr, p->addr) || | 
|  | static_call_text_reserved(p->addr, p->addr) || | 
|  | find_bug((unsigned long)p->addr) || | 
|  | is_cfi_preamble_symbol((unsigned long)p->addr)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Get module refcount and reject __init functions for loaded modules. */ | 
|  | if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) { | 
|  | /* | 
|  | * We must hold a refcount of the probed module while updating | 
|  | * its code to prohibit unexpected unloading. | 
|  | */ | 
|  | if (unlikely(!try_module_get(*probed_mod))) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the module freed '.init.text', we couldn't insert | 
|  | * kprobes in there. | 
|  | */ | 
|  | if (within_module_init((unsigned long)p->addr, *probed_mod) && | 
|  | !module_is_coming(*probed_mod)) { | 
|  | module_put(*probed_mod); | 
|  | *probed_mod = NULL; | 
|  | ret = -ENOENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | preempt_enable(); | 
|  | jump_label_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int register_kprobe(struct kprobe *p) | 
|  | { | 
|  | int ret; | 
|  | struct kprobe *old_p; | 
|  | struct module *probed_mod; | 
|  | kprobe_opcode_t *addr; | 
|  | bool on_func_entry; | 
|  |  | 
|  | /* Adjust probe address from symbol */ | 
|  | addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); | 
|  | if (IS_ERR(addr)) | 
|  | return PTR_ERR(addr); | 
|  | p->addr = addr; | 
|  |  | 
|  | ret = warn_kprobe_rereg(p); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ | 
|  | p->flags &= KPROBE_FLAG_DISABLED; | 
|  | p->nmissed = 0; | 
|  | INIT_LIST_HEAD(&p->list); | 
|  |  | 
|  | ret = check_kprobe_address_safe(p, &probed_mod); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  |  | 
|  | if (on_func_entry) | 
|  | p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY; | 
|  |  | 
|  | old_p = get_kprobe(p->addr); | 
|  | if (old_p) { | 
|  | /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ | 
|  | ret = register_aggr_kprobe(old_p, p); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cpus_read_lock(); | 
|  | /* Prevent text modification */ | 
|  | mutex_lock(&text_mutex); | 
|  | ret = prepare_kprobe(p); | 
|  | mutex_unlock(&text_mutex); | 
|  | cpus_read_unlock(); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | INIT_HLIST_NODE(&p->hlist); | 
|  | hlist_add_head_rcu(&p->hlist, | 
|  | &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); | 
|  |  | 
|  | if (!kprobes_all_disarmed && !kprobe_disabled(p)) { | 
|  | ret = arm_kprobe(p); | 
|  | if (ret) { | 
|  | hlist_del_rcu(&p->hlist); | 
|  | synchronize_rcu(); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try to optimize kprobe */ | 
|  | try_to_optimize_kprobe(p); | 
|  | out: | 
|  | mutex_unlock(&kprobe_mutex); | 
|  |  | 
|  | if (probed_mod) | 
|  | module_put(probed_mod); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_kprobe); | 
|  |  | 
|  | /* Check if all probes on the 'ap' are disabled. */ | 
|  | static bool aggr_kprobe_disabled(struct kprobe *ap) | 
|  | { | 
|  | struct kprobe *kp; | 
|  |  | 
|  | lockdep_assert_held(&kprobe_mutex); | 
|  |  | 
|  | list_for_each_entry(kp, &ap->list, list) | 
|  | if (!kprobe_disabled(kp)) | 
|  | /* | 
|  | * Since there is an active probe on the list, | 
|  | * we can't disable this 'ap'. | 
|  | */ | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static struct kprobe *__disable_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *orig_p; | 
|  | int ret; | 
|  |  | 
|  | lockdep_assert_held(&kprobe_mutex); | 
|  |  | 
|  | /* Get an original kprobe for return */ | 
|  | orig_p = __get_valid_kprobe(p); | 
|  | if (unlikely(orig_p == NULL)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (!kprobe_disabled(p)) { | 
|  | /* Disable probe if it is a child probe */ | 
|  | if (p != orig_p) | 
|  | p->flags |= KPROBE_FLAG_DISABLED; | 
|  |  | 
|  | /* Try to disarm and disable this/parent probe */ | 
|  | if (p == orig_p || aggr_kprobe_disabled(orig_p)) { | 
|  | /* | 
|  | * Don't be lazy here.  Even if 'kprobes_all_disarmed' | 
|  | * is false, 'orig_p' might not have been armed yet. | 
|  | * Note arm_all_kprobes() __tries__ to arm all kprobes | 
|  | * on the best effort basis. | 
|  | */ | 
|  | if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) { | 
|  | ret = disarm_kprobe(orig_p, true); | 
|  | if (ret) { | 
|  | p->flags &= ~KPROBE_FLAG_DISABLED; | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  | orig_p->flags |= KPROBE_FLAG_DISABLED; | 
|  | } | 
|  | } | 
|  |  | 
|  | return orig_p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unregister a kprobe without a scheduler synchronization. | 
|  | */ | 
|  | static int __unregister_kprobe_top(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *ap, *list_p; | 
|  |  | 
|  | /* Disable kprobe. This will disarm it if needed. */ | 
|  | ap = __disable_kprobe(p); | 
|  | if (IS_ERR(ap)) | 
|  | return PTR_ERR(ap); | 
|  |  | 
|  | if (ap == p) | 
|  | /* | 
|  | * This probe is an independent(and non-optimized) kprobe | 
|  | * (not an aggrprobe). Remove from the hash list. | 
|  | */ | 
|  | goto disarmed; | 
|  |  | 
|  | /* Following process expects this probe is an aggrprobe */ | 
|  | WARN_ON(!kprobe_aggrprobe(ap)); | 
|  |  | 
|  | if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) | 
|  | /* | 
|  | * !disarmed could be happen if the probe is under delayed | 
|  | * unoptimizing. | 
|  | */ | 
|  | goto disarmed; | 
|  | else { | 
|  | /* If disabling probe has special handlers, update aggrprobe */ | 
|  | if (p->post_handler && !kprobe_gone(p)) { | 
|  | list_for_each_entry(list_p, &ap->list, list) { | 
|  | if ((list_p != p) && (list_p->post_handler)) | 
|  | goto noclean; | 
|  | } | 
|  | /* | 
|  | * For the kprobe-on-ftrace case, we keep the | 
|  | * post_handler setting to identify this aggrprobe | 
|  | * armed with kprobe_ipmodify_ops. | 
|  | */ | 
|  | if (!kprobe_ftrace(ap)) | 
|  | ap->post_handler = NULL; | 
|  | } | 
|  | noclean: | 
|  | /* | 
|  | * Remove from the aggrprobe: this path will do nothing in | 
|  | * __unregister_kprobe_bottom(). | 
|  | */ | 
|  | list_del_rcu(&p->list); | 
|  | if (!kprobe_disabled(ap) && !kprobes_all_disarmed) | 
|  | /* | 
|  | * Try to optimize this probe again, because post | 
|  | * handler may have been changed. | 
|  | */ | 
|  | optimize_kprobe(ap); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | disarmed: | 
|  | hlist_del_rcu(&ap->hlist); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __unregister_kprobe_bottom(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *ap; | 
|  |  | 
|  | if (list_empty(&p->list)) | 
|  | /* This is an independent kprobe */ | 
|  | arch_remove_kprobe(p); | 
|  | else if (list_is_singular(&p->list)) { | 
|  | /* This is the last child of an aggrprobe */ | 
|  | ap = list_entry(p->list.next, struct kprobe, list); | 
|  | list_del(&p->list); | 
|  | free_aggr_kprobe(ap); | 
|  | } | 
|  | /* Otherwise, do nothing. */ | 
|  | } | 
|  |  | 
|  | int register_kprobes(struct kprobe **kps, int num) | 
|  | { | 
|  | int i, ret = 0; | 
|  |  | 
|  | if (num <= 0) | 
|  | return -EINVAL; | 
|  | for (i = 0; i < num; i++) { | 
|  | ret = register_kprobe(kps[i]); | 
|  | if (ret < 0) { | 
|  | if (i > 0) | 
|  | unregister_kprobes(kps, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_kprobes); | 
|  |  | 
|  | void unregister_kprobe(struct kprobe *p) | 
|  | { | 
|  | unregister_kprobes(&p, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_kprobe); | 
|  |  | 
|  | void unregister_kprobes(struct kprobe **kps, int num) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (num <= 0) | 
|  | return; | 
|  | mutex_lock(&kprobe_mutex); | 
|  | for (i = 0; i < num; i++) | 
|  | if (__unregister_kprobe_top(kps[i]) < 0) | 
|  | kps[i]->addr = NULL; | 
|  | mutex_unlock(&kprobe_mutex); | 
|  |  | 
|  | synchronize_rcu(); | 
|  | for (i = 0; i < num; i++) | 
|  | if (kps[i]->addr) | 
|  | __unregister_kprobe_bottom(kps[i]); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_kprobes); | 
|  |  | 
|  | int __weak kprobe_exceptions_notify(struct notifier_block *self, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | NOKPROBE_SYMBOL(kprobe_exceptions_notify); | 
|  |  | 
|  | static struct notifier_block kprobe_exceptions_nb = { | 
|  | .notifier_call = kprobe_exceptions_notify, | 
|  | .priority = 0x7fffffff /* we need to be notified first */ | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_KRETPROBES | 
|  |  | 
|  | #if !defined(CONFIG_KRETPROBE_ON_RETHOOK) | 
|  |  | 
|  | /* callbacks for objpool of kretprobe instances */ | 
|  | static int kretprobe_init_inst(void *nod, void *context) | 
|  | { | 
|  | struct kretprobe_instance *ri = nod; | 
|  |  | 
|  | ri->rph = context; | 
|  | return 0; | 
|  | } | 
|  | static int kretprobe_fini_pool(struct objpool_head *head, void *context) | 
|  | { | 
|  | kfree(context); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_rp_inst_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); | 
|  | struct kretprobe_holder *rph = ri->rph; | 
|  |  | 
|  | objpool_drop(ri, &rph->pool); | 
|  | } | 
|  | NOKPROBE_SYMBOL(free_rp_inst_rcu); | 
|  |  | 
|  | static void recycle_rp_inst(struct kretprobe_instance *ri) | 
|  | { | 
|  | struct kretprobe *rp = get_kretprobe(ri); | 
|  |  | 
|  | if (likely(rp)) | 
|  | objpool_push(ri, &rp->rph->pool); | 
|  | else | 
|  | call_rcu(&ri->rcu, free_rp_inst_rcu); | 
|  | } | 
|  | NOKPROBE_SYMBOL(recycle_rp_inst); | 
|  |  | 
|  | /* | 
|  | * This function is called from delayed_put_task_struct() when a task is | 
|  | * dead and cleaned up to recycle any kretprobe instances associated with | 
|  | * this task. These left over instances represent probed functions that | 
|  | * have been called but will never return. | 
|  | */ | 
|  | void kprobe_flush_task(struct task_struct *tk) | 
|  | { | 
|  | struct kretprobe_instance *ri; | 
|  | struct llist_node *node; | 
|  |  | 
|  | /* Early boot, not yet initialized. */ | 
|  | if (unlikely(!kprobes_initialized)) | 
|  | return; | 
|  |  | 
|  | kprobe_busy_begin(); | 
|  |  | 
|  | node = __llist_del_all(&tk->kretprobe_instances); | 
|  | while (node) { | 
|  | ri = container_of(node, struct kretprobe_instance, llist); | 
|  | node = node->next; | 
|  |  | 
|  | recycle_rp_inst(ri); | 
|  | } | 
|  |  | 
|  | kprobe_busy_end(); | 
|  | } | 
|  | NOKPROBE_SYMBOL(kprobe_flush_task); | 
|  |  | 
|  | static inline void free_rp_inst(struct kretprobe *rp) | 
|  | { | 
|  | struct kretprobe_holder *rph = rp->rph; | 
|  |  | 
|  | if (!rph) | 
|  | return; | 
|  | rp->rph = NULL; | 
|  | objpool_fini(&rph->pool); | 
|  | } | 
|  |  | 
|  | /* This assumes the 'tsk' is the current task or the is not running. */ | 
|  | static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk, | 
|  | struct llist_node **cur) | 
|  | { | 
|  | struct kretprobe_instance *ri = NULL; | 
|  | struct llist_node *node = *cur; | 
|  |  | 
|  | if (!node) | 
|  | node = tsk->kretprobe_instances.first; | 
|  | else | 
|  | node = node->next; | 
|  |  | 
|  | while (node) { | 
|  | ri = container_of(node, struct kretprobe_instance, llist); | 
|  | if (ri->ret_addr != kretprobe_trampoline_addr()) { | 
|  | *cur = node; | 
|  | return ri->ret_addr; | 
|  | } | 
|  | node = node->next; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | NOKPROBE_SYMBOL(__kretprobe_find_ret_addr); | 
|  |  | 
|  | /** | 
|  | * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe | 
|  | * @tsk: Target task | 
|  | * @fp: A frame pointer | 
|  | * @cur: a storage of the loop cursor llist_node pointer for next call | 
|  | * | 
|  | * Find the correct return address modified by a kretprobe on @tsk in unsigned | 
|  | * long type. If it finds the return address, this returns that address value, | 
|  | * or this returns 0. | 
|  | * The @tsk must be 'current' or a task which is not running. @fp is a hint | 
|  | * to get the currect return address - which is compared with the | 
|  | * kretprobe_instance::fp field. The @cur is a loop cursor for searching the | 
|  | * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the | 
|  | * first call, but '@cur' itself must NOT NULL. | 
|  | */ | 
|  | unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp, | 
|  | struct llist_node **cur) | 
|  | { | 
|  | struct kretprobe_instance *ri; | 
|  | kprobe_opcode_t *ret; | 
|  |  | 
|  | if (WARN_ON_ONCE(!cur)) | 
|  | return 0; | 
|  |  | 
|  | do { | 
|  | ret = __kretprobe_find_ret_addr(tsk, cur); | 
|  | if (!ret) | 
|  | break; | 
|  | ri = container_of(*cur, struct kretprobe_instance, llist); | 
|  | } while (ri->fp != fp); | 
|  |  | 
|  | return (unsigned long)ret; | 
|  | } | 
|  | NOKPROBE_SYMBOL(kretprobe_find_ret_addr); | 
|  |  | 
|  | void __weak arch_kretprobe_fixup_return(struct pt_regs *regs, | 
|  | kprobe_opcode_t *correct_ret_addr) | 
|  | { | 
|  | /* | 
|  | * Do nothing by default. Please fill this to update the fake return | 
|  | * address on the stack with the correct one on each arch if possible. | 
|  | */ | 
|  | } | 
|  |  | 
|  | unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, | 
|  | void *frame_pointer) | 
|  | { | 
|  | struct kretprobe_instance *ri = NULL; | 
|  | struct llist_node *first, *node = NULL; | 
|  | kprobe_opcode_t *correct_ret_addr; | 
|  | struct kretprobe *rp; | 
|  |  | 
|  | /* Find correct address and all nodes for this frame. */ | 
|  | correct_ret_addr = __kretprobe_find_ret_addr(current, &node); | 
|  | if (!correct_ret_addr) { | 
|  | pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n"); | 
|  | BUG_ON(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the return address as the instruction pointer, because if the | 
|  | * user handler calls stack_trace_save_regs() with this 'regs', | 
|  | * the stack trace will start from the instruction pointer. | 
|  | */ | 
|  | instruction_pointer_set(regs, (unsigned long)correct_ret_addr); | 
|  |  | 
|  | /* Run the user handler of the nodes. */ | 
|  | first = current->kretprobe_instances.first; | 
|  | while (first) { | 
|  | ri = container_of(first, struct kretprobe_instance, llist); | 
|  |  | 
|  | if (WARN_ON_ONCE(ri->fp != frame_pointer)) | 
|  | break; | 
|  |  | 
|  | rp = get_kretprobe(ri); | 
|  | if (rp && rp->handler) { | 
|  | struct kprobe *prev = kprobe_running(); | 
|  |  | 
|  | __this_cpu_write(current_kprobe, &rp->kp); | 
|  | ri->ret_addr = correct_ret_addr; | 
|  | rp->handler(ri, regs); | 
|  | __this_cpu_write(current_kprobe, prev); | 
|  | } | 
|  | if (first == node) | 
|  | break; | 
|  |  | 
|  | first = first->next; | 
|  | } | 
|  |  | 
|  | arch_kretprobe_fixup_return(regs, correct_ret_addr); | 
|  |  | 
|  | /* Unlink all nodes for this frame. */ | 
|  | first = current->kretprobe_instances.first; | 
|  | current->kretprobe_instances.first = node->next; | 
|  | node->next = NULL; | 
|  |  | 
|  | /* Recycle free instances. */ | 
|  | while (first) { | 
|  | ri = container_of(first, struct kretprobe_instance, llist); | 
|  | first = first->next; | 
|  |  | 
|  | recycle_rp_inst(ri); | 
|  | } | 
|  |  | 
|  | return (unsigned long)correct_ret_addr; | 
|  | } | 
|  | NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) | 
|  |  | 
|  | /* | 
|  | * This kprobe pre_handler is registered with every kretprobe. When probe | 
|  | * hits it will set up the return probe. | 
|  | */ | 
|  | static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kretprobe *rp = container_of(p, struct kretprobe, kp); | 
|  | struct kretprobe_holder *rph = rp->rph; | 
|  | struct kretprobe_instance *ri; | 
|  |  | 
|  | ri = objpool_pop(&rph->pool); | 
|  | if (!ri) { | 
|  | rp->nmissed++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rp->entry_handler && rp->entry_handler(ri, regs)) { | 
|  | objpool_push(ri, &rph->pool); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | arch_prepare_kretprobe(ri, regs); | 
|  |  | 
|  | __llist_add(&ri->llist, ¤t->kretprobe_instances); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(pre_handler_kretprobe); | 
|  | #else /* CONFIG_KRETPROBE_ON_RETHOOK */ | 
|  | /* | 
|  | * This kprobe pre_handler is registered with every kretprobe. When probe | 
|  | * hits it will set up the return probe. | 
|  | */ | 
|  | static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kretprobe *rp = container_of(p, struct kretprobe, kp); | 
|  | struct kretprobe_instance *ri; | 
|  | struct rethook_node *rhn; | 
|  |  | 
|  | rhn = rethook_try_get(rp->rh); | 
|  | if (!rhn) { | 
|  | rp->nmissed++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ri = container_of(rhn, struct kretprobe_instance, node); | 
|  |  | 
|  | if (rp->entry_handler && rp->entry_handler(ri, regs)) | 
|  | rethook_recycle(rhn); | 
|  | else | 
|  | rethook_hook(rhn, regs, kprobe_ftrace(p)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(pre_handler_kretprobe); | 
|  |  | 
|  | static void kretprobe_rethook_handler(struct rethook_node *rh, void *data, | 
|  | unsigned long ret_addr, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct kretprobe *rp = (struct kretprobe *)data; | 
|  | struct kretprobe_instance *ri; | 
|  | struct kprobe_ctlblk *kcb; | 
|  |  | 
|  | /* The data must NOT be null. This means rethook data structure is broken. */ | 
|  | if (WARN_ON_ONCE(!data) || !rp->handler) | 
|  | return; | 
|  |  | 
|  | __this_cpu_write(current_kprobe, &rp->kp); | 
|  | kcb = get_kprobe_ctlblk(); | 
|  | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  |  | 
|  | ri = container_of(rh, struct kretprobe_instance, node); | 
|  | rp->handler(ri, regs); | 
|  |  | 
|  | __this_cpu_write(current_kprobe, NULL); | 
|  | } | 
|  | NOKPROBE_SYMBOL(kretprobe_rethook_handler); | 
|  |  | 
|  | #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */ | 
|  |  | 
|  | /** | 
|  | * kprobe_on_func_entry() -- check whether given address is function entry | 
|  | * @addr: Target address | 
|  | * @sym:  Target symbol name | 
|  | * @offset: The offset from the symbol or the address | 
|  | * | 
|  | * This checks whether the given @addr+@offset or @sym+@offset is on the | 
|  | * function entry address or not. | 
|  | * This returns 0 if it is the function entry, or -EINVAL if it is not. | 
|  | * And also it returns -ENOENT if it fails the symbol or address lookup. | 
|  | * Caller must pass @addr or @sym (either one must be NULL), or this | 
|  | * returns -EINVAL. | 
|  | */ | 
|  | int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) | 
|  | { | 
|  | bool on_func_entry; | 
|  | kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry); | 
|  |  | 
|  | if (IS_ERR(kp_addr)) | 
|  | return PTR_ERR(kp_addr); | 
|  |  | 
|  | if (!on_func_entry) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int register_kretprobe(struct kretprobe *rp) | 
|  | { | 
|  | int ret; | 
|  | int i; | 
|  | void *addr; | 
|  |  | 
|  | ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* If only 'rp->kp.addr' is specified, check reregistering kprobes */ | 
|  | if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (kretprobe_blacklist_size) { | 
|  | addr = kprobe_addr(&rp->kp); | 
|  | if (IS_ERR(addr)) | 
|  | return PTR_ERR(addr); | 
|  |  | 
|  | for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { | 
|  | if (kretprobe_blacklist[i].addr == addr) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) | 
|  | return -E2BIG; | 
|  |  | 
|  | rp->kp.pre_handler = pre_handler_kretprobe; | 
|  | rp->kp.post_handler = NULL; | 
|  |  | 
|  | /* Pre-allocate memory for max kretprobe instances */ | 
|  | if (rp->maxactive <= 0) | 
|  | rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); | 
|  |  | 
|  | #ifdef CONFIG_KRETPROBE_ON_RETHOOK | 
|  | rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler, | 
|  | sizeof(struct kretprobe_instance) + | 
|  | rp->data_size, rp->maxactive); | 
|  | if (IS_ERR(rp->rh)) | 
|  | return PTR_ERR(rp->rh); | 
|  |  | 
|  | rp->nmissed = 0; | 
|  | /* Establish function entry probe point */ | 
|  | ret = register_kprobe(&rp->kp); | 
|  | if (ret != 0) { | 
|  | rethook_free(rp->rh); | 
|  | rp->rh = NULL; | 
|  | } | 
|  | #else	/* !CONFIG_KRETPROBE_ON_RETHOOK */ | 
|  | rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); | 
|  | if (!rp->rph) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size + | 
|  | sizeof(struct kretprobe_instance), GFP_KERNEL, | 
|  | rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) { | 
|  | kfree(rp->rph); | 
|  | rp->rph = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  | rcu_assign_pointer(rp->rph->rp, rp); | 
|  | rp->nmissed = 0; | 
|  | /* Establish function entry probe point */ | 
|  | ret = register_kprobe(&rp->kp); | 
|  | if (ret != 0) | 
|  | free_rp_inst(rp); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_kretprobe); | 
|  |  | 
|  | int register_kretprobes(struct kretprobe **rps, int num) | 
|  | { | 
|  | int ret = 0, i; | 
|  |  | 
|  | if (num <= 0) | 
|  | return -EINVAL; | 
|  | for (i = 0; i < num; i++) { | 
|  | ret = register_kretprobe(rps[i]); | 
|  | if (ret < 0) { | 
|  | if (i > 0) | 
|  | unregister_kretprobes(rps, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_kretprobes); | 
|  |  | 
|  | void unregister_kretprobe(struct kretprobe *rp) | 
|  | { | 
|  | unregister_kretprobes(&rp, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_kretprobe); | 
|  |  | 
|  | void unregister_kretprobes(struct kretprobe **rps, int num) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (num <= 0) | 
|  | return; | 
|  | mutex_lock(&kprobe_mutex); | 
|  | for (i = 0; i < num; i++) { | 
|  | if (__unregister_kprobe_top(&rps[i]->kp) < 0) | 
|  | rps[i]->kp.addr = NULL; | 
|  | #ifdef CONFIG_KRETPROBE_ON_RETHOOK | 
|  | rethook_free(rps[i]->rh); | 
|  | #else | 
|  | rcu_assign_pointer(rps[i]->rph->rp, NULL); | 
|  | #endif | 
|  | } | 
|  | mutex_unlock(&kprobe_mutex); | 
|  |  | 
|  | synchronize_rcu(); | 
|  | for (i = 0; i < num; i++) { | 
|  | if (rps[i]->kp.addr) { | 
|  | __unregister_kprobe_bottom(&rps[i]->kp); | 
|  | #ifndef CONFIG_KRETPROBE_ON_RETHOOK | 
|  | free_rp_inst(rps[i]); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_kretprobes); | 
|  |  | 
|  | #else /* CONFIG_KRETPROBES */ | 
|  | int register_kretprobe(struct kretprobe *rp) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_kretprobe); | 
|  |  | 
|  | int register_kretprobes(struct kretprobe **rps, int num) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_kretprobes); | 
|  |  | 
|  | void unregister_kretprobe(struct kretprobe *rp) | 
|  | { | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_kretprobe); | 
|  |  | 
|  | void unregister_kretprobes(struct kretprobe **rps, int num) | 
|  | { | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_kretprobes); | 
|  |  | 
|  | static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | NOKPROBE_SYMBOL(pre_handler_kretprobe); | 
|  |  | 
|  | #endif /* CONFIG_KRETPROBES */ | 
|  |  | 
|  | /* Set the kprobe gone and remove its instruction buffer. */ | 
|  | static void kill_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *kp; | 
|  |  | 
|  | lockdep_assert_held(&kprobe_mutex); | 
|  |  | 
|  | /* | 
|  | * The module is going away. We should disarm the kprobe which | 
|  | * is using ftrace, because ftrace framework is still available at | 
|  | * 'MODULE_STATE_GOING' notification. | 
|  | */ | 
|  | if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) | 
|  | disarm_kprobe_ftrace(p); | 
|  |  | 
|  | p->flags |= KPROBE_FLAG_GONE; | 
|  | if (kprobe_aggrprobe(p)) { | 
|  | /* | 
|  | * If this is an aggr_kprobe, we have to list all the | 
|  | * chained probes and mark them GONE. | 
|  | */ | 
|  | list_for_each_entry(kp, &p->list, list) | 
|  | kp->flags |= KPROBE_FLAG_GONE; | 
|  | p->post_handler = NULL; | 
|  | kill_optimized_kprobe(p); | 
|  | } | 
|  | /* | 
|  | * Here, we can remove insn_slot safely, because no thread calls | 
|  | * the original probed function (which will be freed soon) any more. | 
|  | */ | 
|  | arch_remove_kprobe(p); | 
|  | } | 
|  |  | 
|  | /* Disable one kprobe */ | 
|  | int disable_kprobe(struct kprobe *kp) | 
|  | { | 
|  | int ret = 0; | 
|  | struct kprobe *p; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  |  | 
|  | /* Disable this kprobe */ | 
|  | p = __disable_kprobe(kp); | 
|  | if (IS_ERR(p)) | 
|  | ret = PTR_ERR(p); | 
|  |  | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(disable_kprobe); | 
|  |  | 
|  | /* Enable one kprobe */ | 
|  | int enable_kprobe(struct kprobe *kp) | 
|  | { | 
|  | int ret = 0; | 
|  | struct kprobe *p; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  |  | 
|  | /* Check whether specified probe is valid. */ | 
|  | p = __get_valid_kprobe(kp); | 
|  | if (unlikely(p == NULL)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kprobe_gone(kp)) { | 
|  | /* This kprobe has gone, we couldn't enable it. */ | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (p != kp) | 
|  | kp->flags &= ~KPROBE_FLAG_DISABLED; | 
|  |  | 
|  | if (!kprobes_all_disarmed && kprobe_disabled(p)) { | 
|  | p->flags &= ~KPROBE_FLAG_DISABLED; | 
|  | ret = arm_kprobe(p); | 
|  | if (ret) { | 
|  | p->flags |= KPROBE_FLAG_DISABLED; | 
|  | if (p != kp) | 
|  | kp->flags |= KPROBE_FLAG_DISABLED; | 
|  | } | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(enable_kprobe); | 
|  |  | 
|  | /* Caller must NOT call this in usual path. This is only for critical case */ | 
|  | void dump_kprobe(struct kprobe *kp) | 
|  | { | 
|  | pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n", | 
|  | kp->symbol_name, kp->offset, kp->addr); | 
|  | } | 
|  | NOKPROBE_SYMBOL(dump_kprobe); | 
|  |  | 
|  | int kprobe_add_ksym_blacklist(unsigned long entry) | 
|  | { | 
|  | struct kprobe_blacklist_entry *ent; | 
|  | unsigned long offset = 0, size = 0; | 
|  |  | 
|  | if (!kernel_text_address(entry) || | 
|  | !kallsyms_lookup_size_offset(entry, &size, &offset)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ent = kmalloc(sizeof(*ent), GFP_KERNEL); | 
|  | if (!ent) | 
|  | return -ENOMEM; | 
|  | ent->start_addr = entry; | 
|  | ent->end_addr = entry + size; | 
|  | INIT_LIST_HEAD(&ent->list); | 
|  | list_add_tail(&ent->list, &kprobe_blacklist); | 
|  |  | 
|  | return (int)size; | 
|  | } | 
|  |  | 
|  | /* Add all symbols in given area into kprobe blacklist */ | 
|  | int kprobe_add_area_blacklist(unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long entry; | 
|  | int ret = 0; | 
|  |  | 
|  | for (entry = start; entry < end; entry += ret) { | 
|  | ret = kprobe_add_ksym_blacklist(entry); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (ret == 0)	/* In case of alias symbol */ | 
|  | ret = 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, | 
|  | char *type, char *sym) | 
|  | { | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, | 
|  | char *sym) | 
|  | { | 
|  | #ifdef __ARCH_WANT_KPROBES_INSN_SLOT | 
|  | if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) | 
|  | return 0; | 
|  | #ifdef CONFIG_OPTPROBES | 
|  | if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) | 
|  | return 0; | 
|  | #endif | 
|  | #endif | 
|  | if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) | 
|  | return 0; | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | int __init __weak arch_populate_kprobe_blacklist(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup and populate the kprobe_blacklist. | 
|  | * | 
|  | * Unlike the kretprobe blacklist, we'll need to determine | 
|  | * the range of addresses that belong to the said functions, | 
|  | * since a kprobe need not necessarily be at the beginning | 
|  | * of a function. | 
|  | */ | 
|  | static int __init populate_kprobe_blacklist(unsigned long *start, | 
|  | unsigned long *end) | 
|  | { | 
|  | unsigned long entry; | 
|  | unsigned long *iter; | 
|  | int ret; | 
|  |  | 
|  | for (iter = start; iter < end; iter++) { | 
|  | entry = (unsigned long)dereference_symbol_descriptor((void *)*iter); | 
|  | ret = kprobe_add_ksym_blacklist(entry); | 
|  | if (ret == -EINVAL) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Symbols in '__kprobes_text' are blacklisted */ | 
|  | ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, | 
|  | (unsigned long)__kprobes_text_end); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Symbols in 'noinstr' section are blacklisted */ | 
|  | ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, | 
|  | (unsigned long)__noinstr_text_end); | 
|  |  | 
|  | return ret ? : arch_populate_kprobe_blacklist(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MODULES | 
|  | /* Remove all symbols in given area from kprobe blacklist */ | 
|  | static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) | 
|  | { | 
|  | struct kprobe_blacklist_entry *ent, *n; | 
|  |  | 
|  | list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { | 
|  | if (ent->start_addr < start || ent->start_addr >= end) | 
|  | continue; | 
|  | list_del(&ent->list); | 
|  | kfree(ent); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kprobe_remove_ksym_blacklist(unsigned long entry) | 
|  | { | 
|  | kprobe_remove_area_blacklist(entry, entry + 1); | 
|  | } | 
|  |  | 
|  | static void add_module_kprobe_blacklist(struct module *mod) | 
|  | { | 
|  | unsigned long start, end; | 
|  | int i; | 
|  |  | 
|  | if (mod->kprobe_blacklist) { | 
|  | for (i = 0; i < mod->num_kprobe_blacklist; i++) | 
|  | kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); | 
|  | } | 
|  |  | 
|  | start = (unsigned long)mod->kprobes_text_start; | 
|  | if (start) { | 
|  | end = start + mod->kprobes_text_size; | 
|  | kprobe_add_area_blacklist(start, end); | 
|  | } | 
|  |  | 
|  | start = (unsigned long)mod->noinstr_text_start; | 
|  | if (start) { | 
|  | end = start + mod->noinstr_text_size; | 
|  | kprobe_add_area_blacklist(start, end); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void remove_module_kprobe_blacklist(struct module *mod) | 
|  | { | 
|  | unsigned long start, end; | 
|  | int i; | 
|  |  | 
|  | if (mod->kprobe_blacklist) { | 
|  | for (i = 0; i < mod->num_kprobe_blacklist; i++) | 
|  | kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); | 
|  | } | 
|  |  | 
|  | start = (unsigned long)mod->kprobes_text_start; | 
|  | if (start) { | 
|  | end = start + mod->kprobes_text_size; | 
|  | kprobe_remove_area_blacklist(start, end); | 
|  | } | 
|  |  | 
|  | start = (unsigned long)mod->noinstr_text_start; | 
|  | if (start) { | 
|  | end = start + mod->noinstr_text_size; | 
|  | kprobe_remove_area_blacklist(start, end); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Module notifier call back, checking kprobes on the module */ | 
|  | static int kprobes_module_callback(struct notifier_block *nb, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | struct module *mod = data; | 
|  | struct hlist_head *head; | 
|  | struct kprobe *p; | 
|  | unsigned int i; | 
|  | int checkcore = (val == MODULE_STATE_GOING); | 
|  |  | 
|  | if (val == MODULE_STATE_COMING) { | 
|  | mutex_lock(&kprobe_mutex); | 
|  | add_module_kprobe_blacklist(mod); | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | } | 
|  | if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | /* | 
|  | * When 'MODULE_STATE_GOING' was notified, both of module '.text' and | 
|  | * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was | 
|  | * notified, only '.init.text' section would be freed. We need to | 
|  | * disable kprobes which have been inserted in the sections. | 
|  | */ | 
|  | mutex_lock(&kprobe_mutex); | 
|  | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { | 
|  | head = &kprobe_table[i]; | 
|  | hlist_for_each_entry(p, head, hlist) | 
|  | if (within_module_init((unsigned long)p->addr, mod) || | 
|  | (checkcore && | 
|  | within_module_core((unsigned long)p->addr, mod))) { | 
|  | /* | 
|  | * The vaddr this probe is installed will soon | 
|  | * be vfreed buy not synced to disk. Hence, | 
|  | * disarming the breakpoint isn't needed. | 
|  | * | 
|  | * Note, this will also move any optimized probes | 
|  | * that are pending to be removed from their | 
|  | * corresponding lists to the 'freeing_list' and | 
|  | * will not be touched by the delayed | 
|  | * kprobe_optimizer() work handler. | 
|  | */ | 
|  | kill_kprobe(p); | 
|  | } | 
|  | } | 
|  | if (val == MODULE_STATE_GOING) | 
|  | remove_module_kprobe_blacklist(mod); | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block kprobe_module_nb = { | 
|  | .notifier_call = kprobes_module_callback, | 
|  | .priority = 0 | 
|  | }; | 
|  |  | 
|  | static int kprobe_register_module_notifier(void) | 
|  | { | 
|  | return register_module_notifier(&kprobe_module_nb); | 
|  | } | 
|  | #else | 
|  | static int kprobe_register_module_notifier(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_MODULES */ | 
|  |  | 
|  | void kprobe_free_init_mem(void) | 
|  | { | 
|  | void *start = (void *)(&__init_begin); | 
|  | void *end = (void *)(&__init_end); | 
|  | struct hlist_head *head; | 
|  | struct kprobe *p; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  |  | 
|  | /* Kill all kprobes on initmem because the target code has been freed. */ | 
|  | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { | 
|  | head = &kprobe_table[i]; | 
|  | hlist_for_each_entry(p, head, hlist) { | 
|  | if (start <= (void *)p->addr && (void *)p->addr < end) | 
|  | kill_kprobe(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | } | 
|  |  | 
|  | static int __init init_kprobes(void) | 
|  | { | 
|  | int i, err; | 
|  |  | 
|  | /* FIXME allocate the probe table, currently defined statically */ | 
|  | /* initialize all list heads */ | 
|  | for (i = 0; i < KPROBE_TABLE_SIZE; i++) | 
|  | INIT_HLIST_HEAD(&kprobe_table[i]); | 
|  |  | 
|  | err = populate_kprobe_blacklist(__start_kprobe_blacklist, | 
|  | __stop_kprobe_blacklist); | 
|  | if (err) | 
|  | pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); | 
|  |  | 
|  | if (kretprobe_blacklist_size) { | 
|  | /* lookup the function address from its name */ | 
|  | for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { | 
|  | kretprobe_blacklist[i].addr = | 
|  | kprobe_lookup_name(kretprobe_blacklist[i].name, 0); | 
|  | if (!kretprobe_blacklist[i].addr) | 
|  | pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", | 
|  | kretprobe_blacklist[i].name); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* By default, kprobes are armed */ | 
|  | kprobes_all_disarmed = false; | 
|  |  | 
|  | #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) | 
|  | /* Init 'kprobe_optinsn_slots' for allocation */ | 
|  | kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; | 
|  | #endif | 
|  |  | 
|  | err = arch_init_kprobes(); | 
|  | if (!err) | 
|  | err = register_die_notifier(&kprobe_exceptions_nb); | 
|  | if (!err) | 
|  | err = kprobe_register_module_notifier(); | 
|  |  | 
|  | kprobes_initialized = (err == 0); | 
|  | kprobe_sysctls_init(); | 
|  | return err; | 
|  | } | 
|  | early_initcall(init_kprobes); | 
|  |  | 
|  | #if defined(CONFIG_OPTPROBES) | 
|  | static int __init init_optprobes(void) | 
|  | { | 
|  | /* | 
|  | * Enable kprobe optimization - this kicks the optimizer which | 
|  | * depends on synchronize_rcu_tasks() and ksoftirqd, that is | 
|  | * not spawned in early initcall. So delay the optimization. | 
|  | */ | 
|  | optimize_all_kprobes(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_optprobes); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static void report_probe(struct seq_file *pi, struct kprobe *p, | 
|  | const char *sym, int offset, char *modname, struct kprobe *pp) | 
|  | { | 
|  | char *kprobe_type; | 
|  | void *addr = p->addr; | 
|  |  | 
|  | if (p->pre_handler == pre_handler_kretprobe) | 
|  | kprobe_type = "r"; | 
|  | else | 
|  | kprobe_type = "k"; | 
|  |  | 
|  | if (!kallsyms_show_value(pi->file->f_cred)) | 
|  | addr = NULL; | 
|  |  | 
|  | if (sym) | 
|  | seq_printf(pi, "%px  %s  %s+0x%x  %s ", | 
|  | addr, kprobe_type, sym, offset, | 
|  | (modname ? modname : " ")); | 
|  | else	/* try to use %pS */ | 
|  | seq_printf(pi, "%px  %s  %pS ", | 
|  | addr, kprobe_type, p->addr); | 
|  |  | 
|  | if (!pp) | 
|  | pp = p; | 
|  | seq_printf(pi, "%s%s%s%s\n", | 
|  | (kprobe_gone(p) ? "[GONE]" : ""), | 
|  | ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""), | 
|  | (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), | 
|  | (kprobe_ftrace(pp) ? "[FTRACE]" : "")); | 
|  | } | 
|  |  | 
|  | static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) | 
|  | { | 
|  | return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; | 
|  | } | 
|  |  | 
|  | static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) | 
|  | { | 
|  | (*pos)++; | 
|  | if (*pos >= KPROBE_TABLE_SIZE) | 
|  | return NULL; | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | static void kprobe_seq_stop(struct seq_file *f, void *v) | 
|  | { | 
|  | /* Nothing to do */ | 
|  | } | 
|  |  | 
|  | static int show_kprobe_addr(struct seq_file *pi, void *v) | 
|  | { | 
|  | struct hlist_head *head; | 
|  | struct kprobe *p, *kp; | 
|  | const char *sym; | 
|  | unsigned int i = *(loff_t *) v; | 
|  | unsigned long offset = 0; | 
|  | char *modname, namebuf[KSYM_NAME_LEN]; | 
|  |  | 
|  | head = &kprobe_table[i]; | 
|  | preempt_disable(); | 
|  | hlist_for_each_entry_rcu(p, head, hlist) { | 
|  | sym = kallsyms_lookup((unsigned long)p->addr, NULL, | 
|  | &offset, &modname, namebuf); | 
|  | if (kprobe_aggrprobe(p)) { | 
|  | list_for_each_entry_rcu(kp, &p->list, list) | 
|  | report_probe(pi, kp, sym, offset, modname, p); | 
|  | } else | 
|  | report_probe(pi, p, sym, offset, modname, NULL); | 
|  | } | 
|  | preempt_enable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations kprobes_sops = { | 
|  | .start = kprobe_seq_start, | 
|  | .next  = kprobe_seq_next, | 
|  | .stop  = kprobe_seq_stop, | 
|  | .show  = show_kprobe_addr | 
|  | }; | 
|  |  | 
|  | DEFINE_SEQ_ATTRIBUTE(kprobes); | 
|  |  | 
|  | /* kprobes/blacklist -- shows which functions can not be probed */ | 
|  | static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | mutex_lock(&kprobe_mutex); | 
|  | return seq_list_start(&kprobe_blacklist, *pos); | 
|  | } | 
|  |  | 
|  | static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(v, &kprobe_blacklist, pos); | 
|  | } | 
|  |  | 
|  | static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct kprobe_blacklist_entry *ent = | 
|  | list_entry(v, struct kprobe_blacklist_entry, list); | 
|  |  | 
|  | /* | 
|  | * If '/proc/kallsyms' is not showing kernel address, we won't | 
|  | * show them here either. | 
|  | */ | 
|  | if (!kallsyms_show_value(m->file->f_cred)) | 
|  | seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, | 
|  | (void *)ent->start_addr); | 
|  | else | 
|  | seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, | 
|  | (void *)ent->end_addr, (void *)ent->start_addr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) | 
|  | { | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | } | 
|  |  | 
|  | static const struct seq_operations kprobe_blacklist_sops = { | 
|  | .start = kprobe_blacklist_seq_start, | 
|  | .next  = kprobe_blacklist_seq_next, | 
|  | .stop  = kprobe_blacklist_seq_stop, | 
|  | .show  = kprobe_blacklist_seq_show, | 
|  | }; | 
|  | DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); | 
|  |  | 
|  | static int arm_all_kprobes(void) | 
|  | { | 
|  | struct hlist_head *head; | 
|  | struct kprobe *p; | 
|  | unsigned int i, total = 0, errors = 0; | 
|  | int err, ret = 0; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  |  | 
|  | /* If kprobes are armed, just return */ | 
|  | if (!kprobes_all_disarmed) | 
|  | goto already_enabled; | 
|  |  | 
|  | /* | 
|  | * optimize_kprobe() called by arm_kprobe() checks | 
|  | * kprobes_all_disarmed, so set kprobes_all_disarmed before | 
|  | * arm_kprobe. | 
|  | */ | 
|  | kprobes_all_disarmed = false; | 
|  | /* Arming kprobes doesn't optimize kprobe itself */ | 
|  | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { | 
|  | head = &kprobe_table[i]; | 
|  | /* Arm all kprobes on a best-effort basis */ | 
|  | hlist_for_each_entry(p, head, hlist) { | 
|  | if (!kprobe_disabled(p)) { | 
|  | err = arm_kprobe(p); | 
|  | if (err)  { | 
|  | errors++; | 
|  | ret = err; | 
|  | } | 
|  | total++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (errors) | 
|  | pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n", | 
|  | errors, total); | 
|  | else | 
|  | pr_info("Kprobes globally enabled\n"); | 
|  |  | 
|  | already_enabled: | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int disarm_all_kprobes(void) | 
|  | { | 
|  | struct hlist_head *head; | 
|  | struct kprobe *p; | 
|  | unsigned int i, total = 0, errors = 0; | 
|  | int err, ret = 0; | 
|  |  | 
|  | mutex_lock(&kprobe_mutex); | 
|  |  | 
|  | /* If kprobes are already disarmed, just return */ | 
|  | if (kprobes_all_disarmed) { | 
|  | mutex_unlock(&kprobe_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | kprobes_all_disarmed = true; | 
|  |  | 
|  | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { | 
|  | head = &kprobe_table[i]; | 
|  | /* Disarm all kprobes on a best-effort basis */ | 
|  | hlist_for_each_entry(p, head, hlist) { | 
|  | if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { | 
|  | err = disarm_kprobe(p, false); | 
|  | if (err) { | 
|  | errors++; | 
|  | ret = err; | 
|  | } | 
|  | total++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (errors) | 
|  | pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n", | 
|  | errors, total); | 
|  | else | 
|  | pr_info("Kprobes globally disabled\n"); | 
|  |  | 
|  | mutex_unlock(&kprobe_mutex); | 
|  |  | 
|  | /* Wait for disarming all kprobes by optimizer */ | 
|  | wait_for_kprobe_optimizer(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX: The debugfs bool file interface doesn't allow for callbacks | 
|  | * when the bool state is switched. We can reuse that facility when | 
|  | * available | 
|  | */ | 
|  | static ssize_t read_enabled_file_bool(struct file *file, | 
|  | char __user *user_buf, size_t count, loff_t *ppos) | 
|  | { | 
|  | char buf[3]; | 
|  |  | 
|  | if (!kprobes_all_disarmed) | 
|  | buf[0] = '1'; | 
|  | else | 
|  | buf[0] = '0'; | 
|  | buf[1] = '\n'; | 
|  | buf[2] = 0x00; | 
|  | return simple_read_from_buffer(user_buf, count, ppos, buf, 2); | 
|  | } | 
|  |  | 
|  | static ssize_t write_enabled_file_bool(struct file *file, | 
|  | const char __user *user_buf, size_t count, loff_t *ppos) | 
|  | { | 
|  | bool enable; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtobool_from_user(user_buf, count, &enable); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = enable ? arm_all_kprobes() : disarm_all_kprobes(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations fops_kp = { | 
|  | .read =         read_enabled_file_bool, | 
|  | .write =        write_enabled_file_bool, | 
|  | .llseek =	default_llseek, | 
|  | }; | 
|  |  | 
|  | static int __init debugfs_kprobe_init(void) | 
|  | { | 
|  | struct dentry *dir; | 
|  |  | 
|  | dir = debugfs_create_dir("kprobes", NULL); | 
|  |  | 
|  | debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); | 
|  |  | 
|  | debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); | 
|  |  | 
|  | debugfs_create_file("blacklist", 0400, dir, NULL, | 
|  | &kprobe_blacklist_fops); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(debugfs_kprobe_init); | 
|  | #endif /* CONFIG_DEBUG_FS */ |